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Abstract

Omics datasets, comprehensively characterizing biological samples at a molec-
ular level, are continuously increasing in both complexity and dimensionality.
In this scenario, there is a need for tools to improve data interpretability, ex-
pediting the process of extracting relevant biochemical information. Here we
introduce the subspace discriminant index (SDI) for multi-component models,
which points to the most promising components to explore pre-defined groups of
observations, and can also be used to compare several modeling variants in terms
of discriminative power. The versatility and the efficiency of the proposed index
is demonstrated in three real world omics case studies, from pharmaceutical and
food research applications, including a highly complex multi-class problem. The
SDI is especially useful during the initial exploration of a data set, in order to
make informed decisions on, e.g., pre-processing or modeling variants for fur-
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ther analysis. By boosting the interpretation capabilities, the SDI represents a
significant addition to the chemometrics tool-set.

Keywords: metabolomics, lipidomics, chemometrics, data interpretation,
multi-component, multi-class, sparse models.

1. Introduction

The last two decades have been characterized by an exceptional technological
evolution in the fields of analytical chemistry, biology and biotechnology. This
catalyzed the rise of the so called omics sciences, namely genomics, transcrip-
tomics, proteomics, metabolomics, aiming at comprehensively identifying genes,
mRNA, proteins, or metabolites in biological samples, respectively. While dif-
fering on how samples are analyzed to address the different scientific questions,
a common feature of all the omics datasets is that they are vast, extremely
complex and hard to inspect and rationalize without appropriate tools [39]. For
instance, lipidomics, a subfield of metabolomics, involves the identification and
quantitation, usually by means of liquid chromatography mass spectrometry
(LC-MS) [23, 24, 15, 21], of thousands of lipid molecular species within dozens,
even hundreds of biological samples. In such a complex scenario, proper tools
for advanced, still interpretable, data processing and mining are essential to
fully elucidate biological meanings. As a consequence, the parallel major ad-
vance in the omics era has been the increased importance of bioinformatic and
chemometric techniques used to mine such data [39, 43, 3, 36].

In this context, multivariate analysis has proven valuable in a high number
of applications, e.g. [20, 34, 45, 35, 31, 1, 29, 42, 28, 32]. We can distinguish
two settings for the application of analysis tools: the unsupervised and the
supervised settings.

In the unsupervised setting, the goal is to explore the variance in a single
block of data X. For that, a matrix factorization is performed without using
any a priori knowledge (e.g., no information about the class label of data,
the number of classes, etc.), so that natural patterns can be elucidated. This
approach is ideal to explore omics data in an unbiased fashion, especially in an
early phase of the investigation, when no information on molecular species most
involved in the process are available [20, 5]. Among unsupervised multivariate
analysis tools, Principal Component Analysis (PCA) is undoubtedly the most
popular one. However, the interpretation of highly dimensional omics data
with PCA can often be challenging, and sparse PCA variants [27, 47, 6] are
gaining relevance due to their capability to simplify interpretation by performing
variable selection within the model calibration.

In the supervised setting, the goal is to explore the variance in a block
of data X that allows the prediction of a response block Y. The latter may
contain quantitative data, and therefore we are in the regression domain, or
categorical data, and then we are in the classification domain (i.e., control versus
disease samples). As a result, providing that no overfitting is occurring [46,
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17], supervised methods can point to the variables (i.e., metabolites, genes,...)
that lead to the desired classification. Popular supervised multivariate analysis
tools are Partial Least Squares (PLS) regression [19, 46] and its extension to
classification PLS Discriminant Analysis (PLS-DA) [2]. Sparse variants of those
techniques also exist [30, 7].

All of the above mentioned algorithms are multi-component models that
are used together with visualization tools to interpret the data. A popular
visualization tool is the scatter-plot of pairs of components, that is, the scores
plot and the loadings plot. Interpretation of multivariate plots in omics data
is limited by the huge dimensionality of data sets, which often requires high
numbers of components for proper modeling. An added challenge is the proper
selection of model variants [12], which includes the numerous choices of data
pre-processing at hand.

In light of these considerations, it is of utmost importance to propose strate-
gies to simplify omics data interpretation through multivariate analysis, espe-
cially nowadays that multivariate analysis is present in the majority of commer-
cial software packages thus not only for expert chemometricians. To this end,
we designed a subspace discriminant index (SDI) aiming to facilitate the inspec-
tion of a multi-component model for data exploration. After a supervised or
unsupervised multi-component model is built, the SDI can automatically detect
the subspace that better discriminates between two or more classes of interest
in the observations. Then, with this information, we can visualize scores and
loadings corresponding to the selected components. Noteworthy, the SDI also
provides of an indication of which model is the most suited to analyze the data
set at hand.

The paper is organized as follows. In the next two sections the SDI will
be formally introduced and the materials and methods used in the paper dis-
cussed. The following three sections demonstrate the use of the SDI in three
real world omics case studies: toxicology investigations by means of targeted
metabolomics, drug safety evaluation by means of untargeted lipidomics, and
food science by means of semi-targeted lipidomics. In the last section, we draw
the conclusions of the work.

2. The Subspace Discriminant Index

When inspecting an omics classification data set of high dimensionality, one
is often interested in the characteristics of a specific class or set of classes of
observations. However, depending on the data and the model we are using,
the information of interest may be hidden in high order components, so that
inspection may grow complicated and we may miss relevant detail.

Let us motivate this problem with the example in Fig. 1, which corre-
sponds to the first 2 latent variables (LVs) in a PLS-DA model of a multi-class
lipidomics data set we will describe and use later. Even when using a super-
vised model, which is by nature biased towards the regression/discrimination
problem of interest, the first 2 LVs may not be the only subspace to inspect, or
even the optimum one. As a matter of fact, in the example, such subspace is
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Figure 1: Subspace of the first 2 latent variables in the PLS-DA model of the multi-class
lipidomics example: (a) scores plot (b) loadings plot.

mainly useful to inspect the characteristics of one single class (number 7) in a
9-classes data set. These characteristics include potential biomarkers associated
to the class. Thus, variables 453 (in the same direction in the loading plot to
the location of class 7 in the score plot) or 273 (in the opposite direction) may
be identified as potential biomarkers (by up-regulation and down-regulation in
class 7, respectively). However, one may also desire to see particularities of other
classes, and for that the analyst needs to dive into high order components. To
give an example, in order to elucidate the characteristics of class 1, with only
three observations, one would need to go as far as to inspect the subspace of
LV 14 vs LV 15, as shown in Fig. 2, and find out that a biomarker of interest
may be variable 1235. Notice there is not a huge difference in variance between
subspaces LV 1 vs LV 2 and LV 14 vs LV 15. Still, in the everyday practice of
omics data analysis, it is unlikely that we get that far by manually inspecting
all of the possible pairs of LVs. Note that, in an ordered fashion, this would
require to visualize 105 score plots.

One alternative approach to inspecting high order components is to build
a number of models in which each class is compared to the rest. This adds
the complexity of handling a large number of models to interpret the same
data, which can be prone to error and it is specially challenging during initial
explorations of the data, where pre-processing and modeling techniques are
selected.

To cope with this problem, the SDI can be used to identify the subspace, in
a given multi-component projection model, that best discriminates a class (or
set of classes) of observations. Then, with this information, we can visualize
scores and loadings corresponding to the selected components. All in all, the
SDI can be seen as a new addition to the multivariate tool-set useful to facilitate
the inspection of a projection model with the ultimate goal of data exploration.

Let us use a general expression for the approximation of the X-block in a
multi-component model:
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Figure 2: Loadings plot corresponding to the subspace of the first 2 latent variables (a) and
to the optimum subspace to inspect the characteristics of class1 (b) in the PLS-DA model of
the multi-class lipidomics example.

X = UVt + E (1)

where U are the scores, V the loadings and E the residuals. If the number of
components A is large, visually inspecting such a model can be a challenging,
as already discussed. Alternatively, we define the SDI for a given projection
subspace S and class of observations c, noted as F c

S . The higher the index,
the more suitable the subspace S to inspect the characteristics of class c. Note
that in general we are only interested in one-dimensional and two-dimensional
subspaces, since those are the potential dimensions of the subspaces we can
visualize and rationalize with scores/loadings plots.

The definition of the SDI is grounded on traditional ideas beneath discrimi-
nant analysis, t-tests and ANOVA-like models, where the within-group variance
is compared to the between-group variance in a ratio:

F c
S =

W c
S

Bc
S

(2)

where:

W c
S = s2c(Nc − 1)− s2−c(N−c − 1) (3)

Bc
S = (mc −m−c)

2 (4)

and Nc and N−c are the number of observations in the c-th class and outside the
c-th class, respectively, sc and s−c are the corresponding standard deviations
and mc and m−c the corresponding averages.

For a given subspace S = a ∈ R1, so that it corresponds to single component,
W c

S , Bc
S and F c

S are directly computed over the scores of that component: ua in
the a-th column of U in eq. (1). To extend this idea to higher order subspaces
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Figure 3: SDI heat map for class 1 in the PLS-DA model of the multi-class lipidomics example.

(e.g. two components), with S ∈ Rn for n above 1, we apply the following
strategy. First, we project the scores US onto the most discriminant direction
for c in S. Then, we compute W c

S , Bc
S and F c

S from the projected values. To
identify the most discriminant direction in the sub-space, the approach of this
paper is to fit a PLS-DA of 1 LV for the specific class of interest against the rest1.
Thus, the X-block of this PLS-DA are the scores corresponding to subspace US,
and the Y-block is represented by a dummy variable with 1s for the observations
in class c and 0s for the rest. A PLS model with 1 LV is identified from the
X-block and Y-block, yielding the regression coefficients b̂ [2]. Subsequently,
W c

S , Bc
S and F c

S are applied over the vector tS = USb̂.
One suitable visualization for the SDIs corresponding to a specific model

and class of observations is in the form of heat map. Let us come back to the
lipidomics example. The SDI heat map for class 1 in the PLS-DA model is shown
in Fig. 3. The indices for individual components are located at the diagonal of
the heat map, and the indices for 2-component subspaces, with components a
and b, are located in the corresponding row-column pair a and b and symmet-
rically in b and a. The single heat map in the figure assesses the discriminating
power of a total of 31 components and (31×30)/2+31 = 496 different subspaces
in the PLS-DA model of the data. From all these possibilities, the figure clearly
shows that the maximum SDI for class 1 is found at the subspace of LV 14 vs
LV 15, as we anticipated in Fig. 2. Using this plot, the analyst knows where to
look.

One comment is in due with respect to multi-class data sets. We may be
interested in finding the subspace that best discriminates all the classes on a
general basis, instead than a given one. That goal can be achieved by simply
combining the SDI maps for the classes, and this can be done in different ways,
e.g. with the sum of maps, the normalized sum or the minimum/maximum val-
ues. An example is shown in Fig. 4(a), where the normalized sum is used. Since

1Do not confuse this model with the model over which the SDI is actually computed to
enhance interpretation.

6



#LV
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

#L
V

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31 0

0.5

1

1.5

2

2.5

(a)

Scores LV 5 (3%)
-60 -50 -40 -30 -20 -10 0 10 20 30

S
co

re
s 

LV
 6

 (
2%

)

-40

-30

-20

-10

0

10

20

30

40

2

33

333

4

4

55

5

5

5

55

555

555
5

55

5

7
7

7

7

76

6

666

66

6

6
6

6
6

6

6

6

99

9

9

9

8

(b)

Figure 4: SDI heat map (a) for the normalized sum of classes and the PLS-DA model in Fig.
1(b) and optimum scores plot (b).

the data set is very complex, with several classes, the map has many alternative
subspaces of similar SDI. The score plot of the subspace corresponding to the
maximum SDI is represented in Fig. 4(b). We can see that the subspace is
interesting to study three of the classes, providing more information than the
first 2 LVs.

A noteworthy application of an SDI map is to compare different modeling
methods in order to select one of them for data inspection. Fig. 5 illustrates the
SDI map for PCA and class 1, for comparison with the PLS-DA SDI in Fig. 3.
Please, note that we do not normalize the color-scale in the figures. Rather, we
compare several maps by looking at the maximum value in the color-scale bar
located in the upper right corner. Clearly, PLS-DA, with a maximum SDI above
0.7, is preferable to PCA, with maximum SDI below 0.03. Unlike in PLS-DA, the
PCA model splits the discrimination across the PCs, so that the PCA matrix
factorization in components is nearly useless to visualize this discrimination.
Please, note the discrimination is in the data, not a quality of the model, and
we only seek a model to properly visualize and understand it. The SDI shows
that PLS-DA is a much more powerful tool to visualize this data than PCA.
While this is generally expected, being PLS-DA a supervised approach, it does
not necessary need to be the case in all multi-class data sets. In situations where
PCA and PLS-DA provide a similar capability for exploration, the former may
be preferred due to its unsupervised nature, less prone to over-fitting.

3. Materials & Methods

In the following sections, the results of the application of the proposed SDI
using different models are presented and discussed bearing in mind the final ob-
jective of simplifying data interpretation. Models considered are PCA, Sparse
PCA (SPCA) [47], Group-wise PCA (GPCA) [6] and PLS-DA. When unsuper-
vised approaches show discriminant power, they are generally preferred. For
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Figure 5: SDI heat map for class 1 in the PLS-DA model of the multi-class lipidomics example.

a fair comparison of different models, given that sparse and supervised models
generally capture less variance than classical unsupervised models, the num-
ber of components in SDI heat maps span the same amount of variance. We
follow [8] to compute scores and variance in sparse models. To select the meta-
parameters in SPCA (number of non-zero elements per LV), we use the ckf
cross-validation [37]. In GPCA, we select the grouping threshold visually, as
suggested in [6].

Three very different real-world metabolomic case studies were selected in
order to demonstrate the versatility of the proposed index. The first case study
is a two-class problem in which metabolomic analysis is used to understand
the effect of a mycotoxyn on wheat. The second case study focuses on the use
of lipidomic profiles of drug-treated cells for preclinical drug safety assessment.
The third one is a multi-class case study in which lipidomes of olive oils of differ-
ent nations are compared in order to establish a lipidomic fingerprint that can
be used for future geographical localization and contribute to the authenticity
control of olive oil products. Details on sample preparations and analysis are
given in Supplementary Materials.

The code for the models and the computation of the SDI is freely available in
the Matlab MEDA toolbox [9] at the address github.com/josecamachop/MEDA-
Toolbox.

4. Two-Class, Targeted Metabolomics Case Study: Mycotoxyn Effect
on Wheat

Fusarium head blight (FHB), caused by the fungal plant pathogen Fusar-
ium graminearum, is a devastating disease of wheat Triticum aestivum causing
premature spikelet bleaching shortly after infection [40]. The fungus produces
a mycotoxin known as deoxynivalenol (DON) that can have detrimental effects
on the health of domestic animals and humans. Therefore, experiments aimed
at identifying changes in the metabolome of infected wheat induced by DON
were performed with the aim of building models for an early diagnosis of FHB
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and identifying possible fungicide targets. In this case study, samples of in-
fected wheat were collected as described in Section S1 and the resulted data
were explored by means of PCA, SPCA and GPCA. The SDI was subsequently
applied to all of the three models, and the heatmaps of the resulting DIs are
reported in Fig. 6. Please note that each SDI has the number of components
necessary to account for a 50% of the variance in the data. The absolute value of
the SDI (0.01 for PCA, above 0.012 for SPCA and GPCA) shows very similar
discriminant performance in the models. However, in general sparse variants
will be simpler to interpret. PCA shows its best discriminant performance in
the subspace LV1-LV2. SPCA and GPCA are optimum in LV1, but GPCA also
shows that LV22 may also be inspected.

The corresponding score and loading plots for optimal subspaces are shown
in Fig. 7. In PCA, a separation between water mock control and DON-treated
samples appears across the first two components, but the loadings are of diffi-
cult interpretation since, as commonly happens with omics data, many variables
have very similar loadings. This limitation is overcome by the SPCA and GPCA
models. Indeed, the large amount of zero loadings obtained allows a much more
straightforward interpretation: the nonzero loadings were easily identified by
Camacho et al. [6] as amino acids, ampholytic amino acids and derivatives sug-
gesting that DON treatment can affect dysregulation of metabolic pathways in
which these compounds are involved. The LV22 in GPCA includes an additional
variable which scores share a very similar profile to that in LV1, and therefore
may also be considered a valid biomarker. Without the SDI, this last biomarker
would not have been found.

5. Two-Class, Untargeted Lipidomics Case Study: Drug-Induced Phos-
pholipidosis

Phospholipidosis (PLD) is defined as the abnormal and excessive intracel-
lular accumulation of phospholipids (PLs) within animal cells [22]. In recent
years, a number of cationic amphiphilic drugs (CADs) have been reported to
cause PLD in humans as side-effect [44, 33, 26]. In light of this, PLD preclinical
testing development has become a crucial priority for the pharmaceutical indus-
try. To address this issue a number of combined experimental and in silico tests
have been recently proposed [13, 10, 11]. In addition, lipidomics has emerged
as powerful tool to directly monitor lipids profile alteration and correlate them
with the induced PLD effect [38, 18]. Indeed, lipids that best discriminate be-
tween PLD inducer and PLD not inducer drugs could be eventually monitored
in preclinical drug safety assessment. Therefore, in the present case study, cells
were treated with PLD inducer and not inducer drugs and underwent lipidomic
analysis. Samples preparation and data collection are described in Section S1.
A total of 33 samples were obtained (Table 1).

The SDI is applied again over PCA, SPCA and GPCA in Fig. 8. The
number of components is selected to capture 50% of the variance in the data.
The maximum SDI in the GPCA model is one order of magnitude higher that
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Figure 6: Case Study I: SDI maps of the best subspaces for the (a) PCA, (b) SPCA, and (c)
GPCA models. Heat-map scale ranging from white (SDI = 0) to red (maximum SDI within
the model, see scale legend at the right side of the maps).

Table 1: Case Study II: Analyzed samples. Drug name and relative PLD induction (inducer:
PLD-I; not inducer: PLD-NI), molar concentration (µ M), and number of replicates (NR).

Drug Effect Molarity (µ M) NR

amiodarone PLD-I
1 3
8 3
12 3

imipramine PLD-I
1 3
10 3
30 3

cimetidine PLD-NI
4 3
20 3
40 3

control Ctrl 2
control-vehicle Ctrl-V 2
blank Blank 2
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Figure 7: Case Study I: score plots (a, c, e, g; cyan - mock water controls, red - DON treated
samples) and loading plots (b, d, f, h) of the best subspaces of the PCA, SPCA, GPCA
models, respectively.
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Figure 8: Case Study II: SDI maps of the best subspaces for the (a) PCA, (b) SPCA, and (c)
GPCA models. Heat-map scale ranging from white (SDI = 0) to red (maximum SDI within
the model, see scale legend at the right side of the maps).

that of SPCA and PCA, respectively. The best subspace in PCA is LV1 vs LV2,
in SPCA the second component and in GPCA the 4th one.

The optimum subspaces are compared in Fig. 9. The discrimination in
the scores of PCA is very good, but again we have the challenge to explore
a crowded loading plot. Biomarkers can be identified approximately around
variable 10 (in the direction of the red-scores class) and around variables 45 and
160 (in the other direction). SPCA simplifies this interpretation with less than
ten non-zero loadings, around variables 10 and 160, in agreement with PCA, but
with a significant loss in discrimination power, as predicted by the SDI. GPCA
selects the variables around 45, resulting in a sparser model with an optimum
discriminant power. In three plots, the SDI was useful to find the best model
and component to interpret the data.
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Figure 9: Case Study II: score plots (a, c, e; cyan - PLD-NI, red - PLD-I samples) and loading
plots (b, d, f) of the best subspaces of the PCA, SPCA, GPCA models, respectively.

13



Table 2: Case Study III: Analyzed samples. Number (NS), number of replicates (NR) and
total number of analyzed samples per class (NTC).

Oil Origin Label NS NR NTC

Blanks - 6 3 18
Cile 1 1 3 3
Croatia 2 11 3 33
Greece 3 6 3 18
Italy 4 15 3 45
Morocco 5 15 3 45
Slovenia 6 8 3 24
Spain 7 17 3 51
Tunisia 8 1 3 3
Turkey 9 9 3 27

Total 249

6. Multi-Class, Semi-Targeted Lipidomics Case Study: Olive Oil Ori-
gin

Olive oil is highly valued worldwide for its positive effect on human health.
Among the biggest cultivator of olive trees we find Southern Europe, with Italy,
Spain and Greece being the most contributing countries, North Africa, and the
Near East [25]. From a chemical point of view olive oil, that is the product of me-
chanical extraction of olive fruit, is a mixture of tri-, di-, and mono-glycerides, as
well as phenolic, responsible of its antioxidants activity, and volatile compounds
that accounts for its taste and aroma, respectively [14, 4]. The exact mix-
ture composition of olive oil depends on fruit location, variety and ripeness [4].
Therefore, identification and quantitation of these classes of lipids can be used
to address several aspects, such as determination of the origin and metabolism
of the olive plant, offering a modern tool for quality assessment and authenticity
[14, 41]. General guidelines and rules about limits for the composition and the
physicochemical parameters of olive oil have been established at the European
level [25, 16] in an attempt to protect olive oil quality and authenticity against
sophistications and other illegal actions. In this contest, lipidomic fingerprint
can be a powerful tool for effectively and unambiguously characterizing olive
oils up to the molecular composition. In this case study, 83 olive oils produced
from trees cultivated in different countries (Cile, Croatia, Greece, Italy, Mo-
rocco, Slovenia, Spain, Tunisia, Turkey, Table 2) were collected and analyzed
by means of LC-MS lipidomics with the aim of identifying differences/analogies
in their lipidomic fingerprints that could be used for future geographical local-
ization and will contribute to the authenticity control of olive oil products. Each
sample was further divided in three aliquots analyzed separately. A total of 249
samples were analyzed as described in Section S1.

For this case study, unsupervised methods did not perform adequately and
we had to apply their supervised counterparts. Besides, cross-validation (not
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Figure 10: Case Study III: SDI maps for the 1 to 9 classes (a-i, respectively). Heat-map scale
ranging from white (SDI = 0) to red (maximum SDI within the model, see scale legend at the
right side of the maps)

shown) suggested that sparsity constraints were counterproductive. Therefore,
we will focus on the PLS-DA model alone. SDI maps are shown in Fig. 10. We
show the number of components that captures 30% of the variance in X and
95% in Y. In comparison, PCA SDI maps (not shown) present on average one
order of magnitude less discrimination performance. Fig. 10 shows that the
optimal subspaces are different for different classes, and none of them includes
the subspace of the first two LVs. The score plots of optimal subspaces are
displayed in Fig. 11, which illustrates the effectiveness of the approach.

7. Conclusions

The synergistic combination of recent advances on the analytical technolo-
gies on one side and of the proper data analysis tools on the other side have
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Figure 11: Case Study III: scores plots of optimal subspaces for the 1 to 9 classes (a-i,
respectively).
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boosted the evolution of omics sciences. Chemometrics has played and is play-
ing an important role on this, but now that data have increased in both size
and dimensionality, and an increasing number of techniques, methods and algo-
rithms have been developed, new tools are needed to simplify data exploration.
To address this issue, in the present work we introduced a new subspace dis-
criminant index (SDI) that facilitates the interpretation of a projection model
by indicating the best component or pair of components to be inspected for
effectively discriminating any class of interest. The efficacy as well as the value
of the proposed index was proved in three real world case studies: one in tox-
icology (two-class), one in pharmaceutical (two-class) and one in food science
(multi-class) research areas. In the two-class case studies, we proved that the
SDI is an effective tool to guide the exploratory analysis of data with discrim-
ination purposes using unsupervised models. In the multi-class case study, we
demonstrated that the SDI is especially useful when the number of classes is
relatively high. Noteworthy, the SDI was proven to give an indication on the
best choice for the model to explore the data. We believe the SDI will be used
by those seeking for an effective still relatively simple way to interpret their
omics data with multivariate analysis.
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[42] Szymańska, E., van Dorsten, F. A., Troost, J., Paliukhovich, I., van Velzen,
E. J. J., Hendriks, M. M. W. B., Trautwein, E. A., van Duynhoven, J. P. M.,
Vreeken, R. J. and Smilde, A. K. [2012], ‘A lipidomic analysis approach to
evaluate the response to cholesterol-lowering food intake’, Metabolomics
8(5), 894–906.
URL: http://link.springer.com/10.1007/s11306-011-0384-2

[43] Trygg, J., Holmes, E. and Lundstedt, T. [2007], ‘Chemometrics in Metabo-
nomics’, Journal of Proteome Research 6(2), 469–479.
URL: http://pubs.acs.org/doi/abs/10.1021/pr060594q

[44] Tulkens, P. [1986], ‘Experimental studies on nephrotoxicity of aminoglyco-
sides at low doses: Mechanisms and perspectives’, The American journal
of medicine 80, 105–114.

[45] Wang, C., Kong, H., Guan, Y., Yang, J., Gu, J., Yang, S. and Xu,
G. [2005], ‘Plasma Phospholipid Metabolic Profiling and Biomarkers
of Type 2 Diabetes Mellitus Based on High-Performance Liquid Chro-
matography/Electrospray Mass Spectrometry and Multivariate Statistical
Analysis’, Analytical Chemistry 77(13), 4108–4116.
URL: https://doi.org/10.1021/ac0481001 http://pubs.acs.org/doi/abs/10.1021/ac0481001
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