Supporting Information

Enantioselective CO_{2} Fixation Via a Heck-Coupling/Carboxylation Cascade Catalyzed by Nickel

A. Cerveri, ${ }^{\dagger}$ R. Giovanelli, ${ }^{\dagger}$ D. Sella, ${ }^{\dagger}$ R. Pedrazzani, ${ }^{\dagger}$ M. Monari, ${ }^{\dagger}$ O. Nieto Faza, ${ }^{\ddagger}$ C. Silva López, ${ }^{* *}$ M. Bandini ${ }^{1 \$ *}$
${ }^{\dagger}$ Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, via Selmi 2, 40126, Bologna, Italy.
${ }^{\ddagger}$ Departamento de Química Orgánica. Universidade de Vigo. As Lagoas (Marcosende). 36310. Spain.
§ Consorzio CINMPIS, via Selmi 2, 40126, Bologna, Italy

General Information S2
Synthesis of acyclic percursors 1 S3
Synthesis of 2-pyridyl imidazoline ligands L10-11 S8
Synthesis of the preformed Nickel complex S10
General procedure for the enantioselective Heck-carboxylation reaction S11
Synthesis of the amide derivative S25
Labeling experiment with marked carbon dioxide S26
Non-linear-effect Experiments S27
Crystallographic data for $\left[(\mathrm{L} 11)_{2} \mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}$ and (R)-3a S28

General Information

${ }^{1} \mathrm{H}$-NMR spectra were recorded on Varian $400(400 \mathrm{MHz})$ spectrometers. Chemical shifts are reported in ppm from TMS with the solvent resonance as the internal standard (deuterochloroform: 7.24 ppm). Data are reported as follows: chemical shift, multiplicity ($s=$ singlet, $d=$ doublet, $d d=$ doublet doublet, $t=$ triplet, $t d=$ triple doublet, $\mathrm{dt}=$ double triplet, $\mathrm{q}=$ quartet, sext = sextet, sept = septet, $\mathrm{p}=$ pseudo, $\mathrm{b}=$ broad, $\mathrm{m}=$ multiplet), coupling constants (Hz). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Varian $400(100 \mathrm{MHz})$ spectrometers with complete proton decoupling. Chemical shifts are reported in ppm from TMS with the solvent as the internal standard (deuterochloroform: 77.0 ppm). GC-MS spectra were taken by El ionization at 70 eV on a HewlettPackard 5971 with GC injection. They are reported as: m / z (rel. intense). LC-electrospray ionization mass spectra were obtained with Agilent Technologies MSD1100 single-quadrupole mass spectrometer. HRMS-ESI were obtained with column Luna Omega 3um Polar C18 (size 100*3 mm) and Xevo G2-XS QTof. The enantiomeric excess (ee) were determined by chiral HPLC, on an Agilent Technologies Series 1200 instrument using chiral columns. The enantiomeric compositions were checked against the corresponding racemic products. Chromatographic purification was done with 240-400 mesh silica gel. Other anhydrous solvents were supplied by Sigma Aldrich in Sureseal® bottles and used without any further purification. Commercially available chemicals were purchased from Sigma Aldrich, Fluorochem, Alfa Aeser and TCI and used without any further purification. Melting points were determined with Bibby Stuart Scientific Melting Point Apparatus SMP 3 and are not corrected. Agilent Technologies LC/MSD Trap 1100 series (nebulizer: 15.0 PSI, dry Gas: $5.0 \mathrm{~L} / \mathrm{min}$, dry temperature: $325^{\circ} \mathrm{C}$, capillary voltage positive scan: 4000 mA , capillary voltage negative scan: $3500 \mathrm{~mA})$. The X-ray intensity data for $\left[(\mathrm{L} 11)_{2} \mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}$ and (R)-3a were measured on a Bruker Apex III CCD diffractometer. Cell dimensions and the orientation matrix were initially determined from a least-squares refinement on reflections measured in four sets of 20 exposures, collected in three different ω regions, and eventually refined against all data. A full sphere of reciprocal space was scanned by $0.5^{\circ} \omega$ steps. The software SMART ${ }^{3}$ was used for collecting frames of data, indexing reflections and determination of lattice parameters. The collected frames were then processed for integration by the SAINT program, ${ }^{1}$ and an empirical absorption correction was applied using SADABS. ${ }^{2}$ The structures were solved by direct methods (SIR 2014) ${ }^{3}$ and subsequent Fourier syntheses and refined by full-matrix least-squares on F^{2} (SHELXTL) ${ }^{4}$ using anisotropic thermal parameters for all non-hydrogen atoms. The aromatic, methyl, methylenic and methine hydrogen atoms were placed in calculated positions, refined with isotropic thermal parameters $U(H)=1.2 U e q(C)$ and

[^0]allowed to ride on their carrier carbons. Known compounds were prepared following the know procedure: 1a,

${ }^{5}$ Yang, G.; Wenfang, X.; Huoji, C.; Wanqing, W.; Jianwen, P.; Yinglan, G.; Huanfeng, J. Pd-catalyzed highly regio- and stereoselective formation of $\mathrm{C}-\mathrm{C}$ double bonds: an efficient method for the synthesis of benzofuran-, dihydrobenzofuran, and indoline-containing alkenes. J. Org. Chem. 2015, 80, 7456-7467.
${ }^{6}$ Wang, W.; Zhou, R.; Jiang, Z.-J.; Wang, X.; Fu, H.-Y.; Zheng, X.-L.; Chen, H.; Li, R.-X. Palladium-catalyzed domino Mizoroki-Heck/intermolecular $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H activation sequence: an approach to the formation of $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bonds. Eur. J. Org. Chem. 2015, 2579-2584.
${ }^{7}$ Iain, D. G. W.; Stefanie, R.; F. Dean, T. Asymmetric synthesis of medium-sized rings by intramolecular Au(I)-catalyzed cyclopropanation. J.Am.Chem.Soc. 2009, 131, 2056-2057.
${ }^{8}$ Samantha, A. G.; Suhelen, V-C.; Ryan, A. S. Iron-nickel dual-catalysis: a new engine for olefin functionalization and the Formation of quaternary centers. J. Am. Chem. Soc. 2018, 140, 11317-11324
${ }^{9}$ Daniel, S.; Francesco, M.; Israel, F.; Miguel, A. S. Intramolecular Pd(0)-catalyzed reactions of (2-iodoanilino)aldehydes: a joint experimental-computational Study. J. Org.Chem. 2012, 77, 10272-10284.
${ }^{10}$ Zhi-Xiong, T.; Jin-Bao, Q.; Guang-Li, X.; Xiaobo, P.; Liangliang, Q.; Wei-Yuan, M.; Zhen-Zhen, Z.; Jicheng, D.; YunFei, D.; Peifeng, S.; Xue-Yuan. L.; Xing-Zhong, S. J. Am. Chem. Soc. 2019, 141, 7637-7643.
${ }^{11}$ Ramesh, K.; Basuli, S.; Satyanarayana, G. Microwave-assisted domino palladium catalysis in water: a diverse synthesis of 3,3'-disubstituted heterocyclic compounds. Eur.J.Org.Chem. 2018, 2171-2177.

Synthesis of the new acyclic precursors 1

General procedure A

Procedure: ${ }^{12,6}$ A solution of phenol $(5.0 \mathrm{mmol})$ in $\mathrm{DCM}(15 \mathrm{~mL})$ was treated with N-iodosuccinimide (1.12 g , 5.0 mmol) and p-toluenesulfonic acid monohydrate ($95.1 \mathrm{mg}, 10 \mathrm{~mol} \%$) at room temperature for 6 h . The reaction was quenched with water (15 mL), extracted with DCM $(3 \times 15 \mathrm{~mL})$, and the reunited organic phases were washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure, to obtain the o-iodophenol quantitatively. The iodinated phenol was then dissolved in acetone (30 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.07 \mathrm{~g}, 15.0 \mathrm{mmol})$ was added. After 10 min methallyl chloride ($0.97 \mathrm{~mL}, 10 \mathrm{mmol}$) was added, and the solution was stirred at reflux for 5 h . At complete consumption of the starting material (TLC) the solvent was remooved, and the crude was dissolved in ethyl acetate $(20 \mathrm{~mL})$ and extracted with water (20 mL), washed with brine $(15 \mathrm{~mL})$, dryed over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give the desired product.

Compound: 2-iodo-1-((2-methylallyl)oxy)-4-phenethylbenzene (1b), colorless oil.
Procedure: From 4-phenethylphenol. Yield $=95 \%(1.79 \mathrm{~g}), \mathrm{Rf}=0.7$ (silica gel, $n \mathrm{Hex}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, CDCl_{3}): $\delta 7.64(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, J=8.1,6.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{dt}, J=8.4$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, \mathrm{J}=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 2.92-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.84$ ($\mathrm{m}, 2 \mathrm{H}$), 1.89 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 155.48,141.43,140.37,139.28,136.12,129.30,128.49$ (2C), 128.40 (2C), 126.03, 112.86, 112.10, 86.51, 72.64, 38.00, 36.56, 19.55. GC-MS (m/z): 378.05, 287 (100), 378 (27). Elemental analysis: $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{IO}: 378.05$; C, 57.16 ; H, 5.06; found: C, 57.00, H, 4.96.

[^1]

Compound: 5-(tert-butyl)-1-iodo-3-methyl-2-((2-methylallyl)oxy)benzene (1c), colorless oil.

Procedure: From 4-(tert-butyl)-2-methylphenol. Yield $=91 \%(1.56 \mathrm{~g}), \mathrm{Rf}=0.8$ (silica gel, $n \mathrm{Hex}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.92$ ($\mathrm{s}, 3 \mathrm{H}$), $1.27(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 153.77,148.16,140.50,133.36,130.72,127.99$, 112.20, 91.30, 75.22, 33.41, 30.62 (3C), 19.17, 16.65. GC-MS (m/z): 344.06, 162 (100), 334 (16), 329 (14).

Elemental analysis: $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{IO}: 344.06$; $\mathrm{C}, 52.34 ; \mathrm{H}, 6.15$; found: $\mathrm{C}, 52.21, \mathrm{H}, 6.01$.

Compound: ethyl 3-(3-iodo-4-((2-methylallyl)oxy)phenyl)propanoate (1g), colorless oil
Procedure: From ethyl 3-(4-hydroxyphenyl)propanoate. Yield $=93 \%(1.74 \mathrm{~g}), \mathrm{Rf}=0.5$ (silica gel, $n \mathrm{Hex}) .{ }^{1} \mathrm{H}-$ NMR (400 MHz, CDCl $)_{3}$: $\delta 7.60(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H})$, $4.98(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{qd}, J=7.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{dd}, J=8.2,7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.83(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.61,155.67,140.25,139.14,134.85$, 129.18, 112.83, 112.13, 86.49, 72.58, 60.43, 35.96, 29.55, 19.45, 14.22. GC-MS (m/z): 374.04, 159 (100), 374 (65), 287 (61). Elemental analysis: $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{IO}_{3}$: 374.04; C, 48.14; H, 5.12; found: C, 48.00, H, 5.11.

General procedure B

Procedure: ${ }^{13}$ To a solution of allylic alcohol (5.0 mmol) and phenol (5.0 mmol) in THF (15 mL), under nitrogen atmosphere, was added $\mathrm{PPh}_{3}(1.96 \mathrm{~g}, 7.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, followed after 20 min by slow addition of DIAD (1.51 $\mathrm{g}, 7.5 \mathrm{mmol}$). The reaction mixture was allowed to warm to room temperature, and stirred for 12 h . The reaction was quenched with water (20 mL) and extracted with AcOEt ($3 \times 15 \mathrm{~mL}$), and the organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give the desired product.

Compound: 2-((2-benzylallyl)oxy)-5-(tert-butyl)-1-iodo-3-methylbenzene (1I), colorless oil.

Procedure: From 4-(tert-butyl)-2-iodo-6-methylphenol and 2-benzylprop-2-en-1-ol. Yield = 74\%, (1.55 g), Rf $=0.7$ (silica gel, $n \mathrm{Hex}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.56(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.16$ (m, 1H), $7.10(\mathrm{dd}, J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.25$ (s, 9H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 154.48,148.90,144.34,138.93,134.04,131.42,129.10$ (2C), 128.69, 128.35 (2C), 126.24, 114.21, 92.02, 74.29, 40.18, 34.12, 31.31 (3C), 17.34. GC-MS (m/z): calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{IO}$ 420.10, 275 (100), 420 (11). Elemental analysis: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{IO}_{3}: 420.10 ; \mathrm{C}, 60.01 ; \mathrm{H}, 6.00$; found: $\mathrm{C}, 59.75, \mathrm{H}$, 5.88 .

Compound: 1-((2-benzylallyl)oxy)-2-iodo-4-isopropyl-5-methylbenzene (1m), colorless oil.

[^2]Procedure: From 2-iodo-4-isopropyl-5-methylphenol and 2-benzylprop-2-en-1-ol. Yield = 79\% (1.60 g), Rf = 0.7 (silica gel, $n \mathrm{Hex}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H})$, $6.44(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=1.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 2.98(\mathrm{sept}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.17$ (dd, $J=6.9,0.6 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.67,143.75,141.45$, 138.79, 136.41, 135.66, 129.05 (2C), 128.41 (2C), 126.30, 114.27, 114.03, 83.25, 70.75, 39.95, 28.61, 23.26 (2C), 19.38. GC-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{IO} 406.08,315$ (100), 406 (38). Elemental analysis: $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{IO}_{3}$: 406.08; C, 59.12; H, 5.71; found: C, 58.95, H, 5.55.

General procedure C

Procedure: ${ }^{14}$ To a solution of tyrosol $(0.69 \mathrm{~g}, 5.0 \mathrm{mmol})$ and the desired carboxylic acid (5.0 mmol) in THF $(12 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added $\mathrm{PPh}_{3}(1.31 \mathrm{~g}, 5.0 \mathrm{mmol})$ and diisopropyl azodicarboxylate ($1.01 \mathrm{~g}, 5.0 \mathrm{mmol}$). The reaction mixture was allowed to rise at room temperature, and stirred for 24 h . At complete consumption of the starting material (TLC) the solvent was remooved under reduced pressure, and the residue was dissolved in ethyl acetate $(30 \mathrm{~mL})$ and washed with saturated acqueous solution of $\mathrm{NaHCO}_{3}(3 \times 30 \mathrm{~mL})$ and brine (3×30 mL). The organic layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude so obtained was directly engaged in the General procedure A, giving the desired compound.

Compound: 3-lodo-4-((2-methylallyl)oxy)phenethyl butyrate (1h), colorless oil.

[^3]Procedure: From 4-(2-hydroxyethyl)phenol and butyric acid. Yield $=76 \%(1.47 \mathrm{~g}) \mathrm{Rf}=0.4$ (silica gel, $n \mathrm{Hex}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.61(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.15(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 2 H), 1.83 (s, 3H), 1.60 (sext, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.43$, 155.90, 140.19, 139.74, 132.16, 129.69, 112.86, 112.12, 86.47, 72.56, 64.49, 36.15, 33.73, 19.46, 18.41, 13.66. GC-MS (m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{IO}_{3} 388.05$, 300 (100), 245 (43). Elemental analysis: $\mathrm{C}_{16} \mathrm{H}_{21} 1 \mathrm{O}_{3}$: 388.05; C, 49.50; H, 5.45; found: C, 49.21, H, 5.21.

Compound: 3-lodo-4-((2-methylallyl)oxy)phenethyl 3-fluorobenzoate (1j), colorless oil.
Procedure: From 4-(2-hydroxyethyl)phenol and 3-fluorobenzoic acid. Yield $=71 \%$, $(1.56 \mathrm{~g}), \mathrm{Rf}=0.4$ (silica gel, $n \mathrm{Hex})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (ddd, $J=9.3$, $2.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, J=8.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.71 (d, J = 8.4 Hz, 1H), 5.16 (s, 1H), $4.98(\mathrm{~s}, 1 \mathrm{H}), 4.49-4.40(\mathrm{~m}, 4 \mathrm{H}), 2.94(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.20$ (d, JC-F $=3.0 \mathrm{~Hz}$), 162.49 (d, JC-F = 247.2 Hz), 156.02, 140.17, 139.85, 132.33 (d, JC-F = 7.3 Hz), 131.93, $130.05(\mathrm{~d}, J C-F=7.8 \mathrm{~Hz}), 129.75,125.29(\mathrm{~d}, \mathrm{JC}-\mathrm{F}=3.1 \mathrm{~Hz}), 120.01(\mathrm{~d}$, $J C-F=21.3 \mathrm{~Hz}$), 116.41 ($\mathrm{d}, \mathrm{JC}-\mathrm{F}=23.2 \mathrm{~Hz}$), 112.89, 112.19, 86.57, 72.56, 65.62, 33.75, 19.46. ${ }^{19}$ F-NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-112.14$ (td, $J=8.8,5.5 \mathrm{~Hz}$). GC-MS (m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FIO}_{3} 440.03,300$ (100), 123 (43), 158 (36). Elemental analysis: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FIO}_{3}: 440.03$; C, 51.84 ; $\mathrm{H}, 4.12$; found: $\mathrm{C}, 51.65, \mathrm{H}, 4.01$.

Compound: 3-lodo-4-((2-methylallyl)oxy)phenethyl (R)-2-methoxy-2-phenylacetate (1i), colorless oil.
Procedure: From 4-(2-hydroxyethyl)phenol and (S)-2-methoxy-2-phenylacetic acid. Yield $=68 \%(1.58 \mathrm{~g})$, Rf $=0.3$ (silica gel, $n \mathrm{Hex}) .[\alpha]_{\mathrm{D}}{ }^{20}=-10.5\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.54(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}$,
$1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{td}, J=6.8,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{td}, J=6.8,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (100 MHz, CDCl_{3}): $\delta 170.54,155.90,140.21,139.68,136.12,131.73,129.67,128.69,128.64$ (2C), 127.15 (2C), 112.90, 112.09, 86.45, 82.52, 72.57, 65.35, 57.36, 33.50, 19.47. GC-MS (m/z): calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{IO}_{4} 466.06,300$ (100), 466 (14). Elemental analysis: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{IO}_{3}: 466.06$; C, $54.09 ; \mathrm{H}, 4.97$; found: C, 53.85, H, 4.68.

Synthesis of 2-pyridyl imidazoline ligands L10-11

General procedure: ${ }^{15}$ To a solution of N-(pyridinoyl)-amino alcohol ($1.11 \mathrm{~g}, 5.0 \mathrm{mmol}$) in chloroform (1.0 M solution), thionyl chloride ($0.4 \mathrm{~mL}, 5.5 \mathrm{mmol}$) was added dropwise at room temperature, and the resulting mixture was stirred at reflux for 2 h . After completion of the reaction (TLC), phosphorus pentachloride (1.14 $\mathrm{mg}, 5.5 \mathrm{mmol}$) was added at room temperature, and the resulting suspension was refluxed until the reaction completion, determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. The solvent was evaporated, and the POCl_{3} was removed under high vacuum. The resulting residue was re-dissolved in chloroform (1.0 M) and the solution cooled at 0 ${ }^{\circ} \mathrm{C}$ when a solution of the desired aniline (6.0 mmol) and triethylamine (15 mmol) in chloroform was added dropwise. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and then refluxed for 12 h . After removal of the volatiles, aqueous $\mathrm{NaOH}(20 \% \mathrm{w} / \mathrm{v}, 10 \mathrm{~mL})$ was added to the residue. The mixture was extracted with dichloromethane, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by column chromatography on silica gel.

Compound: (S)-2-(4-(tert-butyl)-1-(4-methoxyphenyl)-4,5-dihydro-1H-imidazol-2-yl)pyridine (L10), sticky yellow oil.

Procedure: From (S)-N-(1-hydroxy-3,3-dimethylbutan-2-yl)picolinamide and p-anisidine. Yield $=27 \%$ (417.4 mg), $\mathrm{Rf}=0.3$ ($n \mathrm{Hex}: \mathrm{AcOEt}^{2}=2: 1$). $[\alpha]_{\mathrm{D}}{ }^{20}=+11.4\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.46(\mathrm{~d}, \mathrm{~J}=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.62(\mathrm{~m}, 4 \mathrm{H}), 4.02(\mathrm{q}, J=11.4,9.0 \mathrm{~Hz}$, 2 H), 3.69 ($\mathrm{s}, 3 \mathrm{H}$), $3.66-3.60(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.48,154.31,149.13$, $147.56,135.05,134.71,122.56,122.54(2 \mathrm{C}), 122.44,112.32$ (2C), $72.73,54.13,53.70,32.54,24.35$ (3C).

[^4]LC-MS (m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O} 309.18,310.2[\mathrm{M}+\mathrm{H}]^{+}, 332.2[\mathrm{M}+\mathrm{Na}]^{+}, 619.4[2 \mathrm{M}+\mathrm{H}]^{+}$. Elemental analysis: $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}: 309.18 ; \mathrm{C}, 73.76 ; \mathrm{H}, 7.49$; found: C, 73.51, H, 7.21.

Compound: (S)-2-(4-(tert-butyl)-1-(2,6-diisopropylphenyl)-4,5-dihydro-1H-imidazol-2-yl)pyridine (L11), sticky yellow oil.

Procedure: From (S)-N-(1-hydroxy-3,3-dimethylbutan-2-yl)picolinamide and 2,6-diisopropylaniline. Yield $=$ $33 \%,(599.4 \mathrm{mg}), \mathrm{Rf}=0.4$ ($n-\mathrm{Hex}: \mathrm{AcOEt}=2: 1$). $[\alpha]{ }_{\mathrm{D}}{ }^{20}=-65.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 8.26(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ $-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, \mathrm{J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=10.2 \mathrm{~Hz}$, 1H), 3.33 (sept, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (sept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.20 (dd, $J=13.2,6.9 \mathrm{~Hz}, 6 \mathrm{H}$), 1.04 (s, 9 H), 0.96 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.78$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.58,149.86,148.50,147.59$, $146.90,136.88,135.58,127.62,123.80$ (2C), 123.75, 123.72, 74.51, 56.34, 34.21, 28.06, 27.94, 26.29 (3C), 25.37, 24.99, 23.61, 23.24. LC-MS (m/z): calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{3} 363.27,364.2[\mathrm{M}+\mathrm{H}]^{+}, 386.4[\mathrm{M}+\mathrm{Na}]^{+}, 749.4$ $[2 \mathrm{M}+\mathrm{H}]^{+}$. Elemental analysis: $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{3}$: $363.27 ; \mathrm{C}, 79.29 ; \mathrm{H}, 9.15$; found: $\mathrm{C}, 79.15, \mathrm{H}, 9.00$.

Synthesis of the nickel complex [(L11) $\left.)_{2} \mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}$

Procedure: A solution of flame and dried $\mathrm{NiCl}_{2}(129.6 \mathrm{mg}, 1.0 \mathrm{mmol})$, ligand $\mathbf{L 1 1}$ ($727.1 \mathrm{mg}, 2.0 \mathrm{mmol}$) in anhydrous THF (1.5 mL) was refluxed for 2 h (complete consumption of the ligand, monitored by TLC). Then the mixture was slowly cooled, and the solvent was cannulated out. The pale-green solid was washed three times with $\mathrm{Et}_{2} \mathrm{O}$, and dried under vacuum, yielding the desired nickel complex as a fine light-green powder airstable ($848.5 \mathrm{mg}, 97 \%$ yield). NMR (\boldsymbol{d}^{6}-DMSO) spectra appeared extremely broad. Melting point = 190-193 ${ }^{\circ} \mathrm{C}$. HRMS-ESI: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{46} \mathrm{H}_{63} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{Ni}^{+} 829.46692$, found 829.46702.

General procedure for the enantioselective Heck-carboxylation reaction

a) In-situ formation of the nickel complex (the case for compound $\mathbf{1 a}$ is presented).

Procedure: A flame-dried, nitrogen filled Schlenk tube equipped with a stirring bar was charged with Nickel catalyst ($10 \mathrm{~mol} \%, 6.2 \mathrm{mg}$), zinc ($0.6 \mathrm{mmol}, 39.2 \mathrm{mg}$) and TBAI ($20 \mathrm{~mol} \%, 14.8 \mathrm{mg}$). The nitrogen atmosphere was evacuated, and the tube was backfilled with $\mathrm{CO}_{2}(1 \mathrm{bar})$. This operation was repeated three times. Then DMF ($3 \mathrm{~mL}, 0.07 \mathrm{M}$) and ligand $\mathrm{L} 11\left(20 \mathrm{~mol} \%, 14.5 \mathrm{mg}\right.$) were added under flow of CO_{2}, and the reaction mixture was stirred for 15 min . Under flow of CO_{2}, substrate $1(0.2 \mathrm{mmol})$ was added, and CO_{2} was bubbled in the solution. Then TMSCI ($0.6 \mathrm{mmol}, 76 \mu \mathrm{~L}$) was added by syringe, and the reaction mixture was stirred (1000 $\mathrm{rpm})$ for 16 h at rt . The reaction was quenched with $\mathrm{HCl}(10 \mathrm{~mL}, 1.0 \mathrm{M})$, and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were washed with HCl twice ($2 \mathrm{~mL}, 1.0 \mathrm{M}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel [n Hex:AcOEt] to afford the desired product $\mathbf{2 a}(25.3 \mathrm{mg}, 66 \%$ yield). A small amount of the product (ca. 1 mg) was then dissolved in MeOH and TMSCHN $2(25 \mu \mathrm{~L})$ was added. The solvent was removed, and the so obtained methyl ester was injected in chiral HPLC (96\% ee).
b) Use of preformed nickel complex.

Procedure: A flame dried, nitrogen filled Schlenk tube equipped with a stirring bar was charged with Nickel catalyst ($10 \mathrm{~mol} \%, 17.5 \mathrm{mg}$), zinc ($0.6 \mathrm{mmol}, 39.2 \mathrm{mg}$) and TBAI ($20 \mathrm{~mol} \%, 14.8 \mathrm{mg}$). The nitrogen atmosphere was evacuated, and the tube was backfilled with CO_{2} (1 bar). This operation was repeated three times. Then DMF ($3 \mathrm{~mL}, 0.07 \mathrm{M}$) was added under flow of CO_{2}, and the reaction mixture was stirred for 15 min . Under flow of CO_{2}, substrate 1 (0.2 mmol) was added, and CO_{2} was bubbled in the solution. Then, $\mathrm{TMSCI}(0.6 \mathrm{mmol}, 76$ $\mu \mathrm{L}$) was added by syringe, and the reaction mixture was stirred (1000 rpm) for 16 h at rt . The reaction was quenched with $\mathrm{HCl}(10 \mathrm{~mL}, 1.0 \mathrm{M})$, and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with HCl twice ($2 \mathrm{~mL}, 1.0 \mathrm{M}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired product 2. A
small amount of the product (ca 1 mg) was then dissolved in MeOH and $\mathrm{TMSCHN}_{2}(25 \mu \mathrm{~L}$) was added. The solvent was removed, and the so obtained methyl ester was injected in chiral HPLC.

Optimization reaction conditions

Table S1. Reducing agent

 1a (0.2 mmol)			
Entry	Reducing agent	Yield (\%) ${ }^{\text {a }}$	$e e(\%)^{\text {b }}$
1	Mn powder (> 99\%)	$<5^{\text {d, }}$	n.d.
2	ZnMe ${ }_{2}$	$N R^{\text {d }}$	n.d.
3	ZnEt ${ }_{2}$	$N R^{\text {d }}$	n.d.
4	Zn (20 mesh, 99.8\%)	$<5^{\text {e }}$	n.d.
5	Zn dust (<10 $\mu \mathrm{m}$, > 98\%)	28	93
6	Zn dust activated	$<5^{\text {e }}$	n.d.
7	Zn dust (4 eq)	24	92

${ }^{a}$ Determined after flash chromatography. ${ }^{b}$ Determined via chiral HPLC (CHIRALPAK IC, $30^{\circ} \mathrm{C}$, nhex/iPrOH 97:3, $0.5 \mathrm{~mL} / \mathrm{min}, 280.16 \mathrm{~nm}$). ${ }^{c}$ Inverted stereoinduction was observed. ${ }^{d}$ Substantial decomposition of the starting material was recorded. ${ }^{e}$ By-products were isolated as major outcomes. nr: no reaction. nd: not determined. DME: dimethoxyethane.

Table S2. Additives

1	1	TMSCI (3 eq)	35	93
2	Lil (1 eq)	TMSCI (3 eq)	$<5^{\text {d,e }}$	n.d.
3	Znl_{2} (20 mol\%)	TMSCI (3 eq)	$17^{\text {d }}$	91
4	TBAI (1 eq)	TMSCI (3 eq)	39	92
5	TBAI (20 mol\%)	TMSCI (3 eq)	52	93
6	TBAB (20 mol \%)	TMSCI (3 eq)	$<5^{\text {d }}$	n.d.
7	$\mathrm{MgBr}_{2}(1 \mathrm{eq}$)	TMSCI (3 eq)	$N R^{\text {d }}$	n.d.
8	TBAI (20 mol\%)	1	NR	n.d.
9	TBAI (20 mol\%)	TMSBr (3 eq)	41	89
10	TBAI (20 mol\%)	TMSCI (1 eq)	$15^{\text {e }}$	90

${ }^{a}$ Determined after flash chromatography. ${ }^{b}$ Determined via chiral HPLC (CHIRALPAK IC, $30{ }^{\circ} \mathrm{C}$, $\left.n \mathrm{Hex} / \mathrm{PrOH} 97: 3,0.5 \mathrm{~mL} / \mathrm{min}, 280.16 \mathrm{~nm}\right) .{ }^{c}$ Inverted stereoinduction was observed. ${ }^{d}$ Substantial decomposition of the starting material was recorded. ${ }^{e} \mathrm{By}$ products were isolated as major outcomes. nr: no reaction. nd: not determined. DME: dimethoxyethane.

Table S3. Optimization catalytic system

Entry	Catalyst	Ligand	solvent	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%) ${ }^{\text {a }}$	ee (\%) ${ }^{\text {b }}$
1	Nil_{2}	L3	THF	rt	NR	n.d.
2	Nil_{2}	L3	THF/DMF (1:1)	rt	$N R^{\text {e }}$	n.d.
3	Nil_{2}	L3	MeCN	rt	NR	n.d.
4	Nil_{2}	L3	dioxane	rt	NR	n.d.
5	Nil_{2}	L3	DMF	rt	52	93
6	Nil_{2}	L3	DMA	rt	23	86
7	Nil_{2}	L1	DMF	rt	$<5^{\text {d }}$	n.d.
8	Nil_{2}	L2	DMF	rt	$13^{\text {d }}$	$-21^{\text {c }}$
9	Nil_{2}	L4	DMF	rt	$<5^{\text {d }}$	n.d.
10	Nil_{2}	L5	DMF	rt	$8^{\text {d }}$	$-7^{\text {c }}$
11	Nil_{2}	L6	DMF	rt	$18^{\text {e }}$	41
12	Nil2	L7	DMF	rt	$<5^{\text {d }}$	n.d.
13	Nil_{2}	L8	DMF	rt	30	71
14	Nil_{2}	L9	DMF	rt	$11^{\text {d }}$	$-72^{\text {c }}$
15	Nil_{2}	L10	DMF	rt	36	90
16	Nil_{2}	L11	DMF	rt	58	96
17	$\mathrm{NiBr}_{2} \cdot$ DME	L11	DMF	rt	66	96
18	$\mathrm{NiCl}_{2} \bullet$ glyme	L11	DMF	rt	60	93
19	$\mathrm{NiBr}_{2} \bullet$ DME	L11	DMF	0	$31^{\text {e }}$	98
20	$\mathrm{NiBr}_{2} \bullet$ DME	L11	DMF	60	$14^{\text {d }}$	95

${ }^{a}$ Determined after flash chromatography. ${ }^{b}$ Determined via chiral HPLC (CHIRALPAK IC, $30{ }^{\circ} \mathrm{C}$, $n \mathrm{Hex} / \mathrm{PrOH} 97: 3,0.5 \mathrm{~mL} / \mathrm{min}, 280.16 \mathrm{~nm}) .{ }^{\text {c }}$ Inverted stereoinduction was observed. ${ }^{d}$ Substantial decomposition of the starting material was recorded. ${ }^{e}$ By-products were isolated as major outcomes. nr: no reaction. nd: not determined. DME: dimethoxyethane.

Compound: (R)-2-(3-methyl-2,3-dihydrobenzofuran-3-yl)acetic acid (2a). From 1a ($54.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). Purified by flash chromatography on silica gel [$n \mathrm{Hex}: \mathrm{AcOEt}=7: 3$], $23.4 \mathrm{mg}, 61 \%$ yield, 96% ee, white solid. Melting point: $88-90^{\circ} \mathrm{C} .[\alpha]^{20}=+46.2\left(c=0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.19-7.06(\mathrm{~m}, 2 \mathrm{H})$, $6.88(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=9.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=9.2,1.3 \mathrm{~Hz}$, 1H), $2.80-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.18,159.25,134.22,128.93,122.90$, 120.97, 110.21, 82.43, 44.24, 43.85, 25.22. GC-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} 206.09$ (M-OMe) 133 (100), 206 (36). Elemental analysis: $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$: 192.04; C, $68.74, \mathrm{H}, 6.29$; found: $\mathrm{C}, 68.65, \mathrm{H}, 6.21$.

Compound: (R)-2-(3-methyl-5-phenethyl-2,3-dihydrobenzofuran-3-yl)acetic acid (2b). From 1b (75.6 mg, 0.2 mmol). Purified by flash chromatography on silica gel [$n \mathrm{Hex}: \mathrm{AcOEt}=7: 3$], $36.1 \mathrm{mg}, 61 \%$ yield, 96% ee, white solid. Melting point: $87-89^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=+24.2^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26(\mathrm{t}, \mathrm{J}=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 4 \mathrm{H}), 2.68(\mathrm{~s}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 177.07,157.27,141.70,134.18,133.95,128.63,128.53$ (2C), 128.27 (2C), 125.86, 122.72, 109.58, 82.33, 43.95, 43.63, 38.44, 37.50, 24.86. GC-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} 310.16$ (M-OMe) 219 (100), 310 (9). Elemental analysis: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3}$: 296.14; C, $77.00, \mathrm{H}, 6.80$; found: $\mathrm{C}, 76.90, \mathrm{H}, 6.61$.

Compound: (R)-2-(5-(tert-butyl)-3,7-dimethyl-2,3-dihydrobenzofuran-3-yl)acetic acid (2c). From 1c (68.8 mg, 0.2 mmol). Purified by flash chromatography on silica gel [$n \mathrm{Hex}: A c O E t=8: 2$], $35.6 \mathrm{mg}, 68 \%$ yield, 95% ee, colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=+24.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz, CDCl_{3}): $\delta 177.30,155.11,143.85,132.89,126.93,119.06,116.72,82.26,44.13,44.07,34.31$,
31.73 (3C), 24.62, 15.31. GC-MS (m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} 276.17$ (M-OMe) 261 (100), 276 (18). Elemental analysis: $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$: 262.16; $\mathrm{C}, 73.25, \mathrm{H}, 8.45$; found: $\mathrm{C}, 73.15, \mathrm{H}, 8.33$.

Compound: (R)-2-(3,5-dimethyl-2,3-dihydrobenzofuran-3-yl)acetic acid (2d). From 1d ($57.6 \mathrm{mg}, 0.2 \mathrm{mmol}$). Purified by flash chromatography on silica gel [$n \mathrm{Hex}: \mathrm{AcOEt}=7: 3$], $26.4 \mathrm{mg}, 64 \%$ yield, 99% ee, white solid. Melting point: $98-100^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=+33.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.01-6.84(\mathrm{~m}$, $2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}$, 3 H), 1.43 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 176.45,157.14,134.27,130.28,129.30,123.40,109.74$, 82.52, 44.08, 43.90, 25.12, 21.08. GC-MS (m/z): calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} 220.11$ (M-OMe) 147 (100), 119 (41), 220 (20). Elemental analysis: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$: 206.09; C, 69.89, H, 6.84; found: C, 69.75, H, 6.61.

Compound: (R)-2-(5-(tert-butyl)-3-methyl-2,3-dihydrobenzofuran-3-yl)acetic acid (2e). From $\mathbf{1 e}(66.0 \mathrm{mg}, 0.2$ $\mathrm{mmol})$. Purified by flash chromatography on silica gel [$\mathrm{nHex}: A c O E t=7: 3$], $33.7 \mathrm{mg}, 68 \%$ yield, 97% ee, white solid. Melting point: $99-101^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=+34.6^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.19$ (dd, $\mathrm{J}=$ $8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.84-2.61(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.15,156.75,143.86$, 133.54, 125.51, 119.43, 109.11, 82.48, 44.05, 43.79, 34.40, 31.69, 24.68. GC-MS (m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$ 262.16 (M-OMe) 247 (100), 262 (41). Elemental analysis: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$: 248.14; C, $72.55, \mathrm{H}, 8.12$; found: C , 72.34, H, 8.01.

Compound: (R)-2-(5-isopropyl-3,6-dimethyl-2,3-dihydrobenzofuran-3-yl)acetic acid (2f). From 1 f (66.0 mg , $0.2 \mathrm{mmol})$. Purified by flash chromatography on silica gel [$n \mathrm{Hex}: \mathrm{AcOEt}=7: 3$], $31.3 \mathrm{mg}, 63 \%$ yield, 95% ee,
colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=+23.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.44$ (s, 3H), 1.18 (dd, $J=6.9,3.4 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.39,156.76,139.34,135.64,131.66$, 118.67, 111.32, 82.43, 44.00, 43.73, 28.88, 24.74, 23.50 (2C), 19.63. GC-MS (m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} 262.16$ (M-OMe) 189 (100), 147 (92), 262 (86). Elemental analysis: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$: 248.14; C, 72.55, H, 8.12; found: C, 72.41, H, 8.05.

Compound: (R)-2-(5-(3-ethoxy-3-oxopropyl)-3-methyl-2,3-dihydrobenzofuran-3-yl)acetic acid (2g). From 1g ($74.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). Purified by flash chromatography on silica gel [$\mathrm{nHex}: \mathrm{AcOEt}=2: 1$], $40.3 \mathrm{mg}, 69 \%$ yield, 98% ee, colorless oil. $[\alpha]_{D^{20}}=+21.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.96(\mathrm{dd}, \mathrm{J}=8.1,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ ($\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.87(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.21$ (td, $J=7.1,0.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (100 MHz, CDCl_{3}): $\delta 176.67,173.27,157.78,134.47,133.24,128.77,122.78$, 109.96, 82.63, 60.65, 44.11, 43.88, 36.68, 30.77, 25.10, 14.44. GC-MS (m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5} 306.15$ (MOMe) 145 (100), 233 (51), 306 (30). Elemental analysis: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5}$: 292.13; C, 65.74, H, 6.90; found: C, 65.58, H, 6.74.

Compound: (R)-2-(5-(2-(butyryloxy)ethyl)-3-methyl-2,3-dihydrobenzofuran-3-yl)acetic acid (2h). From 1h ($77.6 \mathrm{mg}, 0.2 \mathrm{mmol}$). Purified by flash chromatography on silica gel [$\mathrm{nHex}: \mathrm{AcOEt}=2: 1$], $34.9 \mathrm{mg}, 57 \%$ yield, 98% ee, colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=+16.6\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.01-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.72$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.76-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{sext}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.56,173.72,157.80,134.30,130.15,129.18,123.12,109.76$, 82.40, 65.03, 43.90, 43.63, 36.21, 34.64, 24.89, 18.40, 13.62. LC-MS (m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5} 306.15,305.0$ $[\mathrm{M}-\mathrm{H}]^{-}, 235.2[\mathrm{M}-71-\mathrm{H}]$. Elemental analysis: $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$: 306.15; C, 66.65, H, 7.24; found: C, 65.50, H, 7.10.

Compound: (R)-2-(5-(2-((3-fluorobenzoyl)oxy)ethyl)-3-methyl-2,3-dihydrobenzofuran-3-yl)acetic acid (2j). From 1 j ($88.0 \mathrm{mg}, 0.2 \mathrm{mmol}$). Purified by flash chromatography on silica gel [$n \mathrm{Hex}: \mathrm{AcOEt}=2: 1$], $44.4 \mathrm{mg}, 62 \%$ yield, $98 \% e e$, colorless oil. $[\alpha]_{D^{2}}{ }^{20}=+14.2^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.79$ (dt, J=7.7, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (ddd, $J=9.3,2.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, J=8.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.07-6.97$ $(\mathrm{m}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.62(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.17,165.33(\mathrm{~d}$, $J C-F=3.0 \mathrm{~Hz}), 162.51(\mathrm{~d}, \mathrm{JC}-\mathrm{F}=247.1 \mathrm{~Hz}), 157.92,134.43,132.43(\mathrm{~d}, \mathrm{JC}-\mathrm{F}=7.5 \mathrm{~Hz}), 130.02,129.98(\mathrm{~d}$, $J C-F=7.8 \mathrm{~Hz}$), 129.18, $125.25(\mathrm{~d}, \mathrm{JC}-\mathrm{F}=3.1 \mathrm{~Hz}), 123.30,120.01(\mathrm{~d}, \mathrm{JC}-\mathrm{F}=21.3 \mathrm{~Hz}), 116.42(\mathrm{~d}, \mathrm{JC}-\mathrm{F}=22.9$ Hz), 109.89, 82.43, 66.10, 43.84, 43.63, 34.69, 24.89. ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-112.37$ (td, $J=8.8,5.5$ $\mathrm{Hz})$. GC-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FO}_{5} 358.12,357.2[\mathrm{M}-\mathrm{H}], 235.2$ [M-123-H]. Elemental analysis: $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FO}_{5}$: 358.12; C, 67.03; H, 5.34; F, 5.30; found: C, 66.81, H, 5.21.

Compound: 2-((R)-5-(2-((R)-2-methoxy-2-phenylacetoxy)ethyl)-3-methyl-2,3-dihydrobenzofuran-3-yl)acetic acid (2i). From $1 \mathbf{i i}(93.2 \mathrm{mg}, 0.2 \mathrm{mmol})$. Purified by flash chromatography on silica gel [$n \mathrm{Hex}: \mathrm{AcOEt}=2: 1$], 43.7 $\mathrm{mg}, 60 \%$ yield, $25: 1 \mathrm{dr}, 97 \%$ ee, colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=+5.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.87(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.24(\mathrm{~m}, 3 \mathrm{H}), 3.36(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.72-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.91,170.61,157.83,136.10,134.38$, 129.72, 129.17, 128.72, 128.62 (2C), 127.21 (2C), 123.02, 109.71, 82.57, 82.48, 65.89, 57.26, 43.90, 43.62, 34.44, 24.86. LC-MS (m/z): calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6} 384.16,383.2$ [M-H] ${ }^{-} 235.0$ [M-149-H]. Elemental analysis: $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}$: 384.16; C, 68.74; H, 6.29; found: C, $68.55, \mathrm{H}, 6.15$.

Compound: (R)-2-(3-benzyl-2,3-dihydrobenzofuran-3-yl)acetic acid (2k). From 1k (70.0 mg, 0.2 mmol). Purified by flash chromatography on silica gel [$n \mathrm{Hex}$: AcOEt $=7: 3$], $26.3 \mathrm{mg}, 49 \%$ yield, 98% ee, white solid. Melting point: $137-139^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=+44.3^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.24-7.18(\mathrm{~m}$, $3 \mathrm{H}), 7.14(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{td}, \mathrm{J}=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.71(\mathrm{~m}, 2 \mathrm{H}), 4.66$ (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=16.4$ $\mathrm{Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 176.90,159.50,136.41,131.40,130.54$ (2C), 128.92, 127.97 (2C), 126.74, 124.26, 120.11, 109.88, 81.01, 47.94, 43.67, 41.11. GC-MS (m/z): calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} 282.13$ (M-OMe) 131 (100), 191 (41), 282 (7). Elemental analysis: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$: 268.11; C, 76.10; H, 6.01; found: C, 75.95, H, 5.80 .

Compound: (R)-2-(3-benzyl-5-(tert-butyl)-7-methyl-2,3-dihydrobenzofuran-3-yl)acetic acid (2I). From 11 (84.0 $\mathrm{mg}, 0.2 \mathrm{mmol})$. Purified by flash chromatography on silica gel [$n \mathrm{Hex}: \mathrm{AcOEt}=7: 3$], $45.3 \mathrm{mg}, 67 \%$ yield, 95% ee, colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=+26.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.21$ (dd, $\left.J=4.9,1.8 \mathrm{~Hz}, 3 \mathrm{H}\right)$, $7.01-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.14(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.24,155.43,142.81,136.67,130.77$ (2C), 130.16, 127.87 (2C), 126.96, 126.58, 119.03, 118.84, 81.87, 48.30, 43.15, 40.44, 34.16, 31.59 (3C), 15.33. GC-MS (m / z): calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{3} 352.20$ (M-OMe) 205 (100), 261 (21), 352 (10). Elemental analysis: $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3}$: 338.19; C, 78.07; H, 7.74, found: C, 77.91, H, 7.59.

Compound: (R)-2-(3-benzyl-5-isopropyl-6-methyl-2,3-dihydrobenzofuran-3-yl)acetic acid (2m). From 1m ($81.2 \mathrm{mg}, 0.2 \mathrm{mmol}$). Purified by flash chromatography on silica gel [$n \mathrm{Hex}: \mathrm{AcOEt}=7: 3$], $36.3 \mathrm{mg}, 56 \%$ yield,
98% ee, white solid. Melting point: $111-113^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=+20.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{dd}, J=6.5,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44$ (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.14(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=16.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.28 (s, 3H), 1.08 (dd, $J=10.3,6.8 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.47,157.07,138.46$, 136.67, 135.74, 130.74 (2C), 128.88, 127.94 (2C), 126.60, 120.84, 111.20, 81.95, 47.99, 43.24, 40.65, 28.69, 23.40, 23.38, 19.68. GC-MS (m/z): calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3} 338.19$ (M-OMe) 189 (100), 338 (12). Elemental analysis: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3}$: 324.17; $\mathrm{C}, 77.75$; $\mathrm{H}, 7.46$; found: $\mathrm{C}, 77.60 ; \mathrm{H}, 7.31$.

Compound: (R)-2-(3-octyl-2,3-dihydrobenzofuran-3-yl)acetic acid (2n), From 1 n ($74.4 \mathrm{mg}, 0.2 \mathrm{mmol}$). Purified by flash chromatography on silica gel [$n \mathrm{Hex}: \mathrm{AcOEt}=7: 3]$, $29.6 \mathrm{mg}, 51 \%$ yield, 80% ee, colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=$ $+68.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.13$ (ddd, $\left.J=8.0,7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.07(\mathrm{dd}, J=7.4$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=9.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{td}, J=12.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{td}, J=13.2$, $12.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.17(\mathrm{~m}, 10 \mathrm{H}), 1.03(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$: $175.48,159.62,132.05,128.65,123.28,120.42,109.75,80.75,47.16,42.66,38.30,31.77$, 29.91, 29.34, 29.18, 24.12, 22.58, 14.05. GC-MS (m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3} 304.20$ (M-OMe) 131 (100), 191 (36), 231 (17), 304 (7). Elemental analysis: $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$: 290.19; C, 74.45 ; H, 9.02; found: C, 74.35, H, 8.85.

Compound: (R)-2-(3-(methoxymethyl)-2,3-dihydrobenzofuran-3-yl)acetic acid (2o). From 10 ($60.8 \mathrm{mg}, 0.2$ mmol). Purified by flash chromatography on silica gel [$n \mathrm{Hex}: \mathrm{AcOEt}=7: 3$], $20.9 \mathrm{mg}, 47 \%$ yield, 94% ee, colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=+21.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.22-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{td}, \mathrm{J}=$ $7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dt}, J=8.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H})$, $3.32(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.77,159.65$, 130.28, 129.17, 124.14, 120.54, 109.89, 78.69, 76.80, 59.32, 48.19, 39.55. GC-MS (m/z): calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$ 236.10 (M-OMe) 131 (100), 191 (31), 236 (10). Elemental analysis: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}: 222.09$; C, 64.85; H, 6.35; found: C, 64.75, H, 6.22.

Compound: (R)-2-(3-methyl-1-(2-methylallyl)indolin-3-yl)acetic acid (2p). From 1p ($65.4 \mathrm{mg}, 0.2 \mathrm{mmol}$). Purified by flash chromatography on silica gel [nHex:AcOEt = 2:1], $23.1 \mathrm{mg}, 47 \%$ yield, 11% ee, orange oil. $[\alpha]_{\mathrm{D}}{ }^{20}=+8.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.07(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=7.3$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ (td, $J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.50(\mathrm{~m}$, 2 H), $3.46(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 177.29,151.07,141.99,136.17,128.10,122.13,117.53,112.18,107.06,65.23,55.14,43.85$, 41.99, 24.62, 20.30. GC-MS (m/z): calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2} 259.16$ (M-OMe) 186 (100), 130 (59), 144 (56), 259 (44). Elemental analysis: $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$: $245.14 ; \mathrm{C}, 66.65, \mathrm{H}, 7.24$; found: $\mathrm{C}, 66.25, \mathrm{H}, 7.04$.

Compound: (R)-2-(1-(tert-butoxycarbonyl)-3-methylindolin-3-yl)acetic acid (2q). From 1q (74.6 mg, 0.2 $\mathrm{mmol})$. Purified by flash chromatography on silica gel [$n \mathrm{Hex}: \mathrm{AcOEt}=2: 1$], $18.0 \mathrm{mg}, 31 \%$ yield, 63% ee, orange oil (as a $83: 17$ inseparable mixture with the benzoic acid by-product). $[\alpha]_{\mathrm{D}}{ }^{20}=+5.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[7.83(\mathrm{~m}), 7.55-7.42(\mathrm{~m}), 1 \mathrm{H}], 7.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.95 (td, J = 7.5, 1.1 Hz, 1H), 4.11 (d, J = $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.73(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H})$, 1.43 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 175.36,152.54,141.55,135.42,128.24,122.42,114.86,110.95$, 77.18, 59.88, 44.40, 28.44 (3C), 26.34, 20.29. GC-MS (m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4} 305.16$ (M-OMe) 290 (100), 190 (41), 305 (6). Elemental analysis: $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}$: 291.15; C, 65.96; H, 7.27; found: C, 65.80, H, 7.12.

Compound: (R)-2-(1-(tert-butoxycarbonyl)-3,6-dimethylindolin-3-yl)acetic acid (2r). From 1r (77.4 mg, 0.2 $\mathrm{mmol})$. Purified by flash chromatography on silica gel [$n \mathrm{Hex}: \mathrm{AcOEt}=2: 1$], $27.5 \mathrm{mg}, 45 \%$ yield, 69% ee, orange
oil (as a 76:24 inseparable mixture with the benzoic acid by-product). [$\alpha]_{D_{D}}{ }^{20}=+11.3^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right.$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\left.\delta 7.69(\mathrm{~m}), 7.28(\mathrm{~m}), 1 \mathrm{H}\right], 6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.15,152.59,141.93,131.71,129.32,127.48,123.13,112.02,80.53,60.22,44.72$, 28.42 (3C), 28.10, 26.39, 20.39. GC-MS (m/z): calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4} 319.18$ (M-OMe) 304 (100), 319 (20). Elemental analysis: $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}$: 305.16 ; $\mathrm{C}, 66.86$; $\mathrm{H}, 7.59$; found: $\mathrm{C}, 66.75, \mathrm{H}, 7.44$.

Compound: (R)-2-(1-methyl-2,3-dihydro-1H-inden-1-yl)acetic acid (2s). From 1s (54.4 mg, 0.2 mmol$)$. Purified by flash chromatography on silica gel [$n \mathrm{Hex}: \mathrm{AcOEt}=8: 2$], $15.6 \mathrm{mg}, 41 \%$ yield, 98% ee, colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}=+20.9^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.23-7.11(\mathrm{~m}, 4 \mathrm{H}), 2.92(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.64(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{dt}, J=12.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.39$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 177.67,149.95,142.72,126.88,126.45,124.70,122.36,46.02,44.86$, 38.68, 29.97, 26.17. GC-MS (m/z): calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} 204.12$ (M-OMe) 131 (100), 115 (43), 204 (8). Elemental analysis: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$: 190.10; C, 75.76; $\mathrm{H}, 7.42$; found: $\mathrm{C}, 75.66, \mathrm{H}, 7.31$.

Synthesis of the amide derivative

Compound: (R)-N-(4-bromophenyl)-2-(3-methyl-2,3-dihydrobenzofuran-3-yl)acetamide (3a).

Procedure: To a solution of acid (R)-2a ($96.1 \mathrm{mg}, 0.5 \mathrm{mmol}$, ee $=96 \%$), 4-bromoaniline ($172.0 \mathrm{mg}, 1.0 \mathrm{mmol}$) and DMAP ($6.0 \mathrm{mg}, 10 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added EDC ($148.2 \mathrm{mg}, 1.5 \mathrm{mmol}$) and the reaction mixture was stirred at room temperature for 6 h . Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added, and the solution was washed with $1 \mathrm{M} \mathrm{HCl}(3 \times 3 \mathrm{~mL})$, water $(3 \times 3 \mathrm{~mL})$ and brine $(3 \mathrm{~mL})$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography on silica gel [$n \mathrm{Hex}: \mathrm{AcOEt}=8: 2$], to obtain the amide (R) 3a. Yield $=91 \%$, (157.5 mg), 96\% ee, pale yellow solid.

Melting point: $127-129^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=-10.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35(\mathrm{~d}, \mathrm{~J}=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24-7.01(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30$ (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.67,159.37,136.45$, 133.83, 131.88 (2C), 128.95, 122.61, 121.60 (2C), 120.80, 117.09, 110.28, 82.24, 47.93, 44.48, 25.11. LCMS (m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{2} 345.04,346.2[\mathrm{M}+\mathrm{H}]^{+}, 713.2[2 \mathrm{M}+\mathrm{Na}]^{+}$. Elemental analysis: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{2}$: 345.04; C, 58.98; H, 4.66; found: C, 58.74, H, 4.41.

Labeling experiment with marked carbon dioxide

Procedure: A flame dried, nitrogen filled Schlenk tube equipped with a stirring bar was charged with Nickel catalyst ($17.5 \mathrm{~mol} \%, 9.8 \mathrm{mg}$), $\mathrm{Zn}(0.6 \mathrm{mmol}, 39.2 \mathrm{mg})$ and TBAI ($20 \mathrm{~mol} \%, 14.8 \mathrm{mg}$). The nitrogen atmosphere was evacuated, and the tube was backfilled with CO_{2} (1 bar). This operation was repeated three times. Then DMF ($3 \mathrm{~mL}, 0.07 \mathrm{M}$) was added under flow of CO_{2}, and the reaction mixture was stirred for 15 min . Under flow of CO_{2}, substrate 1a ($54.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added, and CO_{2} was bubbled in the solution. Then, $\mathrm{TMSCl}(0.6$ $\mathrm{mmol}, 76 \mu \mathrm{~L}$) was added by syringe, and the reaction mixture was stirred (1000 rpm) for 16 h at rt. The reaction was quenched with $\mathrm{HCl}(10 \mathrm{~mL}, 1.0 \mathrm{M})$, and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with HCl twice ($2 \mathrm{~mL}, 1.0 \mathrm{M}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel [$n \mathrm{Hex}: \mathrm{AcOEt}=7: 3$] to afford the desired product $\mathbf{2 a}-{ }^{13} \mathrm{C}\left({ }^{13} \mathrm{C}=98.8 \%\right.$), $25.0 \mathrm{mg}, 65 \%$ yield, 98% ee. A small amount of the product (≈ 1 mg) was then dissolved in MeOH and $\mathrm{TMSCHN}_{2}(25 \mu \mathrm{~L})$ was added. The solvent was removed, and the so obtained methyl ester was injected in chiral HPLC.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.18-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $176.54,159.02,133.98(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 128.68,122.66,120.72,109.97,82.20,43.98(\mathrm{~d}, J=57.3 \mathrm{~Hz}), 43.63$, 24.98. HRMS-ESI: $\left[\mathrm{M}-\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{10}{ }^{13} \mathrm{CH}_{11} \mathrm{O}_{3}{ }^{-}$192.07429, found 192.07433.

Non-linear-effect Experiments

Procedure: The experiments were performed following the general procedure for the enantioselective Heckcarboxylation reaction (In-situ formation of the nickel complex), by using differently enantio-enriched ligand L3 for each run.

Figure $\mathbf{S 1}$.

$\mathbf{R}^{2}=0.9979$		
Run	ee L3 (\%)	ee 2a (\%)
1	0	0
2	25	21.6
3	50	49.6
4	75	69.2
5	100	93

Crystallographic data for $\left[(\mathrm{L} 11)_{2} \mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}$ and (R)-3a

A total solvent accessible void volume of $1046 \AA^{3}$ (18.9\%) and 161 electron counts were detected in the unit cell of $\left[(\mathrm{L} 11)_{2} \mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}$ by the SQUEEZE routine of PLATON. ${ }^{16}$ This void volume is attributed to the presence of four highly disordered THF molecules in the unit cell. In the unit cell of (R)-3a two independent molecules are present. These molecules are rotational conformers generated by rotation along the C7-C8 bond to optimize the hydrogen bonding interactions of the amide group. Molecular drawings were generated using Mercury, Figure S1 and Figure S2. ${ }^{17}$ Crystal data and details of the data collection for compounds $\left[(\mathrm{L} 11) 2 \mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}$ and (R)-3a are reported in Table S4. Hydrogen bond interaction are reported in Table S5 and Table S6. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC) as supplementary publication number CCDC 2057596 for [(L11) $\left.2 \mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}$ and 2057597 for (R)3a, respectively. Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/getstructures, or by emailing data request@ccdc.cam.ac.uk.

Table S4. Crystal data and structure refinement for compounds $\left[(\mathbf{L 1 1}) 2 \mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}$ and $(R)-\mathbf{3 a}$.

Compound	[(L11)2 $\left.\left.\mathrm{Ni}^{(} \mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}$	(R)-3a
Formula	$\mathrm{C}_{48} \mathrm{H}_{66} \mathrm{ON}_{6} \mathrm{NiCl}_{2}$	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{NBr}$
Fw	872.67	346.22
T, K	296	296
λ, \AA	0.71073	0.71073
Crystal symmetry	Orthorhombic	Triclinic
Space group	P212121	P1
a, \AA	14.2788(13)	9.8490(5)
b, \AA	18.7966(16)	9.9955(5)
c, Å	20.5752(17)	10.0346(5)
α	90.00	113.883(2)
β	90.00	100.760(2)
γ	90.00	111.697(2)
Cell volume, \AA^{3}	5522.2(8)	770.70(7)
Z	4	2
$\mathrm{D}_{\mathrm{C}}, \mathrm{Mg} \mathrm{m}^{-3}$	1.050	1.492
$\mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right), \mathrm{mm}^{-1}$	0.483	2.670
F(000)	1864	352
Crystal size/ mm	$0.451 \times 0.284 \times 0.118$	$0.511 \times 0.334 \times 0.162$
θ limits, ${ }^{\circ}$	1.736-26.531	$2.417-26.994$
Reflections collected	77870	15044
Unique obs. Reflections [$\mathrm{F}_{\mathrm{o}}>4 \sigma\left(\mathrm{~F}_{\mathrm{o}}\right)$]	11340 [R (int) $=0.0527]$	$6528[R($ int $)=0.0522]$
Goodness-of-fit-on F^{2}	1.027	0.982
$\mathrm{R}_{1}(\mathrm{~F})^{\mathrm{a}}, \mathrm{wR2}\left(\mathrm{~F}^{2}\right)^{\mathrm{b}}[1>2 \sigma(\mathrm{l})]$	0.0414-0.0.0989	$0.0334-0.826$
Largest diff. peak and hole, e. \AA^{-3}	0.322--0.295	0.335 and -0.520

[^5]Table S5. Most relevant hydrogen bonds for [(L11) $\left.)_{2} \mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}\left[\AA\right.$ and $\left.{ }^{\circ}\right]$.

$\mathrm{D}-\mathrm{H} \ldots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})[\AA]]$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})[\AA]$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})[\AA]]$	$<(\mathrm{DHA})\left[{ }^{\circ}\right]$
$\mathrm{C}(8)-\mathrm{H}(8) \ldots \mathrm{Cl}(2)$	0.98	2.94	$3.722(4)$	137.4
$\mathrm{C}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{Cl}(2)$	0.93	2.66	$3.582(4)$	169.0
$\mathrm{C}(2)-\mathrm{H}(2) \ldots \mathrm{Cl}(2)^{\mathrm{a}}$	0.93	2.61	$3.535(4)$	173.3
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~W}) \ldots \mathrm{Cl}(2)$	$0.80(5)$	$2.23(5)$	$3.020(4)$	$172(4)$

Symmetry transformations used to generate equivalent atoms: ${ }^{a}-x+2, y-1 / 2,-z+1 / 2$

Table S6. Most relevant hydrogen bonds for (R)-3a [\AA and $\left.{ }^{\circ}\right]$.

$\mathrm{D}-\mathrm{H} \ldots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})[\AA]$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})[\AA]$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})[\AA]$	$<(\mathrm{DHA})\left[{ }^{\circ}\right]$
$\mathrm{C}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(2 \mathrm{~B})$	0.93	2.42	$2.903(5)$	112.4
$\mathrm{C}(17 \mathrm{~B})-\mathrm{H}(17 \mathrm{E}) \ldots \mathrm{Br}(1 \mathrm{~A})^{\mathrm{a}}$	0.96	2.84	$3.708(6)$	151.4
$\mathrm{~N}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{NB}) \ldots \mathrm{O}(2 A)$	$0.86(5)$	$2.07(5)$	$2.888(4)$	$156(5)$
$\mathrm{N}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{NA}) \ldots \mathrm{O}(2 \mathrm{~B})^{\mathrm{b}}$	$0.82(4)$	$2.17(4)$	$2.912(4)$	$151(4)$

Symmetry transformations used to generate equivalent atoms: ${ }^{a} x-1, y-1, z ;{ }^{b} x, y, z-1$

Figure S2. ORTEP drawing of $\left[(\mathrm{L} 11)_{2} \mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}$ with atom labelling.
Thermal ellipsoids are drawn at 30% of the probability level

Figure S3. ORTEP drawing of the two independent molecules of (R)-3a with atom labelling.
Thermal ellipsoids are drawn at 30% of the probability level.

[^0]: ${ }^{1}$ SMART \& SAINT Software Reference Manuals, version 5.051 (Windows NT Version), Bruker Analytical X-ray Instruments Inc.: Madison, Wi, 1998.
 ${ }^{2}$ Sheldrick, G. M.; SADABS-2008/1 - Bruker AXS Area Detector Scaling and Absorption Correction, Bruker AXS: Madison, Wisconsin, USA, 2008.
 ${ }^{3}$ Burla, M.C.; Caliandro, R.; Carrozzini, B.; Cascarano, G.L.; Cuocci, C.; Giacovazzo, C.; Mallamo, M.; Mazzone, A.; Polidori, G.; "Crystal structure determination and refinement via SIR2014" J. Appl. Cryst. 2015, 48, 306-309.
 ${ }^{4}$ Sheldrick, G. M. Acta Cryst C71, 2015, 3-8.

[^1]: ${ }^{12}$ Pierre-Yves, M.; Marcus, F. B.; Jyun-Hung, C.; Timothy, A. G.; Donald, S. K.; Mark, D. L.; Sha, L.; Dale, A. M.; Christopher, M. M.; Anne, R-M.; Katheen, M. O.; Deepa, R.; Anthony, W. T.; John, S. T.; Nathan, Y.; Robert, J. A. Design and synthesis of novel RXR-selective modulators with improved pharmacological profile. Bioorg. \& Med. Chem. Lett. 2003, 13, 4071-4075.

[^2]: ${ }^{13}$ Zheng, H.; Zhu, Y.; Shi, Y. Palladium(0)-catalyzed Heck reaction/C-H activation/amination sequence with diaziridinone: a facile approach to indolines. Angew. Chem. Int. Ed. 2014, 53: 11280-11284.

[^3]: ${ }^{14}$ Belnaser, A.B.; Ahmed, I.F.; Tina, M.; Khalid A.E. Olive secoiridoids and semisynthetic bioisostere analogues for the control of metastatic breast cancer. Bioorg. \& Med. Chem. 2013, 21, 2117-2127.

[^4]: ${ }^{15} \mathrm{Bo} \mathrm{Su}, \mathrm{T} . \mathrm{L} . ;$ John F. H. Iridium-catalyzed, β-selective C(sp3)-H silylation of aliphatic amines to form silapyrrolidines and 1,2-amino alcohols. J.Am. Chem. Soc. 2018, 140, 18032-18038.

[^5]: ${ }^{16}$ Speck, A.L.; "PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors", Acta Cryst., C71, 2015, 9-18.
 ${ }^{17}$ Macrae, C. F.; Sovago, I. ; Cottrell, S. J. ; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler M.; Wood, P. A.; "Mercury 4.0: from visualization to analysis, design and prediction", J. Appl. Cryst., 2020, 53, 226-235.

