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Abstract
Weshow that the performances of the finite differencemethod for double barrier option
pricing can be strongly enhanced by applying both a repeatedRichardson extrapolation
technique and a mesh optimization procedure. In particular, first we construct a space
mesh that is uniform and aligned with the discontinuity points of the solution being
sought. This is accomplished by means of a suitable transformation of coordinates,
which involves some parameters that are implicitly defined and whose existence and
uniqueness is theoretically established. Then, a finite difference scheme employing
repeated Richardson extrapolation in both space and time is developed. The overall
approach exhibits high efficacy: barrier option prices can be computed with accuracy
close to the machine precision in less than one second. The numerical simulations also
reveal that the improvement over existing methods is due to the combination of the
mesh optimization and the repeated Richardson extrapolation.

Keywords Double barrier option · Mesh optimization · Richardson extrapolation ·
High-order accuracy · Finite difference method

1 Introduction

The most common approach for pricing double barrier options is based on solving
a partial differential equation of Black–Scholes type (see Wilmott 1998). However,
such an equation does not have a closed-form solution and thus requires numerical
approximation. To this aim, some scholars (see, for example, Boyle and Lau 1994;
Cheuk and Vorst 1996; Ritchken 1996; Ahn and Gao 1999; Boyle and Tian 1999;
Figlewski and Gao 1999; Tian 1999) have proposed the use of binomial and trinomial
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lattices, according to which the time variable and the price of the underlying asset
(hereafter referred to as the space variable) are discretized on a suitable tree of nodes.
This approach, albeit relatively simple to implement, has the disadvantage of not being
very flexible, since the number of time-steps and the number of space discretization
nodes in the tree cannot be chosen independently. As a consequence, binomial and
trinomial lattices have progressively left the scene to a more modern and versatile
numerical technique, namely the finite difference method, which has been employed,
for instance, by Zvan et al. (2000), Duffy (2006), Wade et al. (2007), Ndogmo and
Ntwiga (2011), and Milev and Tagliani (2013). In the present paper, we show that the
performances of the finite difference method for double barrier option pricing can be
considerably improved by applying a suitable mesh optimization and a Richardson
extrapolation technique.

When pricing double barrier options by finite difference approximation (as well
as by binomial/trinomial trees), some difficulties arise. In fact, the solution to be
computed is not smooth at the strike price and at the barriers, and thus the space
mesh, i.e. the set of nodes that are used to discretize the underlying asset price, must
be chosen appropriately. First of all, to avoid losses of accuracy, a node of the mesh
must be located exactly at the strike price, and other two nodes must be located
exactly at the barriers (see Tian 1999; Pooley et al. 2003; Duffy 2006, Chapter 13,).
Furthermore, if wewant to improve the accuracy of the computed solution by applying
someRichardson extrapolationprocedure (see, for example,Arciniega andAllen 2004;
Feng and Linetsky 2008; Chan et al. 2009; Ballestra 2014), we need a smooth pattern
of error reduction, which requires us to use a mesh with equally spaced nodes. It is
also worth noticing that, when using finite difference methods, a uniform mesh does
also guarantee the highest rates of truncation error reduction (see, for example, Hirsch
1988, Chapter 4; Hyman et al. 2000; Duffy 2004). In the following, for the sake of
brevity, a space mesh that satisfies the above two requirements will be said aligned
and uniform.

Now, an aligned and uniform mesh is straightforward to obtain only if the strike
price and the barriers are the terms of some arithmetic progression. This is the case
that is usually considered when proposing finite difference schemes for double barrier
option pricing, see, e.g., Duffy (2004),Wade et al. (2007), Ndogmo andNtwiga (2011),
and Milev and Tagliani (2013). Nevertheless, it can also happen that the strike price
and the barriers are not in arithmetic progression. Anyway, even if they are, in the
frequently encountered case where the barriers are discretely monitored, another issue
arises. In fact, when pricing double barrier options with discretely monitored barriers,
we have to discretize not only the space interval between the two barriers, but also the
space interval below the lower barrier and the space interval above the upper barrier
(by contrast, in the case of continuously monitored barriers, only the space interval
between the barriers needs to be considered). Then, clearly, if we want to use an
aligned and uniform mesh, the number of space discretization nodes below the lower
barrier, denote it NL , the number of space discretization nodes between the lower and
the upper barriers, denote it NM , and the number of space discretization nodes above
the upper barriers, denote it NU , cannot be chosen arbitrarily. In the following, a mesh
that is not only aligned and uniform but also such that NL , NM and NU are freely and
a-priori decided by the user will be called optimal. As we may easily understand (and
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Enhancing finite difference approximations for double barrier...

as will be clear in Sect. 3) in the general case an optimal mesh is impossible to have,
at least in the original space domain of the partial differential problem that we have to
solve.

In the present paper we propose a definitive and also very effective remedy to this
issue. Specifically, we map the original space domain to a new computational one
in which an optimal space mesh can always be constructed. This is accomplished by
means of a suitable transformationof coordinates,which involves someparameters that
are implicitly defined and whose existence and uniqueness is theoretically established.
Such a change of coordinates is thoroughly analyzed from both the theoretical and the
computational standpoint, and it is proven to be monotone, infinitely regular, and also
simple to implement, so that it can be used without introducing any kind of singularity
or incurring in any computational issue.

After applying the transformation of coordinates, a new partial differential problem
is obtained which we solve by means of a finite difference scheme with repeated
Richardson extrapolation in both space and time. The overall approach exhibits high
efficacy. In particular, barrier optionprices are computedwith an error (in themaximum
norm) close to themachine precision (i.e. of the order 10−11 or 10−12) in less than 0.6 s.
As shown by numerical simulations, the improvement over existing methods is due to
the combination of the mesh optimization and the repeated Richardson extrapolation.

It is also worth to remark that our mesh optimization approach does not depend
on the partial differential equation being solved, and thus it could also be applied to
option pricing models other than the Black–Scholes model, such as the standard CEV
model (Cox 1996), the CEV model with time dependent parameters (Lo et al. 2000,
2009) or the fractional Brownian motion (Mandelbrot and Van Ness 1968).

The remainder of the paper is organized as follows: in Sect. 2 the partial differential
problem that yields the price of a double barrier option under the Black–Scholes model
is briefly presented. In particular, our attention is focused on the case of discretely
monitored barriers, but continuously monitored barriers could be considered as well;
in Sect. 3 the procedure for constructing an optimalmesh is developed and theoretically
analyzed; in Sect. 4 it is shown how to compute the optimal mesh by means of suitable
bisection/Newton algorithms whose convergence is a-priory theoretically guaranteed;
in Sect. 5 the finite difference scheme is briefly sketched; in Sect. 6 some numerical
results are presented and discussed; finally, in Sect. 7 some conclusions are drawn.

2 Themathematical problem

In this section, the partial differential problem that is satisfied by the price of a double
barrier option is briefly recalled. In doing that, we only consider the case of the popular
Black–Scholes model, even if the proposed mesh optimization approach can also be
used in conjunction with other models (for example the CEV model, see Cox 1996,
or the fractional Brownian motion, see Mandelbrot and Van Ness 1968).

Let the price of an asset satisfy the following stochastic differential equation (under
the risk-neutral measure):

dS(t) = r S(t)dt + σ S(t)dW (t), (1)
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where r and σ are the (constant) interest rate and volatility, respectively, W is a
Wiener process.

Let us consider a double barrier call option written on the above asset, withmaturity
T , strike price E , lower barrier L and upper barrier U . Moreover, let the barriers be
applied discretely, at the Ib times tb,1, tb,2, . . ., tb,Ib . Following a common approach,
the barrier dates are assumed to be equally spaced in [0, T ], that is tb,i = i�Tb,
i = 1, 2, . . . , Ib, where �Tb = T

Ib
denotes the time between two consecutive barriers.

Let us observe that, as will be perfectly clear later on, the mesh optimization technique
which we are going to present is not at all restricted to the pricing of the aforemen-
tioned kind of double barrier option. By contrast, the case of a put option, the case of
continuously monitored barriers, and the case of unequally spaced barrier dates could
be dealt with as well. Finally, we will focus our attention onto the case L < E < U
(the strike lies between the barriers), which is the one that is usually encountered in
the financial practice. Nevertheless, the reader will easily figure it out that the very
unfrequent case E < L < U could also be considered.

The barrier option price, denote it ˜V (S, t), can be obtained by recursively solving,
for i = Ib, Ib − 1, . . . , 1, the following partial differential problems:

∂˜V (S, t)

∂t
+ r S

∂˜V (S, t)

∂S
+ 1

2
σ 2S2

∂2˜V (S, t)

∂S2
− r˜V (S, t) = 0, t ∈ [tb,i−1, tb,i [,

(2)

with boundary conditions

˜V (0, t) = 0, lim
S→+∞

˜V (S, t) = 0, t ∈ [tb,i−1, tb,i [, (3)

and final condition

˜V (S, tb,i ) = ˜ψi (S), (4)

where

˜ψIb (S) =
{

max(S − E, 0) if L < S < U ,

0 if S ≤ L or S ≥ U ,
(5)

and for i = 1, 2, . . . , Ib − 1 we have:

˜ψi (S) =
{

˜V (S, tb,i ) if L < S < U ,

0 if S ≤ L or S ≥ U .
(6)

That is, first of all we have to solve problem (2)–(3) on the time interval
[tb,Ib−1, tb,Ib [ with the final condition (5), then we have to solve problem (2)–(3)
on the time interval [tb,Ib−2, tb,Ib−1[ with the final condition (6) (i = Ib − 1), then
we have to solve problem (2)–(3) on the time interval [tb,Ib−3, tb,Ib−2[ with the final
condition (6) (i = Ib − 2), . . ., and finally we have to solve problem (2)–(3) on the
time interval [tb,0, tb,1[with the final condition (6) (i = 1). Note that, according to (6),
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the final condition of the problem that holds in the time interval [tb,i−1, tb,i [ depends
on the solution at time tb,i , which is obtained by solving the problem that holds in the
time interval [tb,i , tb,i+1[, i = 1, 2, . . . , Ib − 1.

The partial differential problem (2)–(3) must be solved by numerical approxima-
tions. In particular, in this paper we will use a finite difference scheme enhanced by
repeated Richardson extrapolation in both space and time.

2.1 Domain localization of problems (2)–(3)

To solve problem (2)–(3) by finite difference approximation, first of all, domain
localization is needed, i.e. the unlimited space domain of problem (2)–(3) must be
substituted with a bounded one:

�S = [Smin, Smax], (7)

where Smin and Smax have to be chosen such that the error due to the truncation of the
domain is negligible. In this paper, since the domain localization is not the focus of
our analysis, Smin and Smax are chosen according to a simple and common procedure,
which is described below. First of all, let Sb,i denote the price of the underlying asset
at the barrier date tb,i , i = 0, . . . , Ib. Using the closed-form solution of (1) we have
(see, for example, Wilmott 1998):

S(t) ∼ Stb,i e

(

r− σ2
2

)

(t−tb,i )+σ(W (t)−W (tb,i ))
, t ∈ [tb,i , tb,i+1[, i = 0, 1, . . . , Ib − 1.

(8)

Now, based on the probability distribution of the increments of the Wiener process,
we have that for any (given) t ∈ [tb,i , tb,i+1[

Prob
(

|W (t) − W (tb,i )| ≥ 7
√

�Tb
)

< 2.6 × 10−12. (9)

Then, we choose Smin and Smax as follows:

Smin = Le

(

r− σ2
2

)

�Tb−7σ
√

�Tb
, Smax = Ue

(

r− σ2
2

)

�Tb+7σ
√

�Tb
. (10)

The above relations yield suitable values of Smin and Smax. In fact, if at the barrier
date tb,i we have L < S(tb,i ) < U (otherwise, if S(tb,i ) ≤ L or S(tb,i ) ≥ U , the option
expires), then at any (given) time t ∈ ]tb,i , tb,i+1[ the probability that S(t) < Smin or
S(t) > Smax is almost null (smaller than 2.6 × 10−12). Therefore, values of S that
lie outside the interval [Smin, Smax] are very extreme, and thus they can be reasonably
neglected (they contribute with an almost null probability to the option price).

Thus, we can safely replace the boundary conditions (3) with the following ones:

˜V (Smin, t) = 0, ˜V (Smax, t) = 0, t ∈ [tb,i−1, tb,i [. (11)
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2.2 The optimal spacemesh

Let us think to solve problems (2), (4), (11) by a finite difference method and to
enhance its accuracy by Richardson extrapolation. Then, in order to discretize the
derivatives with respect to S in (2), a finite set of nodes (space mesh) in [Smin, Smax]
has to be employed. However, due to the fact that the solution ˜V (S, t) is not smooth at
S = E , S = L and S = U , the space meshmust be chosen appropriately. In particular,
to obtain a smooth pattern of error reduction, which is necessary for the Richardson
extrapolation to be effective, one node must be located exactly at S = E and other two
nodes must be located exactly at S = L and S = U (see Ritchken 1996; Hyman et al.
2000; Pooley et al. 2003). Moreover, to achieve the highest rate of spatial consistency
(i.e., the highest rate of reduction of the truncation error due the space discretization),
the nodes must be equally spaced (see, for example, Hirsch 1988, Chapter 4; Duffy
2004). In this paper, for the sake of brevity, a space mesh that satisfies the above two
requirements is said aligned and uniform.

In addition, we would also like to freely decide how many discretization nodes
to use in each one of the intervals [Smin, L], [L,U ] and [U , Smax]. For instance,
we could want to employ a larger number of nodes in the interval [L,U ] than in
the intervals [Smin, L] and [U , Smax], because the barrier option price experiences
its largest variations in [L,U ] whereas in [Smin, L] and [U , Smax] it is almost flat
and null. Therefore, one should be able to arbitrarily choose both the number of
space discretization intervals between Smin and L , denote it NL , the number of space
discretization intervals between L and U , denote it NM , and the number of space
discretization intervals between U and Smax, denote it NU .

In substance, we would like to freely specify three integers NL , NM , NU , and,
setting N = NL + NM + NU , we would like to have a mesh with N + 1 equally
spaced nodes S1, S2, . . ., SN+1 such that S1 = Smin, SNL+1 = L , S j∗ = E for some
integer j∗ ∈ {NL + 2, NL + 3, . . . , NL + NM }, SNL+NM+1 = U , SN+1 = Smax.
Throughout this paper, a space discretization mesh that is aligned and uniform and
also such that NL , NM and NU can be decided arbitrarily is referred to as optimal.

3 Themesh optimization procedure

It is clear that in the space domain �S an optimal mesh is impossible to obtain.
More precisely, we cannot even construct an aligned and uniform mesh, unless Smin,
Smax, L , U , E , NL , NM and NU do not satisfy very particular (and also restrictive)
requirements. For example, let us assume that the nodes S1, S2, . . ., SN+1 are such
that SNL+1 = L and SNL+NM+1 = U . Therefore, if we want this mesh to be uniform,
the distance between two consecutive nodes must be:

�SM = U − L

NM
. (12)

Then, clearly, we can have one of the nodes equal to the strike price E only in the
very special circumstance where
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lE = E − L

�SM
(13)

is an integer value. By contrast, if lE is not an integer, the strike price E is internal
to the interval

[

SNL+ jE+1, SNL+ jE+2
]

, where jE denotes the integer part of lE .
Nevertheless, as we are going to show, it is possible to find a function φ : �S → R

that satisfies the following conditions:

(C1): φ is a strictly increasing C∞ function;
(C2): if we set zmin = φ(Smin) and zmax = φ(Smax), and choose N +1 equally spaced

points in [zmin, zmax], i.e. zi = zmin + (i − 1)�z, i = 1, 2, . . . , N + 1, where

�z = zmax − zmin

N
, (14)

then we have: zNL+1 = φ(L), z jE = φ(E), zNL+NM+1 = φ(U ), for some
positive integer jE .

That is, if we denote:

�z = [zmin, zmax] = [φ(Smin), φ(Smax)], (15)

the function φ which we are going to determine maps the original space domain
�S = [Smin, Smax] to the domain �z , where we can choose N + 1 equally spaced
points z1, z2, . . ., zN+1 such that z1 = zmin, zN+1 = zmax and, in addition, zNL+1,
z jE and zNL+NM+1 coincide with the transformed lower barrier, strike price and upper
barrier, respectively.

Therefore, if we apply the change of coordinates

z = φ(S), (16)

to problem (2), (4), (11), we end up with a partial differential problem that can be
discretized by using an optimal mesh (actually, we will have an optimal mesh in the
computational domain �z).

Remark 1 Condition (C1) ensures that the function φ is invertible in �S , such that
we can actually apply the change of variables (16) to solve the partial differential
equation (2) (if the function φ was not invertible, then we could not go back from the
computational domain �z to the true domain �S). Furthermore, the fact that φ is C∞
is crucial as well, since it guarantees that the partial differential equation that we are
going to obtain after applying the transformation of coordinates is a partial differential
equation with smooth coefficients (non-smooth coefficients would inevitably spoil the
accuracy of the space discretization scheme).

The function φ will be obtained as the composition product of other two functions,
which we denote T1 and T2. Precisely, we are going to construct the function φ :
�S → �z as follows:

φ(S) = T2(T1(S)), (17)
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where the functions T1 and T2 will be chosen appropriately. In particular, T1 will
be used to transform the interval [L,U ] into a new interval [T1(L), T1(U )] where
we can choose NM + 1 equally spaced points such that one of them coincide with
T1(E). That is, first of all, by means of a suitable function T1, we will accommodate
the interval between the two barriers, such to align the space discretization mesh with
the strike price. Then, the function T2 will be used to transform the whole set of
points [T1(Smin), T1(Smax)] into the interval �z where we can choose nodes z1, z2,
. . ., zN+1 that satisfy condition (C2). In particular, T2 will accommodate the intervals
[T1(Smin), T1(L)] and [T1(U ), T1(Smax)], such to obtain an optimal mesh in the whole
computational domain [zmin, zmax].

3.1 Constructing T1

In order to construct the function T1 the following result is needed.

Proposition 1 Let lE be defined according to (12), (13), and let jE denote the integer
part of lE . Moreover, assume that lE is greater than one and is not an integer. Then,
the number of positive solutions of the following transcendental equation in the β

variable

jEe
βU
E + (NM − jE )e

βL
E

NM
− eβ = 0 (18)

is exactly equal to one. Moreover, the positive solution of (18), which we denote
β∗, is such that:

β∗ < − E

U − E
ln

(

jE
NM

)

. (19)

Before proving Proposition 1 let us make some useful comments on it.

Remark 2 The assumption that lE is not an integer is not restrictive at all. In fact, if
lE is an integer, then Proposition 1 is not needed at all, because the strike price E
does already coincide with one of the equally spaced meshpoints SNL+1, SNL+2, . . .,
SNL+NM+1 and the change of coordinates T1 is not applied (better saying, in such a
case we would choose T1 to be the identity map, see (34)).

Remark 3 The assumption that lE is greater than one is a sort of “minimal requirement”
that one has to satisfy when solving problem (2), (4), (11) by a lattice-based scheme.
In fact, if it was lE < 1, then, according to (13), both the lower barrier L and the
strike E would be located within the same discretization interval of length �SM . This
means that the space mesh which we are trying to use is unreasonably too coarse, as it
does not even allows us to distinguish between the strike price and the lower barrier.
Obviously, if we had lE < 1, then we would simply have to select a larger value of
NM , such to have L and E separated by at least one space discretization node.
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Proof of Proposition 1 Let us consider the function

f (β) = jEe
βU
E + (NM − jE )e

βL
E

NM
− eβ. (20)

We shall prove that f has a unique positive root. To this aim, we note that

f (0) = 0, (21)

and, due to the fact that U > E > L ,

lim
β→+∞ f (β) = +∞. (22)

Furthermore, f is of class C∞ and

f ′(β) = jE
U
E e

βU
E + (NM − jE ) L

E e
βL
E

NM
− eβ, (23)

which yields

f ′(0) = jE
U
E + (NM − jE ) L

E

NM
− 1. (24)

Since jE is the integer part of lE , and owing to (12) and (13) we have

jE <
E − L

U − L
NM . (25)

From relations (24) and (25) we easily obtain

f ′(0) < 0. (26)

Relations (21), (22), (26) (and the continuity of f ), imply that f has at least one
root β∗ > 0.

Let us show that β∗ is the unique positive solution of (18). To this aim, let us assume
instead that the function f has two positive roots, say β∗

1 and β∗
2 , with β∗

2 > β∗
1 . Then,

by using (21), (22), (26), we immediately obtain that there exist two values of β, say
β1 and β2, such that

0 < β1 < β2 ≤ β∗
2 , f ′(β1) = 0, f ′(β2) = 0, f (β1) < 0, f (β2) ≥ 0.

(27)

Let us consider the following function:

f1(β) = jE (E −U )e
βU
E + (NM − jE )(E − L)e

βL
E

NM E
. (28)
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Note that, according to (20), (23), the function f1 takes the same values of f at all
those points β such that f ′(β) = 0. In fact, from f ′(β) = 0 and (23) it follows that

eβ = jE
U
E e

βU
E + (NM − jE ) L

E e
βL
E

NM
, (29)

which, if substituted in (20), yields f1(β) = f (β). Therefore, according to (27),
we must have:

f1(β1) < 0, f1(β2) ≥ 0. (30)

These two relations and the continuity of f1 imply that f1 must have at least one
root in the interval ]β1, β2]. Moreover, from (28) we have:

f1(0) = jE (L −U ) + NM (E − L)

NME
, (31)

which, together with (25), implies

f1(0) > 0. (32)

By setting (28) equal to zero, we obtain a very simple exponential equation from
solving which we can see that f1 has a unique and positive real root. Now, according
to (32) and to the first of (30), such a unique root should be located between 0 and
β1. Nevertheless, this is in contradiction with the fact that f1 must have a root in the
interval ]β1, β2], and so, by absurd, f cannot have more than one positive solution.

Finally, relation (19) easily follows from (21), (26), from the continuity of f and
from the fact that

f

(

− E

U − E
ln

(

jE
NM

))

= jE
NM

e− E
U−E > 0. (33)

We are now in the position to state the first change of coordinates to be applied.
The function T1 : �S → R+ is chosen as follows:

T1(S) =
{

eβ∗ S
E , if le is not an integer,

S if le is an integer,
(34)

where β∗ is the positive solution of (18), which exists unique according to Proposi-
tion (1). Note that T1 reduces to the identity function if le is an integer, because in such
a case the node S jE does already coincide with the strike price E , and thus, actually,
in the price interval [L,U ] no transformation of variables is needed (see also Remark
2).
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Let us define:

ymin = T1(Smin), yL = T1(L), yE = T1(E), yU = T1(U ), ymax = T1(Smax).

(35)

Then, let us discretize the interval [yL , yU ] using NM + 1 equally spaced points
yL , yL + �y, yL + 2�y, . . ., yU , where

�y = yU − yL
NM

. (36)

Then, the following Proposition holds. ��
Proposition 2 The function T1 is C∞[L,U ] and is strictly increasing. Moreover, if
yL , yE are defined as in (35) and jE is the integer part of lE given by (13), we have:

yL + jE�y = yE . (37)

Proof of Proposition 2 The first part of Proposition 2 follows immediately from (34).
Moreover, (37) is a direct consequence of (34), (35), (36) and of the fact that β∗ is a
solution of (18). ��
Remark 4 According to Proposition 2, one of the NM + 1 equally spaced points that
we have chosen in [yL , yU ], i.e. the point y jE , exactly coincides with the (transformed)
strike price yE .

3.2 Constructing T2

In the general case, the transformation of coordinates (35) will not satisfy condition
(C2), since, unless considering very special values of Smin, L, E,U , Smax, NL , NM ,

NU , we cannot have N�y = ymax − ymin with N = NL + NM + NU . In fact, if
the change of coordinates T1 allows us to transform the interval [yL , yU ] such that
(37) holds true, the intervals [ymin, yL ] and [yU , ymax] (corresponding, in the original
domain, to [Smin, L] and [U , Smax], respectively), still need to be accommodated
(actually, we have no guarantee that if we choose N + 1 equally spaced nodes in
[ymin, ymax], two of them exactly coincide with the transformed barriers yL and yU ).
Therefore, we shall resort to a second transformation of coordinates T2, which, in turn,
requires some mathematical preliminaries.

Lemma 3 Let q ∈] − 1, 0[ and let the function h : R+ → R be defined as follows:

h(x) = e−x − √
πx(1 − erf(

√
x)), (38)

where erf(·) is the error function:

erf(x) = 2√
π

∫ x

0
e−t2dt . (39)
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Then the equation

h(x) + q = 0 (40)

has a unique positive root, which, in order to stress out its dependence on q, we
denote by a(q).

Proof of Lemma 3 Let us observe that h(0) = 1 and limx→+∞ h(x) = 0. Then, since
−1 < q < 0, and h is a continuous function in [0,+∞), equation (40) has at least
one positive root. Moreover, we have:

h′(x) = −
√

π

2
√
x
(1 − erf(

√
x)), (41)

so that h is a strictly decreasing function in [0,+∞[, and the uniqueness of a(q)

follows.
Let us define:

qL = NL�y

yL − ymin
− 1, qU = NU�y

ymax − yU
− 1, (42)

and let the functions gL : [ymin, yL [→ R and gU : ]yU , ymax] → R be defined as
follows:

gL(y) =
⎧

⎨

⎩

y − (yL − ymin)g̃(y, qL , yL , ymin) if − 1 < qL < 0,

y + qL(y − yL)e
1− yL−ymin

yL−y if qL ≥ 0,
(43)

gU (y) =
{

y − (yU − ymax)g̃(y, qU , yU , ymax) if − 1 < q < 0,

y + qU (y − yU )e
1− yU−ymax

yU−y if qU ≥ 0,
(44)

where

g̃(y, q, y1, y2) =
(

− y1 − y

y1 − y2
e
− a(q)(y1−y2)2

(y1−y)2

+√

πa(q)

(

1 − erf

(√
a(q)(y1 − y2)

y1 − y

)))

, (45)

and a(q) denotes the (unique) positive solution of equation (40). ��
Lemma 4 The functions gL and gU are infinitely smooth in [ymin, yL [ and ]yU , ymax],
respectively and are such that

lim
y→y−

L

gL(y) = yL , lim
y→y+

U

gU (y) = yU , (46)

lim
y→y−

L

g′
L(y) = 1, lim

y→y+
U

g′
U (y) = 1, (47)
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lim
y→y−

L

g(n)
L (y) = 0, lim

y→y+
U

g(n)
U (y) = 0, n = 2, 3, 4, 5, . . . , (48)

g′
L(y) > 0 ∀y ∈]ymin, yL [, g′

U (y) > 0 ∀y ∈]yU , ymax[, (49)

g′′
L(y) > 0 ∀y ∈]ymin, yL [ if qL < 0, (50)

g′′
L(y) < 0 ∀y ∈]ymin, yL [ if qL > 0, (51)

g′′
U (y) > 0 ∀y ∈]yU , ymax[ if qU < 0, (52)

g′′
U (y) < 0 ∀y ∈]yU , ymax[ if qU > 0, (53)

yL − gL(ymin)

yL − ymin
= qL + 1,

yU − gU (ymax)

yU − ymax
= qU + 1. (54)

Proof of Lemma 4 The fact that gL and gU are infinitely smooth in their domains, as
well as relations (46) are trivial. Moreover, (47)–(53) can be immediately obtained
by taking derivatives in (43)–(45). In particular, we can easily compute the following
relations, which will be useful for later purposes:

g′
L(y) =

⎧

⎪

⎨

⎪

⎩

1 − e
− a(qL )(yL−ymin)2

(yL−y)2 if − 1 < qL < 0,

1 + qL
(

1 + yL−ymin
yL−y

)

e
1− yL−ymin

yL−y if qL ≥ 0,
(55)

g′
U (y) =

⎧

⎪

⎨

⎪

⎩

1 − e
− a(qU )(yU−ymax)2

(yU−y)2 if − 1 < qU < 0,

1 + qU
(

1 + yU−ymax
yU−y

)

e
1− yU−ymax

yU−y if qU ≥ 0,
(56)

g′′
L(y) =

⎧

⎪

⎨

⎪

⎩

2a(qL)
(yL−ymin)

2

(yL−y)3
e
− a(qL )(yL−ymin)2

(yL−y)2 if − 1 < qL < 0,

qL
(yL−ymin)

2

(yL−y)3
e
1− yL−ymin

yL−y if qL ≥ 0,
(57)

g′′
U (y) =

⎧

⎪

⎨

⎪

⎩

2a(qU )
(yU−ymax)

2

(yU−y)3
e
− a(qU )(yU−ymax)2

(yU−y)2 if − 1 < qU < 0,

qU
(yU−ymax)

2

(yU−y)3
e
1− yU−ymax

yU−y if qU ≥ 0.
(58)

Finally, let us focus our attention on the first of relations (54) (the proof of the
second one is analogous). If qL ≥ 0, then the first of relations (54) is rather trivial (it
can be obtained by setting y = ymin in (43)). Instead, if 0 < qL < 1, the first of (53)
follows from setting y = ymin in (43) and from the fact that a(qL) satisfies equation
(40).

We are now in the position to state the change of coordinates T2 : [ymin, ymax] → R:

T2(y) =
⎧

⎨

⎩

gL(y) if ymin ≤ y < yL ,

y if yL ≤ y ≤ yU ,

gU (y) if yU < y ≤ ymax,

(59)

and we have the following result. ��
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Lemma 5 The function T2 is C∞[ymin, ymax] and is strictly increasing. Moreover

T2(yL) − T2(ymin)

NL
= T2(yU ) − T2(yL)

NM
= T2(ymax) − T2(yU )

NU
= �y. (60)

Proof of Lemma 5 The functions gL and gU are C∞[ymin, yL) and C∞(yU , ymax],
respectively, due to Lemma 4 and relation (59). Therefore, using (46), (47) and (48)
we obtain that T2 is C∞[ymin, ymax]. Moreover, T2 is strictly increasing because of
(49). Finally, (60) follows from (36), (42), (54) and (59). ��

3.3 Constructing�

Once the transformations of coordinates T1 and T2 are determined according to (34)
and (59), respectively, we can finally construct the function φ : �S → �z using (17),
and we have the following proposition.

Proposition 6 The function φ satisfies conditions (C1) and (C2).

Proof Proposition 6 is a direct consequence of Lemma 5 and Proposition 2.
Therefore, let us consider the transformation of coordinates:

z = φ(S), (61)

which maps the original domain �S to the domain �z , where

zmin = φ(Smin), zmax = φ(Smax). (62)

Note that, since the function φ satisfies condition (C1), relation (61) is invertible:

S = φ−1(z). (63)

Then let us define:

V (z, t) = ˜V (φ−1(z), t). (64)

By using the transformation of coordinates (61) and (64), the partial differential
problem (2), (4), (11) can be rewritten as follows:

∂V (z, t)

∂t
+ α1(z)

∂V (z, t)

∂z
+ α2(z)

∂2V (z, t)

∂z2
− rV (z, t) = 0, t ∈ [tb,i−1, tb,i [,

(65)

V (zmin, t) = 0, V (zmax, t) = 0, t ∈ [tb,i−1, tb,i [, (66)

V (z, tb,i ) = ψi (z), (67)
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where

α1(z) = rφ−1(z)φ′(z) + 1

2
σ 2 (

φ−1(z)
)2

φ′′(z),

α2(z) = 1

2
σ 2 (

φ−1(z)φ′(z)
)2

, (68)

ψIb (z) =
⎧

⎨

⎩

E max

(

ln z

β∗ − 1, 0

)

if zL < z < zU ,

0 if z ≤ zL or z ≥ zU ,

(69)

ψi (z) =
{

V (z, tb,i if zL < z < zU ,

0 if z ≤ zL or z ≥ zU ,
(70)

φ′(z) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

β∗
E e

β∗φ−1(z)
E g′

L

(

β∗
E e

β∗φ−1(z)
E

)

if z < zL ,

β∗
E e

β∗φ−1(z)
E if zL ≤ z ≤ zU ,

β∗
E e

β∗φ−1(z)
E g′

U

(

β∗
E e

β∗φ−1(z)
E

)

if z > zU ,

(71)

φ′′(z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(

β∗
E

)2
e

β∗φ−1(z)
E g′

L

(

β∗
E e

β∗φ−1(z)
E

)

+
(

β∗
E

)3
e

2β∗φ−1(z)
E g′′

L

(

β∗
E e

β∗φ−1(z)
E

)

if z < zL ,

(

β∗
E

)2
e

β∗φ−1(z)
E if zL ≤ z≤ zU ,

(

β∗
E

)2
e

β∗φ−1(z)
E g′

U

(

β∗
E e

β∗φ−1(z)
E

)

+
(

β∗
E

)3
e

2β∗φ−1(z)
E g′′

U

(

β∗
E e

β∗φ−1(z)
E

)

if z > zU .

(72)

Note that the coefficients α1 and α2 in (68) need to be computed only one time, at
the beginning of the numerical simulation. Moreover, once the inverse function φ−1

is obtained (see the next section), the functions φ′ and φ′′ in (71) and (72) can be
evaluated very easily and quickly on any standard computer. ��

4 Applying the transformation of coordinates

To use the change of coordinates (17) we proceed as follows. First of all, once NL ,
NU , NM are chosen (i.e. decided by the user), we obtain Smin and Smax according to
(10), we calculate jE as the integer part of lE defined as in (13), and thus we compute
the unique positive solution β∗ of equation (18) (this task is accomplished by applying
the bisection method, whose convergence is theoretically established below).

To this point, the function T1 is known (see (34)), and so we can evaluate ymin, yL ,
yE , yU , ymax (according to (35)), �y (according to (36)), qL and qU (according to
(42)). Then, we compute a(qL) and a(qU ) as the unique positive solutions of equation
(40) with q = qL and q = qU , respectively (this is done by applying the bisection
method, whose convergence is theoretically established below).

To this point, we can evaluate the functions gL and gU (see (43) and (44)) and
thus the function T2 is known too (see (59)). Therefore, the change of variables (16)
is completely determined, and in particular we can use it to compute zmin and zmax
according to (61). Then, in the computational domain �z = [zmin, zmax] we can
construct the optimal mesh of N + 1 nodes z1, z2, . . ., zN+1 such that z1 = zmin =
φ(Smin), zNL+1 = φ(L), z jE = φ(E), zNL+NM+1 = φ(U ), zN+1 = zmax = φ(Smax).
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Now, once z1, z2, . . ., zN+1 are obtained, according to (63), (64), (68), (71), (72)
we have to evaluate the inverse function φ−1(z) at z = z1, z2, . . ., zN+1 (in order to
solve the partial differential equation (65) we need to compute its coefficients α1 and
α2 at the nodes of the mesh). To this aim, we observe that we have φ−1(z1) = ymin,
φ−1(zN+1) = ymax and φ−1(zi ) = zi for i = NL + 1, NL + 2, . . . , NL + NM + 1.
However, for i = 2, 3, . . . , NL and i = NL + NM + 2, NL + NM + 3, . . . , N ,
φ−1(zi ) is not known and need to be calculated based on (17), (34) and (59). In
particular, owing to (17), in order to compute φ−1(zi ) for i = 2, 3, . . . , NL and
i = NL + NM + 2, NL + NM + 3, . . . , N , we have to solve the equations

T2(y) − zi = 0, y ∈ ]ymin, yL [, i = 2, 3, . . . , NL , (73)

gU (y) − zi = 0, y ∈ ]yU , ymax[ i = NL + NM + 2, NL + NM + 3, . . . , N ,

(74)

which, owing to (59), requires us to solve

gL(y) − zi = 0, y ∈ ]ymin, yL [, i = 2, 3, . . . , NL , (75)

gU (y) − zi = 0, y ∈ ]yU , ymax[ i = NL + NM + 2, NL + NM + 3, . . . , N .

(76)

Note that, due to (46), (49), and to the fact that gL(ymin) = z1, gL(ymax) = zN+1,
the solutions of (75) and (76) exist unique (they will be computed by using the Newton
algorithm, whose convergence is theoretically established below).

In summary, the overall mesh optimization procedure requires us to solve equations
(18), (40), (75), (76). Now, these equations do not have exact closed-form solutions.
Nevertheless, we can solve them (with machine precision) by using bisection and
Newton methods that are very simple to implement and whose convergence can be
proven theoretically. In fact, we have the following results:

Lemma 7 Let the bisection method be used to compute the (unique) positive solution

β∗ of equation (18), starting from the interval
[

0,− E
U−E ln

(

jE
NM

)]

. Then, such an

algorithm does always converge (with its usual dichotomic convergence rate).

Proof of Lemma 7 Let us observe from Proposition 1 and from its proof that the left
hand side of (18) is a continuous function of β and is negative if β ∈]0, β∗[ and is

positive if β ∈ ]

β∗ − E
U−E ln

(

jE
NM

)

]

. Then the thesis immediately follows.

Lemma 8 Let q be any real number in ] − 1, 0[. Moreover, let the bisection method
be used to compute the (unique) solution a(q) of equation (40) (with h given by
(38)), starting from the interval [0,− ln(−q)]. Then, such an algorithm does always
converge (with its usual dichotomic convergence rate).

Proof of Lemma 8 Let us observe from (38) that h(0)+q = 1+q and h(− ln(−q))+
q = −√

πx(1 − erf(
√
x)). Then, the Lemma follows immediately by noting that

q ∈] − 1, 0[ (so that h(0) > 0) and 1 − erf(
√
x) > 0 (so that h(− ln(−q)) < 0).
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Moreover, let the functions gL : [ymin, yL ] → R and gU : [yU , ymax] → R be
defined as the continuations of the functions gL and gU (see (43) and (44)), respectively,
that is

gL(y) =
{

gL(y) if ymin ≤ y < yL ,

yL if y = yL ,
(77)

gU (y) =
{

gU (y) if yU < y ≤ ymax,

yU if y = yU .
(78)

Note that, from Lemma 4, it follows that the gL and gU are infinitely smooth in
[ymin, yL ] and [yU , ymax], respectively.

The solutions of equations (75), (76) are obtained based on the following results. ��
Lemma 9 Let z be any real number in ]gL(ymin), yL [ and let the Newton method be
used to approximate the (unique) solution of equation:

gL(y) − z = 0, y ∈ [ymin, yL ], (79)

starting from the initial guess y = yL if qL < 0 or y = ymin if qL ≥ 0. Then, such
an algorithm does always converge (with its usual quadratic convergence rate).

Proof of Lemma 9 For the sake of brevity, let us only consider the case qL < 0 (the
case qL ≥ 0 is perfectly analogous). According to Lemma 4, gL is an infinitely smooth
increasing and convex function. Then, the thesis follows. ��
Lemma 10 Let z be any real number in ]yU , gU (ymax)[ and let the Newton method be
used to approximate the (unique) solution of the equation

gU (y) − z = 0, y ∈ [yU , ymax], (80)

starting from the initial guess y = yU if qU < 0 or y = ymax if qU ≥ 0. Then, such
an algorithm does always converge (with its usual quadratic convergence rate).

Proof of Lemma 10 The proof is identical to the proof of Lemma 9 and therefore is
omitted.

Thus, based on all the above Lemmas, in order to obtain β∗, we solve equation (18)
by using the bisection method, with starting interval

[

0,− E
U−E ln

(

jE
NM

)]

; in order to

obtaina(qL) anda(qU ),we solve equation (40),withq = qL andq = qU , respectively,
by using the bisection method with starting interval [0,− ln(−q)]; in order to obtain
φ−1(zi ), i = 2, 3, . . . , NL , we solve equation (79) by using the Newton method, with
initial guess y = yL if qL < 0 or y = ymin if qL ≥ 0; in order to obtain φ−1(zi ),
i = NL +NM +2, NL +NM +3, . . . , N , we solve equation (80) by using the Newton
method, with initial guess y = yU if qU < 0 or y = ymax if qU ≥ 0.

All the above root finding algorithms, whose convergence has been theoretically
established, can be easily implemented on any computer. Therefore, we can compute
almost exact (up to the machine precision) values of β∗, a(qL), a(qU ) and φ−1(zi )
for i = 2, 3, . . . , NL and i = NL + NM + 2, NL + NM + 3, . . . , N , in an extremely
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small time (actually, much smaller than the time that is required for solving the partial
differential problem (65)–(67)). ��

5 The finite difference schemewith repeated Richardson
extrapolation in space and time

We can now solve problem (65)–(67) by numerical approximation. To this aim, we
shall also discretize the time derivative in (65), which is done by using a mesh of
equally spaced M +1 time levels t0, t1, . . . , tM , such that tk = k�t , k = 0, 1, . . . , M ,
where �t = T

M .
Then, we apply a finite difference scheme enhanced by repeated Richardson extrap-

olation in both space and time. Note that, as already mentioned, the Richardson
extrapolation will be effective since the space mesh is aligned and uniform, and thus
the finite difference scheme achieves a smooth convergence pattern (see, for example,
Hairer et al. 1993; Chan et al. 2009). To provide evidence of this fact, in Sect. 6 we will
also present a numerical simulation in which the Richardson extrapolation technique
is applied without any mesh optimization procedure (so that the mesh is not aligned).
The results will be considerably less accurate than that obtained by using the optimized
mesh.

The numerical method that we are going to apply is analogous to that proposed in
Ballestra (2014) for the pricing of vanilla options (with no barriers) and is based on a
finite difference scheme that is second-order accurate in space and first-order accurate
in time. Actually, this is a very standard three-point finite difference approximation,
and thus, for the sake of brevity, we will only give a brief description of it (for more
details the interested reader is referred, for example, toQuarteroni et al. (2007), Tavella
and Randall (2000) and Ballestra (2014)). In the partial differential equation (65), the
time derivative is evaluated (at z = zi and t = tk) by the implicit (first-order) Euler
scheme:

∂V (zi , tk)

∂t
� V k+1

i − V k
i

�t
, i = 2, 3, . . . , N , k = 0, 1, . . . , M − 1, (81)

whereas the space derivatives are discretized by using the following (second-order)
approximation:

∂V (zi , tk)

∂z
� V k

i+1 − V k
i−1

2�z
,

∂V (zi , tk)

∂z
� V k

i+1 − 2V k
i + V k

i−1

(�z)2
, i = 2, 3, . . . , N ,

k = 0, 1, . . . , M − 1, (82)

where �z is given by (14).
By substituting (81) and (82) in equation (66), and by imposing the boundary

conditions V k
1 = 0 and V k

N+1 = 0, we obtain, for each value of k ∈ {0, 1, . . . , M − 1},
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a tridiagonal system of linear equations that allows us to obtain the option price at
time tk . These systems must be solved recursively for k = M − 1, M − 2, . . ., 0
starting from the knowledge of V M

i (since, according to (67), we have V M
i = ψIb (zi ),

i = 1, 2, . . . , N + 1). In addition, following (Pooley et al. 2003; Ballestra 2014), at
every barrier date tb,i , right after the barrier constraints are imposed, the numerical
solution (which is discontinuous at the barriers) is projected onto the space of piecewise
linear functions.

The accuracy of the resulting approximation is enhanced by Richardson extrapo-
lation, which is repeated four times in both the space and time variables. Precisely,
problem (65)–(67) is solved by using, first of all, a mesh with N + 1 space points and
M +1 time levels, then a mesh with 2N +1 space points and 4M +1 time levels, then
a mesh with 3N + 1 space points and 9M + 1 time levels, then a mesh with 4N + 1
space points and 16M + 1 time levels, and finally a mesh with 5N + 1 space points
and 25M+1 time levels. That is, the mesh is progressively refined, such that the space
length and the time step pass from (�z,�t) to (�z

2 , �t
4 ), then to (�z

3 , �t
9 ), then to

(�z
4 , �t

16 ), and finally to (�z
5 , �t

25 ). Note that the time step is reduced by a factor that is
the square of the factor by which the space length is reduced. This is due to the fact
that, as already mentioned, the error of the space discretiztion is O(�z2), whereas the
error of the time discretization is O(�t). By doing that, we end up with a sequence of
five finite difference approximations, from which an enhanced numerical solution is
obtained by standard (repeated) Richardson extrapolation (see, for example, Ballestra
2014; Hairer et al. 1993).

6 Numerical results

Let us show the computational performances that the mesh optimization approach and
the repeated Richardson extrapolation proposed in this paper allow us to reach. To
this aim, let ˜Vap(S, t) denote the approximate value of the price of the double barrier
option obtained by using the numerical procedure described in Sects. 3 and 4. The
error on the option price (at the current time t = 0) is measured using the (discrete)
maximum norm:

ErrMax = max
i=1,2,...,N+1

∣

∣˜Vap(Si , 0) − ˜V (Si , 0)
∣

∣ . (83)

Note that the exact option price ˜V needed in (83) is not available and thus we can
only compute it by numerical approximation. Then, to obtain an “exact”, or, better
saying, reference value of the option price, we employ the approach proposed in
Sullivan (2000), Andricopoulos et al. (2003), and Andricopoulos et al. (2007). Now,
such a numerical method, being based on a suitable integral formulation of the barrier
option price, does not require us to discretize differential operators, but only to compute
certain integrals that involve the probability density function of the price of the option’s
underlying asset. Therefore, if these integrals are approximated by some high-order
quadrature rule, the price of the double barrier option can be evaluated very quickly and
with extreme accuracy (close to the machine precision). Nevertheless, the approach
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Table 1 Test Case 1 NL = 5, NM = 40 NU = 10, NM = 80
NL = 10, M = 400 NU = 20, M = 800

β∗ 0.450592409639 0.182890560565

qL −0.493686860993 −0.526387274247

qU −0.541494522086 −0.505535874948

a(qL ) 0.126373628587 0.106404768488

a(qU ) 0.098037490039 0.118830000531

ymin 1.348803120402 1.129131981739

yL 1.415019925997 1.151311605070

yE 1.569241543999 1.200682998821

yU 1.683231435565 1.235348019965

ymax 1.829473695738 1.277836650908

ErrMax 8.95 × 10−9 3.47 × 10−11

CPUT ime 0.063 s 0.27 s

presented in Sullivan (2000), Andricopoulos et al. (2003), and Andricopoulos et al.
(2007), albeit mathematically ingenious and very efficient from the computational
standpoint, is not very versatile, since it can be used only if the transition probability
density function of the price of the stochastic process (1), or at least, the characteristic
function associated to it (see, e.g., Fang and Oosterlee 2011), is explicitly known.
By contrast, a partial differential approach (such as the one developed in the present
manuscript) is much more flexible and can also be applied to those models that do not
admit an explicit representation of the transition probability density function (among
which, let us recall the CEV model with time-varying parameters, see Lo et al. 2000,
2009).

The numerical experiments that follow are performed on a computer AMD Ryzen
3 3200U CPU 2500Ghz 8,00 GB and the software programs are written in Fortran.

TEST CASE 1. Let us consider a discrete double barrier option with maturity
T = 0.5 years, lower barrier L = 20, strike price E = 25.96, upper barrier U = 30.
Note that L , E and U are chosen such that the ratio (13) is not an integer, so that
the first case in (34) applies. Finally, we set Ib = 100 (number of equally spaced
barrier dates), σ = 0.3 and r = 0.03. Based on these data and on relations (10) we
compute the lower and the upper bound of the domain �S : Smin = 17.238837791978
and Smax = 34.799910178911.

As is usually done, the mesh parameters NL , NM , NU (as well as the number of
time steps M) are varied, even though the error obtained (in the discrete maximum
norm) is already of the order 10−11 when the mesh size parameter N (which is equal to
NL + NM + NU ) is not much bigger than one hundredth (see Table 1). The errors and
computer times experienced are shown in Table 1, where, for the sake of completeness,
we also report the values of β∗, qL , qU , a(qL), a(qU ), ymin, yL , yE , yU , ymax, i.e.
the values of the various quantities involved by the mesh optimization procedure (see
Sects. 3 and 4).

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Enhancing finite difference approximations for double barrier...

Table 2 Test Case 2 NL = 5, NM = 40 NL = 10, NM = 80
NU = 10, M = 200 NU = 20, M = 400

β∗ 0.255391264085 0.095953729912

qL −0.231122787867 −0.276469160104

qU −0.493406639590 −0.455411612968

a(qL ) 0.447663359813 0.359861746218

a(qU ) 0.126556460807 0.153383806480

ymin 1.142856321701 1.051448948752

yL 1.176647855072 1.063023307659

yE 1.290966630947 1.100708132953

yU 1.384500174845 1.130018552626

ymax 1.487073725950 1.160773544177

ErrMax 1.64 × 10−8 4.41 × 10−11

CPUT ime 0.032 s 0.16 s

As we may observe, the mesh optimization procedure allows us to obtain excellent
results. In fact, if NL = 5, NM = 40, NU = 10 (so that the overall number of space
discretization intervals N is equal to 56) and the number of time discretization steps
M is equal to 400, the error ErrMax is already of the order 10−9.

Moreover, the approach developed in this paper is also extremely efficient from
the computational standpoint, since the barrier option price can be computed with an
error ErrMax of the order 10−11 in only 0.27 s.

TEST CASE 2. As a second test case, let us consider a discrete double barrier
option with maturity T = 1 year, lower barrier L = 5, strike price E = 7.85, upper
barrier U = 10. Moreover, we set Ib = 50, σ = 0.2 and r = 0.05. These data and
relations (10) yield: Smin = 4.104352572684 and Smax = 12.196816703217. The
errors and computer times obtained are shown in Table 2 (again we also report the
values of β∗, qL , qU , a(qL), a(qU ), ymin, yL , yE , yU , ymax).

Again, the proposed approach is extraordinarily efficient from the computational
standpoint, as an error ErrMax of the order 10−11 can be obtained in only 0.16 s.

TEST CASE 3.As a third test case, let us consider a discrete double barrier option
with maturity T = 1 year, lower barrier L = 45, strike price E = 52.38, upper barrier
U = 60. Moreover, we set Ib = 400, σ = 0.35 and r = 0.03. These data and relations
(10) yield: Smin = 39.808655549752 and Smax = 67.813849040528. The errors and
computer times are shown in Table 3.

As we may observe, the proposed numerical method confirms to be extraordinarily
efficient, as an error ErrMax of the order 10−12 can be obtained in only 0.59 s.

6.1 Further tests and comparisons

The proposed numerical approach relies on both the mesh optimization procedure
and the space-time Richardson extrapolation. Then, it is interesting to investigate
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Table 3 Test Case 3

NL = 5, NM = 40 NL = 10, NM = 80
NU = 10, M = 800 NU = 20, M = 1600

β∗ 0.4753895166782 0.1257596646675

qL −0.6038959360452 −0.6299427970973

qU −0.5670383194986 −0.5330296251415

a(qL ) 0.0684738623592 0.0582373010134

a(qU ) 0.0850111359869 0.1026624684592

ymin 1.4351863790894 1.1002935395432

yL 1.5044242061141 1.1140933654918

yE 1.6086406678369 1.1340095929570

yU 1.7238272834253 1.1549471654204

ymax 1.8505146365977 1.1768188954745

ErrMax 9.98 × 10−10 7.75 × 10−12

CPUT ime 0.14 s 0.59 s

Table 4 Test Case 1, results
obtained using the finite
difference scheme with
Richardson extrapolation
without the mesh optimization
procedure

N M ErrMax CPUT ime

55 400 2.35 × 10−6 0.063 s

110 800 9.25 × 10−7 0.27 s

220 1600 1.28 × 10−7 1.11 s

the role played by each of these techniques in achieving the excellent computational
performances documented by the numerical experiments presented so far.

To this aim, first we apply the finite difference scheme with space-time Richardson
extrapolation (as described in Sect. 5) directly to problem (2)–(4), i.e., without using
themesh optimization procedure.More precisely,we solve theBlack–Scholes problem
on its original space domain (in the S variable) using equally spaced nodes S1 = Smin,
S2, S3, . . ., SN+1 = Smax. Note that none of these points coincides with the strike
price of with the barriers (Smin and Smax are chosen as in the previous section). For
the sake of brevity, we only report the results obtained for Test Case 1, since the
results experienced in Test Case 2 and Test Case 3 are substantially analogous. As we
may observe in Table 4, the finite difference scheme with Richardson extrapolation
yields satisfactory levels of computational efficiency, since, for example, the solution
is computed with the error 9.25 × 10−7 in 0.27 s. Nevertheless, as shown in Table 1,
if the finite difference scheme with Richardson extrapolation is used in conjunction
with the mesh optimization procedure, the results obtained are considerably more
accurate (in 0.27 s the barrier option price is computed with the error 3.47 × 10−11).
Therefore, the use of the mesh optimization procedure is crucial to obtain the excellent
computational performances reported in the previous subsection.

Finally, we employ again the mesh optimization procedure, but we solve problem
(65)–(67) without applying the Richardson extrapolation. In particular, we focus on
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Table 5 Test Case 1, results obtained using the fourth-order consistent and the second-order consistent
schemes, with mesh optimization and without Richardson extrapolation

NL NM NU ErrMax (fourth order scheme) ErrMax (second order scheme)

5 40 10 3.34 × 10−4 4.34 × 10−4

10 80 20 6.94 × 10−5 1.21 × 10−4

20 160 40 1.62 × 10−5 3.26 × 10−5

The error due to the time discretization is negligible

the space approximation, which we perform by using both the second-order accurate
finite difference scheme (82) and the following discretization

∂V (zi , tk)

∂z
� −V k

i+2 + 8V k
i+1 − 8V k

i−1 + V k
i−2

12�z
,

∂2V (zi , tk)

∂z2
� −V k

i+2 + 16V k
i+1 − 30V k

i + 16V k
i−1 − V k

i−2

12(�z)2
,

i = 3, 4, . . . , N − 1, k = 0, 1, . . . , M − 1. (84)

The above finite difference approximation is employed, for example, by Company
et al. (2008), and, by Taylor polynomial expansion, it can be shown to be fourth-
order accurate when the solution being computed is regular enough (see Company
et al. 2008). Therefore, in the following the scheme (84) will be referred to as fourth-
order consistent. Note that for i = 2 and i = N the approximation (84) is not
defined and thus at the nodes z2 and zN we shall use the second-order method (82).
In this last numerical experiment, we are not concerned with the error due to the
time discretization. Therefore, the time derivative in (65) is computed by applying the
(implicit) Euler scheme (81) with a very large number of time discretization steps. In
particular, we choose M = 100,000, so that the error due to the time discretization
is negligible with respect to the error due to the space discretization (we empirically
checked that). Therefore, in summary, we are focusing on the space approximation
of problem (65)–(67) alone, which we perform by using both a second-order and
a fourth-order consistent finite difference method. We apply the mesh optimization
procedure, but not the Richardson extrapolation.

The results obtained are reported in table 5 (again we only consider Test Case 1).
As we may observe, the fourth-order consistent scheme fails to reach fourth-order
accuracy. In particular, when the mesh size parameters NL , NM and NU are doubled,
the error is reduced by a factor that is approximately equal to four, showing that the
fourth-order consistent algorithm is only second-order accurate. This is clearly due
to the fact that the solution being approximated is not regular at the strike price and
at the barriers, and thus the scheme (84), which is based on a fourth-order Taylor
polynomial expansion, does not reach its optimal (fourth-order) convergence. In this
respect, it is worth observing that, unlike the space discretization scheme (84), the
Richardson extrapolation turns out to be very effective to reduce the error of the space
approximation even in the presence of a non-smooth solution. To this fact we can
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give the following explanation: the discretization (84) is applied at every barrier date,
when the solution is not a regular function, and thus it fails to achieve fourth-order
accuracy. By contrast, the Richardson extrapolation is effective since it is used only at
time t = 0, when the solution (obtained by finite difference approximation) is smooth.
Finally, the error obtained by using the second-order scheme is (approximately) from
1.3 to 2 times greater than the error achieved by applying the fourth-order consistent
scheme.

7 Conclusions

When pricing double barrier options by lattice-based numerical methods, losses of
convergence can occur due to the fact that the solution being computed is not a regular
function (see Boyle and Lau 1994; Ndogmo and Ntwiga 2011, as well as the numer-
ical simulations that we performed in Sect. 6.1). In the present paper, we show that
extremely high levels of computational efficiency can be reach by employing a mesh
optimization procedure coupled with Richardson extrapolation. In particular, first of
all an aligned and uniform mesh is constructed by applying a suitable transformation
of coordinates, which involves some implicitly defined parameters whose existence
and uniqueness is theoretically established. Such a transformation of variables is thor-
oughly analyzed, both from the theoretical and the computational standpoint, and it
is shown to be monotone, infinitely smooth, and also simple to compute. Then, we
employ a finite difference scheme enhanced by repeated Richardson extrapolation in
both space of time. The overall approach exhibits high efficacy: the price of double
barrier options can be computed with an error (in the maximum norm) of the order
10−11 or 10−12 in less than 0.6s. The numerical simulations reveal that the improve-
ment over existing methods is due to the combination of the mesh optimization and
the repeated Richardson extrapolation.
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