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Abstract 

This paper investigates the shrinkage and creep of self-compacting concrete prepared with coarse 

and fine recycled concrete aggregates (up to 40% of total amount of aggregates). Physical 

properties and porosity measurements are studied and related to the mechanical properties. 

Results highlight that self-compacting characteristics are maintained when recycled aggregates are 

utilized and their good quality promotes high mechanical properties. Creep behavior and pores size 

distributions are more influenced by the content and assortment of recycled aggregates, although 

their effect is more limited compared to what occurs in traditional concrete with recycled 

aggregates. 
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porosity measurements; long-term properties 
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1. Introduction 

In the last decade the study of new methods for reusing concrete waste from construction and 

demolition (C&DW) has turned into large attractiveness in order to decrease the environmental 

impact due to natural aggregates exploitation and waste disposal [1-6]. Nowadays European 

Standards and Eurocodes [7-8] allow the use of C&DW in the mix design of new concrete, when 

preparatory adequate characterizations are made. Indeed, the good quality of the aggregates is a 

crucial issue for new structural concrete applications [9-10]. Moreover, it is well known that the 

introduction of self-compacting concrete (SCC) has improved both the concrete technology and the 

working safety and health conditions due to the removal of mechanical compaction in the 

construction sites [11-15]. 

The present work falls within the framework of circular economy strategy, one of the main 

ambitions of Europe, which wants to move towards a recycling society with a high level of resource 

efficiency. The art. 11.2 of the Waste Framework Directive (2008/98/EC) [16] stipulates that "(EU) 

member States shall take the necessary measures designed to achieve that by 2020 a minimum of 

70% (by weight) of non-hazardous construction and demolition waste shall be prepared for re-use, 

recycled or undergo other material recovery". Although the level of recycling and material recovery 

of C&DW varies greatly in Europe, the effort to strengthen the concept of sustainability in civil 

constructions needs to be pursued not only preparing recycled conglomerates suitable for low cost 

operations such as backfilling and embankments, but also developing innovative recycled aggregate 

concrete that can be exploited for structural applications. 

SCC prepared with recycled concrete aggregate has not been extensively studied yet. In particular, 

in the last few years some researches have been made using C&DW in SCC [17-36], particularly 

with coarse recycled concrete aggregates [18-21, 23-27, 30, 33, 35-36], thus showing the interest 

toward this topic, but there are no data on the long-term behavior of SCC with C&DW. On the 

contrary, some studies are present on the long-term properties of structural concrete with C&DW 

[3-4, 37-43]. 
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Following a previous research where the long-term behavior of structural concrete containing 

coarse and fine and C&DW was studied [3], the aim of this work is to extend the study to the long-

term properties of SCC replacing both coarse and fine natural aggregates with recycled ones. 

Accordingly, the effects of different formulations are studied in relation to the SCC properties at 

both fresh and hardened states to determine the practicability of SCC with good mechanical 

resistance. 

Comparing this research with the most recent state of the art of the use of C&DW in SCC, the 

important issues highlighted in this paper are (i) the evaluation of the contemporary use of both fine 

and coarse concrete recycled aggregates on fresh behavior; (ii) the mechanical characterization at 

long-term (i.e., shrinkage and creep); (iii) the integrated approach involving microstructure-

physical-mechanical parameters in explaining the strengthening mechanisms occurring in the new 

mixes; (iv) the comparison with traditional concrete prepared with the same C&DW. 

As in the previous work [3-4, 44-45], the recycled concrete aggregate hail from the destruction of a 

never completed concrete construction in Italy (e.g., buildings of Punta Perotti, Bari, Italy) where 

masonry and gypsum were totally absent, thus constituting an adequate selection for the reuse of 

medium-high compressive strength concrete in new structures. C&DW was suitably crushed and 

combined with appropriate grain size distributions to obtain structural SCC. 

Three SCC mixes were designed with an amount of C&DW varying from 25 to 40% of total 

volume of aggregates in substitution of natural coarse and fine aggregates. With the aim of a 

complete characterization of the long-term properties of the SCC mixes, the time-dependent 

properties such as shrinkage and creep were studied and associated with the other essential 

properties of the SCC materials such as the characteristic at the fresh state, as well as the physical 

and mechanical properties and the porosity measurements (total porosity and pore size distribution). 

For comparison, the same characterizations were performed on a reference SCC mix, prepared with 

100% natural aggregates. 
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2. Experimental investigation 

2.1 Materials 

Cement type CEM II-A/LL 42.5 R, in accordance with EN 197-1 [46], and calcium carbonate with 

an average grain size of 7.5 µm, were used as binder and filler, respectively. An acrylic based 

superplasticizer and a biopolymer based viscosity modifying agent were used as admixtures in all 

the SCC mixes. 

As natural aggregates (N, Fig. 1), sand (N0-6, 0-6 mm) and gravel (N6-16, 6-16 mm) (Cave 

Pederzoli, Bologna, Italy) were used. Following previous studies [3-4, 44-45], a cumulative grain 

size distribution curve (called NA16) was prepared according to Fuller distribution, setting the 

aggregate maximum diameter equal to 16 mm: it was made of N0-6 at 60 vol% and N6-16 at 40 

vol% (Fig. 1). 

 

Fig. 1. Grain size distribution of natural (N: N0-6, N6-16, NA16) and recycled (R: R0-4, R4-8, R8-

16, RA16) aggregates. 

 

As recycled aggregates (R, Fig. 1), C&DW of good quality coming from the demolition of an 

Italian concrete building started in 1995 and never finished was used (2006, Bari, Italy) [3]. 
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Concrete cores extracted form the original construction showed a compressive strength of about 36 

MPa. 

After demolition, a large part of the concrete waste was disposed to landfill and the University of 

Bologna collected a part of it for scientific purpose [3-4, 44-45], after on-site crashing procedure 

and steel detachment. Hereinafter, further crushing procedures were made in the laboratory to 

produce three different fractions (Fig. 1 and 2) named as R0-4 (0-4 mm), R4-8 (4-8 mm) and R8-16 

(8-16 mm). In order to obtain a cumulative grain size distribution curve of aggregate similar to that 

one of NA16, 47 vol% of R0-4 + 21 vol% of R4-8 + 32 vol% of R8-16 were mixed. The resulting 

grain size distribution was named RA16. 

 

 
 

(a) (b) 
  

  
(c) (d) 

 

Fig. 2. C&DW before the laboratory jam crusher (a) and R0-4 (b), R4-8 (c) and R8-16 (d) recycled 

aggregates. 
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Tab. 1 reports the physical properties of natural and recycled aggregates, determined according to 

EN 1097-6 [47]: dry bulk density (ρrd), saturated surface-dried density (ρssd) and water absorption 

(WA). R aggregates present dry bulk density values lower than N aggregates and, correspondingly 

higher values of water absorption, according to previous studies [3-4, 44-45]. In particular, R0-4 

fraction shows the lowest values of dry bulk density (i.e., 2.1 g/cm3) and similarly the highest 

values of WA (i.e., 10%). 

 

Table 1. Physical properties of natural and recycled aggregates (ρrd = dry bulk density; ρssd = 

saturated surface-dried density; WA = water absorption). 

Properties ρrd (Mg/m3) ρssd (Mg/m3) WA (%) 
N0-6 2.6 2.7 2.2 
N6-16 2.5 2.6 1.4 
R0-4 2.1 2.3 10.0 
R4-8 2.3 2.4 7.7 
R8-16 2.3 2.4 7.7 
 

 

2.2 Concrete samples preparation 

Three new SCC mixes were studied starting from a reference mix-design (named R0) with 100% of 

natural aggregates and varying the amount of recycled aggregates between 25 and 40 vol% over the 

total content of aggregates (Table 2). 

A concrete mix, named R25, was obtained substituting 25 vol% of natural aggregates (coarse and 

fine) with recycled aggregates. R25 contains 45 vol% of N0-6, 30 vol% of N6-16, 12 vol% of R0-4, 

5 vol% of R4-8 and 8 vol% of R8-16. 

Two different mixes were obtained substituting 40 vol% of natural aggregates. In the mix named 

R40 both coarse and fine natural aggregates were partially substituted with recycled aggregates. 

R40 contains 36 vol% of N0-6, 24 vol% of N6-16, 19 vol% of R0-4, 8 vol% of R4-8 and 13 vol% of 

R8-16. 
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In the mix named CR100 the total volume of gravel (i.e., N6-16) was replaced by the two fractions 

R4-8 and R8-16 of recycled aggregates. Thus, CR100 contains 60 vol% of N0-6, 16 vol% of R4-8 

and 24 vol% of R8-16. 

 

Table 2. Natural and recycled aggregates content (vol%) in the investigated self-compacting 

concrete mixes.  

 Natural aggregates (N) Recycled aggregates (R) 
Mix N0-6 N6-16 N total  R0-4 R4-8 R8-16 R total  

 (vol%) (vol%) (vol%) (vol%) (vol%) (vol%) (vol%) 
R0 60 40 100 0 0 0 0 
R25 45 30 75 12 5 8 25 
R40 36 24 60 19 8 13 40 

CR100 60 0 60 0 16 24 40 
 

 

Table 3 shows the investigated mixes. For all the SCC formulations, cement content (350 kg/m3), 

filler content (220 kg/m3), Dmax (16 mm) and viscosity modifying agent were kept constant. Similar 

water/cement (w/c) ratio (i.e., 0.50 ± 0.01) and superplasticizer amount (i.e., 1.1 ± 0.1%) were 

utilized for all the SCC formulations. The small increase in the superplasticizer amount of both R25 

and R40, compared to R0, compensates for their lower water content (i.e., 172 instead of 179 

kg/m3). For this reason, fresh state results are comparable. 

All aggregates were utilized in wet condition and their total moisture content was directly 

established before the mixing procedure: the surface/free moisture value was obtained by 

subtracting from the total moisture the moisture in saturated-surface dry condition. SCC is more 

easily influenced by the initial humidity of aggregates than traditional concrete [48-49]. Even if the 

water content of the aggregates is compensated in all the mixes, different initial aggregates 

humidity, as well as the real amount of water compensated in every mix, can contribute to a change 

of the fresh state behavior of the SCC mixes. For this reason, in this study the initial humidity of the 

aggregates was the same for all the mixes. In particular, aggregates (both natural and recycled ones) 
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were previously treated in order to have wet condition almost identical to their ssd condition, with 

the only exception of natural sand that was stoked in sealed plastic bags at an almost constant 

humidity of 6%. For this reason in each mix the water was always adjusted by decreasing its 

amount. 

The SCC mixes were obtained by using a laboratory concrete mixer (190 L volume) introducing 

gravel and sand. After 5 minutes of mixing, cement, water (75%), superplasticizer and viscosity 

modifying agent with the remaining water (25%) were introduced and mixed for further 3 minutes. 

 

Table 3. Concrete mix-design. 

 R0 R25 R40 CR100 
Water/cement ratio 0.51 0.49 0.49 0.51 
Cement (kg/m3) 350 350 350 350 
Water (kg/m3) 179 172 172 179 
Filler (kg/m3) 220 220 220 220 
N0-6 (kg/m3)(a) 975 731 585 975 
N6-16 (kg/m3)(a) 623 467 374 0 
R0-4 (kg/m3)(a) 0 165 264 0 
R4-8 (kg/m3)(a) 0 77 124 233 
R8-16 (kg/m3)(a) 0 118 189 356 
Total N (kg/m3)(a) 1598 1198 959 975 
Total R (kg/m3)(a) 0 360 577 589 
Total aggregate (kg/m3)(a) 1598 1558 1536 1564 
Superplasticizer (%)(b) 1.0 1.1 1.1 1.2 
VMA (%)(b) 0.4 0.4 0.4 0.4 
(a) saturated surface-dried (ssd) condition; (b) mass % on cement amount. 

 

 

2.3 Concrete samples characterization 

In the fresh state, the slump-flow (SF) and the flow rate (t500) when the concrete has flowed to a 

diameter of 500 mm were determined according to EN 12350-8 [50]. A visual observation of the 

slump-flow diameters at the end of the flowing was made to verify the uniform distribution of the 

particles, the lack of segregation, and confirm the SCC behavior of the mixes. 
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The J-ring test (SFJ) was used to assess the passing ability of SCC to flow through tight opening, 

according to EN 12350-12 [51]. The bulk density in the fresh state was determined by mass/volume 

ratio (M/V), according to EN 12350-6 [52]. 

For physical and mechanical tests, 16 cylindrical concrete samples (diameter: 12 cm, height: 24 cm) 

as well as 2 prisms (10 x 10 x 40 cm) and 2 cubic samples (15 x 15 x 15 cm) were obtained for each 

formulation. Samples were cured for 28 days at 20 ± 1°C and R.H. > 95%. Bulk density (D) and 

water absorption (wa) at atmospheric pressure were obtained in accordance with UNI 7699 [53] on 

2 cubic concrete samples. 

Concrete strength tests were determined by means of a 4000 kN universal testing machine. 

Compressive strength (fcm) was obtained in accordance with EN 12390-3 [54] on 4 concrete 

cylindrical samples for every mix after 5 (fcm@5d) and 28 (fcm@28d) days of curing. Secant elastic 

modulus (E) was measured in accordance with UNI 6556 [55], tensile splitting strength (fct) was 

determined in accordance with EN 12390-6 [56], and three-point flexural strength (fcf) was 

determined in accordance with EN 12390-5 [57]: two concrete cylindrical samples were used per 

mix for every test. 

The pore size distribution of samples obtained from concrete cylinders after 28 days of curing 

(about 1 cm3) was studied by mercury intrusion porosimeter (MIP, Carlo Erba 2000), equipped with 

a macropore unit (Fisons 120). Before MIP test, porosimeter samples were investigated by optical 

microscopy to confirm that they were characteristic of the cement mortar around coarse aggregates. 

The long-term properties of the SCC were studied by shrinkage and creep tests performed for about 

two years in a climate chamber at 20 ± 1°C and 60% R.H. with specimens in drying conditions. 

For shrinkage test, two cylinders were used for every mix starting after two days from casting. 

For creep test, two cylinders were used for every mix, in accordance with ASTM C512/C512M-10 

[58] Standard: a compression stress of about 30% of the actual strength at the time of loading (i.e., 

within stress limit of linear viscoelasticity) was applied after 28 days from casting. 
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Electrical strain gauges attached to a digital acquisition system [59-60] were used to study the 

longitudinal strain variation with time of each cylinder. 

 

3. Results and discussion 

3.1 Fresh state behavior 

Properties of the SCC mixes in the fresh state are reported in Table 4. The higher the slump-flow 

(SF) diameter is, the higher the material deformability is, thus indicating the ability of the material 

to reach area distant from the concrete introduction point in the formwork. All the mixes showed SF 

> 600 mm, which is the lower limit of flowability for SCC [61]. Moreover, both R25 and R40 mixes 

with coarse and fine recycled aggregates showed values of SF higher than the reference mix R0, 

even if a slightly lower w/c ratio was used (i.e., 0.49 instead of 0.51 for R0). 

This increase in slump-flow diameter can be ascribed to the high water absorption capacity of the 

fine recycled aggregates compared to natural sand (i.e., WA = 10.0% instead of 2.2%) that needs a 

higher amount of water in the mix in order to be in the saturated surface-dried condition. This 

amount of water could not be held initially by the aggregates, thus increasing the flowability of the 

mix [17]. Indeed, the slightly higher amount of superplasticizer used in R25 and R40 than in R0 

(i.e., 1.1 instead of 1.0%) is compensated by a slightly lower water amount (i.e., 172 instead of 179 

kg/m3). Moreover, aggregates initial humidity was the same for all the mixes, as well as water was 

always adjusted by decreasing its amount, thus avoiding the presence of other variables not constant 

involved in the mixes. 

CR100 mix, with 100 vol% of coarse recycled aggregates, showed the lowest value of SF diameter 

among the investigated mixes. In this mix, the negative effect on flowability due to the more 

irregular and rougher texture of the coarse recycled aggregates compared to natural ones prevailed 

on the delay of absorbing water observed for R25 and R40, thus contributing to decrease the SF. 
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Table 4. Properties of the investigated mixes at the fresh state (SF = slump-flow; t500 = flow rate 

when the concrete has flowed to a diameter of 500 mm; SFJ = J-ring test; M/V = bulk density). 

Mix SF t500 SFJ SF-SFJ M/V 
 (mm) (s) (mm) (mm) (g/cm3) 

R0 700 11 660 40 2.34 
R25 780 11 730 50 2.28 
R40 745 5 690 55 2.28 

CR100 635 5 610 25 2.22 
 

The flow rate t500 corresponds to the time when the concrete has flowed to a diameter of 500 mm. It 

is a measure of the speed of flow and an indication of the relative viscosity of the SCC and 

resistance to segregation. All the investigated mixes showed values of t500 within 12”, in accordance 

with SCC specifications [61]. No differences were observed between R0 and R25 mixes, while R40 

and CR100 mixes, both obtained substituting 40 vol % of natural aggregates, showed the same 

value of t500, even if lower than the reference mix (i.e., 5” instead of 11”): this can be probably 

correlated to the high amount of recycled aggregates in the mixes. 

The visual observation of the slump-flow diameters at the end of the flowing showed a uniform 

distribution of the particles in the mixes, confirming the lack of segregation and the regularity of the 

SCC behavior. 

The J-ring (SFJ) test (Table 4) is used to assess the passing ability of SCC to flow through tight 

openings, including spaces between reinforcing bars and other obstructions, without segregation or 

blocking effect. According to UNI Standard [61], the difference between the confined slump-flow 

(i.e., SFJ) and the slump-flow in absence of obstacles (i.e., SF) should be equal or lower than 50 

mm. R40 slightly exceeded the recommended value (i.e., 55 mm), while all the other mixes fulfilled 

the limit (Table 4). Moreover, the visual observation of the slump-flow diameters at the end of the 

flowing through obstacles showed again a uniform distribution, without segregation, according to 

SCC Standards [61]. 
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The results of all the 3 tests highlight how the use of recycled aggregates of high quality, even in a 

large amount, does not seem to compromise the self-compacting properties of SCC. A further study 

could be to check if these self-compacting properties could still be maintained for a very long 

period of time [28], in case of difficult and exceptional situations in the construction site. 

Finally, the bulk density (M/V) in the fresh state of the SCC with recycled aggregates is lower than 

the reference with natural aggregates (Table 4), according to the lower density of recycled 

aggregates (Table 1). In general, an increase in C&DW content corresponds to a decrease in M/V as 

also found elsewhere [3-4]. 

 

3.2 Hardened state behavior 

Fig. 3 shows the cross-section images of the 4 investigated self-compacting concretes. Natural (N) 

and recycled (R) aggregates are easy to distinguish because the latter are lighter in color (pale gray) 

than the former. Moreover, the parent aggregates can be easily detected inside the recycled 

aggregates being lighter than the adhered mortar (Fig. 2a). 

The physical and mechanical properties of the mixes after 28 days of curing are reported in Table 5. 

R0 shows the highest value of bulk density (D), as well as the lowest value of water absorption (wa) 

among the investigated mixes. Anyway, only slight variations can be observed in the physical 

properties of SCC mixes with recycled aggregates. As a general trend, the higher the amount of 

recycled aggregate is, the higher the wa is. The comparison between R40 and CR100 (both 

containing 40 vol% of recycled aggregates) highlights that the presence of the fine fraction (R0-4) 

leads to the highest water absorption. 

Table 5 shows the compressive strength (fcm) at 5 and 28 days of curing. As expected, strength 

increases with curing time for all the SCC. At 5 days of curing, R40 and CR100 show the highest 

values of fcm (i.e., 37.1 and 36.6 MPa, respectively), about 23% higher than R0. R25 shows a fcm 

value only slightly lower than R0 at early age of curing, while it shows the highest increase in fcm 

with time (i.e., 58%), so that at 28 days all the SCC mixes with C&DW show fcm values higher than 
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that of R0 containing only natural aggregates. The higher the recycled aggregate amount in the mix-

design is, the higher the SCC compressive strength is, regardless the recycled aggregates 

dimensions. Indeed, comparing the compressive strength values of R40 and CR100, it is evident that 

the presence of fine recycled aggregates does not play a detrimental role from the mechanical point 

of view. 

 

  
(a) (b) 

  

  
(c) (d) 

 

 

(e)  
 

Fig. 3. Cross-section images of the 4 investigated self-compacting concrete: R0 (a), R25 (b), R40 

(c), CR100 (d), and a detail of coarse recycled aggregates (e). 
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The high values of fcm found for the SCC containing recycled aggregates can be related to a good 

adhesion between the new mortar and the adhered mortar of the recycled aggregates, but also to the 

high quality of the recycled aggregates. As previously reported [3-4], an increase in compressive 

strength up to 20% was determined for traditional structural concrete prepared with the same 

recycled aggregates, confirming their remarkable effect. 

 

Table 5. Physical and mechanical properties of the investigated concrete mixes (D = bulk density; 

wa = water absorption; fcm@5d and fcm@28d  = compressive strength at 5 and 28 days of curing; E 

= secant elastic modulus; fct = tensile splitting strength; fcf = three-point flexural strength). 

 

 

 

The elastic modulus (E) for the investigated mixes is reported in Table 5. In accordance with the 

compressive strength, R40 and CR100 samples show the highest values of E (i.e., ≈ 28 GPa), 

whereas R25 samples show E values slightly lower than R0. In this study, the presence of different 

content of recycled aggregates does not have a strong effect on the elastic modulus, highlighting a 

good adhesion between the old and the new mortar. 

The tensile splitting strength (fct) and three-point flexural strength (fcf) (Table 5) are about 3.2 and 4 

MPa, respectively, for all the mixes, thus indicating that the use of recycled aggregates has no great 

influence on these properties. These results agree with those obtained with traditional concrete [3, 

62]. Only R40 mix exhibits slightly lower values (i.e., 2.5 and 3 MPa, respectively) in accordance 

with the highest water absorption. 

Mix D wa fcm@5d fcm@28d E fct fcf 
(g/cm3) (%) (MPa) (MPa) (GPa) (MPa) (MPa) 

R0 2.15±0.02 6.8±0.1 29.9±0.5 43.8±1.9 26.1±0.2 3.3±0.4 4.0±0.3 
R25 2.12±0.01 7.8±0.3 28.7±1.8 45.4±1.1 25.2±0.4 3.2±0.3 3.8±0.2 
R40 2.11±0.01 8.4±0.0 37.1±0.7 50.3±1.9 28.6±0.8 2.5±0.2 3.0±0.3 

CR100 2.06±0.01 7.8±0.4 36.6±1.2 51.1±1.8 27.3±0.2 3.1±0.3 4.1±0.6 
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3.3 Porosity 

Table 6 reports the IUPAC classification of the pores size and the relevant data of porosity 

determined by MIP on samples representative of the cement matrix between coarse aggregates. The 

total specific volume of intruded Hg is also reported as a measurement of the total open porosity. 

R25 and R40 present similar specific volume of Hg (i.e., 86-90 mm3 Hg/g), higher than those 

exhibited by R0 and CR100 (i.e., ≈ 76 mm3 Hg/g) prepared with a higher water/cement ratio. Such a 

difference might be ascribed to the presence in R25 and R40 of the fine recycled aggregate fraction 

R0-4 (i.e., 12 and 19%, respectively) that is totally absent in R0 and CR100. 

 

Table 6. Classification of porosity in the investigated samples according to IUPAC pore size 

classification (percentage of porosity over the total specific volume of Hg is reported in brackets).  

Designation 
Porosity 

range 
(nm) 

R0 
(mm3Hg/g) 

R25 
(mm3Hg/g) 

R40 
(mm3Hg/g) 

CR100 
(mm3Hg/g) 

Micropores < 1.25 n.d. n.d. n.d. n.d. 

Mesopores 1.25 - 25 18.6 (24.5) 20.9 (24.4) 32.9 (36.7) 26.0 (34.0) 

Macropores 25 - 5000 50.6 (66.6) 64.1 (74.7) 50.0 (55.8) 44.3 (58.0) 
Directly 
accessible large 
pores 

5000 - 
50000 6.8 (8.9) 0.8 (0.9) 6.7 (7.5) 6.1 (8.0) 

Total porosity  76.0 (100) 85.8 (100) 89.6 (100) 76.4 (100) 
 

Examining the different porosity ranges, it can be observed that (i) all the mixes exhibit about the 

same content of directly accessible large pores, except R25; (ii) the amount of macropores is 

strongly influenced by the variation of recycled aggregates content; (iii) mesopores amount 

increases when 40% of recycled aggregates is added. 

The low content of directly accessible large pores detected for R25 is in agreement with the highest 

workability measured at the fresh state for this mix (Table 4). As for macropores content, which 
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also includes capillary porosities of cement matrix, a clear trend can not be determined. Comparing 

R0 and R25, according to the increase in total open porosity (i.e., 76 and 86 mm3 Hg/g, 

respectively), a relevant increase in macropores content is observed. Comparing R25 and R40, 

showing about the same total porosity (i.e., 86 and 89 mm3 Hg/g, respectively), the macropores 

content decreases with the increase of recycled aggregates, thus suggesting that a better adhesion 

between recycled aggregates/cement matrix/natural aggregates occurred when the natural 

aggregates replacement was equal to 40%. Comparing R40 and CR100, both containing 40% of 

recycled aggregates, a decrease in total open porosity was registered (i.e., 89 and 76 mm3 Hg/g, 

respectively) which was almost uniformly distributed in the range 0.004-0.1 µm of pores size, as 

reported in Fig. 4. Finally, comparing CR100 and R0, exhibiting the same total porosity (i.e., 76 

mm3 Hg/g), macropores content decreases in CR100, promoting the formation of a larger amount of 

mesopores, which has a minor detrimental effect on mechanical properties, as previously observed 

(Table 5). 

 

 

Fig. 4. Pore size distribution of R40 and CR100 samples. 
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3.4 Long-term behavior 

Fig. 5 shows the long-term properties of all the SCC mixes tested for nearly 2 years. In particular, 

shrinkage strains (autogenous and drying contributions) are reported in Fig. 5a, while specific creep 

(creep strain per unit of applied stress, basic and drying contributions together) in Fig. 5b. 

 
(a) 

 

 
(b) 

Fig. 5. Shrinkage strains (a) and specific creep (b) for the investigated mixes. 
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Regarding the shrinkage behavior (Fig. 5a) all curves are similar, showing a rapid shrinkage strain 

increase in the first three months. The slope of the curves decreases with time, becoming almost flat 

after ten months. Such behavior was also detected in the traditional concrete containing the same 

recycled aggregates previously studied [3-4], even if for SCC mixes the determined shrinkage strain 

is in the range of 350-400 µε compared to values in the range of 550-900 µε reported for the 

traditional concrete. The detected low shrinkage for the investigated SCC, which does not appear 

particularly affected by the presence and amount of recycled aggregates, is due to the strong 

reduction of the water/powder (w/p) ratio (from 0.48 for traditional concrete to approximately 0.31 

for SCC). In more details, the increase of the amount of paste volume for SCC leading to an 

increment of the shrinkage [63] is largely compensated by the effect of its reduction due to the 

smaller w/p ratio [64]. When dealing with SCC shrinkage, the role played by the aggregates elastic 

modulus can be considered smaller than that for traditional concretes. 

Specific creep curves are reported in Fig. 5b: all the curves have a qualitative similar behavior. The 

slope of the curves decreases with time and after about 5 months the creep phenomenon is less 

active. As for the shrinkage, the detected creep behavior of SCC differs from that previously 

observed for traditional concrete with the same type of recycled aggregates [3-4]. Even if the extent 

of the creep is similar for both traditional concrete and SCC, in all the investigated SCC mixes the 

initial rate of creep strain increase is larger than that of traditional concrete, while after one year of 

loading this rate is strongly reduced, showing a limited long-term activity. This behavior can be 

ascribed to the smaller pore size usually shown by SCC leading to faster water movement. 

Comparing the different curves reported in Fig. 5b, it can be observed that (i) CR100 exhibits a 

lower creep than R0 even if they have the same water/cement ratio (i.e., 0.51); (ii) R40 (with a 

water/cement of 0.49) shows a trend very similar to R0 but lower than CR100; (iii) R25 shows the 

worst behavior even if it was prepared with a water/cement ratio of 0.49 and a content of recycled 

aggregates equal to 25%. 
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Although the magnitude of creep strain depends not only on cement matrix microstructure, but also 

on the composite nature of the concrete, thus including aggregates (e.g., shape, grain size 

distribution, modulus of elasticity) and interface zone between aggregate and cement matrix, where 

localized stresses and micro-cracks can occur [65-66], the obtained results are in good agreement 

with the compressive strength and porosity results. Indeed, comparing R40 and CR100, both having 

40% of recycled aggregates, the lowest creep is determined for CR100 featuring the highest 

compressive strength (Table 5) and lowest pore size distribution (Fig. 4). 

R25, nevertheless containing only 25% of recycled aggregates, exhibits the worst behavior in terms 

of creep according to its high cumulative porosity and lowest elastic modulus, suggesting that this 

mix is characterized by a microstructure less compact than the ones exhibited by the other 

investigated mixes. 

 

4. Conclusions 

Based on the results of this experimental investigation, the following conclusions are drawn: 

1. It is feasible to produce SCC with coarse and fine recycled concrete aggregates up to 40 vol% in 

the mix design. 

2. Mechanical properties (i.e., elastic modulus, compressive, flexural, tensile splitting strength) of 

the SCC containing recycled concrete aggregates of high quality can be equal or even higher than 

the reference mix with 100% natural aggregates because of the development of a more compact 

microstructure. 

3. For time-dependent characteristics, creep behavior is more influenced by the presence of recycled 

aggregates than shrinkage, although its variations are rather limited compared to what occurs in 

traditional concrete. The best creep behavior among the investigated mixes has been determined for 

CR100 according to its highest compressive strength and lowest pore size distributions. 

4. Porosity investigations have highlighted that the microstructure of the investigated mixes is 

influenced by the content and assortment of recycled aggregates promoting different pores size 
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distributions (i.e., macropores and mesopores content), which in their turn influence the mechanical 

properties at short and long-term. 

This work strengthens the concept of sustainability in civil constructions. SCC can be designed 

combining the use of coarse and fine recycled concrete aggregates highlighting that concrete waste, 

properly assorted and characterized, can be a useful resource for structural applications. 
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