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ABSTRACT
Turbulence is a key ingredient for the evolution of the intracluster medium, whose properties
can be predicted with high-resolution numerical simulations. We present initial results on the
generation of solenoidal and compressive turbulence in the intracluster medium during the for-
mation of a small-size cluster using highly resolved, non-radiative cosmological simulations,
with a refined monitoring in time. In this first of a series of papers, we closely look at one
simulated cluster whose formation was distinguished by a merger around z ∼ 0.3. We separate
laminar gas motions, turbulence and shocks with dedicated filtering strategies and distinguish
the solenoidal and compressive components of the gas flows using Hodge–Helmholtz decom-
position. Solenoidal turbulence dominates the dissipation of turbulent motions (∼95 per cent)
in the central cluster volume at all epochs. The dissipation via compressive modes is found to
be more important (∼30 per cent of the total) only at large radii (≥0.5rvir) and close to merger
events. We show that enstrophy (vorticity squared) is good proxy of solenoidal turbulence. All
terms ruling the evolution of enstrophy (i.e. baroclinic, compressive, stretching and advective
terms) are found to be significant, but in amounts that vary with time and location. Two im-
portant trends for the growth of enstrophy in our simulation are identified: first, enstrophy is
continuously accreted into the cluster from the outside, and most of that accreted enstrophy is
generated near the outer accretion shocks by baroclinic and compressive processes. Secondly,
in the cluster interior vortex, stretching is dominant, although the other terms also contribute
substantially.

Key words: turbulence – methods: numerical – galaxies: clusters: general – intergalactic
medium – large-scale structure of Universe.

1 I N T RO D U C T I O N

The rarefied media in galaxy clusters (intracluster mediums, ICMs)
are highly dynamic and likely to be turbulent, with strong motions
on many scales that can significantly influence a wide range of ICM
physical processes (e.g. Schekochihin & Cowley 2006; Subrama-
nian, Shukurov & Haugen 2006; Brunetti & Lazarian 2007; Jones
et al. 2011). These motions may be driven by processes originat-
ing on galactic scales [e.g. starburst winds, active galactic nuclei
outflows and bubbles, (e.g. O’Neill, De Young & Jones 2009; Mor-
sony et al. 2010; Gaspari, Ruszkowski & Sharma 2012; Mendygral,
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Jones & Dolag 2012)], possibly ICM-based magneto-thermal insta-
bilities (e.g. Kunz et al. 2011; ZuHone et al. 2013), but especially
by cluster-scale processes associated with cluster formation out of
cosmological, large-scale structure (e.g. Dolag et al. 2005; Vazza
et al. 2006; Ryu et al. 2008; Lau, Kravtsov & Nagai 2009; Vazza
et al. 2011b; ZuHone 2011; Miniati 2014; Schmidt et al. 2014).

The resulting ICM driving motions on scales that range up to at
least 100 s of kpc will generally include weak-to-moderately-strong
shocks and hydrodynamic shear, both of which are expected to lead
to turbulent motions that cascade downwards towards dissipation
scales.

The solenoidal motions will stretch and fold structures, so are
primarily responsible for amplifying and tangling the ICM mag-
netic field (e.g. Porter, Jones & Ryu 2015; Beresnyak & Miniati
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2016). The compressive turbulence component will, itself, produce
weak shocks that can, in turn, generate solenoidal motions (e.g.
Porter et al. 2015). Both compressive and solenoidal turbulent com-
ponents may accelerate cosmic rays through second-order Fermi
processes (e.g. Fujita, Takizawa & Sarazin 2003; Brunetti & Blasi
2005; Brunetti & Lazarian 2007, 2016).

Several previous simulation efforts have measured the energy ra-
tio between compressive and solenoidal motions in the ICM, find-
ing a pre-dominance of solenoidal motions (e.g. Ryu et al. 2008;
Iapichino et al. 2011; Vazza et al. 2014). Interplay between the tur-
bulence and shocks may be important in other respects, as well. For
instance, turbulent amplification of magnetic fields by shocks and
associated second-order Fermi acceleration leading to radio relic
emission has been explored in several recent studies (Iapichino
& Brüggen 2012; Fujita et al. 2015; Donnert et al. 2016; Fujita,
Akamatsu & Kimura 2016; Ji et al. 2016). The relative contributions
from solenoidal and compressive turbulent components will depend
on the manner in which the turbulence is generated (Federrath et al.
2010; Porter et al. 2015) and its intensity (Vazquez-Semadeni 1994).
In the ICM, each of these conditions is likely to vary significantly
in both space and time.

This work is motivated particular by the primary need to estab-
lish when, where, how and at what level the two turbulence com-
ponents are produced and what is their relation to cluster formation
dynamics. Here we focus on the turbulence itself, postponing its
applications to subsequent works. We focus on turbulence genera-
tion, both solenoidal and compressive, and its connections to local
ICM dynamical conditions. This complements previous simulation
studies that have examined the global energetics of ICM turbulence
evolved during cluster formation, including its association with ma-
jor merger activity.

Particularly, when issues such as magnetic field amplification
and ICM dissipative processes, including cosmic ray acceleration,
are involved and when their dependences on local conditions are
important (e.g. Subramanian et al. 2006; Brunetti & Jones 2014), it
can be essential to separate solenoidal from compressive turbulent
motions. For example, in recent work, Miniati (2015) showed that
the cluster-wide ICM compressive turbulence component is likely to
have a steep (Burgers law-like) spectrum, greatly reducing the power
available for cosmic ray acceleration compared to a Kraichnan-like
spectrum unless that power can cascade to very small scales, where
it can more efficiently transfer energy to the cosmic rays.

In order to establish and evaluate the physical roles of turbu-
lence, it is essential to separate truly turbulent, uncorrelated flows
from correlated, large-scale bulk motions and shocks. Uncorrelated
flows cascade energy and vorticity to small scales where they work
to amplify magnetic fields and dissipate into heat and non-thermal
particle energy. Coherent flows, on the other hand, carry signa-
tures of global dynamical events, but are less directly connected to
dissipation and magnetic field development.

Power spectra and structure functions constructed from simula-
tion cluster-wide velocity fields typically suggest outer coherence
scales ∼1 Mpc (e.g. Vazza et al. 2009a; Miniati 2014). While these
scales correctly capture dominant, energy containing processes for
the entire cluster, they do not, as emphasized above, necessarily dis-
criminate against non-random, so non-turbulent motions. They also
span highly inhomogeneous, often stratified volumes whose mo-
tions on moderate to small scales are often too separated to be well
connected causally when local driving conditions vary abruptly in
response to non-spherical accretion or interactions (including merg-
ers) with haloes. So the ability of such global statistics to represent
turbulent motions on the scales where they are most influential is

limited. In that context, a more ‘local’ approach seems better moti-
vated. One strategy of this kind was suggested by Vazza, Roediger
& Brueggen (2012) and Vazza et al. (2014). We will follow this
strategy here in order to understand more clearly the generation,
evolution and dissipation of the solenoidal and compressive tur-
bulent motions produced during cluster formation. The following
section outlines our simulations. Section 3 provides a summary of
the several analysis tools we employ in this work, while Section 4
presents results of these analyses applied to a selected cluster sim-
ulation. Section 5 provides a brief summary and conclusion.

2 SI M U L AT I O N S

We carried out, using the publicly available ENZO code (Bryan et al.
2014), multiple cosmological simulations designed to follow closely
the formation of clusters selected to have a broad range of evolu-
tionary histories.

The simulations applied the WMAP7 �cold dark matter cos-
mology (Komatsu et al. 2011), with �0 = 1.0, �B = 0.0445,
�DM = 0.2265, �� = 0.728, Hubble parameter h = 0.702, with a
normalization for the primordial density power spectrum of σ 8 = 0.8
and a primordial index of n = 0.961. All runs were non-radiative.
No non-gravitational sources of heating were present except for an
imposed temperature floor of T = 3 × 104 K in the redshift range of
4 ≤ z ≤ 7, tuned to mimic the effects of reionization at low redshift.

We generated initial conditions (IC) separately at z = 30 for
each individual simulation using two levels of nested volumes with
comoving dimension, L0 = 44 Mpc h−1 = 62.7( ≈ 63)Mpc. This
technique is the same as introduced in Wise & Abel (2007).

First, low-resolution runs of several independent cosmological
volumes were investigated in order to select the most massive ob-
jects in the volume. Secondly, new IC were generated by nesting
two grids of 4003 cells each and two levels of DM particles (4003

each) with increasing mass resolution. The total volume was rotated
in order to host the formation of the pre-selected cluster at the centre
of the domain.

Further details of the IC so generated are as follows.

(i) Level ‘0’: resolution = 110 h kpc−1 ≈ 157 kpc and DM mass
resolution of mdm = 8.96 × 107 M�, covering the full, comoving
63 Mpc;

(ii) level ‘1’: resolution = 55 h kpc ≈ 78.4 kpc and DM mass reso-
lution of mdm = 1.12 × 107 M�, covering the innermost ≈ 31 Mpc
(centred on the cluster formation region).

Inside the central (L0/10)3 volume of each box (=6.27 ≈ 6.3 Mpc)3

(comoving), which is large enough to include the virial radii of most
of our clusters, we further refined the grid by a factor of 4. That
increased our innermost spatial resolution to �x = 13.8 h kpc−1 ≈
20 kpc.

The generation of shocks and turbulence in simulated flows may
be subject to spurious numerical effects, especially when adaptive
mesh refinement (AMR) is concerned (e.g. Miniati 2014; Schmidt
et al. 2015). We wanted to avoid spurious effects caused by an
uneven grid structure over time or space in the cluster formation re-
gion; the imposed fixed mesh refinement scheme puts 100 per cent
of the inner sub-volume uniformly sampled at 14 h kpc−1 ≈ 20 kpc.
The desired behaviour was obtained in ENZO by ‘flagging’ all
cells within the volume of interest and using the AMR scheme
to compute first the intermediate level of 40 kpc, and second the
final level spanning the same sub-volume at 20 kpc. That pro-
cedure also ensured a conservative reconstruction of the fluxes
across the coarse boundary of the 6.3 Mpc-sized, ‘zoom’ region
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with the outer, lower resolution volume, thus minimizing the noise
in the refined reconstruction of infalling matter from the periph-
eral regions. This refinement procedure goes beyond previous
sets of simulations by our group, where only a fraction (even if
quite large) of the cluster volume was refined with tailored AMR
(Vazza et al. 2009a).

The resulting full ‘Itasca simulated cluster’ (ISC)1 sample con-
sists of 20 clusters with the above time and spatial information and
has been designed to let us examine a variety of formation scenar-
ios in detail. Each cluster run required about ∼12 000–13 000 cpu h
(about 1300 root-grid time steps and ∼105 top-level time steps in
total). For analysis purposes, we saved one data cube of hydrody-
namical and N-body properties following sequences of 10 root grid
time steps before z = 1, and then after every single root grid time
step for the remaining z ≤ 1 evolution. This typically leads to ∼200
data dumps being retained for analysis. The dump time resolution
after z = 1, while not constant, was generally ∼50 Myr.

In this paper, we limit our analysis to one small-mass cluster, des-
ignated as ‘cluster it903’, that underwent a major merger event end-
ing around z ∼ 0.3. At the end of the simulation (z = 0), it903 had a
total mass, Mtot ≈ 1014 M�, with core and virial radii, rc ∼ 100 kpc,
rvir ∼ 1 Mpc, respectively. The core temperature, Tc ∼ 2 × 107 K,
corresponding to a sound speed, cs ≈ 660 km s−1. We defer the
analysis of the full ISC cluster sample to future work.

2.1 Visual impression of cluster it903

Fig. 1 shows the evolution of the total enclosed gas mass and
of the mean gas temperature for our ‘full’ high-resolution region
(6.3 Mpc)3 for cluster it903 and for an inner (1.44 Mpc)3, ‘cluster-
centred’ region moving with that cluster. We use the inner, cluster-
centred volume extensively in the following sections for the study
of turbulence and enstrophy since it reveals events involving the
cluster more distinctly than the larger volume. The plot shows the
relatively steady mass growth of it903 over cosmological times and
the major merger event beginning after z ≈ 0.4 (followed by a de-
crease in the central gas mass, due to the outflow of the gas mass
initially attached to a merger-involved subunit). This mass history
is accompanied by a sharp peak in average gas temperature at z ≈
0.35 in the cluster-centred, zoomed box and less dramatic, some-
what later (z ≈ 0.3) temperature spike in the full high-resolution
region.2

3D volume rendering snapshots3 of the (6.3 Mpc)3 high-
resolution volume are shown in Fig. 2 at redshifts z = 1, 0.5 and
0.32, which outline the evolution of the cluster into the most sig-
nificant merger events mentioned above. The left-hand column of
images highlights regions of high gas density, so provides a general
sense of the mass merger history. The centre image column high-
lights the 3D shock distribution in this volume at the same times.
The shocks are colour coded by Mach number for 1.5 � M � 20

1 The ‘Itasca’ label refers to the HPC cluster at the University of Minnesota
used to compute the simulations. The website of the project is accessible at
http://cosmosimfrazza.myfreesites.net/isc-project.
2 To avoid confusion later on, we mention here that in some analyses, we
employ a larger, 5.76 Mpc3, cluster-centred box, since that size roughly
matches the virial radius of the final cluster. For specificity, we will refer to
this as the ‘cluster virial volume’.
3 These renderings assign colour and opacity values to each voxel
in a volume depending on the value of a rendered quantity (e.g.
density), then construct perspective views using volume ray casting
(http://www.lcse.umn.edu/hvr/hvr.html).

Figure 1. Top: evolution of the integrated gas mass (black) and of the gas
mass increment/decrement (red/blue) for cluster it903 from z = 1 to 0.
Bottom: evolution of the volume-weighted mean temperature for it903. The
solid lines give the evolution for the ‘innermost’, cluster-centred (1.44 Mpc)3

volume used for our primary turbulence analysis, while the dotted lines refer
to the full (6.3 Mpc)3 peak resolution (�x ≈ 20 kpc) volume.

(red–yellow–white). The right-hand column then displays the 3D
distribution of enstrophy (ε = (1/2) vorticity2) as an easy to com-
pute and very useful proxy for the turbulence velocity distribution.
It is clear from these images, as we discuss in detail below, that the
enstrophy distribution is well connected to the shock distribution,
albeit very different in detail.

MNRAS 464, 210–230 (2017)

http://cosmosimfrazza.myfreesites.net/isc-project
http://www.lcse.umn.edu/hvr/hvr.html


Vorticity in Galaxy clusters 213

Figure 2. Volume renderings of cluster it903 at redshifts z = 1, 0.5 and 0.32 inside the 6.3 Mpc3 maximum resolution volume with �x ≈ 20 kpc. Left-hand
panels render gas density (arbitrary units). Middle panels show the distribution of shocks colour coded by Mach number in the range (1.5 � M � 20
red-yellow-white). Right-hand panels render the enstrophy distribution (arbitrary units).

Fig. 3 presents 2D slices at z = 0.32 through the centre of the
same volume and along the same line of sight as Fig. 2. The left
image shows the gas density, the middle image the gas temperature,
and the right image the shock distribution, again, colour coded by
Mach number.

3 A NA LY S I S M E T H O D S

3.1 Shock finder

We detect shock waves in post-processing analysis using the algo-
rithm presented in Vazza, Brunetti & Gheller (2009b). The scheme
is based on an analysis of 1D velocity jumps across cells. The mini-
mum of the 3D divergence of the velocity, ∇ × v, is used to identify
the centre of the shock region (see also Ryu et al. 2003; Skillman

et al. 2008). Typically, shock transitions span about two to three
cells along the shock normal. The 1D Mach number for flagged
transition is constructed from the 1D velocity jumps along each
scan axis using the Rankine–Hugoniot relations. The final Mach
number is constructed from a combination of the three 1D solu-
tions. Shock surfaces are then approximated as the ensemble of the
face areas of cells tagged as shocked by the scheme. This method
has been extensively tested against similar methods used in grid
codes (e.g. Vazza et al. 2011a) and has proven to be an efficient and
accurate measure of shock waves in cosmological runs. The kinetic
power across each flagged cell shock surface, which provides a
useful metric for energy available to dissipation in shocks, is given
by

fKE,shock = ρuv
3
sh

2
(�x)2, (1)
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Figure 3. 2D slices through the centre of the volume shown in Fig. 2 at z = 0.32, showing: (left) gas density – units of [ρ/〈ρb〉], where 〈ρb〉 is the mean baryon
density) – (centre) gas temperature [K] – and the (right) reconstructed map of Mach number – units of [log10(M)] – using our shock finder (Section 3.1).

where ρu is the comoving up-stream density, vsh = Mcs is the
comoving speed of the shock, M is the inflowing Mach number
and �x is the cell size. Total kinetic energy flux through shocks is
then a sum from equation (1) over flagged shock cells.

However, we point out that the identification and characteriza-
tion of shocks, and especially shocks with M � 1.5 and oblique
on the grid, is made uncertain by the relatively larger numerical
errors associated with very small jumps in velocity, by numerical
smearing of the shock transition (Skillman et al. 2008) as well as by
the presence of significant temperature and velocity fluctuations in
the ICM, which add uncertainties to estimates of pre-shock values
(Vazza et al. 2009b). In order to bracket the role of, mostly inconse-
quential, weak shocks in the following turbulent analysis, we will
also, present complementary results there obtained by masking out
regions close to identified shocks with Mthr ≥ 1.2. We apply this
lower Mthr bound to simplify procedures.

3.2 Filtering of turbulent motions

The extraction of turbulent motions within the cluster 3D veloc-
ity field requires a proper filtering of often comparable coherent
velocity components (characteristically larger scale) from uncorre-
lated, turbulent velocity components that cascade to small scales. As
noted above, the roles of solenoidal (rotational, incompressive) and
compressive (irrotational) turbulent motions (defined, respectively,
by ∇ · vsol = 0 and ∇ × vcomp = 0) each have important roles in
the ICM. So, as an additional step we also separated the velocity
field (both filtered and unfiltered) into those elements. To accom-
plish these objectives, we combined several steps that we previously
proposed and tested individually in Vazza et al. (2012, 2014).

As an initial step to reduce numerical noise and finite difference
cross-talk between divergence and curl operations, we applied a
first-order velocity smoothing filter to the initial full velocity field
of the simulation. This has a benign influence on extracted turbulent
velocity fields.4

For our primary turbulence filter, we applied the iterative, mul-
tiscale velocity filtering techniques based on Vazza et al. (2012)
to the (6.3 Mpc)3 sub-volume of each ENZO snapshot. This filter
reconstructs the local mean velocity field around each position, r ,

4 See Porter et al. (2015) for a detailed justification of such Favre smoothing
operations.

by iteratively computing the local mean velocity field in the ‘nth’
iteration as

〈v(Ln)〉 =
∑

i wivi∑
i wi

, (2)

where the sum is over cells within a domain of radius, Ln, and
where wi is a weighting function. In this work, we simply set
wi = 1 and use a volume-weighting, while in other applications,
in more stratified media, wi = ρ (i.e. density-weighting) is a more
appropriated choice. However, given the rather small filtering scales
reconstructed by our algorithm in the innermost cluster volume
considered in this work (Section 4), the differences between the
wi = 1 and the wi = ρ are very small, as discussed below.

The local small-scale, fluctuating velocity field within the radius,
Ln(r), relative to position r , is then computed as δv(Ln(r)) = v −
〈v(Ln)〉 for increasing values of Ln. Iterations are continued until
the change in δv between two iterations in Ln falls below a given
tolerance parameter, which, based on our tests, we set to 10 per cent.
The resulting |δv(Ln)| provides our best estimate for the turbulent
velocity magnitude for an eddy-size Leddy ≈ 2 · Ln.

We observe that, while in Vazza et al. (2012), we used the lo-
cal skewness of the velocity field as a fast proxy to tag shocks,
in this work, we can access this information in a more accurate
way through the (obviously more computationally intensive) shock
finding procedure outlined above (Section 3.3.1). Therefore, we ex-
cluded shocks by simply stopping the iterations whenever a shocked
cell entered the domain. That is, the length, Ln then represents the
distance to the nearest ‘influential’ shock. On the other hand, our
procedure is not designed to explicitly filter out the contribution
from velocity shears, e.g. at the contact discontinuity generated by
sloshing cold fronts (e.g. Zuhone & Roediger 2016). While, in prin-
ciple, the presence of such discontinuities might introduce a small
spurious contribution to our measured turbulent budget, this spuri-
ous signal is small compared to the turbulence induced by mergers
(e.g. Vazza et al. 2012). In particular, the cluster studied in this first
paper is a highly perturbed one, where the formation of sloshing
cold fronts is highly unlikely (e.g. Zuhone & Roediger 2016).

Our results here, as well as previous cluster simulations, are
roughly consistent with the behaviour of solenoidal turbulence
following the classic, Kolmogorov picture in which |δv| ∝ L1/3

n

(e.g. Ryu et al. 2008; Vazza et al. 2011b; Xu, Li & Collins 2011;
Miniati 2014). Consequently, while the rms turbulent velocity or the
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total turbulent pressure depend on Ln, the solenoidal kinetic energy
cascade flux, defined as

fKE,turb(r) = FKE,turb

�x3
= 1

2

ρδv(Ln)3

Ln

, (3)

is insensitive to the specific value of Ln as long as it is measured
within the inertial range of the turbulence.

Obviously, departures from this behaviour can appear if the turbu-
lent behaviour is very different from Kolmogorov and other, distinc-
tive flow patterns are important (e.g. coherent shock waves, see Sec-
tion 3.3.1). In the ideal case, our procedure constrains fKE, turb at the
outer scale of turbulence and Lturb = 2L, as shown in the Appendix
(Section A1.1). However, in practice, the iterations are stopped be-
fore reaching this scale, and fKE, turb is computed within the turbulent
cascade. For this reason, in the following, we will regard L as a fil-
tering rather than a turbulent scale. Reconstruction of the second is
difficult for multiple reasons, including non-equilibrium and highly
inhomogeneous flows on large scales. Therefore, in general, Lturb ≥
2L. As a comparison to the iterative filter, we also present below
some results in which a simple, fixed scale (Lf ∼ 1 Mpc) was used.

As an additional test, we have verified that the usage of a density-
weighting in equation (2) leaves our results basically unchanged.
In particular, the kinetic energy flux measured by equation (3) is
increased only by a factor of ∼2 at most, when using the density-
weighting within the central (1.44 Mpc)3 volume studied in the
following (Section 4).

3.3 Solenoidal and compressive motion decomposition

In order to characterize the dynamical properties of cluster turbu-
lence we decomposed, both, the filtered and unfiltered 3D velocity
fields of the simulations into solenoidal and compressive elements
using the Hodge–Helmholtz (HH) projection in Fourier space (e.g.
Kritsuk et al. 2011). Here we outline our fiducial method to carry
out the decomposition, while in the appendix (Section A1.2), we
compare alternative approaches and control tests on our procedure.

Our fiducial decomposition algorithm first constructed the
Fourier space velocity vector field, V (k) = F (v(r)) using 3D
FFTs,5 then found the solenoidal (k · V sol(k) = 0) component
Vi,sol, (k), i ∈ {1, 3} as,

Ṽi,sol(k) =
3∑

j=1

(
δi,j − kikj

k2

)
Ṽj (k). (4)

The compressive component in Fourier space, k × Ṽ comp(k) = 0,
was found as the residual, Ṽi,comp(k) = Ṽi(k) − Ṽi,sol(k). Inverse
FFTs, F−1(V ), then produced the associated physical solenoidal
and compressive velocity distributions, vsol(r) and vcomp(r), where,
again, r represents a point in the spatial domain. This procedure
was performed both on the full, primitive 3D velocity data, yielding
vsol(r) and vcomp(r) and on the small-scale filtered field, yielding
δvsol(r) and δvcomp(r). One of our tasks in this analysis is to compare
properties of the two solution sets.

It is useful to point out here that the products of this analy-
sis offer a useful way to estimate the local turbulent energy flux
across scales. Specifically, for uncorrelated velocities, δvL, filtered
on scale, L(r), the turbulent energy flux per unit volume was es-
timated using equation (3), for either the compressive, δvL,comp, or

5 Although this formally assumes the velocity field is periodic in the domain
of interest, our tests with non-periodic fields found this to be a minor issue.

solenoidal component, δvL,sol. In steady, Kolmogorov turbulence
(δvL ∝ L1/3), these fluxes would be scale-independent, so they
would provide robust estimates for the local turbulent energy dis-
sipation rate per unit volume, ρ εd. In Section 3.4, we outline an
alternate, complementary approach to estimation of the solenoidal
kinetic energy dissipation not requiring the above turbulence scale
filtering.

3.3.1 The influence of shocks in turbulent energy flux budgets

The presence of cluster formation shocks is problematic to the tur-
bulence component analysis. First of all, the numerically smoothed
profiles of shocks contaminate to some degree the solenoidal Fourier
field, V i,sol(k) for larger k and thus vsol and δvsol on small scales.
Fortunately, this issue is significantly mitigated by the velocity
smoothing mentioned above, as discussed in Porter et al. (2015), for
example. More importantly, while some shocks contribute appropri-
ately to the compressive velocity element, vcomp, and sometimes to
δvcomp, not all shocks, and in particular, structure formation shocks
driven by coherent flows, are not elements of uncorrelated, com-
pressive turbulence, δvcomp. The difficult issue then is one of judging
which shock compressions to count as part of the compressive tur-
bulent motions, δvcomp. In practice, some weak shocks are integral
to the turbulence, including those generated by colliding turbulent
motions (even solenoidal motions; e.g. Porter et al. 2015), while
other shocks, especially stronger ones and those whose extents ex-
ceed the cluster core scales, are more properly associated with the
generation of (random) turbulence (e.g. Federrath et al. 2010; Porter
et al. 2015), but are not elements of the turbulence per se. We are
not aware of any simple, clean and robust way to establish this
dichotomy. To explore the significance of this complication, we
carried out a series of numerical experiments in which we masked
out patches of cells around shocked cells flagged using methods
outlined in Section 3.1. That specific algorithm is identified below
as shock limiting, since, as mentioned above, the length Ln is then
limited by the separation scale of shocks with Mthr. The resulting
kinetic energy statistics were then compared to those obtained with-
out ‘shock limiting’. In each case, we also examined the velocity
fields as extracted from our iterative turbulence filter (Section 3.2)
and for turbulence motions obtained using a fixed-scale filter. To
be conservative with respect to the numerical smearing of shocks,
when we applied the masking procedure, we removed shock cen-
tres, as well as the adjacent ±2 cells along the shock normal to
ensure that the numerical shock profile (≤3 cells) is fully contained
by the masking region.

While this procedure obviously excludes some kinetic energy on
scales of a few cells as well as larger scale flows, we found that
the net turbulent, kinetic energy fluxes were not sharply reduced by
the shock limiting algorithm. As illustrated in the bottom panel of
Fig. 4, the dominant influence of the shock limiter appears to be the
reduction in the filtering length, Ln. Specifically, the shock-limited
distribution for Ln is offset to smaller Ln by roughly a factor of
3 from the non-shock limited Ln distribution. On the other hand,
the top panel, which presents radial profiles of the kinetic energy
flux, FKE (equation 3) demonstrates that the difference between en-
ergy fluxes with or without shock limiting, is generally less than
∼20–40 per cent. The application of a cluster-scaled, fixed length
turbulence filter, Lf = 1 Mpc (comparable to the rvir of the system),
however, led to seriously reduced energy fluxes, typically by factors
of ∼5–10. The fact that the fixed filtering scale Lf = 1 Mpc system-
atically underestimated the kinetic energy flux reconstructed in the
other approaches suggests that this scale is already larger than the
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Figure 4. Top: radial profiles of turbulent kinetic energy flux (equation 3)
for cluster it903 at three epochs, obtained with the iterative filter in (Sec-
tion 3.2). Solid lines show results with shocks masked out, while for dotted
lines, no masking was used. The dashed lines show the results obtained
using a fixed L = 1 Mpc filtering scale without shock masking. Bottom:
fractional number of cells with a given iterated filtering scales, 2 L, for the
it903 cluster with (dotted curve) or without (solid curve) masking of shocks.
The contribution of each cell has been weighted by its turbulent kinetic
energy.

true outer injection scale of turbulence in the domain. This follows
from the Kolmogorov picture of turbulent cascades in the ICM be-
cause on scales larger than the injection scale, the kinetic energy
flux (equation 3) is not conserved. Therefore, the values of rms ve-
locities measured on these large scales are not truly representative
of ICM turbulence.

3.4 Enstrophy as a metric for solenoidal turbulence

Previous studies (Ryu et al. 2008; Miniati 2014; Schmidt et al.
2014; Vazza et al. 2014) and our results below suggest that ICM
turbulent motions are pre-dominantly solenoidal in character. The
distinguishing property of solenoidal turbulence is, of course, that
the motions are rotational; that is, they have non-vanishing local
vorticity, ω = ∇ × v = 0. The vector vorticity, ω tends to average
towards zero, so the vorticity magnitude is more a more useful tool.

It is useful in this regard to recall that the eddy turn-over rate on
a scale 
, 1/τ eddy ∼ δv
, sol/
 ∼ |ω
|, where the subscript on |ω|
identifies this as representing circulation on the specific scale, 
.
That is, vorticity is a measure of the rate at which eddies turn over.
We will use this concept below to normalize vorticity measures in
convenient units; i.e. ω̂ = ω · τ0, where τ 0 is a representative time-
scale. Then, ω̂ represents a characteristic number of eddy turn-overs
in the chosen interval, τ 0.

As an additional perspective, we note that the square of the vor-
ticity, or more directly the enstrophy, ε = (1/2)ω2, can be related
in a turbulent flow to the kinetic energy content per unit mass,
(1/2)〈v2

sol〉, and dissipation of the solenoidal turbulence. This mea-
sure can then be matched to the solenoidal turbulent energy extracted
through the filtering algorithm discussed in Sections 3.2 and 3.3.
But, since no such filtering is involved in finding the enstrophy, the
methods are complementary.

Formally, in terms of the turbulence 1D velocity power spectrum,
Es(k), the mass weighted solenoidal kinetic energy can also be
written as:

ε = 1

2
〈v2

sol〉
∫

k2Es(k) dk∫
Es(k) dk

= 1

2
〈v2

sol〉k̄2, (5)

where k̄2 is the spectral-weighted mean of k2. The enstrophy can
be obtained directly from the simulation data by application of the
numerical, finite difference, curl operation on the primitive flow
fields. A potential issue is that finite difference gradient operations
on a compressible flow can pick up unphysical, numerical noise that
obscures the signals of interest. Previously, we referred to this as
finite difference ‘cross-talk’. However, Porter et al. (2015) demon-
strated that these effects can be significantly ameliorated by using a
simple smoothing operation on the velocity fields (‘Favre filtering’),
without significantly reducing the desired signal. Consequently, we
employ the same approach in our enstrophy analysis here, employ-
ing a simple 33 cell-average smoothing.

For Kolmogorov solenoidal turbulence, the power spectrum
can be written as Es(k) = C0η

2/3
d k−5/3 (e.g. Gotoh, Fukayama &

Nakano 2002), where ηd is the rate of solenoidal turbulent energy
dissipation per unit mass, and C0 ∼ 3/2–2, is the so-called Kol-
mogorov constant. Applying the Kolmogorov form over a range of
wavenumbers [k0, k1 = akk0], with ak > 1 equation (5), leads to the
relationships,

ε = 1

4
〈v2

sol〉k2
1 a

−2/3
k

[1 − a
−4/3
k ]

[1 − a
−2/3
k ]

= 3

4
C0η

2/3
d k

4/3
1

[
1 − a

−4/3
k

]
. (6)

The information in equation (6) can also be used to express the
turbulent energy dissipation rate, or energy flux rate, in terms of
either the solenoidal velocity or the enstrophy. In the limit ak � 1
these become,

ηd ≈
(

1

3C0

)3/2

〈v2
sol〉

3/2
k0 ∼ 0.5

(δvL)3

L
, (7)

≈
(

4

3C0

)3/2
ε3/2

k2
1

∼ 0.014ε3/2
2
1, (8)

where, in the final forms, we have set C0 = 1.8, 〈v2
sol〉)3/2 ∼ δv3

L

with k0 = 2π/L to match the energy flux relation in equation (3)
and set ak = L/
1. We tested the relations equations (7) and (8)
using steady, driven, homogeneous turbulence simulation data (of
known dissipation rate) presented in Porter et al. (2015) and found
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good agreement to within ∼15 per cent for both the velocity-based
and enstrophy-based predictions. The turbulent energy dissipation
rate per unit volume can be expressed as fturb = ρ · ηd. We will apply
these relations to our cluster simulation data in Section 4.2. In de-
veloped hydrodynamical turbulence, the total rate of that dissipation
is independent of the microphysical details, although it obviously
provides upper bounds to energy input rates.

One of the keys to a useful understanding of ICM turbulence is an
understanding of how, where and when it is generated. Enstrophy
tracking provides an effective and practical tool to study this for
the dominant, solenoidal component. To this end, we can derive an
equation for enstrophy evolution using the curl of the Navier–Stokes
equation (e.g. Porter et al. 2015); namely,

∂ε

∂t
= Fadv + Fstretch + Fcomp + Fbaroc + Fdiss, (9)

where enstrophy source, sink and flux terms, F, (all called ‘source
terms’ below) are defined as,

Fadv = −∇ · (vε) = −(ε∇ · v + v · ∇ε),

Fstretch = ω · (ω · ∇)v = 2ε(ω̂ · ∇)v · ω̂,

Fcomp = −ε∇ · v = ε

ρ

dρ

dt
= −∇ · (vε) + v · ∇ε,

Fbaroc = ω

ρ2
· (∇ρ × ∇P ),

Fdiss = νω · ∇2ω + ∇ × G . (10)

The enstrophy advection term, Fadv, in equation (10) is conser-
vative, so that its integral over a closed system must vanish. We
will see over cluster volumes, however, that the integral of this
term does not vanish. The Fstretch, Fbaroc and Fcomp terms account
for vortex stretching, enstrophy production in baroclinic flows and
in compressions, respectively. Note that the fluid compression rate,
−∇ · v, enters into both the Fadv and Fcomp terms. However, whereas
Fadv always integrates to zero in a closed system, Fcomp does not
if there is a net alignment of the velocity with the enstrophy gra-
dient field. This alignment is usually present in shocks, so that∫

Fcomp dV = ∫
v · ∇ε dV > 0 there, but is mostly small elsewhere

in the absence of systematic compression (Porter et al. 2015). In
driven turbulence ‘in a box’ simulations, this term was found to
provide a good, overall measure of enstrophy growth by way of
shocks (Porter et al. 2015). During cluster mergers, there will be
systematic compressions and rarefactions and the behaviour of the
Fcomp term will reflect that, as well. True vorticity source terms such
as vorticity creation in curved or intersecting shocks, or Fbaroc,6 for
example, while necessary to seed enstrophy in an irrotational flow,
are mostly sub-dominant in homogeneous turbulence simulations
once any vorticity exists in the flow. We will examine the var-
ied roles of each of these terms in our cluster simulation data in
Section 4.2.

For completeness, we include in equations (9) and (10) the ex-
plicit viscous dissipation term, Fdiss, where G = (1/ρ)∇ρ · S, with
S the traceless strain tensor (e.g. Porter et al. 2015). However, our
simulations are based on Euler-limit hydrodynamics, where there
is no explicit viscosity, ν. Thus, it is not possible to evaluate Fdiss

explicitly in our simulations. On the other hand, effective net turbu-
lence dissipation rates can be estimated using the turbulence rela-
tions in equations (7) and (8), which we do in Section 4.2. See Zhu,

6 Curved or intersecting shocks can create vorticity even in isothermal flows,
whereas Fbaroc cannot. So, these sources represent distinct physics.

Feng & Fang (2010) and Schmidt et al. (2014) for previous analo-
gous turbulence dissipation analyses in clusters. We will examine
this issue more broadly for the ISC simulations in a subsequent
paper.

4 RESULTS

As mentioned in Section 2, we focus this paper on the one cluster
designated it903, while we defer the study of the complete ISC
sample to future work.

4.1 Preliminary turbulence analysis

We start our analysis of turbulence in it903 by studying the spa-
tial distribution of the gas velocity field, filtered according to the
methods presented in Section 3.2-3.3.

Fig. 5 illustrates a 2D slice of the velocity field at z = 0.32,
processed in several ways to reveal its turbulence properties: un-
filtered total velocity along with its compressive and solenoidal
components (top row) or small-scale filtered velocity field (as in
Section 3.2) and its components (bottom row). The distribution of
filtering scales used to remove large-scale motions has been shown
in the bottom panel of Fig. 4.

The general evolution of this cluster, until the last major merger
close to z ≈ 0.3, can be seen in the sequences of 3D volume-rendered
images in Fig. 2. The merger developed along the upper-left, lower-
right diagonal of this view. While the volume distribution of shocks
visible in Fig. 2 is quite complex, the 2D slice in Fig. 3 reveals two
fairly clear merger shocks near the centre of the shock image and
about 500 kpc from the cluster centre at this epoch. The estimated
Mach numbers are M ∼ 2.5–3 in each case. Stronger shocks are
visible at larger distances in both the 3D and 2D images. Mach
numbers approach M ∼ 102 for outer accretion shocks. While the
accretion pattern of this object is dominated by the large-scale fila-
mentary accretion along the merger axis, small filamentary accretion
patterns are detected in other directions.

Before entering through accretion shocks, the accreted gas
reaches typical infall velocities of ∼500–700 km s−1 at this epoch.
This flow is pre-dominantly compressive, yet significant solenoidal
velocity components are present even before crossing accretion
shocks, where filaments break the spherical geometry of accretion
shocks (e.g. in the top right corner of the image). Shock interactions
also significantly enhance the solenoidal motions (see Section 4.3).

Inside the cluster the coherence of infall motions gets broken
by irregular, converging flows and resulting shear motions. The
maxima in the velocity field, associated with the density peaks
of substructures, can reach ∼500–800 km s−1. Even the unfiltered
velocity field gives a clear visual impression of a pre-dominance of
solenoidal motions within the cluster. The principal exceptions are
associated with strong shock waves sweeping through the volume
at all times, but especially during the major merger.

The actual predominance by solenoidal turbulent motions is
clearly revealed when large-scale laminar motions and shocks are
filtered out (lower right panel of Fig. 5). The total filtered veloc-
ity (lower left panel) is dominated by solenoidal motions every-
where except near shocks, where small-scale velocity structures
(∼100 km s−1) are impossible to distinguish between real small-
scale turbulence and simpler shock jumps. Everywhere at dis-
tances ≥100 kpc away from shocks, the small-scale velocities are
almost entirely solenoidal. The absolute maxima of the small-scale
solenoidal velocity field are found at the interface of filamentary ac-
cretions within the cluster volume, and also downstream of shocks.
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Figure 5. Velocity field for the same slice as Fig. 3, according to different filtering strategies. Top row: magnitude of the total velocity field, compressive
and solenoidal velocity components. Second row: magnitude of the small-scale filtered turbulent velocity (Section 3.2 for details), compressive and solenoidal
turbulent components of the velocity field.

We will analyse the generation/amplification of vorticity at shocks
in the next section.

We next analyse the turbulent nature of the flow using power
spectra of the (unfiltered) velocity field shown in Fig. 6. For that we
computed the 3D power spectra within increasing volumes around
the centre of it903 at z = 0.32, assuming, for that exercise, periodic
boundaries in application of FFTs. The spectra for the total velocity
field show the typical power-law behaviour of clusters simulated
in this way (e.g. Vazza et al. 2011b), up to nearly two orders of
magnitude in scale when the cluster virial volume(5.76 Mpc)3 is
considered. The spectrum flattens at low k-values, but the power
law is close to E(k) ∝ k−2 (i.e. steeper than Kolmogorov turbu-
lence) for most scales. Fig. 7 shows the complementary view of
the second-order longitudinal structure function for the same vol-
umes, obtained by randomly extracting ≈5 · 104 paris of cells in
the domain. The trend of the structure functions is similar to the
results of Miniati (2014), with hints of a flattening at ∼ Mpc scales
and of a steeper behaviour of the compressive component at small
scales. In both panels, we also show in colours the spectra/structure
functions of the solenoidal and compressive components. Again,
this shows how the solenoidal component is larger at most scales.
However, in the largest box, the difference between the two modes
is reduced, and in this case, the smallest scales are dominated by
the compressive component, suggesting the relevant contribution
of shocks forming in cluster outskirts. When larger volume are in-
cluded, the compressive structure functions steepen at small scales,

Figure 6. Power spectrum of the 3D velocity field within increasing vol-
umes around the centre of cluster it903 at z = 0.32. The black lines show
the spectra for the total (unfiltered) velocity, the red (blue) lines show the
spectra of the solenoidal (compressive) velocity components. The additional
straight grey lines show the ∝ k−5/3 and ∝ k−2 for comparison. In each line,
the wavenumber k is referred to each specific volume (i.e. k = 1 references
1.44, 2.88 or 5.76 Mpc. For clarity, the spectra of different boxes have been
multiplied by the corresponding volumes.
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Figure 7. Second-order longitudinal structure functions for the same re-
gions of Fig. 6, with identical meaning of colours and linestyles. The ad-
ditional straight grey line shows the S2(l) ∝ l trend for comparison. For
clarity, the structure functions of different boxes have been multiplied by
the corresponding volumes.

strengthening the view that shocked regions become increasingly
more relevant on large scales. In both views, the recovered trends are
consistent overall with the picture of a turbulent ICM, mixed with
large-scale regular velocity components for scales ≥0.1–1 Mpc and
punctuated by small-scale velocity perturbations due to shocks.

We notice that our analysis detects a significantly steeper slope
(both in the power spectra and in the structure function) in the
solenoidal component, compared to the compressive component.
This is at variance with some other recent numerical studies of
turbulence in the ICM (e.g. Miniati 2015; Porter et al. 2015). How-
ever, understanding the origin of this difference is not trivial. Most
of the difference is seen at small scales, when the impact of numer-
ical dissipation is larger (e.g. Kritsuk et al. 2011). Moreover, the
mass/dynamical state of it903 is different from the one analysed in
Miniati (2015), and also our method for the mode decomposition of
turbulent modes is different (Section 3.3, see also Appendix A.1.2).
Constraining the slope of turbulent modes at small scales in the ICM
is relevant to estimate of (re)acceleration of radio emitting particles
(e.g. Brunetti & Jones 2014; Miniati 2015; Brunetti 2016), but we
defer a more extensive exploration of this issue to future work with
our ISC sample.

In Fig. 8, we show the evolution of the power spectrum in the
inner, cluster-centred (1.44 Mpc)3 region of the two components at
different epochs (top panel), and the ratio between the compres-
sive and the total velocity power spectrum for the same epochs
(lower panel). While the solenoidal component only shows varia-
tions within a factor of 2 for k ≥ 2 at all epochs, the compressive
component varies more significantly over time and at all scales.
Consequently, the ratio between the compressive and the total power
spectrum also shows significant variations: in the investigated inter-
val it ranges from ∼5 per cent to ∼50 per cent at the largest scales
and from ∼30 per cent to ∼50 per cent at the smallest scales. How-
ever, it is worth noticing that that the actual difference between
solenoidal and compressive turbulence is not properly captured by
this simple ratio. In reality, large-scale velocity fields introduce reg-
ular components at all spatial scale, which are best removed only
by our multiscale filter. Likewise, shocks very significantly bias the
estimate of the real compressive turbulence at the smallest scales. It
is not simple to evaluate the proper role of such shocks. Some, es-
pecially weak shocks with large curvature, are truly components of

Figure 8. Top panel: evolution of the power spectrum of the solenoidal and
compressive velocities for the inner, cluster-centred (1.44 Mpc)3 region of
it903. The compressive component has been rescaled by a factor of 0.5 for a
better visibility of all curves. Bottom panel: ratio of the compressive to the
total velocity power spectrum as a function of wavenumber, for the same
redshifts of the top panel. The wavenumber k has the same scale of Fig. 6,
for the (1.44 Mpc)3 volume.

the compressive turbulence (i.e. uncorrelated flows), while stronger
shocks with small curvature are not. In either case, said shocks can
become sources of turbulence and our approach is to try to allow
for a range of possibilities.

The average (volume-weighted) radial velocity profiles for differ-
ent epochs of it903 are given in Fig. 9 and can be compared with the
small-scale filtered profiles (bottom panel). We also show the av-
erage volume-weighted profiles of the compressive and solenoidal
components. In the early stages of cluster formation, the total ve-
locity was large in the centre, ∼500 km s−1. At later stages, after the
major merger, it flattened at all radii and decreased to ∼200 km s−1

in the central regions, slightly increasing outwards. The unfiltered
compressive velocity field is found to be larger than the solenodial
field only in the centre of it903 at high redshift (z = 0.84), following
supersonic bulk motions associated with fast infalling gas substruc-
tures (Fig. 2, top panel), while it is always smaller later on. The
measured small-scale velocities (referred to within an ∼200 kpc
scale in the shock limiter case, or ∼400 kpc in the case without
masking of shocks, as in Fig. 4) using our filtering approach are
of the order of ∼100–200 km s−1 at most epochs, with a very flat
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Figure 9. Average radial velocity profiles for it903 at different redshifts.
Top panel: average total (unfiltered) velocity profile (solid), further de-
composed into solenoidal (dashed) and compressive (dotted) components.
Bottom panel: average small-scale filtered velocity profiles for the same
redshifts, according to our procedure of Section 3.2 with masking of shocks
with M ≥ 1.2.

profile outside the cluster core. The small-scale compressive ve-
locity component is found to be significant (but still smaller than
the solenoidal one) close to the major merger event at z = 0.32. In
particular, outside rvir, we measure a very significant jump in the
compressive small-scale velocity, × 2–3 larger than the increase in
the solenoidal component at the same radius.

An important point to stress here is that neither of these two veloc-
ity profiles characterizes the full turbulent (uncorrelated) velocity
field of the ICM. For the first, unfiltered case, the contribution from
laminar infall motions (clearly visible in Fig. 5) biases the velocities
high compared to random components, while in the second case, our
filtering procedure computes the rms random velocities only within
the Ln reached before the filtering algorithm stops when finding
a shock or converges on an average velocity within the scale, Ln.
The scales Ln will generally underestimate the true outer scale for
uncorrelated motions. Moreover, the inhomogeneity of the cluster
limits the meaning of these scales, as rms velocity extracted using
different Ln are not easily compared.

As we already commented in Section 3.2, the kinetic energy flux
represents a more robust tool than velocity magnitudes to measure

the consequences of random velocity components, because it is a
relatively scale-independent measure across the turbulent cascade.7

In addition, the kinetic energy flux itself has important physical
meaning. It bounds the dissipation rate of kinetic energy of gas
motions into thermal energy (e.g. Zhuravleva et al. 2016; ZuHone,
Markevitch & Zhuravleva 2016) and into cosmic ray energy (e.g.
Brunetti & Jones 2014; Miniati 2015). That energy flux also feeds
the amplification of magnetic fields via small-scale dynamo action
(e.g. Porter et al. 2015), although on smaller scales than we simulate
here (e.g. Beresnyak & Miniati 2016). Therefore, in the remainder
of this paper, we will use the turbulent energy flux as our primary
turbulence metric, rather than the velocity field or the kinetic energy
to describe the turbulence in it903.

The energy flux across shocks provides an additional, specific and
important ICM dynamical metric, since some fraction of this energy
is dissipated into heat, while some of it also feeds the generation
of turbulence, as outlined above. In Fig. 10 (top left), we show
the kinetic energy flux though shocks (fKE, shock, equation 1) and, for
comparison, the kinetic energy flux of solenoidal (bottom right) and
compressive (bottom left) filtered velocity fields (fKE,turb, equation 3)
for the same slice as in Fig. 5. To better highlight the role played
by shocks, in the same figure (top right panel), we also show the
kinetic energy flux of the total filtered velocity field, after masking
the region tagged as shocked (Section 3.3.1).

The kinetic energy flux in the cluster is dominated by central,
merger shocks, which process ∼1040−1041 erg s−1 per cell. How-
ever, in the innermost (1 Mpc)3 cluster volume, downstream of the
expanding merger shocks, the kinetic energy flux in the solenoidal
component displays many large patches of high dissipation rate,
with values of the order of ∼1039−1040 erg s−1.

The radial profiles of the ratio of compressive to total kinetic
energy flux, fKE, turb.comp/fKE, turb, are given in Fig. 11, both for the
small-scale filtering procedure without masking shocks, and for the
filtering procedure including shock masking when M ≥ 1.2 (Sec-
tion 3.3.1). At all epochs, the flux ratio displays a marked increase
with radius. With shocks included, the flux ratio is ∼2–3 times larger
(i.e. the relative energy flux of the compressive components is in-
creased). When shocks are not included, the flux ratio is only ∼ a
few per cent in the central Mpc3 volume (≤0.5 rvir) at all investigated
epochs. This further justifies our use of enstrophy as a trustworthy
proxy of turbulence in the following section. Interestingly, close
to the major merger epoch (z = 0.32 in the figure) and at larger
radii, the flux ratio jumps to ∼30 per cent (∼40 per cent if shocks
are included), highlighting the significant generation of compres-
sive turbulence triggered by the merger. We remark that, in order to
better generalize this results, the analysis of a more extended set of
clusters is necessary.

4.2 Enstrophy analysis

In Section 3.4, we outlined properties of fluid enstrophy,
ε = (1/2)ω2, that can be used effectively and efficiently to probe
properties of solenoidal turbulence. Here, we apply those tools to
the simulation data for the it903 cluster.

Fig. 12 illustrates the evolution since z = 1 of volume-averaged
enstrophy within the full (6.3 Mpc)3 high-resolution volume (dot–
dashed line) and within the smaller, cluster centred, (1.44 Mpc)3

7 We remark that this scale invariance is strictly valid only in the Kolmogorov
regime. It is approximate here, since the spectra for the two components in
this work show some degree of departure from this.
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Figure 10. Distribution of shock kinetic power (top left), filtered compressive (bottom left) and filtered solenoidal (bottom right) kinetic energy flux for the
same slice of Fig. 5. The top right panel additionally show the kinetic energy flux of the total filtered velocity field, with the additional masking of shocked
regions.

volume (solid line). It is obvious that signatures of the cluster dy-
namical history are much more evident if one focuses on a relatively
small volume more closer to the virial size of the cluster. The z ∼ 0.3
major merger is quite obvious in the smaller volume but not evident
at all in the larger one. The enstrophy is expressed again as the
normalized quantity, ε̂ = ε · τ 2

0 , where the characteristic time, τ 0,
with τ 0 = 1 Gyr. Then,

√
ε̂ represents a representative number of

turbulent eddy turnovers per Gyr. For comparison, a characteristic
eddy velocity, δvsol ∼ 100 km s−1 and a characteristic coherence
scale L ∼ 100 kpc, lead to 1/

√
ε ≈ 1 Gyr. Here, in the smaller

volume, the characteristic 〈ε̂〉 ∼ 10, implying eddy turn-over times
∼300 Myr.

In addition, the mean enstrophy in the smaller, cluster-centred
volume is several times larger than in the bigger volume. Although
the mean enstrophy evolution in the larger volume does not reveal
distinct events, it does show a slow, monotonic increase over time by
roughly a factor of 2, thus reflecting a gradual increase in turbulent
energy per unit mass over time. The absence of clear signals for
discrete events in this larger volume is due to the strong cluster
concentration of the enstrophy evident in Fig. 2, or, analogously,
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Figure 11. Radial profile of the ratio between the kinetic energy flux of
the small-scale compressive components and the total small-scale kinetic
energy flux ((with or without our shock masking procedure in both cases).
The profile are drawn for the three epochs of Fig. 4.

Figure 12. Evolution of volume-averaged enstrophy, 〈ε̂〉, in the it903 clus-
ter. The black, solid curve includes only the (1.44 Mpc)3 cluster-centred
volume, while the red, dot–dashed curve uses the full (6.3 Mpc)3 high-
resolution volume. Enstrophy is normalized to the representative time-scale,
τ 0 = 1 Gyr.

concentration of the turbulent solenoidal velocity field shown in
Fig. 5 or Fig. 10.

4.2.1 Comparison with solenoidal turbulent velocity field

One of our objectives in this discussion is to establish the degree of
concordance in our simulations between enstrophy as outlined in
Section 3.4 and solenoidal turbulent velocity metrics as determined
using methods outlined in Section 3.3. The 〈ε〉 values in Fig. 12

provide one simple test. In Section 4.1, we found characteristic
turbulent solenoidal velocities vsol ∼ 80 km s−1 (see Fig. 10). Those
values lead to ε̂ ∼ 10 (with τ 0 = 1 Gyr) provided length-scales, 
̄ =
2π/

√
k̄2 ∼ 100 kpc, which is quite consistent with the coherence

scale analysis in Section 4.1.
A second valuable example of cross-comparison between the

enstrophy and velocity analysis of turbulence comes through eval-
uation of the energy dissipation rate of the solenoidal turbulence,
which we expressed in terms of the solenoidal turbulence velocity
in equation (7) and in terms of the enstrophy in equation (8). In
Fig. 13, we illustrate the spatial distribution in a 2D slice of the
turbulence dissipation rate per volume at z = 0.32 from, on the left,
the solenoidal turbulence (filtered) velocity field itself (equation (7)
times ρ), and, on the right, the enstrophy field (equation (8) times
ρ). There are minor difference in the details, but, on the whole, the
agreement is remarkably good.

In Fig. 14, we provide a comparison of the volume-integrated
turbulence dissipation rate over time inside the (1.44 Mpc)3 ‘cluster-
centred’ volume computed using the two formulations, again with
δvL and L derived from the filtering analysis in Section 4.1 and with

1 = �x. For the most part, the two dissipation rate estimates agree
to much better than a factor of 2. The good agreement between
these two independent estimates of the turbulent dissipation rate
(also applying information on very different spatial scales) stresses
once more that we are capturing reasonably well a turbulent-like
cascade in its inertial range.

The only significant exception to the match between the two en-
ergy dissipation rates occurs early on, around z ∼ 1. At this epoch,
our zoom volume is mostly transected by large-scale converging
motions on the proto-cluster. These motions have coherence scales
of the order of the box size, which makes it impossible for our mul-
tiscale filter to correctly disentangle bulk and turbulent component.
Thus, the filter identifies as turbulence even large-scale shear mo-
tions outside of the proto-cluster, which did not have enough time to
cascade down to the scale where enstrophy is measured. However,
this problem quickly disappears as the cluster volume grows and
the ‘zoom’ region is mostly filled by the virial cluster volume.

In addition to the major merger event around z ∼ 0.3, there are
other, recognizable turbulence evolution features visible in Figs 12
and 14. These include a broad enstrophy peak in Fig. 12 between
z ∼ 0.8 and 0.6 with a maximum around z ∼ 0.7. This peak breaks
into a pair of peaks near z ≈ 0.85 and 0.6 in the turbulent energy
dissipation rate. The enstrophy evolution plot exhibits shoulders at
those times, but the peak is clearly offset in time.

Similarly, a close comparison of the enstrophy peak associated
with the major merger shows that the turbulent energy dissipation
peaks around z ≈ 0.32, whereas the enstrophy itself peaks ∼1/2 Gyr
later. Both behaviours are associated with the major merger event,
but represent somewhat different dynamics. In particular, the turbu-
lence dissipation rate actually peaks just before the closest approach
of the two sub-cluster cores, when the enstrophy is most highly
concentrated into the regions of highest gas density. The turbulent
energy and its dissipation are also then focused into these regions.
Dissipation rates outside the core regions remain relatively smaller.
On the other hand, the sharp decrease in the mean enstrophy after
core passage near z ≈ 0.32 is actually not so much a consequence
of dissipation as of the strong outflows following the merger shocks
generated during the event. In fact, as we point out in the section
below, there is a net outflux of enstrophy from this central volume.
There is, in addition, systematic decompression of the gas, which,
as equation (9) emphasizes, leads to enstrophy reduction.
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Figure 13. 2D slice at z = 0.32 (same as in Fig. 3) showing (left) the turbulence dissipation rate per unit volume based on the solenoidal turbulence velocity
and equation (7; or equation 3) and (right) the equivalent turbulence dissipation rate based on the enstrophy and equation (8).

Figure 14. Turbulence energy dissipation rate integrated over the
(1.44 Mpc)3 comoving cluster-centred volume from the (filtered) solenoidal
turbulence velocity field (red dashed curve) and from the enstrophy distri-
bution (black solid curve).

The two earlier spikes in turbulent energy dissipation evident in
Fig. 14 also correspond to merging activity, although minor mergers
only. In each case, there are brief intervals when turbulent motions
are concentrated into the cluster core, which leads to sharp rises in
the turbulent dissipation rate. The immediate impact on the total
enstrophy budget is less significant in these cases.

Related information is illustrated in Fig. 15. It shows how ra-
tios of various kinetic energy fluxes evolve with time in the inner,

Figure 15. Evolution of different energy fluxes for it903 (averaged within
the central 1.443 Mpc3 region: (a) total kinetic energy flux over shock kinetic
power (black); (b) compressive kinetic energy flux over total kinetic energy
flux (blue); (c) compressive kinetic energy flux over shock kinetic power
(red). The spread in the ratios at each redshift indicates ranges related to
the inclusion or exclusion of shocked regions to compute the kinetic energy
flux (the upper bounds being the estimates including shocked regions).

cluster-centred volume. For each redshift, we show both the values
obtained by removing the contribution from shocked regions (lower
bound of each colour) or by including M ≥ 1.2 shocks in the tur-
bulent kinetic flux (upper bound). While the specific value of each
ratio can change up to a factor of ∼2 for most of the evolution, most
of the time features are seen in both cases, and are in phase with the
spikes in turbulent dissipation already noticed in Fig. 14. In partic-
ular, each of the large spikes (z ≈ 0.85, 0.6 and 0.38) is associated
also with the increase of the compressive kinetic flux, which reaches

MNRAS 464, 210–230 (2017)



224 F. Vazza et al.

Figure 16. Evolution of the source terms for enstrophy averaged over the
(1.44 Mpc)3 cluster-centred volume of the it903 cluster. Quantities (each
∝ t−3) are normalized by the representative time-scale, τ 0 = 1 Gyr.

∼10–15 per cent of the total flux. Away from these spikes, the dis-
sipation of turbulent motions is generally contributed by solenoidal
motions at the ∼95 per cent level. In this central volume, the total
kinetic energy flux is smaller than the kinetic power of shocks at
most redshifts, with the exception of z ≤ 0.1 when the two becomes
comparable in the absence of significant shock waves crossing the
domain.

4.3 How, where and when is solenoidal turbulence generated
in the ICM?

The previous analysis suggests that, while the budget of purely com-
pressive turbulence is subject to uncertainties related to the presence
of shocks, enstrophy provides consistent measures for the local and
global solenoidal turbulence. Now we look at the processes that
generate enstrophy described in equations (9) and (10), which al-
lows a deeper understanding of the sources and amplification of
turbulence in the cluster over time. Fig. 16 shows the time evolution
of the enstrophy source terms defined in the above equations. Anal-
ogous to the enstrophy plots in Fig. 12, we apply a normalization
factor τ 3

0 . The various ratios, ετ 2
0 /Fxτ

3
0 , then provide measures of

the growth (or damping) time-scale due to a given source term, Fx,
measured in time units, τ 0 = 1 Gyr. Indeed, by comparing Figs 12
and 16, we can confirm that the time-scales for the various source
terms in this volume are τ ∼ 1–3 Gyr, consistent with the apparent
evolution time-scale of the enstrophy in Fig. 12.

As a reminder, the Fadv term, analogous to ∇ · vρ in the mass
conservation equation, measures the net enstrophy influx rate, while
Fstretch relates to the net rate at which vortex tubes are lengthening,
Fstretch > 0, or shortening, Fstretch < 0. The Fcomp term identifies
regions where enstrophy concentration correlates with ongoing gas
compression. That can be reversible or not, depending on whether
the gas compression is reversible or not (i.e. in shocks). The Fbaroc

enstrophy source term identifies where non-vanishing cross prod-
ucts of density and entropy gradients align with the local vorticity
(which may be expected downstream of non-planar shock struc-
tures, for example).

We note three obvious properties of the individual source terms
as revealed in Fig. 16. The first is that all the source terms, 〈Fadv〉,
〈Fcomp〉, 〈Fstretch〉 and 〈Fbaroc〉 averaged over this (1.44 Mpc3) vol-
ume are roughly comparable. During merger events around z ∼ 0.7
and z ∼ 0.3, when the mean enstrophy is most rapidly increasing
(Fig. 12), the 〈Fstretch〉 term dominates, but only at most by a fac-
tor of ∼2. During the major merger event around z ∼ 0.3, there is
also a sharp peak in the compressive source term, 〈Fcomp〉, in this
volume.

The second notable outcome revealed in Fig. 16 is that, despite
the fact that Fadv is a conservative quantity, so that

∫
Fadv dv = 0

over a closed volume, during most of the cluster history 〈Fadv〉 > 0
in this volume. This highlights the fact that as a part of the accre-
tion building the cluster, substantial enstrophy is also added into
the central regions from outside. In fact, this enstrophy accretion
is, most of the time, competitive with locally generated enstrophy
growth (the other three terms). Enstrophy accretion into the cluster
central region is identified below as at least partly a consequence
of vorticity generated near the accretion shocks outside the cluster.
We note, finally in reference to Fig. 16, that there is a brief period
around z ∼ 0.25, following the major merger when both 〈Fadv〉 and
〈Fcomp〉 become slightly negative in this volume. That behaviour
reflects an expansion and outflow of gas from the cluster during this
same interval that is visible also in Fig. 1.

Key insights into the origins of the enstrophy within the clus-
ter can be gained by examining the spatial distributions of the
enstrophy source terms. For instance, Fig. 17 shows in the same
6.3 Mpc × 6.3 Mpc, 2D slice used before at z = 0.32 (so during the
major merger) the distribution of the four enstrophy source terms.
The distribution of the enstrophy itself in this slice (not shown) is
qualitatively similar to the distribution of filtered solenoidal veloc-
ity in the lower panel of Fig. 5. The advective source term, Fadv,
and especially the stretching source term, Fstretch, have very roughly
similar distributions to the enstrophy, as we might expect, since
both are proportional to ε. In detail, however, all four distributions
are quite distinct, as we should also expect, since each depends on
unique dynamical behaviours.

It is also useful to compare the source term distributions to the
distribution of shocks in the same region (yellow contours). There
is, in this context, an anticipated association between shocks and
the Fbaroc and Fcomp terms. Indeed, Porter et al. (2015), for example,
demonstrated in compressible turbulence simulations that where
the existing enstrophy is intense, and a strong shock exists, the
compressive source term tends to be large. In this case, however,
the relationship is complex.

This last point and its explanation are made clearer by examining
two zoomed ∼(1.5 Mpc2) sub-sections of Fig. 17. In particular,
we focus on the core cluster region between two merger shocks
waves (Fig. 18), and on the lower right accretion shock (M ∼
102), well outside the cluster core (Fig. 19). Once again recall
that these slices come from z = 0.32 during the major merger
and when, according to Fig. 16, the enstrophy growth in the cluster
centred volume peaks. In between the two internal merger shocks in
Fig. 18, the Fadv and Fstretch terms show strong, distributed patterns of
enstrophy development. In comparison, the Fbaroc and Fcomp terms
are significant only very close to the merger shocks. Both show
strong positive and negative peaks. In contrast, both the Fbaroc and
Fcomp terms associated with the accretion shock in Fig. 19 are pre-
dominantly positive, and their net contributions dominate those of
Fadv and Fstretch in the area shown.

The picture that develops from this analysis is that the vorticity
(enstrophy) generation within the cluster is a two-step process.
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Figure 17. 2D distribution of enstrophy source terms in the same slice as Fig. 3 also at z = 0.32. The source terms, defined in equation (10), are normalized
by the factor τ 3

0 , with τ 0 = 1 Gyr. The yellow contours show the location of detected shocks, based on their kinetic energy flux (only ≥1030erg s−1 cells are
marked here).

(i) Initial generation takes place in the cluster periphery in as-
sociation with accretion shocks via baroclinic influences and com-
pression. The compression contributions involve both external, ac-
creting vortical motions and, as discussed in Porter et al. (2015)
creation of enstrophy through shear stresses generated within com-
plex shock structures. Some enstrophy also is accreted, especially
along filaments.

(ii) Subsequently, this enstrophy (solenoidal turbulence) is ac-
creted into the cluster (Fadv), and in the innermost cluster regions,
the cluster enstrophy evolves especially by stretching, Fstretch, but
also by compressing those vortex structures initially generated in
the cluster outskirts. Since those latter source terms are largest
during merger activity, vorticity develops most strongly in those pe-
riods. Cluster-core-scale flows and shear are dominant contributors
to those drivers.

To summarize this section, we surmise, using a combination of
analysis tools, that the solenoidal turbulence found in the innermost
regions of clusters is pre-dominantly the result of injection and
enhancement of accreting vortical flows at accretion shocks, fol-
lowed by significant amplification by central advection, stretching
and compression, particularly during merger events. The compres-
sive and advective contributions can be at least partially reversible,

whereas the stretching and baroclinic contributions generally
are not.

4.4 Comparison to previous work

The existing literature on numerical studies of turbulence in ICMs
offers several interesting comparisons to the results reported here.
Various studies have examined the distribution of global turbulent
power in velocity fluctuations on different scales, either through
power spectra (e.g. Vazza et al. 2009a; Vazza et al. 2011b; Gaspari
et al. 2014; Schmidt et al. 2014) or structure functions (Vazza et al.
2011b; Miniati 2014, 2015).

The character of the ICM gas flows and the presence of turbulence
in our simulated cluster is consistent with other high-resolution sim-
ulation studies in the literature (e.g. Dolag et al. 2005; Vazza et al.
2011b; Miniati 2014; Schmidt et al. 2014), with quantitative dif-
ferences related to the specific analysis techniques. In the limited
context of high-resolution grid-based simulations of non-radiative
clusters, the pressure support from turbulence in the cluster core
has, for example, been estimated in the range of ∼5–15 per cent
of the gas pressure using the total, global gas velocity dispersion
(e.g. Lau, Kravtsov & Nagai 2009; Nelson, Lau & Nagai 2014),
or, say ∼5–20 per cent from large-scale, incoherent, but fixed-scale
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Figure 18. Zoomed, 1.7 Mpc × 1.7 Mpc, central portion of Fig. 17, focusing
on the ‘double relic’ looking shock structure that has formed as a result of
the ongoing merger. The units are as in Fig. 17. Identified shocks are again
indicated by yellow contours.

Figure 19. Zoomed, 1.5 Mpc × 2 Mpc, lower right portion of Fig. 17,
focusing on an accretion shock just above the bottom boundary. The units
are as in Fig. 17.

velocity distributions, Vazza et al. (2011b). On the other hand, sig-
nificantly smaller turbulent pressures tend to result from multiscale
filtering algorithms (e.g. ∼1–5 per cent; Vazza et al. 2012) or from
simulations employing sub-grid turbulence modelling (e.g. ∼0.2–
20 per cent, Maier et al. 2009; Schmidt et al. 2014).

These numbers just highlight the underlying difficulty in disen-
tangling large scale from small-scale motions and assessing what is
the best way to extract the purely turbulent component of complex
and stratified 3D flows. At that level, the issue is partly one of the in-
tended meaning of the term ‘turbulence’. Is the aim, for instance, to
identify an energy reservoir for heat and/or cosmic rays, or is it sim-

ply to characterize deviations from hydrostatic equilibrium? On top
of that issue is the inherent uncertainty in the meaning of the veloc-
ity variations due to inhomogeneity and stratification of the cluster,
the usually unsteady cluster dynamical state (e.g. Lau et al. 2009;
Vazza et al. 2011b), and the impact of additional physics such as
radiative cooling and feedback (Nagai et al. 2013; Vazza, Brüggen
& Gheller 2013; Battaglia et al. 2015; neglected in this study). Non-
physical influences, including simulation numerical resolution and
algorithms (Dolag et al. 2005; Battaglia et al. 2015) also are certain
to influence these outcomes at some level. It is important to isolate
as much as possible the issues, so to address them as cleanly as
possible.

The closest analogy to this study is the ‘Matryoshka’ simulation
by Miniati (2014), who, using a simulation strategy similar to ours,
followed the evolution of an ∼1015 M� cluster using ≈10 kpc
resolution inside the virial radius (which roughly spans a ∼6 times
larger dynamical range). The ‘Matryoshka’ cluster gas velocity field
was examined using structure functions and HH decomposition to
follow global evolution of solenoidal and compressive turbulence
properties separately within roughly the cluster core and inside the
virial radius (Miniati 2014, 2015). Even though the ‘Matryoshka’
cluster was ∼10 times more massive than it903, the general history
of the cluster and the character of evolving turbulence are roughly
similar. Miniati (2015) found compressive turbulence to be in the
range of ∼0.2–0.4 of the total turbulent energy in the central (Mpc)3

region.
Our results are roughly similar, but suggest a significantly smaller

contribution from compressive turbulence because of our filtering
of shocked regions. We found in it903 that the compressive dissi-
pation rate is, in general, ∼5 per cent of the total dissipation rate
for most of the cluster lifetime, with a spike of ∼15 per cent during
the major merger event (the jump in the compressive dissipation is
larger in cluster outskirts, where it reaches ∼30 per cent close to the
merger). This translates roughly into a 15–30 per cent energy frac-
tion in compressive turbulence, assuming both components have
identical outer scales. Additionally, we measure a steeper spectral
distribution of energy in the solenoidal velocity component than in
the compressive component.

We surmise that the reduced compressive turbulence role we
found is mostly due to our procedure of extracting turbulent motions
(both solenoidal and compressive) from the filtered, small-scale
uncorrelated velocity field (Section 3.2), rather than from the total
velocity field, but also from our removal of contributions from
stronger shocks to the turbulent motions on the grounds that most
of those strong shocks are not directly involved in the uncorrelated
motions.

Even if the procedure of imposing a fixed filtering scale for
the entire volume, as in Miniati (2014), mostly removes the large-
scale laminar velocity component (see also Vazza et al. 2011b), that
procedure cannot fully account for the variation in the turbulent
coherence length in the stratified cluster atmosphere on intermediate
scales. Our previous tests in Vazza et al. (2012) showed, indeed, that
the turbulent energy budget in the cluster centre is usually reduced
by a factor of ∼2 when a spatially varying filtering scales is adopted.

5 C O N C L U S I O N S

Understanding the dissipation of turbulent energy is key to under-
stand the heating of the plasma, the acceleration of cosmic rays in
the ICM, as well as the growth of intracluster magnetic fields (e.g.
Subramanian et al. 2006; Brunetti & Jones 2014; Miniati 2015).
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While current X-ray line spectroscopy can provide only upper
limits on the chaotic motion velocities in relatively bright cluster
cores (e.g. Sanders, Fabian & Smith 2011; Pinto et al. 2015),8 fu-
ture X-ray satellites with superior spectral resolution (e.g. ATHENA)
should be able eventually to detect directly the driving-scale tur-
bulent motions in the ICMs of multiple clusters (Ettori et al. 2013;
Nagai et al. 2013; Zhuravleva et al. 2013; ZuHone et al. 2016). In the
meantime, turbulent motions in the ICM induce moderate pressure
fluctuations that may be detected in X-rays (e.g. Schuecker et al.
2004; Churazov et al. 2012; Sanders & Fabian 2012; Gaspari et al.
2014; Zhuravleva et al. 2014), or through the S-Z effect (e.g. Khatri
& Gaspari 2016).

Numerical simulations of the ICM are fundamental to assessing
the real impact of ICM turbulence on all the above. In this work,
we focused on the analysis of the connection between accretion-
driven shock waves and turbulent motions in the ICM. In particular,
we explored both the local and the statistical causal connections
between shocks and the emergence of solenoidal and compressive
turbulent motions during a simulated cluster lifetime.

Our main conclusions from this study can be summarized as
follows.

(i) Gas flows in the ICM are characterized by a turbulent be-
haviour across a wide range of scales, roughly consistent with
a Kolmogorov-like model. However, these flows are mixed with
larger scale regular (correlated) velocity components for scales
≥0.1−1 Mpc and are punctuated by small-scale velocity pertur-
bations due to shocks, which makes it difficult to isolate accu-
rately uncorrelated turbulent fluctuations of the flow at most scales
(Section 4.1).

(ii) Using Hodge-Helmoltz decomposition within domains dis-
tributed across our simulated cluster, we measure dominant
solenoidal velocity fields everywhere within the cluster and at most
epochs (with the exception of high-redshift epochs, when the cluster
is still forming and is far from a virialized state). The solenoidal
component makes ≥50–80 per cent of the amplitude of the total
velocity field at most epochs and scales (Section 4.1).

(iii) The kinetic energy dissipation rate of the small-scale veloc-
ity field is a powerful tool to measure the ratio of compressive and
solenoidal motions in a nearly scale-independent way. The dissipa-
tion in compressive modes only accounts for a few per cent of the
total turbulent dissipation rate in the central ∼ Mpc3 volume. This
can increase to about ∼15 per cent in the central Mpc3 during major
merger events, and to ∼30 per cent in cluster outskirts (Section 4.1).

(iv) Vorticity and enstrophy are trustworthy proxies of the dom-
inant solenoidal turbulent component. In particular, the volume-
integrated dissipation rate of solenoidal turbulence and of enstrophy
are very well correlated in the 0 ≤ z ≤ 1 redshift range, and they
show remarkably similar spatial patterns (Section 4.2).

(v) For the first time, we apply the Navier–Stokes formalism to
analyse in detail how enstrophy evolves in the simulated ICM, by
decomposing its growth rate into advective, stretching, compressive
and baroclinic terms (Section 4.2).

(vi) At accretion shocks, baroclinic generation of enstrophy
along with enstrophy enhancement during flow compression are the
most important source terms of enstrophy. In cluster interiors, vortex
stretching dominates the growth of enstrophy, although advective
concentration of enstrophy and, especially during mergers, enstro-
phy enhancement through compression can be comparable. Merger

8 The Hitomi satellite in, its short life, did successfully measure velocity
profiles for the Perseus cluster (The Hitomi Collaboration 2016).

shocks largely seed the enstrophy enhanced by vortex stretching
and advective concentration in the cluster interior (Section 4.2).

The study of this first cluster of the ISC sample showed how
rich is the complexity of simulated ICM turbulence, even in this
rather restricted physical setup. Our analysis suggests that a careful
combination of filtering techniques is mandatory to identify all
major components of the turbulent energy budget reliably, and to
give them a physical meaning as a function of scale. Through the
extensive analysis of our full ISC sample in planned follow-up
work, it will be possible to generalize the results obtained for this
first cluster in a more robust statistical way.
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A P P E N D I X A : T E S T S O F A L G O R I T H M S

A1 Spatial filtering for turbulence

Similar to Vazza et al. (2012), we ran several tests of our iterative fil-
tering procedure for turbulence (Section 3.2) over control turbulent
boxes with pre-defined outer scales and slopes for the power spec-
trum. In the example given here, we analysed a purely solenoidal
velocity field on a 1003 grid, first generating a vector potential and

Figure A1. Top: velocity field power spectra for the input velocity of our
test (black) and for the output velocity field as reconstructed by our iterative
filter (red). Bottom: second-order longitudinal structure functions for the
same test field, with identical meaning of colours.

then computing its curl. The vector potential was drawn from 3 ≤ k
≤ 50 and had a power-law spectrum with a slope Ev(k) ∝ k−5/3. We
then ran our algorithm with the same set of parameters as the anal-
ysis in the paper and checked whether the input velocity field was
correctly recovered. The panels in Fig. A1 present the performance
of this test, comparing the power spectrum and the second-order
structure function of both input and reconstructed velocity field
using our filtering procedure 3.2.

The results are representative of the performances of the fil-
ter in this kind of test, which also applies by construction when
regular fields on large scales are imposed on the setup (see, e.g.
Vazza et al. 2012, for similar tests). Both the outer injection scale
of the flow and the spectral behaviour of the fluctuating field
are accurately recovered by our filtering procedure. The slope of
the power spectrum and of the structure function are recovered
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within ∼5–10 per cent accuracy. In these tests, typically only
∼10 per cent of the kinetic energy in the fluctuating field is not
recovered after the filtering procedure. That is due to a misidenti-
fication with a large-scale smooth flow, which can occur when the
outer correlation scales of the flow are of the order or larger than
the computing domain. (Hence, they mimic a large-scale regular
component.)

On the other hand, the kinetic energy flux within the cascade is
captured extremely well. For the main goals of our ICM analysis,
this small difference plays only a minor role, and for the purpose
of our analysis in the main paper, this filtering technique is suitable
for capturing the most important small-scale turbulent features of
the flow.

A2 Hodge–Helmoltz modes decomposition

We tested the ability of the ‘HH’ procedures employed in Sec-
tion 3.3 to decompose blended solenoidal/compressive velocity
fields correctly and in comparison to a simple, ‘straw man’ al-
ternative. The basis for the HH procedure is that a vector field
with suitable asymptotic/boundary behaviours can be expressed
in a form v = −∇φ + ∇ × a = vc + vs (e.g. Arfken & Webber
1995). In particular, assuming the vector field, v, has a Fourier
transform, vk , one can obtain the two components, vc and vs .
The algorithm applied in 3.3 (and which we call here Method 1)
assumed explicitly that vk = ik� + ik × A = vk,c + vk,s (where
capital letters in this discussion generally refer to Fourier trans-
forms of lower case spatial fields); that is, that the Fourier trans-
form, vk,c = k(k · vk)/|k|2, can be found by projection of vk on
to k and that vk,s = −k × (k × vk)/|k|2 can be found normal to
k. The alternate approach (which we call Method 2 here), in-
stead applied fourth-order finite difference methods to estimate
d = −∇2φ = ∇ · v, then obtained � = D/k2. The inverse Fourier
transform yielded φ, while vc = −∇φ was obtained from φ us-
ing fourth-order finite differences. We note that the use of high-
order differences for spatial derivatives is especially important in
attempts to extract compressive component variations close to the
Nyquist frequency, since those difference algorithms can construct
exact derivatives of polynomials up to the order of the differencing.
Equivalent procedures to those employed to find vc could be used
to find vs directly, of course. In these tests, however, we found vc

explicitly, then obtained vs as vs = v − vc.

To carry out the HH tests, we first constructed idealized 3D
velocity fields in a cubic box of arbitrary length, L, with both com-
pressive, vc, and solenoidal,vs, velocity components using discrete
Fourier sums; v(x) = ∑

vk cos(k · x + ψk), with 0 ≤ ψk ≤ 2π se-
lected from random deviates. For simplicity, we aligned all the
component wave vectors, k along the x-axis; that is k = kxx̂, with
|k| = 2πn/L and |n| > 0. Then, of course, the velocity fields were
periodic on length, L, while each compressive (solenoidal) Fourier
component satisfied k × vk = 0(k · vk = 0). The compressive and
solenoidal fields were given distinct, non-vanishing power spectra
over distinct ranges in kx, vc and vs can be obtained from � and A,
respectively, as outlined in the previous paragraph. Note that there
is no power in n = 0 modes.

The constructed velocity field was evaluated on 2563 uniform
spatial grid points spanning L. Although the constructed vector
fields were periodic over the full, 2563 domain, velocity fields in
our cluster simulations generally are not periodic in domains of
interest. Therefore, we tested the accuracy of both HH algorithms
to recover correct velocity information from non-periodic, 1003 and
503 cell sub-volumes.

An example test velocity field is illustrated by the solid, black
lines in Fig. A2. The compressive (solenoidal) component is on the
left (right). The bottom panels show the velocity distributions across
the full domain, while the middle (top) row show them in a 1003

(503) sub-volume. The case shown in Fig. A2 is for a compressive
component with modes spanning 2 ≤ kx ≤ 128 with a E(k) ∝ k−2

spectrum, and a solenoidal component with a ∝ k−5/3 spectrum in
modes spanning 4 ≤ kx ≤ 32.

Fig. A2 shows the outcomes of the Method 1 and Method 2
HH decompositions of this velocity field with Method 1 shown
in red and Method 2 in green. Both on the full, periodic volume
and the non-periodic sub-volumes, the Method 1 reconstructions
are almost identical to the input velocity field. That is, this method
proved to be quite accurate. In contrast, Method 2 clearly misses
substantial power in the compressional component, despite the use
of high-order difference algorithms to estimate spatial derivatives.
In conclusion, then, the Method 1 HH decomposition that depends
entirely on FFTs is a reliable approach to obtain the compressive and
solenoidal velocity components, even when the domain of interest
is not periodic. In contrast, the use of finite differences to avoid
FFT extraction of non-periodic spatial gradient information was
not successful.
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Figure A2. Helmholtz decomposition into compressive (left) and solenoidal (right) component magnitudes of a 3D velocity field plotted along x using Method
1(red) and Method 2 (green), as explained in the text. The constructed, ‘input’ components are shown in black. The different rows correspond to different sized
portions of the box: full 2563 zone, periodic box; middle: 1003 zone sub-volume; top: 503 zone sub-volume.
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