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Abstract: Cigarette butts can be considered as one of the most common contemporary sources of
waste, considering the large consumption of cigarettes all over the world. Despite the fact that
different solutions have been developed and tested in the recent years aiming to recycle them,
cigarette butts are currently landfilled and incinerated. Following the circular economy principles,
the experimental application proposed in this paper is an exploratory investigation on the use of
shredded cigarette filters as sustainable alternative to the addition of fibers into Stone Mastic Asphalts
(SMAs). This represents the preliminary step for a wider research project, aiming to find a possible
recycling solution for cigarette butts as fibers in bituminous materials. The use of fibers is a common
and well-established solution for the production of high bitumen content mixtures. The fibers
have a double function: acting, generally, as a stabilizing agent and, where possible, improving
the mechanical performance of the bituminous mixtures. In the present research, two different
SMAs were produced and tested aiming to analyze the effects given by the addition of the shredded
cigarette filters. The first asphalt concrete, produced with traditional cellulose fibers was taken as a
reference mixture, while the experimental mixture was produced with the shredded cigarette filters.
The data highlight interesting and promising results for future development, making the use of waste
cigarette filters a potential eco-friendly alternative to common cellulose fibers for SMAs.

Keywords: cigarette filters; recycled cigarette butts; asphalt concrete; SMA; fibers

1. Introduction

Sustainable and responsible development is probably the most important task for a
modern society finally aware of the damage caused to the environment by the uncontrolled
growth of the last 30 years. As stated in the 7th Environment Action Programme (EAP)
produced by the EU, the recycling and reuse of waste can be considered as one of the
principal tools for addressing this new challenge [1].

Cigarette butts (CBs) can be classified as one on the most common sources of waste,
considering their large consumption all over the world [2]. According to the most recent
estimates, around 1.2 million tons of cigarette butts are produced every year [3]. From an
environmental point of view, the CBs represent a real problem considering the lack of
disposal control and their slow degradation rate. Several researches based on interviews
to cigarette smokers, highlighted that around the 73% of the users do not have specific
practices for the CBs disposal [4,5]. Furthermore, as stated in the report “Tobacco and its
Environmental Impact: an overview” from the World Health Organization, around 70%
of CBs are released into the environment, generally discarded directly on the ground [6].
The vast majority of cigarette filters are mainly made of cellulose acetate with a very limited
degradation rate [7]. Brodof (1996) assessed that the breakdown of a common cellulose
acetate generally takes around 18 months under normal conditions [8]. Recent studies
verified that the slow process of degradation of CBs discarded on the ground could last up
to 13 years [9].
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Furthermore, the presence of toxic chemicals within CBs is now a well-known fact [10,11].
A cigarette filter is mainly designed to reduce the inhalation of several substances during
tobacco combustion; as a result, it absorbs and retains toxic substances that can be released
into the environment when discarded. Several detailed studies and researches highlighted
that around 7000 chemicals (USDHHS, 2010) are released by CBs into the environment, with
potential effects on humans and ecosystems [12–16].

Still, the lack of standardized protocols or best practices for CB disposal makes the
management of this kind of waste a real issue. Thus, the majority or CBs are currently
landfilled and incinerated. In the light of the above, it is clear that these disposal solutions
will no longer be feasible, and it is evident that finding recycling alternatives to disposing
of CBs in landfill is now crucial.

Different recycling methods and applications have been tested and are currently un-
der investigation in order to find possible solutions in line with the principles of circular
economy [17]. Several alternative solutions are available in the literature for the recy-
cling and re-use of CBs. Good results have been obtained for the recycling of CBs in the
production of new construction materials (i.e., fired bricks, lightweight bricks, precast
concrete blocks) or acoustic insulation systems [18–20]. A few studies have also been
developed on the use of CBs as bituminous materials for road pavements, and the pro-
posed experimental applications were mostly focused on the use of waste CBs as bitumen
modifiers/additives [21,22].

The research proposed in this paper is a preliminary study on the direct application of
brand new cigarette filters (CF) for the production of asphalt concretes (AC). The work is
the preliminary and exploratory step of a wider research project aiming to study the re-use
of waste cigarette butts as a potentially sustainable alternative to fibers (both traditional and
innovative ones) for ACs. The use of fibers, in fact, is a common practice for the production
of high bitumen content mixtures for pavements such as stone mastic asphalt (SMA) and
porous asphalt [23]. The fibers can have the double function of working as a stabilizing
agent, avoiding the separation between the aggregates and the bitumen during the storage
and transport operations, and are also used to improve the mechanical performance of the
final AC [24,25].

Considering the wide use of fibers, a new market to recycle waste in the production
process of new cellulose-based fibers has been generated, taking into account the good prop-
erties of the waste in terms of binder absorption, when compared to mineral fibers [26–31].
In order to evaluate the effects given by the addition of the grinded brand new CFs in the
bituminous mixture, two different SMAs were produced in the laboratory and tested: one
(labelled SMA0) with common cellulose stabilizing fibers, and another (labelled SMAF)
containing CFs. The aim of the present research is to explore the possible use of this waste
as a pavement material, and therefore to develop a new recycling application to limit the
landfilling of waste cigarette butts.

2. Materials and Methods

As aforementioned, the experimental application of CFs in substitution of common
stabilizing fibers has been carried out, adding common shredded CFs during the mixing
operation of a traditional SMA.

2.1. Cigarette Filters and Stabilizing Fibers

In the case being studied, brand new cigarettes were collected and filters were cut off.
In order to represent what could happen on a real scale, cigarette from different producers
were used in this experimental application. However, it is worth mentioning that all the
collected CFs were made of cellulose acetate-based material.

The CFs were grinded using a mechanical shredder, set up in order to have particles
up to 10 mm. From a visual analysis of the obtained shredded CFs (Figure 1), the mate-
rial is mostly composed of cellulose acetate fibers, with traces of plug wrap paper and
tipping paper.
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Figure 1. Shredded cigarette filters and a EUR 1 coin as size reference.

Some traditional cellulose-based stabilizing fibers were used as reference fibers.
The physical and mechanical properties of the reference fibers are reported in Table 1.

Table 1. Properties of cellulose stabilizing fibers.

Fibers Technical Data

Avg. fibers length min 200 µm, max 1100 µm
Avg. fibers diameter min 25 µm, max 45 µm

Melting point >230 ◦C
Water solubility (%) 0.450–0.500 kg/m3

2.2. SMA Mix Design

Stone mastic asphalt was first developed in Germany in the 1960s and it was soon used
in the rest of Europe, the United States, Canada and Australia due to its good performance.
The combination of selected aggregates according to a gap-graded gradation and the
adoption of modified bitumen allows for a high resistance to plastic deformation, making
SMA suitable for high- and heavy-traffic roads. Furthermore, the use of high quality
aggregates ensures remarkable skid-resistance properties.

In the present research, the adopted mix design for the SMA followed the District of
Bologna technical specification [32]. The grading distribution is presented in Figure 2 and
Table 2, while the rheological properties of the used bitumen are reported in Table 3.
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Figure 2. SMA grading distribution.

Table 2. SMA gradation.

Sieve (mm) Retained Material (%) Passing Material (%)

14 0.00 100.00
12 0.68 99.32
10 19.10 80.22
8 15.01 65.21

6.3 13.65 51.57
4 10.14 41.42
2 14.62 26.80
1 7.36 19.45

0.5 3.96 15.49
0.25 2.88 12.61
0.125 1.64 10.97
0.063 1.16 9.81

<0.063 9.81 -

Table 3. Conventional properties of the adopted bitumen.

Property Unit Characteristic Value Standard

Penetration @ 25 ◦C dmm 50–70 EN 1426 [33]
Softening Point ◦C 46–54 EN 1427 [34]

Penetration Index - 1.05–0.70 EN 12591 [35]
Dynamic Viscosity @

60 ◦C Pa·s 145 EN 12596 [36]

Ductility % 80 ASTM D 113 [37]

Based on previous studies and laboratory tests on the same SMA mix design, the
optimum binder content was fixed at 6% on the weight of aggregates, while the amount of
filler was 10% on the weight of aggregates [38].

Following the technical specification of the commercial fibers and the optimum bi-
tumen content, their ratio was 0.3% of the weight of the aggregates for the reference mix
(SMA0). As for the SMAF, as shown in the following paragraph, specific drain-down tests
(ASTM D6390-11 [39]) were carried out in order to evaluate the absorption properties of
the shredded CFs and to define their optimum dosage within the bituminous mixture.
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2.3. Experimental Program

The experimental program was based on the physical and mechanical characterization
of two different SMAs produced with and without CF as stabilizing fibers. Once the mix
design and the absorption properties of the shredded CFs were defined, tests were carried
out on SGC (Superpave Gyratory Compactor, EN 12697-31 [40]) specimens. The mixing
and compaction operations and temperatures (170 ◦C) were fixed univocally in order to
obtain comparable results.

The volumetric properties of the two different SMAs were assessed with the air voids
(AV) content analysis (EN 12697-8 [41]) on three samples for each mixture according to three
different compaction levels (10, 100 and 180 gyrations). The evaluation of the workability
and compactability properties of the mixtures was corroborated also by the analysis of the
gyratory compaction curves.

For each mixture, nine SGS samples (100 gyrations [40]) were prepared for the me-
chanical characterization. The cohesion properties were assessed in terms of indirect tensile
strength (ITS) at 25 ◦C, according to the EN 12697-23 standard [42]. The mechanical analysis
was supported with indirect tensile stiffness modulus (ITSM) tests following the EN 12697-
26 standard [43]. The thermal sensitivity of the mixtures was evaluated, repeating the ITSM
test at three reference temperatures: 10, 20 and 30 ◦C. Furthermore, the water susceptibility
of the SMAs was investigated in terms of ITS reduction (ITSR, EN 12697-12 [44]), carrying
out ITS tests on specimens after saturation in a water bath at 40 ◦C for 72 h.

The durability of the experimental bituminous mixture was also evaluated in terms of
resistance to permanent deformation, in compliance with the EN 12697-25 standard [45], ac-
cording to a uniaxial test configuration. The repeated load axial test (RLAT) is a laboratory-
based, quick method for determining the creep characteristics of bituminous mixtures
under cyclic loads at a high temperature (40 ◦C).

3. Results
3.1. Evaluation of the Absorption Properties of CFs

As mentioned before, drain-down tests were performed in order to assess the bitumen
absorption properties of the CFs. The test was carried out in compliance with the [39]
standard. This test allows the amount of drain-down in a loose bituminous mixture to
be determined, when this is held at high temperature, compared to the amount obtained
during the mixture in-plant production, storage and transportation. It is very useful for
high bitumen content mixtures, where the addition of fibers is required precisely to prevent
the separation of bitumen from aggregates.

Four mixtures were tested, containing shredded CFs at a ratio of 0, 0.2, 0.3 and
0.4% of the weight of the aggregates, and two samples were produced for each mixture.
The average results are presented in Table 4.

Table 4. Average drain-down results for the shredded CFs.

Fibers Amount Drain-Down (%)

0% Fibers 0.6 (±0.2)
0.2% Fibers 0.4 (±0.2)
0.3% Fibers 0.4 (±0.1)
0.4% Fibers 0.3 (±0.1)

Based on these results, the addition of experiment fibers equal to 0.4% of the weight
of the aggregates seemed to be suitable, showing average drain-down values below the
recommended 0.3% [46]. All in all, the shredded CFs exhibit similar absorption properties
to the reference cellulose fibers, even if an increase by 0.1% in their dosage is required to
achieve the same drain-down limit effect.
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3.2. Physical Characterization

The physical characterization was based on the evaluation of the air voids content
(AV, [41]) in SGC samples according three different compaction levels equal to 10, 100 and
180 gyrations. This method represents a rapid control of the compactability and workability
properties of bituminous mixtures. The average results are shown in Table 5, while the
gyratory compaction curves are plotted in Figure 3.

Table 5. Average AV content for SGC samples.

AV Content SMA0 SMAF

AV (%) at 10 gyrations 15.3 (±0.6) 15.5 (±0.4)
AV (%) at 100 gyrations 6.0 (±0.2) 6.4 (±0.3)
AV (%) at 180 gyrations 4.5 (±0.2) 4.9 (±0.1)

Figure 3. Bituminous mixtures gyratory compaction curves.

All in all, the results are in line with the adopted technical specification requirements
(AV < 5% at Nmax). However, a slight reduction in AV content was recorded for the
reference SMA mixture at every compaction level considered.

Overall, there is not a relevant difference between the two mixtures: the presence of
CFs does not negatively affect the volumetric properties of the bituminous mixture. Still,
the addition of the experimental fibers did not modify or influence the laboratory mixing
and compaction operations, confirming the potential application of this material for a real
asphalt concrete production. The analysis of the gyratory compaction curves verified the
absence of difference in terms of compactability properties due to the presence of CFs. Both
SMAs showed comparable densification properties.

3.3. Mechanical Characterization

The mechanical characterization was based on the evaluation of the cohesion proper-
ties (ITS, [42]) and the mixtures’ stiffness (ITSM, [42]). Furthermore, the stiffness depends
on temperature variation in terms of ITSM. Furthermore, the durability of the SMAs was
analyzed considering their water susceptibility and the rutting resistance properties.
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3.3.1. Indirect Tensile Strength Analysis

The mechanical properties were analyzed in terms of cohesion between aggregates
and bituminous mastic with the evaluation of indirect tensile strength (ITS, [42]) at 25 ◦C.
Three SGC samples (100 gyrations [40]) were tested, and the results are presented in Table 6.

Table 6. Indirect tensile strength at 25 ◦C results.

Mixture Thickness (mm) Max Load (N) Displacement
(mm) ITS (MPa)

SMA0_1 60.6 11400 2.44 1.20
SMA0_1 60.6 12860 1.94 1.35
SMA0_1 61.1 12720 2.28 1.33

avg. SMA0 - - - 1.29
SMAF_1 60.8 9250 2.96 0.97
SMAF_1 61.8 9990 2.60 1.03
SMAF_1 61.3 9250 2.60 0.96

avg. SMAF - - - 0.99

Overall, both SMAs show ITS values above the threshold limit suggested by the
adopted technical specification (ITS > 0.90 MPa). However, the reference mixture has the
best performance. This phenomenon might be attributed to presence of the commercial
stabilizing fibers, able to create a stronger cohesion between particles. It is worth noting
that, as the SMA mixtures are rich in bitumen, the presence of fibers is fundamental in
order to fix the bituminous mastic with the aggregates. The better performance of the
reference fibers could be further confirmed by analyzing the displacement data from the
ITS tests. Thus, the lower displacement registered for the SMA0 can be attributed to its
stiffer structure. Furthermore, the higher ITS results for the reference mixture could also be
related to the lower AV content.

3.3.2. Indirect Tensile Stiffness Modulus Analysis

The evaluation of the stiffness modulus was carried out according to the [43] with
an indirect tensile test configuration. Three SGC samples (100 gyrations [40]) for each
mixture were tested at 10, 20 and 30 ◦C in order to investigate the thermal sensitivity of the
bituminous mixtures. The relation between the stiffness modulus and temperature can be
described by the following equation:

logS = −α·T + β (1)

where S is the stiffness modulus at the specific temperature T, while α and β are ex-
perimental parameters depending on the material properties. The former parameter is
directly related to the temperature sensitivity, as it is generally higher for very temperature-
sensitive materials.

The ITSM results are presented in Table 7. In Figure 4, the average results are depicted,
but the equations, as well as the coefficients of determination (R2), are related to the
individual values.
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Table 7. Indirect tensile stiffness modulus results.

Mixture ITSM @ 10 ◦C (MPa) ITSM @ 20 ◦C (MPa) ITSM @ 30 ◦C (MPa)

SMA0_1 11,114 4518 1493
SMA0_1 12,608 5809 2262
SMA0_1 11,873 5577 2372

avg. SMA0 11,865 5301 2014
SMAF_1 11,041 4486 1683
SMAF_1 11,422 4665 1721
SMAF_1 11,592 4649 1653

avg. SMAF 11,352 4600 1686

Figure 4. ITSM average results and temperature sensitivity.

In terms of ITSM, the only indication from the technical specification taken as reference
is the lower limit for the stiffness modulus at 20 ◦C (ITSM > 3500 MPa). In this case, both
mixtures exceed the threshold limit. The reference SMA shows higher values for each
test temperature. Nevertheless, there is not a remarkable difference in terms of stiffness
between the two mixtures. The data are in line with the previous physical characterization,
with the SMA0 being stiffer than the experimental mixture. In terms of thermal sensitivity,
both SMAs show the same trend as confirmed by the comparison of the α parameter in the
equations. Thus, the presence of shredded CFs does not modify the mechanical behavior
of the SMA mixture in terms of a response to dynamic loads at different test temperatures.

3.3.3. Water Susceptibility

The durability of both mixtures has been assessed in terms of water susceptibility.
Following the [44] standard, three SGS samples (100 gyrations, [40]) were submerged in
a water bath at 40 ◦C for 72 h. The water susceptibility is addressed as indirect tensile
strength reduction (ITSR).

The ITS results after saturation in water are reported in Table 8, while the ITSR average
results are reported in Table 9.
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Table 8. Indirect tensile strength results after saturation in water at 40 ◦C for 72 h.

Mixture Thickness (mm) Max Load (N) Displacement
(mm) ITSwet (MPa)

SMA0_1 60.4 10,540 2.40 1.11
SMA0_1 60.0 10,420 2.32 1.11
SMA0_1 60.2 11,250 2.40 1.19

avg. SMA0 - - - 1.13
SMAF_1 61.8 7280 4.06 0.75
SMAF_1 60.9 10,290 2.76 1.08
SMAF_1 61.2 9020 3.50 0.94

avg. SMAF - - - 0.92

Table 9. Average ITSR results.

Mixture ITS (MPa) ITSwet (MPa) ITSR (%)

SMA0 1.29 (±0.04) 1.13 (±0.02) 88
SMAF 0.99 (±0.03) 0.92 (±0.03) 93

All in all, both SMAs are above the ITSR limit imposed by the reference technical
specification (ITSR > 75%). The experimental mixture shows a reduced ITS both in normal
and wet conditions if compared to the reference SMA. However, it is worth underlining that,
in absolute terms, the ITSR is higher for the SMAF. Thus, it can be stated that the presence
of CFs does not negatively affect the water susceptibility of the bituminous mixtures.

3.3.4. Repeated Load Axial Test

The durability of the bituminous mixtures was also evaluated in terms of rutting
resistance. In fact, this represents a common pavement disease for high bitumen content
mixtures for surface layers. According to the [45] standard, method A, a bituminous
sample is placed between two parallel plates. The upper plate applies a cyclic compression
load and has a dimension smaller than the bituminous sample in order to achieve a
certain confinement. The standard specifies a load frequency of 0.5 Hz and a pressure of
100 ± 2 kPa. The specimen’s accumulated axial deformation is measured after 3600 loading
cycles at 40 ◦C. Three SGS samples (100 gyrations, [40]) were tested for each mixture and
the average results are presented in Table 10 and Figure 5.

Table 10. Average RLAT results.

Mixture Accumulated Strain (%) Creep Modulus (MPa)

SMA0 0.36 (±0.1) 29.6
SMAF 0.38 (±0.1) 26.5

Overall, in terms of accumulated strain, there is not a remarkable difference between
the two mixtures. The reference SMA, confirming the higher performance highlighted in
the previous mechanical characterization, recorded the lowest accumulated strain and,
therefore, the highest creep modulus. In this case, the reference technical specifications do
not specify any limit for the RLAT but the obtained results were in line with values recorded
in previous studies on SMAs with polymer-modified bitumen and modified fibers [38].
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Figure 5. RLAT average results at 40 ◦C.

The lower performance of the experimental SMA might be related to the higher
porosity of the mixture and therefore to the lower stiffness recorded for the SMAF mixture
during the ITSM characterization at high temperatures.

4. Discussion

In the present work, an exploratory experimental application of CFs as stabilizing
fibers for the production of a bituminous mixture has been proposed. The final aim of this
research project is to develop a new recycling solution in order to promote the recycling of
waste cigarette butts. Of course, a life cycle analysis (LCA) will assess the sustainability of
the proposed recycling process and final application. However, it should be highlighted
that the lack of disposal control for this waste is a significant problem, and only with a
specific collecting and disposal protocol would the recycling of cigarette butts be feasible.

As for this first experimental application, based on the results:

• The production of the experimental fibers was based on the simple shredding of
brand new CFs. The entire outcome of this process was added to the bituminous
mixture as a common commercial stabilizing fiber. From the drain-down test results,
the shredded CFs show properties similar to the reference fibers. Thus, from an
absorption point-of-view, the behavior of the experimental fibers can be compared to
the normal cellulose-based stabilizing fibers.

• The addition of shredded CFs into the experimental SMA does not affect the work-
ability and compactability properties of the mixture. The air voids content is in
line with the reference mixture and with the technical specifications for this type of
asphalt concrete.

• In terms of mechanical properties, the presence of the experimental fibers leads to
a slight reduction in the ITS, despite the fact that the obtained values are above
the requirements imposed by the reference technical specifications. This reduction
could be an indication of a lower cohesion, probably due to the limited effect of
the experimental fibers in stabilizing the high bitumen content, and in generating a
strong mastic with the finer particles of the mixture. However, the stiffness of the
experimental SMA, as well as its thermal sensitivity, was not negatively affected by
the addition of CFs.
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• As for the water susceptibility, a minimum ITS reduction was registered for the
experimental mixture. Furthermore, this reduction was lower even if compared to the
reference SMA.

• The presence of shredded CFs does not alter the rutting resistance properties of
the bituminous mixture, which were in line with common values for stone mastic
asphalt mixtures.

5. Conclusions

All in all, these preliminary results confirm that the addition of shredded CFs as
stabilizing fibers for bituminous mixture could be a feasible application.

However, it is worth noting that in this exploratory study, the CFs were simply
shredded and directly added to the mixture in a total substitution of commercial fibers.
This could represent a simple way to re-use this waste, which can be easily reproduced on
an industrial scale.

Nevertheless, the obtained promising results highlighted some downsides that might
be exceeded with a proper CFs treatment that could make this material much more similar
to the common stabilizing fibers or could mean that it gives an even better performance.
In fact, the presence of limited quantities of plug wrap paper and tipping paper after the CF
shredding are probably responsible for the lower cohesion properties of the experimental
SMA, if compared to the reference one.

Following the positive outcomes of this preliminary experimental application, in the
development of this research project, the use of waste cigarette butts will be investigated.
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