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A WIENER TEST À LA LANDIS

FOR EVOLUTIVE HÖRMANDER OPERATORS

GIULIO TRALLI AND FRANCESCO UGUZZONI

Abstract. In this paper we prove a Wiener-type characterization of boundary regularity, in the
spirit of a classical result by Landis, for a class of evolutive Hörmander operators. We actually show
the validity of our criterion for a larger class of degenerate-parabolic operators with a fundamental
solution satisfying suitable two-sided Gaussian bounds. Our condition is expressed in terms of a
series of balayages or, (as it turns out to be) equivalently, Riesz-potentials.

1. Introduction

We are interested in Wiener type criteria of regularity of boundary points for evolutive hypoelliptic
operators. The case of the classical heat equation and of uniformly parabolic operators in divergence
form has been settled respectively by Evans-Gariepy [6] and by Garofalo-Lanconelli [8] (see below
for more detailed historical notes). As far as we know, there is no characterization results of Wiener
type even for the general Hörmander model operator

(1.1)
∑

j

X2
j − ∂t.

In such sub-Riemannian settings, the only Evans-Gariepy Wiener criterion is in fact due to Garofalo
and Segala in [9] for the heat equation on the Heisenberg group (see also the recent work in [23]
dealing with the case of H-type groups). On the other hand, the papers [24, 13] deal with Wiener
tests of Landis-type for the special class of Kolmogorov equations. In all these papers, the precise
knowledge of the fundamental solution plays a crucial role. A different approach has been carried out
in [17, 26] for Hörmander operators, but the necessary and the sufficient condition for the regularity
are different.

In the present paper we prove a characterization result à la Wiener-Landis for a class of evolutive
operators containing (1.1). Actually our class contains in particular the operators in the form

(1.2)

p
∑

i,j=1

ai,j(z)XiXj +

p
∑

j=1

bj(z)Xj − ∂t, for z = (x, t) ∈ D×]T1, T2[,

where D ⊂ R
N is bounded and open, the smooth vector fields {X1, . . . , Xp} satisfy the Hörmander

rank condition in a bounded open set D0 ⊃⊃ D, ai,j , bj are smooth functions in D0×]T1, T2[, and
the matrix (ai,j(·))i,j is symmetric and uniformly positive definite. Hörmander-type operators arise
in many theoretical and applied settings sharing a sub-Riemannian underlying geometry, for instance
in mathematical models for finance, control theory, geometric measure theory, pseudohermitian and
CR geometry.
Relatively to operators in (1.2), our main result (Theorem 1.3 below) reads as follows:
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2 G. TRALLI AND F. UGUZZONI

if Ω is a bounded open set which is compactly contained in D×]T1, T2[, and z0 ∈ ∂Ω, then

(1.3) z0 is H-regular for ∂Ω ⇐⇒
∞
∑

k=1

VΩc
k
(z0)(z0) = +∞.

Here, VΩc
k
(z0) denotes the balayage of some compact sets Ωc

k(z0) involving suitable level sets of the

fundamental solution of the operator H under consideration (see the following sections for the precise
definitions).

Even for the heat operator, Wiener-type characterizations have a long history. To the best of our
knowledge, the first attempt in this direction is due to Pini in [22] where he proved a sufficient condi-
tion in the 1-dimensional case for particular open sets. Then, in [19] Landis proved a characterization
for the regularity in terms of a suitable series of caloric potentials. Concerning the proper analogue of
the classical Wiener criterion for the heat equation, Lanconelli proved in [14] the necessary condition
for the regularity and, finally, Evans and Gariepy proved the full characterization in [6].
It is well-known that all the elliptic operators share the same regular points with the Laplacian,
whereas Petrowski showed in [21] explicit counterexamples of this fact even for constant coefficients
parabolic operators. This feature makes more interesting the study of the variable coefficients case.
Several necessary and sufficient conditions have been investigated for classical parabolic operators
both in divergence and non divergence form, also with different degree of regularity for the coeffi-
cients (see, e.g., [19, 20, 15] and references therein). The Evans-Gariepy Wiener test was extended to
parabolic operators in divergence form with smooth variable coefficients by Garofalo and Lanconelli
in [8], and with C1-Dini continuous coefficients by Fabes-Garofalo-Lanconelli in [7]. We also mention
[10, 11, 2, 1] (and references therein) for some recent developments in quasilinear parabolic settings.

We now turn back to the sub-Riemannian setting in order to put our result in perspective with
respect to the state of the art already mentioned. In [17, 26] we found necessary and sufficient con-
ditions (different from each other) which are uniform in the class of operators (1.2). Such conditions
were expressed in terms of a series of capacities of compact sets involving only the underlying metric,
whereas in the true characterization (1.3) of the present paper we express the condition with bal-
ayages of super-level sets of the fundamental solution Γ(·, ·) of each operator H in the class. To do
this we follow an approach which is more in the spirit of [13]. One of the thorny issues of this strategy

is to choose appropriately subregions of Ωc
k(z0) where we can estimate uniformly the ratio Γ(z,ζ)

Γ(z0,ζ)
. In

contrast with the homogeneous Kolmogorov case in [13], we have to face additional difficulties such as
the lack of an explicit knowledge of the fundamental solution and the lack of good scaling properties
for the operators. Another problem we have faced in pursuing this strategy is the identification of
the balayages with their Riesz representatives. Indeed, while the almost everywhere identification is
quite straightforward, everywhere identification seems to be a delicate point. One can approach such
a Riesz representation theorem by making use of mean value formulas: for operators as in (1.2) the
kernel in the mean value formulas may change sign and a careful analysis is in order.

It turns out that in our approach we can use essentially only two-sided Gaussian estimates for Γ
with respect to a well-behaved distance. For this reason we decided to present the results for a more
general class of diffusion operators by using an axiomatic approach in the spirit of [18, 17]. In the
following subsection, we proceed by fixing precisely the class of operators under consideration.

1.1. Assumption and main results. Let us consider the following linear second order Partial
Differential Operators

(1.4) H =

N
∑

i,j=1

qi,j(z)∂
2
xi,xj

+

N
∑

k=1

qk(z)∂xk
− ∂t,
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in the strip of RN+1

S = {z = (x, t) : x ∈ R
N , T1 < t < T2}, −∞ ≤ T1 < T2 ≤ ∞.

We assume the coefficients qi,j = qj,i, qk of class C∞, and the characteristic form

qH(z, ξ) =

N
∑

i,j=1

qi,j(z)ξiξj , ξ = (ξ1, . . . , ξN ) ∈ R
N ,

nonnegative definite and not totally degenerate, i.e., qH(z, ·) ≥ 0, qH(z, ·) 6≡ 0 for every z ∈ S. We
also assume the hypoellipticity of H and of its adjoint H∗, and the existence of a global fundamental
solution

(z, ζ) 7→ Γ(z, ζ)

smooth out of the diagonal of S × S satisfying the following:

(i) Γ(·, ζ) ∈ L1
loc(S) and H(Γ(·, ζ)) = −δζ , the Dirac measure at {ζ}, for every ζ ∈ S; Γ(z, ·) ∈

L1
loc(S) and H∗(Γ(z, ·)) = −δz for every z ∈ S;

(ii) for every compactly supported continuous function ϕ on R
N and for every x0 ∈ R

N , we have

(1.5)

∫

RN

Γ(x, t, ξ, τ)ϕ(ξ) dξ → ϕ(x0)

as x → x0, t ց τ ∈]T1, T2[ and also as x → x0, τ ր t ∈]T1, T2[;
(iii) there exists a distance d in R

N verifying the properties (D1)–(D3) below, and there exist
constants 0 < a0 ≤ b0 and Λ ≥ 1 such that the following Gaussian estimates hold

(1.6)
1

Λ
Gb0(z, ζ) ≤ Γ(z, ζ) ≤ ΛGa0(z, ζ), ∀z, ζ ∈ S.

Hereafter, we denote by Ga the function

Ga(z, ζ) = Ga(x, t, ξ, τ) =

{

0 if t ≤ τ,

1
|Bd(x,

√
t−τ)| exp

(

−a
d(x,ξ)2

t−τ

)

if t > τ.

Remark 1.1. In particular, condition (ii) holds true if
∫

RN Γ(x, t, ξ, τ) dξ = 1 (for any fixed x and
t > τ) and (iii) is satisfied (see Remark 2.2 below).

We fix here the notations we have just used. If A ⊆ R
N (A ⊆ R

N+1), |A| denotes theN -dimensional
((N +1)-dimensional) Lebesgue measure of A. Moreover, we denote the d-ball of center x and radius
r > 0 as

Bd(x, r) = B(x, r) = {y ∈ R
N : d(x, y) < r}.

Finally, we shall make the following assumptions on the metric space (RN , d):

(D1) The d-topology is the Euclidean topology. Moreover (RN , d) is complete and, for every fixed
x ∈ R

N , d(x, ξ) → ∞ if (and only if) ξ → ∞ with respect to the usual Euclidean norm.
(D2) (RN , d) is a doubling metric space w.r.t. the Lebesgue measure, i.e. there exists a constant

cd > 1 such that

|B(x, 2r)| ≤ cd|B(x, r)|, ∀x ∈ R
N , ∀r > 0.

We will always denote by Q = log2 cd the relative homogeneous dimension.
(D3) (RN , d) has the segment property, i.e., for every x, y ∈ R

N there exists a continuous path
γ : [0, 1] → R

N such that γ(0) = x, γ(1) = y and

d(x, y) = d(x, γ(t)) + d(γ(t), y) ∀t ∈ [0, 1].
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Remark 1.2. Global Gaussian estimates as in (1.6) for the hypoelliptic operators of Hörmander-
type in (1.2) have been proved in [3, 4]. More precisely, such estimates are obtained for an extended
operator (outside D×]T1, T2[) with respect to a Carnot-Carathéodory metric satisfying (D1)–(D3).
Properties (i)− (ii) follow as well from the results in [4] (see also [16] and Remark 1.1).
This is the reason why we can apply our results to the class (1.2), provided that we consider the
relevant bounded open sets Ω to be compactly contained in D×]T1, T2[ (see (1.3)).

Under the above assumptions the operator H endows the strip S with a structure of β-harmonic
space satisfying the Doob convergence property, see [18, Theorem 3.9]. As a consequence, for any
bounded open set Ω with Ω ⊆ S, the Dirichlet problem

{

Hu = 0 in Ω,

u|∂Ω = ϕ

has a generalized solution HΩ
ϕ , in the Perron-Wiener sense, for every continuous function ϕ : ∂Ω → R.

A point z0 ∈ ∂Ω is called H-regular if limz→z0 H
Ω
ϕ (z) = ϕ(z0) for every ϕ ∈ C(∂Ω). The main result

of this paper is the following Wiener-Landis test for the H-regularity of the boundary points of Ω.
If z0 ∈ ∂Ω and λ ∈]0, 1[ are fixed, we define for k ∈ N

(1.7) Ωc
k(z0) =

{

z ∈ S r Ω :

(

1

λ

)k log k

≤ Γ(z0, z) ≤
(

1

λ

)(k+1) log (k+1)
}

∪ {z0}.

Theorem 1.3. Let Ω be a bounded open set with Ω ⊆ S, and let z0 ∈ ∂Ω. Then z0 is H-regular for
∂Ω if and only if

(1.8)

∞
∑

k=1

VΩc
k
(z0)(z0) = +∞.

Here and in what follows, if F is a compact subset of RN+1, VF will denote the H-balayage of F
(see Section 2 below for details).

Remark 1.4. Thanks to Theorem 2.1 below, we can write (1.8) as
∞
∑

k=1

Γ ∗ µΩc
k
(z0)(z0) = +∞.

Remark 1.5. We would like to comment on the choice of the exponent α(k) = k log k in the definition
(1.7) of Ωc

k(z0). The superlinear growth of α(k) is crucial for our proof. On the other hand, the exact
analogue of the Evans-Gariepy criterion would have required the sequence of level sets with α(k) = k.
This is why Theorem 1.3 is a Wiener criterion ‘à la Landis’, who proved in [19] a similar result for the
heat equation with a suitable choice of α(k) growing fast at infinity. Here, we don’t use the strategy of
Landis. We use instead, as we mentioned, the strategy in [13] which takes ideas from [14, 15]. In [13]
it appears the same choice α(k) = k log k as in Theorem 1.3. We feel it is interesting to remark that
we can get the same accuracy in the result in the present situation (not without an additional effort)
where we know just two-sided Gaussian bounds on Γ (and not an explicit expression). In this respect,
we mention that in [8] the authors were able to prove the Evans-Gariepy-Wiener criterion in the case
of smooth uniformly parabolic operators in divergence form for which the fundamental solution is not
explicit: they were able to treat such a case by making crucial use of a refined Gaussian expansion of
the fundamental solution in terms of the underlying geodesic Riemannian distance. A sub-Riemannian
analogue of this noteworthy expansion is currently not available (to the best of our knowledge) for
equations as in (1.1).
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Plan of the paper. In Section 2 we introduce suitable mean-value operators and we prove the
everywhere identification of the balayages with the Riesz potentials. As a intermediate step we also
prove a reproduction formula for the fundamental solution Γ. In Section 3 we prove first the sufficient
and then the necessary condition for the H-regularity in Theorem 1.3. To this aim, the crucial bound

for the ratio Γ(z,ζ)
Γ(z0,ζ)

is performed via Hölder-type estimates in Lemma 3.3, where z, ζ move in special

subregions of Ωc
k(z0). The construction of such regions, denoted by F i

k, and the proof of their needed
properties are quite delicate (see (3.13), see also Lemma 3.1 and 3.2) and take a big part of Section
3. In Section 4 we provide in Corollary 4.1 a necessary and a sufficient condition for H-regularity
(different from each other) involving a suitable capacity of the compact sets Ωc

k(z0), and we then
deduce a regularity criterion in terms of the Lebesgue measure of Ωc

k(z0) in Corollary 4.2. Finally,
we apply such regularity test to the model case of heat operators in Carnot groups by establishing
in Corollary 4.4 a sharp geometric criterion for the regularity under an exterior (log log)-paraboloid
condition.

2. Balayages as potentials

The hypotheses mentioned in the Introduction allow in particular to exploit the results in [18]. For
example, to our purposes, it is crucial the notion of balayage which yields various characterizations
of the regularity of boundary points (see, e.g., [18, Theorem 4.6]). We recall here the definition for
the reader’s convenience, together with other related notions of classical potential theory.

If O ⊆ S is an open set, we say that a function u : O →]−∞,∞] is H-superharmonic in O if u is
lower semi-continuous, it is finite in a dense subset of O, and

u ≥ HV
ϕ in V ∀ϕ ∈ C(∂V ) with ϕ ≤ u|∂V

and for every H-regular open set V compactly contained in O. A bounded open set V is called H-
regular if we can solve in a classical sense the Dirichlet problem related to H in V for any continuous
boundary datum (such H-regular sets form a basis for the Euclidean topology). We use the notations
H(O) for the set of H-superharmonic functions in O. For a given a compact set F ⊆ S, we denote
WF = inf{v ∈ H(S) : v ≥ 0 in S, v ≥ 1 in F} and we define the (H-)balayage potential of F as

(2.1) VF (z) = lim inf
ζ→z

WF (ζ), z ∈ S.

Here and in what follows we agree to let lim infζ→z w(ζ) = supV ∈Uz
(infV w) being Uz a basis of

neighborhoods of z. We know from [18, Proposition 8.3] that

(2.2) VF (z) = Γ ∗ µF (z) for almost every point z ∈ S (and everywhere in S r ∂F ),

where µF denotes the Riesz-measure of VF , i.e. the unique Radon measure in S such thatHVF = −µF

in the sense of distributions. We recall that µF is a nonnegative measure with support in F . In this
work we are going to prove that the equality (2.2) holds at every point of S. The validity of such
representation in ∂F will be in fact crucial in the proof of Theorem 1.3.

Theorem 2.1. We have

VF (z) = Γ ∗ µF (z) for every z ∈ S (not only almost everywhere).

In the proof of this result we use mean-value representation formulas for C2-functions. To this
aim, let us write the operator in the following form

H = divx (Q(x, t)∇x) + Y − ∂t.
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For any r > 0 and z ∈ S, we introduce the following mean-value operator

Mru(z) = M1
r u(z) +M2

r u(z) =

∫

P(z,r)

E1
r (z, ζ)u(ζ) dζ +

∫

P(z,r)

E2
r (z, ζ)u(ζ) dζ =

1

r

∫

P(z,r)

Γ−2(z, ζ) 〈Q(ζ)∇ξΓ(z, ζ),∇ξΓ(z, ζ)〉 u(ζ) dζ +
1

r

∫

P(z,r)

div(Y )(ζ) log (rΓ(z, ζ))u(ζ) dζ

where

P(z, r) =

{

ζ ∈ S : Γ(z, ζ) >
1

r

}

.

We explicitly remark that E1
r (z, ζ) ≥ 0 whereas E2

r (z, ζ) may change sign: this is due to the presence
of Y in the structure of H. For this reason, we also introduce

(2.3) Nru(z) =

∫

P(z,r)

|E1
r (z, ζ) + E2

r (z, ζ)|u(ζ) dζ.

If u is a C2-function in a neighborhood of a fixed point z ∈ S and r is small enough, we have

(2.4) u(z) = Mru(z)−
1

r

∫ r

0

∫

P(z,ρ)

(

Γ(z, ζ)− 1

ρ

)

Hu(ζ) dζ dρ.

The above formula can be proved by arguing essentially as in [16, Theorem 1.5] and using the Gaussian
estimates (1.6). We observe here that the hypothesis (1.5), together with the Gaussian estimates,
implies that

∫

RN Γ(z, (ξ, t− ε)) dξ → 1 as ε → 0+ (as shown in Remark 2.2): this is enough to

complete the proof of the mean value formulas without knowing that
∫

RN Γ(z, ζ) dξ is identically 1
for any τ < t (as used in [16, page 311]; see also [12]).

Remark 2.2. If (1.6) holds, then the assumption (1.5) is equivalent to

(2.5)
∫

RN Γ(x, t, ξ, τ) dξ → 1

as x → x0, t ց τ ∈]T1, T2[ and also as x → x0, τ ր t ∈]T1, T2[.

Proof. We first recall that there exists a constant β ≥ 1 such that

(2.6) β−1 ≤
∫

RN Γ(x, t, ξ, τ) dξ ≤ β for every x and for every τ < t.

This follows from the Gaussian estimates since we know from [18, Proposition 2.4] that

(2.7)
1

β(a)
≤
∫

RN

Ga(x, t, ξ, τ) dξ ≤ β(a) for every x and for every τ < t.

To prove that (1.5) implies (2.5), we write
∫

RN Γ(x, t, ξ, τ) dξ =
∫

RN Γ(x, t, ξ, τ)ϕk(ξ) dξ +
∫

RNrB(x0,k)
Γ(x, t, ξ, τ) (1− ϕk(ξ)) dξ

where 0 ≤ ϕk ≤ 1 is a suitable sequence of C0-cut-off functions equal to 1 in B(x0, k). The second
integral at the r.h.s. can be made arbitrarily small by picking a large k using (2.6), whereas the first
integral tends to ϕk(x0) = 1 by (1.5) respectively as x → x0, t ց τ or as x → x0, τ ր t.
On the other hand, in order to prove that (2.5) implies (1.5), for any ϕ ∈ C0 we can write

∫

RN Γ(x, t, ξ, τ)ϕ(ξ) dξ − ϕ(x0) = ϕ(x0)
(∫

RN Γ(x, t, ξ, τ) dξ − 1
)

+
∫

RNrB(x0,δ)
Γ(x, t, ξ, τ) (ϕ(ξ) − ϕ(x0)) dξ +

∫

B(x0,δ)
Γ(x, t, ξ, τ) (ϕ(ξ) − ϕ(x0)) dξ.

The first integral at the r.h.s. tends to 0 by (2.5). From the continuity of ϕ and (2.6), the last integral
can be made arbitrarily small by picking a small δ > 0. Lastly, for such a fixed δ, the second integral
tends to 0 by the Gaussian estimates (as t− τ → 0 and x → x0). �
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In what follows, we also set

d̂(z, ζ) = (d(x, ξ)4 + (t− τ)2)
1
4 , z = (x, t), ζ = (ξ, τ) ∈ S.

The relative parabolic balls are

B̂(z, r) = {ζ ∈ S : d̂(z, ζ) < r}, z ∈ S, r > 0.

For the proof of Theorem 2.1, we need the following reproduction formula for the fundamental kernel
Γ.

Proposition 2.3. We have

Γ(z, η) =

∫

RN

Γ(z, ζ)Γ(ζ, η) dξ

for every z = (x, t), ζ = (ξ, τ), η = (y, s) ∈ S with t > τ > s.

Proof. Fix η and τ > s. For any z, let us denote v(z) =
∫

RN Γ(z, ζ)Γ(ζ, η) dξ. Both v and Γ(·, η) are
solutions in R

N ×(τ, T2). Then, by the maximum principle [18, Proposition 3.1], in order to prove the

statement it is enough to prove the following two facts: both v and Γ(·, η) tend to 0 as d̂(z, 0) → +∞;
v(z) → Γ((x0, τ); η) as z → (x0, τ) with t > τ . It is immediate to see that Γ(·, η) tends to 0 at infinity
by the Gaussian estimates (1.6) and the properties (D1)-(D2). On the other hand, by (1.6), we have

(2.8) v(z) ≤ Λ2

∫

RNrB(x, 12d(x,y))

Ga0(z, ζ)Ga0(ζ, η) dξ + Λ2

∫

B(x, 12d(x,y))

Ga0(z, ζ)Ga0(ζ, η) dξ.

The first term in the right-hand side of (2.8) can be bounded above exploiting the fact that

(2.9) Ga0(ζ, η) ≤ cd̂−Q(ζ, η) with c = c(η, a0)

which follows from [18, Proposition 2.2 and Proposition 2.5]: thus we get
∫

RNrB(x, 12d(x,y))

Ga0(z, ζ)Ga0(ζ, η) dξ ≤ c

(τ − s)
Q
2

∫

RNrB(x, 12d(x,y))

Ga0(z, ζ) dξ

≤ c

(τ − s)
Q
2

e−
a0
8

d2(x,y)
t−τ

∫

RNrB(x, 12 d(x,y))

G a0
2
(z, ζ) dξ,

where in the last inequality we used the fact that Ga0(z, ζ) = e−
a0
2

d2(x,ξ)
t−τ G a0

2
(z, ζ) and the relation

d(x, ξ) ≥ 1
2d(x, y). The last term in the right-hand side of (2.8) can be bounded above noting that

B(x, 1
2d(x, y)) ⊆ R

N
rB(y, 1

2d(x, y)) by triangle inequality and using again (2.9): this yields
∫

B(x, 12d(x,y))

Ga0(z, ζ)Ga0(ζ, η) dξ ≤
∫

RNrB(y, 12d(x,y))

Ga0(z, ζ)Ga0(ζ, η) dξ

≤ c

∫

RNrB(y, 12d(x,y))

Ga0(z, ζ)d̂
−Q(ζ, η) dξ ≤ c

(

d(x, y)

2

)−Q ∫

RNrB(y, 12d(x,y))

Ga0(z, ζ) dξ.

Inserting the previous two estimates for the terms in the right-hand side in (2.8), and using (2.7), we
infer

v(z) ≤ Λ2c

(τ − s)
Q
2

e−
a0
8

d2(x,y)
t−τ

∫

RNrB(x, 12d(x,y))

G a0
2
(z, ζ) dξ +

Λ2c2Q

(d(x, y))
Q

∫

RNrB(y, 12d(x,y))

Ga0(z, ζ) dξ

≤ β(
a0

2
)

Λ2c

(τ − s)
Q
2

e
−a0

8
d2(x,y)
T2−T1 + β(a0)

Λ2c2Q

(d(x, y))
Q
,
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which goes to 0 as z goes to ∞. We are left to prove that v(z) → Γ((x0, τ); η) as z → (x0, τ) with
t > τ . We can write

v(z) =

∫

RN

Γ(z, ζ)Γ(ζ, η)ϕk(ξ) dξ +

∫

RNrB(x0,k)

Γ(z, ζ)Γ(ζ, η)(1 − ϕk(ξ)) dξ.

We can then argue similarly to Remark (2.2): the second integral can be made arbitrarily small for
large k using (2.9) and (2.6), whereas the first integral tends to Γ((x0, τ); η)ϕk(x0) = Γ((x0, τ); η) as
x → x0, t ց τ by (1.5). �

We are finally ready to provide the proof of Theorem 2.1.

Proof of Theorem 2.1. We first prove that VF (z) ≤ Γ∗µF (z) for any fixed z ∈ S. Since VF and Γ∗µF

are nonnegative functions, we can assume VF (z) > 0 and Γ∗µF (z) < +∞. By the lower semicontinuity
of VF we know that, for any 0 < ε < VF (z), there exists rε > 0 such that VF (ζ) ≥ VF (z)− ε ≥ 0 for

all ζ ∈ B̂(z, rε). The upper bound in (1.6) implies that Γ(z, ·) is bounded from above in S r B̂(z, rε)
by a positive constant Mε. Recalling the definition of P(z, ·) and choosing r̄ε = M−1

ε , we obtain

P(z, r̄ε) ⊆ B̂(z, rε) ⋐ S. Since we know that Mr(1) ≡ 1 from (2.4) and Mr(1) ≤ Nr(1) by definition,
for all 0 < r < r̄ε we have

VF (z)− ε = (VF (z)− ε)Mr(1)(z) ≤ (VF (z)− ε)Nr(1)(z) = Nr((VF (z)− ε))(z).

On the other hand, since Nr is monotone having a nonnegative kernel, while VF and Γ ∗µF have the
same average being equal almost everywhere by (2.2), we then get

Nr((VF (z)− ε))(z) ≤ Nr(VF )(z) = Nr(Γ ∗ µF )(z).

We now claim that there exists a nonnegative function δ(r) which vanishes as r → 0+ such that

(2.10) Nr (Γ ∗ µF ) (z) ≤ (1 + δ(r)) Γ ∗ µF (z).

Once this is established, collecting the above inequalities we obtain

VF (z)− ε ≤ (1 + δ(r)) Γ ∗ µF (z) for all 0 < r < r̄ε.

Letting r → 0+ and then ε → 0+, we deduce VF (z) ≤ Γ ∗µF (z) as desired. We are thus left with the
proof of the claim. Denoting by m = maxP(z,r) |div(Y )|, for sufficiently small r > 0 we have

∫

P(z,r)

|E2
r (z, ζ)| (Γ ∗ µF ) (ζ) dζ ≤ m

r

∫

P(z,r)

log (rΓ(z, ζ))

(∫

S

Γ(ζ, η) dµF (η)

)

dζ

= m

∫

S

(

∫

P(z,r)

log (rΓ(z, ζ))

r
Γ(ζ, η) dζ

)

dµF (η) ≤ m

∫

S

(

∫

P(z,r)

Γ(z, ζ)Γ(ζ, η) dζ

)

dµF (η)

≤ m

∫

S

∫ t

tr

(∫

RN

Γ(z, (ξ, τ))Γ((ξ, τ), η) dξ

)

dτ dµF (η)

where tr := min
{

t′ : (x′, t′) ∈ P(z, r)
}

. From the reproduction property of Γ in Proposition 2.3, we

then infer

(2.11)

∫

P(z,r)

|E2
r (z, ζ)| (Γ ∗ µF ) (ζ) dζ ≤ m max

(x′,t′)∈P(z,r)
|t− t′| · (Γ ∗ µF ) (z) < +∞.
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Let us now approximate Γ∗µF with an increasing sequence of nonnegative C2-functions uk such that
Huk ≤ 0 and uk → Γ ∗ µF pointwise. This can be done using for example the same argument in [16,
page 307]. By the mean-value formula for C2-functions (2.4) we immediately get

uk(z) ≥ Mr (uk) (z) = M1
r (uk) (z) +M2

r (uk) (z).

On the other hand, as k → +∞, M1
r (uk) (z) → M1

r (Γ ∗ µF ) (z) by Beppo-Levi’s theorem and
M2

r (uk) (z) → M2
r (Γ ∗ µF ) (z) by dominated convergence recalling that |E2

r (z, ·)uk| ≤ |E2
r (z, ζ)|Γ ∗

µF ∈ L1(P(z, r)) by (2.11). This yields

(Γ ∗ µF ) (z) ≥ M1
r (Γ ∗ µF ) (z) +M2

r (Γ ∗ µF ) (z) = Mr (Γ ∗ µF ) (z).

In particular

M1
r (Γ ∗ µF ) (z) ≤ (Γ ∗ µF ) (z)−M2

r (Γ ∗ µF ) (z) ≤ (Γ ∗ µF ) (z) +

∫

P(z,r)

|E2
r (z, ζ)| (Γ ∗ µF ) (ζ) dζ.

Therefore, recalling the definition of Nr in (2.3) and making use of (2.11), we get

Nr (Γ ∗ µF ) (z) ≤ M1
r (Γ ∗ µF ) (z) +

∫

P(z,r)

|E2
r (z, ζ)| (Γ ∗ µF ) (ζ) dζ

≤ (Γ ∗ µF ) (z) + 2

∫

P(z,r)

|E2
r (z, ζ)| (Γ ∗ µF ) (ζ) dζ

≤
(

1 + 2 max
P(z,r)

|div(Y )| max
(x′,t′)∈P(z,r)

|t− t′|
)

(Γ ∗ µF ) (z).

This proves the claim (2.10) recalling that P(z, r) shrinks to {z} as r → 0+ by the Gaussian estimates
in (1.6).
We now turn to the proof of the opposite inequality VF ≥ Γ ∗µF . Consider any v ∈ H(S) with v ≥ 0
in S and v ≥ 1 in F . Then v − Γ ∗ µF ∈ H(S r F ) being Γ ∗ µF H-harmonic outside F . Since
Γ ∗ µF ≤ 1 in S (see, e.g., [18, Proposition 8.3]), we have

lim inf
SrF∋η→ζ

(v − Γ ∗ µF )(η) ≥ v(ζ) − 1 ≥ 0 ∀ζ ∈ ∂F.

Moreover lim infd(x,0)→+∞ (v − Γ ∗ µF )(x, t) ≥ 0 by (1.6). This implies v ≥ Γ ∗ µF in S r F by the
minimum principle in [18, Proposition 3.10]. On the other hand, v ≥ 1 ≥ Γ ∗ µF also inside F . Thus
v ≥ Γ ∗ µF for all v as above. As a consequence WF ≥ Γ ∗ µF by definition of WF , and hence

VF (z) = lim inf
ζ→z

WF (ζ) ≥ lim inf
ζ→z

Γ ∗ µF (ζ) ≥ Γ ∗ µF (z) for all z ∈ S

by the lower semicontinuity of Γ ∗ µF . �

3. Proof of the main result

In this section we set for the sake of brevity the notation

(3.1) α(k) = k log k.

We are going to make a repeated use of the following simple properties of the sequence α(k):

- k 7→ α(k) is monotone increasing and tends to +∞;
- k 7→ α(k + p)− α(k) is monotone increasing and tends to +∞, for any p ∈ N.
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We consider a bounded open set Ω with closure contained in S. For any fixed z0 ∈ ∂Ω, we recall that

Ωc
k(z0) =

{

z ∈ S r Ω : λ−α(k) ≤ Γ(z0, z) ≤ λ−α(k+1)
}

∪ {z0}

where k ∈ N and λ ∈ (0, 1). We also denote

Ek(z0) =
{

z ∈ S : Γ(z0, z) ≥ λ−α(k)
}

∪ {z0}.

We start noticing that, by the Gaussian estimates (1.6) and the property (D1), the sets Ek(z0) have
non-empty interior for all k ∈ N. Moreover, we remark that the sets Ωc

k(z0) ⊆ Ek(z0) shrink to the
point z0 as k grows. More precisely, by (1.6) and the doubling property (D2), we get

(3.2) ∀r > 0 ∃k̄ = k̄(λ,Λ, a0, cd, x0) such that Ωc
k(z0) ⊆

(

B̂(z0, r) ∩ {t ≤ t0}
)

r Ω for all k ≥ k̄.

We first prove the sufficient condition for the regularity in Theorem 1.3. Let us assume that, for
some fixed λ ∈ (0, 1), we have

∞
∑

k=1

VΩc
k
(z0)(z0) = +∞.

Hence, for any q ∈ N, there has to exist at least one i ∈ {0, . . . , q − 1} such that

(3.3)
∞
∑

k=1

VΩc
kq+i

(z0)(z0) = +∞.

We want to exploit (3.3) for a suitable choice of a constant q which we are now going to fix once for
all. Let us denote by

(3.4) Qβ = 2

(

Q

β
+ 1

)

,

where β ∈ (0, 1) is the structural Hölder exponent appearing in the Hölder estimate for the solution
to Hv = 0 (we refer the reader to (3.21) below). We then fix q ∈ N such that

(3.5) q ≥ q0 := Qβ +
m

log
(

1
λ

) for some constant m.

To be precise, we can choose

m = max



















Qβ + 1,
log
(

4c2dΛ
2
)

log
(

1 +Q−1
β

) ,
log
(

2cde
Q
2

)

log
(

1 +Q−1
β

) ,
log
(

2cde
a0
2

)

log
(

1 +Q−1
β

) ,
log
(

cd20
Q
2

)

log
(

2Qβ

Qβ+2

) ,

log

(

cd

(

10Q
ea0

)
Q
2

)

log
(

2Qβ

Qβ+2

)



















.

Let us now pick i ∈ {0, . . . , q − 1} satisfying (3.3). Denote

(3.6) Tkq+i = max
ζ∈Ekq+i(z0)

t0 − τ .

By (1.6) and the definition of Ωc
k(z0), we have that

(3.7) sup
ζ∈Ωc

kq+i
(z0)

|B(x0,
√
t0 − τ )| ≤ |B(x0,

√

Tkq+i)| ≤ Λλα(kq+i).

We also denote by

p = 1 +

[

q

Qβ

]

= 1 + the integer part of
q

Qβ

.
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So we get, since q > Qβ , that

(3.8)
q

Qβ

≤ p ≤ 1 +
q

Qβ

<
q

Q
β
+ 1

.

We need the following lemma.

Lemma 3.1. For any k ∈ N there exists T ∗
kq+i ∈ (0, Tkq+i) such that

(3.9) Λλα(kq+p+i) ≤
∣

∣

∣B
(

x0,
√

T ∗
kq+i

)∣

∣

∣ ≤ 2cdΛλ
α(kq+p+i) .

Proof. We first claim that, for every x0 ∈ R
N and σ > 0, there exists ρ > 0 such that

(3.10) σ ≤ |B (x0, ρ)| ≤ 2cdσ.

This follows in fact from the properties (D1)-(D2) of the metric space
(

R
N , d

)

we are working in. Let

us prove (3.10) in full details. Fix x0 ∈ R
N and σ > 0, and consider

ρ(σ) = sup{r > 0 : |B(x0, r)| ≤ σ} < +∞.

Since |B(x0, ρ(σ))| =
∣

∣

∣

⋃

r<ρ(σ) B(x0, r)
∣

∣

∣
= limr→ρ(σ)− |B(x0, r)|, we have |B(x0, ρ(σ))| ≤ σ. From

the definition of ρ(σ) and the doubling condition we deduce

σ <

∣

∣

∣

∣

B

(

x0, ρ(σ) +
1

n

)∣

∣

∣

∣

≤ cd|B(x0, ρ(σ))|
(

ρ(σ) + 1
n

ρ(σ)

)Q

≤ cdσ

(

1 +
1

nρ(σ)

)Q

for all n ∈ N. We can then pick n̄ ∈ N such that σ ≤ |B (x0, ρ)| ≤ 2cdσ for ρ = ρ(σ) + 1
n̄
.

By applying (3.10) for σ = Λλα(kq+p+i), we derive the existence of a positive T ∗
kq+i(= ρ2) satisfying

(3.9). We need to prove that T ∗
kq+i < Tkq+i. By the monotonicity of r 7→ |B(x0, r)|, it is enough to

show that

(3.11)
∣

∣

∣B
(

x0,
√

T ∗
kq+i

)∣

∣

∣ ≤ 2cdΛλ
α(kq+p+i) <

∣

∣

∣B
(

x0,
√

Tkq+i

)∣

∣

∣ .

To prove (3.11) we can exploit again (3.10) for σ = 1
2cdΛ

λα(kq+i) . There exists then ρk > 0 such that
1

2cdΛ
λα(kq+i) ≤ |B(x0, ρk)| ≤ 1

Λλ
α(kq+i). Thus, by (1.6) and the inequality |B(x0, ρk)| ≤ 1

Λλ
α(kq+i),

the point (x0, t0 − ρ2k) belongs to Ekq+i(z0). Hence we get
∣

∣

∣B
(

x0,
√

Tkq+i

)∣

∣

∣ = sup
ζ∈Ekq+i(z0)

|B(x0,
√
t0 − τ )| ≥ |B(x0, ρk)| ≥

1

2cdΛ
λα(kq+i).

The proof of (3.11) is then complete, provided that we have

(3.12)
1

2cdΛ
λα(kq+i) > 2cdΛλ

α(kq+p+i), i.e.

(

1

λ

)α(kq+p+i)−α(kq+i)

> 4c2dΛ
2.

The last inequality holds true for every k because of our choices for q and p in (3.5) and (3.8): as a
matter of fact, by the monotonicity properties of α(·) defined in (3.1), we have

α(kq + p+ i)− α(kq + i) ≥ α(q + p)− α(q) ≥ q log

(

1 +
p

q

)

≥ q log
(

1 +Q−1
β

)

>
log(4c2dΛ

2)

log
(

1
λ

) .

�
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The previous lemma allows us to split the set Ωc
kq+i(z0) in two pieces. For any k ∈ N let us write

(3.13) Ωc
kq+i(z0) =

(

Ωc
kq+i(z0) ∩ {t ≥ t0 − T ∗

kq+i}
)

∪
(

Ωc
kq+i(z0) ∩ {t ≤ t0 − T ∗

kq+i}
)

:= F
0,i
k ∪ F i

k

where the level T ∗
kq+i ∈ (0, Tkq+i) is the one given by Lemma 3.1 (satisfying (3.9)).

By (3.7), (3.9), and since kq + p+ i < q(k + 1) + i, we have
∣

∣

∣B
(

x0,
√

Thq+i

)∣

∣

∣ ≤ Λλα(hq+i) < Λλα(kq+p+i) ≤
∣

∣

∣B
(

x0,
√

T ∗
kq+i

)∣

∣

∣ ∀h, k ∈ N, h ≥ k + 1.

This implies that, by construction,

min
(ξ,τ)∈F i

k

(t0 − τ) ≥ T ∗
kq+i > Thq+i ≥ max

(x,t)∈F i
h

(t0 − t) ∀h, k ∈ N, h > k,

which says

(3.14) F i
k lies strictly below F i

h ∀h, k ∈ N, h > k.

Lemma 3.2. Suppose (3.3) holds. Then the compact sets F i
k defined by (3.13) satisfy

(3.15)

∞
∑

k=1

VF i
k
(z0) = +∞.

Proof. By the subadditivity of the H-balayage potential (recall the definition in (2.1)) we have

VΩc
kq+i

(z0) ≤ VF
0,i
k

+ VF i
k
.

Since we know the validity of (3.3), then the desired (3.15) will be a consequence of the following

(3.16)
+∞
∑

k=1

V
F

0,i
k

(z0) < +∞.

To prove (3.16), we need to understand how F
0,i
k shrinks to {z0} as k grows.

For any z = (x, t) ∈ F
0,i
k ⊂ Ωc

kq+i(z0) with z 6= z0, by (1.6) we have

(3.17) d2(x0, x) ≤
t0 − t

a0
log

(

Λλα(kq+i)

∣

∣B
(

x0,
√
t0 − t

)∣

∣

)

.

We recall that z ∈ F
0,i
k implies by definition that 0 < t0 − t ≤ T ∗

kq+i, and we know from (3.7) and
Lemma 3.1 that

∣

∣B
(

x0,
√
t0 − t

)∣

∣ ≤
∣

∣

∣B
(

x0,
√

T ∗
kq+i

)∣

∣

∣ ≤
∣

∣

∣B
(

x0,
√

Tkq+i

)∣

∣

∣ ≤ Λλα(kq+i).

On the other hand, by (3.9) and the choices for q and p in (3.5) and (3.8), we also get (by arguing as
for (3.12))

(3.18)
∣

∣

∣B
(

x0,
√

T ∗
kq+i

)∣

∣

∣ ≤ 2cdΛλ
α(kq+p+i) < Λλα(kq+i) min

{

1

cd
, e−

Q
2 , e−

a0
2

}

.

These inequalities, together with the doubling condition (D2) which says that |B(x0,
√
s)|s

Q
2
1 ≤

cd
∣

∣B
(

x0,
√
s1
)∣

∣ s
Q
2 for any 0 ≤ s1 ≤ s, allow to bound the term in (3.17). In particular we claim that

(3.19) (t0 − t) log

(

Λλα(kq+i)

∣

∣B
(

x0,
√
t0 − t

)∣

∣

)

≤ 2T ∗
kq+i log







Λλα(kq+i)

∣

∣

∣
B
(

x0,
√

T ∗
kq+i

)∣

∣

∣






.
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To prove (3.19) we can write

2T ∗
kq+i log







Λλα(kq+i)

∣

∣

∣B
(

x0,
√

T ∗
kq+i

)∣

∣

∣






− (t0 − t) log

(

Λλα(kq+i)

∣

∣B
(

x0,
√
t0 − t

)∣

∣

)

= T ∗
kq+i log







Λλα(kq+i)

∣

∣

∣B
(

x0,
√

T ∗
kq+i

)∣

∣

∣






+
(

T ∗
kq+i − (t0 − t)

)

log







Λλα(kq+i)

∣

∣

∣B
(

x0,
√

T ∗
kq+i

)∣

∣

∣







−(t0 − t) log







∣

∣

∣B
(

x0,
√

T ∗
kq+i

)∣

∣

∣

∣

∣B
(

x0,
√
t0 − t

)∣

∣






.

By the doubling condition and the concavity of the logarithmic function, we have

log







∣

∣

∣
B
(

x0,
√

T ∗
kq+i

)∣

∣

∣

∣

∣B
(

x0,
√
t0 − t

)∣

∣






≤ log(cd) +

Q

2
log

(

T ∗
kq+i

t0 − t

)

≤ log(cd) +
Q

2

(

T ∗
kq+i − (t0 − t)

t0 − t

)

.

Putting together the last two relations we get the proof of (3.19) since

2T ∗
kq+i log







Λλα(kq+i)

∣

∣

∣B
(

x0,
√

T ∗
kq+i

)∣

∣

∣






− (t0 − t) log

(

Λλα(kq+i)

∣

∣B
(

x0,
√
t0 − t

)∣

∣

)

≥ T ∗
kq+i






log







Λλα(kq+i)

∣

∣

∣
B
(

x0,
√

T ∗
kq+i

)∣

∣

∣






− log cd







+
(

T ∗
kq+i − (t0 − t)

)






log







Λλα(kq+i)

∣

∣

∣
B
(

x0,
√

T ∗
kq+i

)∣

∣

∣






− Q

2






≥ 0,

where we used (3.18) and 0 ≤ t0 − t ≤ T ∗
kq+i. Therefore, from (3.17) and (3.19), we deduce that

d2(x0, x) ≤
2T ∗

kq+i

a0
log







Λλα(kq+i)

∣

∣

∣B
(

x0,
√

T ∗
kq+i

)∣

∣

∣







for every z = (x, t) ∈ F
0,i
k . Moreover, again from (3.18), we also have

t0 − t ≤ T ∗
kq+i ≤

2T ∗
kq+i

a0
log







Λλα(kq+i)

∣

∣

∣B
(

x0,
√

T ∗
kq+i

)∣

∣

∣






.

The last two inequalities tells us that

z ∈ B̂(z0, rk) with r2k =
√
8
T ∗
kq+i

a0
log







Λλα(kq+i)

∣

∣

∣
B
(

x0,
√

T ∗
kq+i

)∣

∣

∣






.



14 G. TRALLI AND F. UGUZZONI

This holds true for any z ∈ F
0,i
k , i.e. we have just proved that

(3.20) F
0,i
k ⊆ B̂(z0, rk).

The representation formula proved in Theorem 2.1 (note that we cannot use (2.2) since the point

z0 ∈ ∂F
0,i
k ) allows to deduce

VF
0,i
k

(z0) =

∫

F
0,i
k

Γ(z0, ζ) dµF0,i
k
(ζ) ≤

(

1

λ

)α(kq+i+1)

µF
0,i
k

(

F
0,i
k

)

.

Moreover, from the monotonicity with respect to the inclusion in (3.20) and the results in [17, Corol-
lary 2.4 and Proposition 2.1], we know that

µF
0,i
k

(

F
0,i
k

)

≤ C|B(x0, rk)|

for some structural positive constant C. This says that

+∞
∑

k=1

V
F

0,i
k

(z0) ≤ C

+∞
∑

k=1

(

1

λ

)α(kq+i+1)

|B(x0, rk)|.

Exploiting the expression we found for rk, the doubling property, and (3.9), we get

+∞
∑

k=1

VF
0,i
k

(z0) ≤ Ccd

(√
8

a0

)
Q
2 +∞
∑

k=1

(

1

λ

)α(kq+i+1)
∣

∣

∣B
(

x0,
√

T ∗
kq+i

)∣

∣

∣ log
Q
2







Λλα(kq+i)

∣

∣

∣
B
(

x0,
√

T ∗
kq+i

)∣

∣

∣







≤ 2Cc2dΛ

(

log
(

1
λ

)√
8

a0

)
Q
2 +∞
∑

k=1

(

1

λ

)α(kq+i+1)−α(kq+p+i)

(α(kq + p+ i)− α(kq + i))
Q
2 .

Hence, (3.16) is proved if we ensure the convergence of the series at the right-hand side. We thus
notice that the sequences α(kq+ p+ i)−α(kq+ i+1) and α(kq+ p+ i)−α(kq+ i) (recalling (3.1))
are asymptotically equivalent respectively to (p− 1) log(kq + p+ i) and p log(kq+ p+ i). Hence, the
series under investigation behaves like

+∞
∑

k=1

1

(kq + p+ i)(p−1) log 1
λ

log
Q
2 (kq + p+ i),

which is convergent since p ≥ q
Qβ

> 1 + 1
log( 1

λ
)
by (3.8) and (3.5). This proves (3.16), and therefore

the lemma. �

In the following lemma we finally determine the required bound for the ratio Γ(z,ζ)
Γ(z0,ζ)

for z ∈ F i
h and

ζ ∈ F i
k. We do this by exploiting the Hölder continuity of the solutions to Hu = 0 proved in [18]. It

is not surprising to infer estimates for the fundamental solution or for the relevant Green kernel by
using Hölder-type estimates (see the related results in [18, Proposition 7.4] and [17, Lemma 3.3], see
also [27, 25]). The novelty in the present situation is due to the special regions F i

k, and it is strictly
related with the careful choices for q and p in (3.5) and (3.8). We have the following

Lemma 3.3. There exists a positive constant M0 such that

Γ(z, ζ) ≤ M0Γ(z0, ζ) ∀ z ∈ F i
h, ∀ ζ ∈ F i

k, ∀h, k ∈ N, h 6= k.
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Proof. Fix any h, k ∈ N with h 6= k. If h ≤ k − 1, then by (3.14) and (1.6) we have Γ(z, ζ) = 0, and
the statement is trivial. Thus, suppose h ≥ k + 1.

Let us notice that, for any ζ ∈ F i
k, the function z 7→ vζ(z) =

Γ(z,ζ)
Γ(z0,ζ)

is a solution to Hvζ = 0 outside

F i
k. We know from [18, Theorem 7.2] that, if u is a solution to Hu = 0 in Cr = B(x0, r)× (t0− r2, t0),

then we have

(3.21) |u(z)− u(z′)| ≤ C0 max
Cr

|u|
(

d̂(z, z′)

r

)β

∀ z, z′ ∈ C r
2

for some constant C0 > 0 and β ∈ (0, 1). The constants β and C0 depend just on the constants
Λ, a0, b0 in the Gaussian bounds (1.6) and on the doubling constant cd of the metric d. We want to
use the estimate (3.21) for the function vζ defined above in the cylinder Crk with the choice

(3.22) r2k =
1

5
T ∗
kq+i.

Since Crk ⊂ R
N × (t0 − T ∗

kq+i, t0), we have in fact that vζ is a solution to Hvζ = 0 in Crk . Let us

then estimate maxCrk

|vζ |. To do this, we use the definitions of the sets F i
k ⊂ Ωc

kq+i(z0) together with

(1.6) which yield

0 ≤ vζ(z) =
Γ(z, ζ)

Γ(z0, ζ)
≤ Λ

λα(kq+i)

|B(x,
√
t− τ)| ≤ Λ

λα(kq+i)

|B(x0,
√
t− τ − d(x, x0))|

≤ Λ
λα(kq+i)

|B(x0,
1
2

√
t− τ )| for any ζ ∈ F i

k, z ∈ Crk ,

where the last inequality is justified by the fact that t − τ ≥ T ∗
kq+i − r2k = 4r2k by (3.22). From the

inequality t− τ ≥ T ∗
kq+i − r2k = 4

5T
∗
kq+i, the doubling condition and (3.9), we also get

(3.23) vζ(z) ≤ Λ
λα(kq+i)

∣

∣

∣B(x0,
1√
5

√

T ∗
kq+i)

∣

∣

∣

≤ cd5
Q
2

λα(kq+i)

λα(kq+p+i)
for any ζ ∈ F i

k, z ∈ Crk .

We now claim that

(3.24) F i
h ⊆ C rk

2
∀h ≥ k + 1.

To prove this claim, we first consider the inclusion

(3.25) [t0 − Thq+1, t0 − T ∗
hq+i] ⊆

[

t0 −
r2k
4
, t0

]

which is valid since Thq+i ≤ r2k
4 = 1

20T
∗
kq+i. In fact, the doubling condition, (3.7) and (3.9) yield

(3.26)

(

Thq+i

T ∗
kq+i

)
Q
2

≤ cd

∣

∣B(x0,
√

Thq+i)
∣

∣

∣

∣

∣B(x0,
√

T ∗
kq+i)

∣

∣

∣

≤ cd
λα(hq+i)

λα(kq+p+i)
≤
(

1

20

)
Q
2

where the last inequality holds true because of our choices for q and p in (3.5) and (3.8) since

α(hq + i)− α(kq + p+ i) ≥ α(kq + q + i)− α(kq + p+ i) ≥ α(2q)− α(q + p)

≥ q log

(

2

1 + p
q

)

≥ q log

(

2Qβ

Qβ + 2

)

>
log(cd20

Q
2 )

log
(

1
λ

) .
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On the other hand, for any fixed z ∈ F i
h, we have by (1.6) that

d2(x0, x) ≤
t0 − t

a0
log

(

Λλα(hq+i)

∣

∣B
(

x0,
√
t0 − t

)∣

∣

)

.

Using
(

t0 − t

T ∗
kq+i

)
Q
2

≤ cd

∣

∣B(x0,
√
t0 − t)

∣

∣

∣

∣

∣
B(x0,

√

T ∗
kq+i)

∣

∣

∣

together with (3.9) and the fact that maxs∈[0,C] s
2
Q log

(

C
s

)

= Q
2eC

2
Q , we deduce

d2(x0, x) ≤
T ∗
kq+ic

2
Q

d

a0

∣

∣

∣B(x0,
√

T ∗
kq+i)

∣

∣

∣

2
Q

∣

∣B(x0,
√
t0 − t)

∣

∣

2
Q log

(

Λλα(hq+i)

∣

∣B
(

x0,
√
t0 − t

)∣

∣

)

≤ Qc
2
Q

d

2ea0

λ
2
Q
α(hq+i)

λ
2
Q
α(kq+p+i)

T ∗
kq+i.(3.27)

Hence, we can affirm that

(3.28) x ∈ B

(

x0,
1

2
rk

)

since with our choices for q and p in (3.5) and (3.8) we have

Qc
2
Q

d

2ea0

λ
2
Q
α(hq+i)

λ
2
Q
α(kq+p+i)

T ∗
kq+i ≤

r2k
4

=
1

20
T ∗
kq+i

because of the validity of the chain of inequalities

α(hq + i)− α(kq + p+ i) ≥ q log

(

2Qβ

Qβ + 2

)

>
log(cd

(

10Q
ea0

)
Q
2

)

log
(

1
λ

) .

The claim (3.24) is thus a consequence of (3.25) and (3.28).
Therefore, for any ζ ∈ F i

k we can apply in the cylinder Crk the estimate (3.21) to the function vζ with
z′ = z0 and z ∈ F i

h, and we get by (3.23) and (3.24)

(3.29) |vζ(z)− vζ(z0)| ≤ C0cd5
Q
2

λα(kq+i)

λα(kq+p+i)

(

d4(x, x0) + (t0 − t)2

r4k

)

β
4

.

Keeping in mind that z ∈ F i
h and (3.22), we have by (3.27)

d2(x, x0)

r2k
≤ 5c

2
Q

d Q

2ea0

λ
2
Q
α(hq+i)

λ
2
Q
α(kq+p+i)

,

and by (3.26)

(

t0 − t

r2k

)
Q
2

≤
(

5Thq+i

T ∗
kq+i

)
Q
2

≤ 5
Q
2 cd

λα(hq+i)

λα(kq+p+i)
.
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Hence, recalling also that vζ(z0) = 1, from (3.29) we deduce that the following holds

|vζ(z)− 1| ≤ C0c
1+ β

Q

d 5
Q
2 + β

2
λα(kq+i)

λα(kq+p+i)

(

Q2

4e2a20

λ
4
Q
α(hq+i)

λ
4
Q
α(kq+p+i)

+
λ

4
Q
α(hq+i)

λ
4
Q
α(kq+p+i)

)
β
4

≤ C
λ

β
Q
α(hq+i)

λ
β
Q
α(kq+p+i)

λα(kq+i)

λα(kq+p+i)
≤ C

λ
β
Q
α(kq+q+i)

λ
β
Q
α(kq+p+i)

λα(kq+i)

λα(kq+p+i)
(3.30)

for all z ∈ F i
h and ζ ∈ F i

k, and for all h ≥ k+1 (for some structural positive constant C). Our aim is
to bound the right-hand side uniformly in k. In this respect, since α(n+ s)− α(n) is asymptotically
equivalent (recalling (3.1)) to s log(n+ s) as n goes to ∞, we notice that

λ
β
Q
α(kq+q+i)

λ
β
Q
α(kq+p+i)

λα(kq+i)

λα(kq+p+i)
behaves like

(kq + p+ i)p log( 1
λ
)

(kq + q + i)
β
Q
(q−p) log( 1

λ
)

which is convergent to 0 as k → +∞ since we have taken

q >

(

Q

β
+ 1

)

p

in (3.8). In particular, the terms in (3.30) are uniformly bounded by an absolute constant M .
Therefore, by recalling the definition of vζ and (3.30), we finally get

Γ(z, ζ)

Γ(z0, ζ)
= 1 + vζ(z)− 1 ≤ 1 +M

for all z ∈ F i
h and ζ ∈ F i

k, and for all h 6= k. �

We are now ready to conclude the proof of the sufficient condition for the regularity in Theorem
1.3. Assuming (3.3), we have defined in (3.13) a sequence of compact sets {F i

k}k∈N which are mutually
disjoint by (3.14) and such that they shrink to the point {z0} as k grows by (3.2). Moreover, by
Lemma 3.2 and Lemma 3.3, we have also that

∞
∑

k=1

VF i
k
(z0) = +∞, and

sup

{

Γ(z, ζ)

Γ(z0, ζ)
: z ∈ F i

h, ζ ∈ F i
k

}

≤ M0 ∀h 6= k.

Therefore, we can proceed verbatim as in [13, Lemma 6.1] and we deduce that

(3.31) VΩ′

r(z0)
(z0) ≥

1

2M0
for every positive r,

where

(3.32) Ω′
r(z0) =

{

z ∈ S r Ω : t ≤ t0, d̂(z, z0) ≤ r
}

.

We remark that in the proof it is needed the expression of the balayage in terms of its Riesz-
representative as showed in Section 2. Once we have (3.31), the H-regularity of z0 follows then
from the characterization in [18, Theorem 4.6].

Let us turn to the proof of the necessary condition for the regularity in Theorem 1.3. We assume
then by contradiction that

∞
∑

k=1

VΩc
k
(z0)(z0) < +∞.
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We want to prove that z0 is not regular. For every 0 < ε < 1
2 we have the existence of L ∈ N such

that
∑∞

k=L VΩc
k
(z0)(z0) ≤ ε. For any r > 0, recalling the definition of Ω′

r(z0) in (3.32), we can write

Ω′
r(z0) = ΩL

r ∪ Ω∗L
r where

ΩL
r = Ω′

r(z0) ∩
{

Γ(z0, ·) ≥
(

1

λ

)L logL
}

∪ {z0} and Ω∗L
r = Ω′

r(z0) ∩
{

Γ(z0, ·) ≤
(

1

λ

)L logL
}

.

By definition ΩL
r ⊆

⋃∞
k=L Ωc

k(z0). Then, we get by the sub-additivity of the H-balayage

VΩ′

r(z0)
(z0) ≤ VΩ∗L

r
(z0) + VΩL

r
(z0) ≤ VΩ∗L

r
(z0) +

∞
∑

k=L

VΩc
k
(z0)(z0) ≤ VΩ∗L

r
(z0) + ε.

This holds true for all r > 0. By using the representation in Theorem 2.1, we thus have

(3.33) VΩ′

r(z0)
(z0) ≤ ε+

∫

Ω∗L
r

Γ(z0, ζ) dµΩ∗L
r
(ζ) ≤ ε+ λ−L logLµΩ∗L

r

(

Ω∗L
r

)

.

We stress that the representation result of Theorem 2.1 is used here precisely at the point z0 which
belongs to ∂Ω∗L

r for every L: the almost everywhere representation in (2.2) would not be enough to
deduce the previous estimate.

Since Ω∗L
r ⊆ Ω′

r(z0) ⊂ B̂(z0, r), we can use [17, Corollary 2.4 and Proposition 2.1] to deduce that

λ−L logLµΩ∗L
r

(

Ω∗L
r

)

≤ cλ−L logL|B(x0, r)| <
1

2
.

where the last inequality follows from [18, equation (2.2)] provided that r is sufficiently small. Re-
calling (3.33), this yields

VΩ′

r(z0)
(z0) < ε+

1

2
< 1 for small r

which says that z0 is not regular by [18, Theorem 4.6]. The proof of Theorem 1.3 is thus complete.

4. Corollaries and applications

As a first corollary of Theorem 1.3, we want to read the sufficient and the necessary condition
for the H-regularity in terms of a series of capacitary terms. In contrast with the classical Wiener
criteria, the necessary and sufficient conditions are here different. This is due to the presence of
α(k) = k log k in the definition of Ωc

k(z0) (see also Remark 1.5).
For any compact set F ⊂ S, let us define the capacity of F as

capH(F ) = µF (F ),

where µF is the Riesz-measure associated to VF .

Corollary 4.1. Let Ω be a bounded open set with Ω ⊆ S, and z0 ∈ ∂Ω. The following statements
hold:

(i) if
∞
∑

k=1

capH(Ωc
k(z0))

λk log k
= +∞

then z0 is H-regular;
(ii) if z0 is H-regular then

∞
∑

k=1

capH(Ωc
k(z0))

λ(k+1) log (k+1)
= +∞.
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Proof. By Theorem 2.1 we can write, for any k ∈ N,

VΩc
k
(z0)(z0) = Γ ∗ µΩc

k
(z0)(z0) =

∫

Ωc
k
(z0)

Γ(z0, ζ) dµΩc
k
(z0)(ζ).

On the other hand, by definition of Ωc
k(z0) and of capacity, we trivially have

capH(Ωc
k(z0))

λk log k
≤
∫

Ωc
k
(z0)

Γ(z0, ζ) dµΩc
k
(z0)(ζ) ≤

capH(Ωc
k(z0))

λ(k+1) log (k+1)
.

The proof of the statements is then straightforward from the characterization of Theorem 1.3. �

Let us mention that other definitions of capacities related to H are possible and they are discussed,
e.g., in [17, Section 2]. For example, one can deal with capacities with respect to Gaussian kernels
Ga(·, ·) which, in turn, can be estimated in terms of the Lebesgue measure (see [17, Proposition 2.5]).
We can then obtain the following sufficient condition for the regularity which is more geometric and
easier to be tested with respect to condition (i) in Corollary 4.1 (see also [13, Corollary 1.3]).

Corollary 4.2. Let Ω be a bounded open set with Ω ⊆ S, and z0 ∈ ∂Ω. If, for some λ ∈ (0, 1), we
have

∞
∑

k=1

|Ωc
k(z0)|

Tkλk log k
= +∞

then the point z0 is H-regular for ∂Ω. In particular, z0 is H-regular for ∂Ω if

(4.1)

∞
∑

k=1

|Ωc
k(z0)|

λ
Q+2
Q

k log k
= +∞.

Proof. Recalling the notations we fixed in (3.6), we know that

Ωc
k(z0) ⊂ R

N × [t0 − Tk, t0].

Denoting by capa0
the capacity with respect the kernel Ga0 , by [17, Corollary 2.4] and the mono-

tonicity of capa0
we get

capH(Ωc
k(z0)) ≥ 1

c0
capa0

(Ωc
k(z0)) =

1

c0Tk

∫ t0

t0−Tk

capa0
(Ωc

k(z0)) dt

≥ 1

c0Tk

∫ t0

t0−Tk

capa0
(Ωc

k(z0) ∩ {τ = t}) dt

for some positive constant c0. Moreover, we know from [17, Proposition 2.5] that there exists a
positive constant c such that capa0

(Ωc
k(z0) ∩ {τ = t}) ≥ c|Ωc

k(z0) ∩ {τ = t}|. Hence we have

capH(Ωc
k(z0)) ≥

c

c0

1

Tk

∫ t0

t0−Tk

|Ωc
k(z0) ∩ {τ = t}| dt = c

c0

|Ωc
k(z0)|
Tk

,

which says that
∞
∑

k=1

capH(Ωc
k(z0))

λk log k
≥ c

c0

∞
∑

k=1

|Ωc
k(z0)|

Tkλk log k
.

The first statement then follows from the sufficient condition in Corollary 4.1.
On the other hand, having in mind (3.7) and the doubling condition, we have

Tk ≤
(

cd
|B(x0,

√
Tk)|

|B(x0, 1)|

)

2
Q

≤
(

cdΛ

|B(x0, 1)|

)
2
Q

λ
2
Q
k log k
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at least for k big enough (so that Tk ≤ 1), which yields

∑

k

|Ωc
k(z0)|

Tkλk log k
≥
( |B(x0, 1)|

cdΛ

)
2
Q ∑

k

|Ωc
k(z0)|

λ
Q+2
Q

k log k

and complete the proof of the last part of the statement. �

The regularity criterion in the previous corollary is given in terms of subregions of the complemen-
tary set of Ω measured at different scales (keep in mind the definition of Ωc

k(z0) in (1.7)). This is a
recurring feature in potential theory. For example, for the class of operators H we are considering,
it was proved in [18, Theorem 4.11] that an exterior parabolic-cone density condition ensures the
H-regularity of the boundary point (see also [17, Theorem 1.4] for a Cα-regularity result under the
same condition). We want to show here that the criterion we have established in Corollary 4.2 is
able, in some cases, to detect the H-regularity of a boundary point in very sharp/subtle situations.
To see this, we specialize to the model case of heat operators in Carnot groups. Let us then as-
sume that R

N is endowed with a Carnot group structure (RN , ◦, Dλ), where ◦ denotes the group
law operation and Dλ the family of anisotropic dilations. We denote by 0 the identity element of
the group, and by x−1 the inverse element of x. Let X1, . . . , Xm be left-invariant vector fields which
are Dλ-homogeneous of degree 1 and form a basis for the first layer of the Lie algebra. We want to
consider the following Hörmander-type operators

(4.2) H0 =

m
∑

i=1

X2
i − ∂t.

We denote byQ the homogeneous dimension of the group (RN , ◦, Dλ), and by δλ the family of dilations
in R

N+1 defined by δλ(x, t) = (Dλ(x), λ
2t). It is well-known thatH0 has a global fundamental solution

Γ(·, ·) which is left-invariant and δλ-homogeneous of degree −Q, i.e. Γ((x, t), (ξ, τ)) = Γ((ξ−1 ◦ x, t−
τ), 0) and Γ(δλ(z), δλ(ζ)) = λ−QΓ(z, ζ). Moreover, the Gaussian bounds (1.6) hold for Γ with respect
to a distance d(·, ·) which is left-invariant and Dλ-homogeneous of degree 1 (we think such a distance
d as fixed in what follows). In particular we have |B(x0, r)| = rQ|B(0, 1)|. We are going to show that
a boundary point z0 = (x0, t0) of a bounded open set Ω ⊂ R

N+1 is H0-regular if the complementary
set of Ω contains the region

{

(x, t) ∈ R
N+1 : d2(x, x0) ≥ C(t0 − t) log log

(

1

t0 − t

)

, for t ∈
(

t0 −min{r20, e−1}, t0
)

}

for some r0 > 0 and for some small enough positive constant C (small enough in dependence of Q
and b0).

Remark 4.3. Both the presence of the (log log)-term and the presence of a restriction for the constant
C are known to be optimal in the following sense: if the set Ω is described around its boundary point
(x0, t0) by {|x − x0|2 < C(t0 − t) log log(t0 − t)−1} for some constant C > 1

b
> 0, then (x0, t0) is

irregular for the classical heat operator 1
4b∆− ∂t. For this fact we refer the reader to the discussions

in [5, Section 7], as well as to the classical counterexamples by Petrowski in [21].

With the following corollary we do not claim to determine the optimal range for C, but we do
detect the sharp (log log)-behavior by exploiting the regularity criterion in Corollary 4.2. As a matter
of fact, we are going to bound from below the series in (4.1) with the divergent series

∑

k

1

k log k
.
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It will be clear with the proof that the terms k log k appear exactly because of their role in the
definition of Ωc

k(z0) (as the sequence α(k) in (3.1)).

Corollary 4.4. Let H0 be as in (4.2), and let d be the left-invariant homogeneous distance fixed
above. Consider a bounded open set Ω in R

N+1, and z0 ∈ ∂Ω. There exists a positive constant
C∗ = C∗(b0, Q) such that, if we have
{

(x, t) ∈ R
N+1 : d2(x, x0) ≥ C(t0 − t) log log

(

1

t0 − t

)

, for t ∈
(

t0 −min{r20 , e−1}, t0
)

}

⊂ R
N+1

rΩ

for some r0 > 0 and 0 < C < C∗, then the point z0 is H0-regular for ∂Ω.

Proof. We shall prove the statement with C∗ = 1
b0

Q
Q+4 , where Q is the homogeneous dimension

of (RN , ◦, Dλ) and b0 is the positive exponent in the Gaussian lower bound for Γ. By translation
invariance, we can assume without loss of generality that x0 = 0, that is z0 = (0, t0). Thus, for any
x ∈ R

N and t < t0 we have

(4.3) Γ(z0, z) = Γ(0, (x, t− t0)) =
1

(t0 − t)
Q
2

Γ

(

0,

(

D 1√
t0−t

(x),−1

))

, and

(4.4)
(t0 − t)−

Q
2

Λ|B(0, 1)| e
−b0

d2(x,0)
t−t0 ≤ Γ(0, (x, t0 − t)) ≤ Λ(t0 − t)−

Q
2

|B(0, 1)| e
−a0

d2(x,0)
t0−t .

Fix Ω, C, r0 as in the assumptions. We also pick λ ∈ (0, 1), and we recall our notation α(k) = k log k.
We claim the existence of ρ > 1 and k1 ∈ N such that

Ωc
k(z0) ⊇ Ek :=

{

(x, t) ∈ R
N+1 : λ−α(k) ≤ Γ(0, (x, t− t0)) ≤ λ−α(k+1),(4.5)

d2(x, 0) ≥ Q

Q + 2

t0 − t

ρ2b0
log log

(

λ− 4
Q
α(k+1)

)

}

for all k ≥ k1.

Let us first complete the proof of the desired statement by giving this claim for granted. We stress
that, by (4.3) and the homogeneity of d, we can write the set Ek as
{

(

D√
t0−t(ξ), t

)

∈ R
N+1 : λ

2
Q
α(k+1)Γ

2
Q (0, (ξ,−1)) ≤ t0 − t ≤ λ

2
Q
α(k)Γ

2
Q (0, (ξ,−1)) , d(ξ, 0) ≥ Rk

ρ

}

where R2
k = Q

(Q+2)b0
log log

(

λ− 4
Q
α(k+1)

)

. Hence, by performing the change of variables (x, t) 7→ (ξ, t)

with ξ = D 1√
t0−t

(x), for every k ≥ k1 we deduce from (4.5) that

|Ωc
k(z0)| ≥

∫

{

d(ξ,0)≥Rk
ρ

}

∫ t0−λ
2
Q

α(k+1)
Γ

2
Q (0,(ξ,−1))

t0−λ
2
Q

α(k)
Γ

2
Q (0,(ξ,−1))

(t0 − t)
Q
2 dt dξ

=
2λ

Q+2
Q

α(k)

Q+ 2

(

1− λ
Q+2
Q

(α(k+1)−α(k))
)

∫

{

ξ : d(ξ,0)≥Rk
ρ

}

Γ
Q+2
Q (0, (ξ,−1)) dξ

≥ λ
Q+2
Q

α(k)
2
(

1− λ
Q+2
Q

log 4
)

(Q+ 2) (Λ|B(0, 1)|)
Q+2
Q

∫

{

ξ : d(ξ,0)≥Rk
ρ

}

e−b0
Q+2
Q

d2(ξ,0) dξ,
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where in the last inequality we used that α(k+1)−α(k) ≥ α(2) = log 4 and the lower bound in (4.4).
We now notice, since |B(0, ρ)| = |B(0, 1)|ρQ and Q ≥ 1, that

∫

{

ξ : d(ξ,0)≥Rk
ρ

}

e−b0
Q+2
Q

d2(ξ,0) dξ =
∞
∑

j=0

∫

{Rkρj−1≤d(ξ,0)≤Rkρj}
e−b0

Q+2
Q

d2(ξ,0) dξ

≥ |B(0, 1)|
∞
∑

j=0

e−b0
Q+2
Q

ρ2jR2
kR

Q
k ρ

jQ(1− ρ−Q) ≥ |B(0, 1)|
ρQ

(1− ρ−Q)
∞
∑

j=0

∫ Rkρ
j+1

Rkρj

e−b0
Q+2
Q

r2rQ dr

= |B(0, 1)|(ρ−Q − ρ−2Q)

∫ +∞

Rk

e−b0
Q+2
Q

r2rQ dr ≥ |B(0, 1)|(ρ−Q − ρ−2Q)

∫ +∞

Rk

re−b0
Q+2
Q

r2 dr

=
Q|B(0, 1)|(ρ−Q − ρ−2Q)

2b0(Q+ 2)
e−b0

Q+2
Q

R2
k .

Therefore, if we put together the last two estimates and we substitute the value of Rk, we establish
the existence of a positive constant c0 such that

|Ωc
k(z0)|

λ
Q+2
Q

α(k)
≥ c0e

−b0
Q+2
Q

R2
k = c0e

− log log

(

λ
−

4
Q

α(k+1)
)

=
c0

log
(

λ− 4
Q

)

1

α(k + 1)
∀ k ≥ k1.

Thus, the series in (4.1) can be estimated from below with the series

c0

log
(

λ− 4
Q

)

∞
∑

k=k1

1

α(k + 1)

which is divergent since α(k + 1) = (k + 1) log(k + 1). Corollary 4.2 yields then the H0-regularity of
the point z0.
We are now left with the proof of the claim (4.5). Recalling the definition (1.7) of Ωc

k(z0), this is the
same as showing that there exist ρ > 1 and k1 ∈ N such that Ek ⊆ R

N+1
rΩ for every k ≥ k1. Then,

by the main assumption on the complementary set of Ω, it is enough to show that
(4.6)

Ek ⊆
{

(x, t) ∈ R
N+1 : d2(x, 0) ≥ C(t0 − t) log log

(

1

t0 − t

)}

∩
(

R
N ×

(

t0 −min{r20, e−1}, t0
))

for all k ≥ k1. To see this, we keep in mind that 1
C

> 1
C∗

= b0
Q+4
Q

= b0
2
Q
+ b0

Q+2
Q

, and we fix ρ > 1

through the relation
1

C
= b0

2

Q
+ ρ2b0

Q+ 2

Q
.

This implies in particular, using that eσ ≥ 1 + σ for all σ, that

(4.7) e
d2(x,0)
C(t0−t) ≥ e

ρ2b0
Q+2
Q

d2(x,0)
(t0−t) + b0

2

Q

d2(x, 0)

t0 − t
∀ t < t0 and x ∈ R

N .

Let us also fix k1 ∈ N such that

(4.8) λα(k1+1) ≤ 1

Λ|B(0, 1)| and λα(k1) <
|B(0, 1)|

Λ
min

{

r
Q
0 , e−

Q
2

}

.

The first inequality in (4.8) ensures that

(4.9) log

(

1

λ
4
Q
α(k+1)

)

≥ 2

Q
log

(

Λ|B(0, 1)|
λα(k+1)

)

∀ k ≥ k1.
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Moreover, if z = (x, t) ∈ Ek, we have Γ(0, (x, t− t0)) ≤ λ−α(k+1) which implies by (4.4)

(4.10)
2

Q
log





Λ|B(0, 1)|eb0
d2(x,0)
t0−t

λα(k+1)



 ≥ log

(

1

t0 − t

)

.

If we combine (4.7), (4.9) and (4.10), for all k ≥ k1 and for any z ∈ Ek we get

e
d2(x,0)
C(t0−t) ≥ log

(

1

λ
4
Q
α(k+1)

)

+b0
2

Q

d2(x, 0)

t0 − t
≥ 2

Q
log

(

Λ|B(0, 1)|
λα(k+1)

)

+
2

Q
log

(

e
b0

d2(x,0)
t0−t

)

≥ log

(

1

t0 − t

)

,

which says

d2(x, 0) ≥ C(t0 − t) log log

(

1

t0 − t

)

as desired. On the other hand, if z ∈ Ek we know by (4.4) that λ−α(k) ≤ Λ

|B(0,1)|(t0−t)
Q
2

, and from

the second inequality in (4.8) we then obtain

t0 − t ≤
(

Λλα(k)

|B(0, 1)|

)

2
Q

< min{r20, e−1} ∀ k ≥ k1.

This completes the proof of (4.6), and the proof of the corollary. �

To fix the ideas, we can say that (x0, t0) is H0-regular for ∂Ω if Ω is given by the set
{

(x, t) ∈ R
N+1 : d2(x, x0) <

Q

Q + 5

t0 − t

b0
log log

(

1

t0 − t

)

, t ∈
(

t0 −
1

2e
, t0

)}

.

The geometric condition for the regularity in Corollary 4.4 appears to be new for the whole class of
homogeneous operators H0 in (4.2) (except for the classical heat equation in Euclidean R

N ). As a
straightforward consequence, we can infer that a boundary point (x0, t0) of a bounded open set Ω is
H0-regular if there exist M, r0 > 0 such that

{

(x, t) ∈ R
N+1 : d2(x, x0) ≥ M(t0 − t), for t ∈ (t0 − r20 , t0)

}

⊂ R
N+1

r Ω.
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Padova, Italy.

E-mail address, Corresponding author: giulio.tralli@unipd.it
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