Supporting Information

4-Fluoro-Threonine: From Diastereoselective Synthesis to pH-Dependent Conformational Equilibrium in Aqueous Solution

Simone Potenti,^{1,2,+} Lorenzo Spada,^{1,2,+} Marco Fusè,¹ Giordano Mancini,^{1,3} Andrea Gualandi,² Costanza Leonardi,⁴ Pier Giorgio Cozzi,^{2*} Cristina Puzzarini^{2*} and Vincenzo Barone^{1*}

¹ Laboratorio SMART, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy

² Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum – Università di Bologna, Via Selmi 2, 40126, Bologna, Italy

³ Istituto Nazionale di Fisica Nucleare (INFN), Largo Bruno Pontecorvo 3, 56126, Pisa, Italy

⁴ Dipartimento di Scienze Chimiche e Farmaceutiche, Via Luigi Borsari 46, 44121, Ferrara, Italy

⁺The two authors contributed equally to the work.

E-mail: piergiorgio.cozzi@unibo.it; cristina.puzzarini@unibo.it; vincenzo.barone@sns.it

Table of contents

Optimization of the reaction conditions	3
Titration data	5
Conformational Analysis	8
Simulated NMR Chemical Shifts and J spin-spin coupling constants	10
Molecular Structures	13
Cartesian coordinates in XYZ format	16
Anionic 4F-Thr	16
Zwitterionic 4F-Thr	18
Cationic 4F-Thr	20
Copies of NMR spectra	23

Optimization of the reaction conditions

Entry	Solvent	Base ^b	Additive	Notes	Yield (%) ^d	2:3°	d. r. ^f
1	THF	TEA	none	-	63	70:30	76:24
2	THF	TEA	none	TEA-deactivated silica for chromatographic purification	71	90:10	85:15
3	DCM	DIPEA	PPh ₃	-	73	85:15	>99:1
4	DCM	DIPEA	PPh ₃	TEA-deactivated silica for chromatographic purification	77	100:0	>99:1

Table S1. Tested conditions for diastereoselective formation of oxazoline 2.ª

[a] Typical general conditions: 1 equiv. of ethyl isocyanoacetate, 1 equiv. of **1**, CuCl 5 mol %. [b] TEA 5 mol %, DIPEA 10 mol %. [c] 10 mol %. [d] Sum of **2** and **3** after chromatographic purification. [e] Determined after flash chromatography of the crude by ¹H NMR. [f] *trans:cis* ratio, determined upon conversion to **4**, either after chromatographic separation of diastereoisomers (entries 1-2) or through 1H NMR analysis of crude **4** (entries 3-4).

Table S2. Tested conditions for fluorination of 5.^a

Entry	Fluorinating Agent	Equiv.	Additive (equiv.)	Addition order ^b	T (°C)°	Scale (mmol)	Reaction Time ^d	Yield ^e
1	XtalFluor-E®	1.5	DBU (1.5)	А	-78 to r.t.	0.1	4 h	traces
2	XtalFluor-E®	1.5	DBU (1.5)	А	-78 to r.t.	0.1	overnight	traces
3 ^f	PyFluor	1.1	DBU (2)	А	r.t.	0.1	48 h	n. d. ^g
4	DAST	5	None	А	-78 to 0	0.2	overnight	38 %
5	DAST	5	None	А	-78 to 0	0.5	overnight	42 %
6	DAST	5	None	А	-78 to 0	0.5	3 h	25 %
7	DAST	1.1 + 1.1	None	А	-78 to 0	0.15	overnight	17 %
8	DAST	1.5 + 1	None	А	0 to r.t.	0.15	2 h + 2 h	35 %
9 ^h	DAST	1.5 + 1	Na ₂ CO ₃ (1.2)	А	0 to r.t.	0.15	2 h + 2 h	27 %
10	DAST	2.5	None	А	0 to r.t.	0.15	1 h	16 %
11	DAST	2	None	В	0 to r.t.	0.15	1.5 h	46 %
12	DAST	2	None	В	0 to r.t.	1	1.5 h	29 %
13	DAST	1.5	None	С	0 to r.t.	1	1.5 h	10 %
14	DAST	2	None	С	-78 to r.t.	0.15	3 h	58 %
15	DAST	2	None	С	-78 to r.t.	3.75	1 h	32 %
16	DAST	2	None	С	-78 to r.t.	3.75	3 h	25 %
17	DAST	2	None	С	-78 to 0	2	3 h	29 %

[a] Typical general condition: under inert atmosphere (N₂), anhydrous DCM as the solvent, quenched (for entries 1-3 the volatiles were simply removed under reduced pressure) with saturated aqueous NaHCO₃ added either at 0 °C (entries 4-13) or at -78 °C (entries 14-17). [b] A: neat fluorinating agent was added to a DCM solution of the alcohol; B: alcohol added to the fluorinating agent (both in DCM); C: a DCM solution of fluorinating agent was added to a DCM solution of the alcohol. [c] Room temperature (r.t.) was reached by simple removal of either -78 °C or ice bath, whilst 0 °C was reached by simple switch to ice bath. [d] Starting from removal/switch of bath. [e] Determined either by ¹H NMR and ¹⁹F NMR analysis on the crude mixture (entries 1-3) or after flash chromatography (entries 4-17). [f] Performed in toluene with non-anhydrous conditions. [g] Not detected. [h] Performed in dry THF.

Table S3.

Titration data

	4-Fluoro-threonine						Thre	onine	
V (µL)	pН	V (µL)	pН	V (µL)	pН	V (µL)	pН	V (µL)	pН
0	1.47	0	1.42	0	1.36	0	1.29	0	1.7
50	1.52	50	1.48	50	1.39	50	1.3	50	1.8
100	1.61	100	1.52	100	1.47	100	1.34	100	1.98
150	1.76	150	1.63	150	1.58	150	1.42	150	2.16
200	1.96	200	1.77	200	1.72	200	1.53	200	2.43
250	2.22	250	1.95	250	1.93	250	1.65	210	2.5
270	2.37	300	2.19	300	2.21	300	1.82	220	2.58
290	2.57	350	2.54	350	2.68	350	2.05	230	2.66
310	2.85	360	2.65	360	2.85	400	2.35	240	2.76
320	3.07	370	2.77	370	3.13	410	2.44	250	2.87
330	3.43	380	2.96	380	3.76	420	2.54	260	3.02
340	4.14	390	3.22	390	6.82	430	2.64	270	3.2
350	4.98	400	3.76	400	7.43	440	2.76	280	3.52
360	6.48	410	4.56	410	7.72	450	2.89	290	4.3
370	7.32	420	5.37	420	7.93	460	3.07	300	6.91
380	7.64	430	6.8	430	8.09	470	3.32	310	7.74
390	7.85	440	7.45	440	8.24	480	3.86	320	8.07
400	8.02	450	7.73	450	8.35	490	7.14	330	8.27
410	8 15	460	7 92	460	8 47	500	7 87	340	8 42
420	8 28	470	8.08	470	8 58	510	8.12	350	8.55
430	8 39	480	8.2	480	87	520	8 33	360	8.66
440	8.40	400	8.32	400	8.81	520	8.48	370	8 75
440	8 50	500	8.13	500	8.03	540	8.63	380	8.84
450	87	510	8.52	510	0.95	550	8.05	300	8.07
400	0.7	520	8.52 8.62	520	9.09	560	0.72	400	0.92
470	0.0 8.01	520	8.02	520	9.24	570	8.03	400	9.02
400	0.91	540	0./1	540	9.44	580	0.95	410	9.1
490 500	9.04	550	0.0 8.01	550	9.71	500	9.04	420	9.19
500	9.17	550	8.91	550	10.1	590	9.12	430	9.20
510	9.33	560	9.03	560	10.79	600	9.19	440	9.37
520	9.55	570	9.16	570	11.15	610	9.31	450	9.47
530	9.85	580	9.34	580	11.33	620	9.41	460	9.59
540	10.38	590	9.53	590	11.47	630	9.53	470	9.72
550	10.91	600	9.79	600	11.57	640	9.67	480	9.87
560	11.21	610	10.15	610	11.64	650	9.85	490	10,08
570	11.38	620	10,65	620	11.72	660	10,09	500	10,34
580	11.5	630	11.03	630	11.77	670	10,48	510	10,7
590	11.59	640	11.23	640	11.82	680	10,94	520	11.03
600	11.66	650	11.37	650	11.86	690	11.21	530	11.25
650	11.88	700	11.72	700	12	700	11.39	540	11.38
700	11.99	750	11.88	750	12.1	710	11.5	550	11.49
750	12.08	800	12.01	800	12.17	720	11.6	560	11.57
800	12.15	850	12.09	850	12.22	730	11.67	570	11.63
		900	12.17	900	12.27	740	11.73	580	11.68
						800	11.95	600	11.79
						850	12.05	650	11.93
						900	12.14	700	12.04
								750	12.11
								800	12.17

Figure S1. Titration curves of 4F-Thr.

Figure S2. Titration curves of Thr.

Conformational Analysis

Table S4. ΔE and ΔG values (in kJ mol⁻¹) of different conformers of 4F-Thr, at the B2 (B2PLYP-D3(BJ)/jun-cc-pVTZ) level of theory, with respect to the most stable conformer for each form.^a

Conf.	ΔΕ	$\varDelta G$	Conf.	ΔE	$\varDelta G$	Conf.	$\varDelta E$	ΔG
4FT-A-1	0.0	0.0	4FT-Z-1	0.0	0.0	4FT-C-1	0.0	0.0
4FT-A-2	4.4	3.7	4FT-Z-2	1.8	0.8	4FT-C-2	5.3	5.9
4FT-A-3	13.2	10.2	4FT-Z-3	4.5	2.8	4FT-C-3	9.2	11.2
4FT-A-4	15.9	11.9	4FT-Z-4	5.8	4.5	4FT-C-4	17.4	14.1
4FT-A-5	17.7	14.4	4FT-Z-5	6.1	6.0	4FT-C-5	15.4	14.7
4FT-A-6	20.2	16.3	4FT-Z-6	5.1	6.1	4FT-C-6	26.2	24.1
4FT-A-7	31.7	29.1	4FT-Z-7	23.3	21.6			

^a A stands for anionic, Z for zwitterionic, and C for cationic.

Table S5. Root mean square displacements in Å between the zwitterionic and cationic forms of 4F-Thr. The hydroxy hydrogen of the cationic form was excluded in the rms calculations.

	4FT-Z-1	4FT-Z-2	4FT-Z-3	4FT-Z-4	4FT-Z-5	4FT-Z-6	4FT-Z-7
4FT-C-1	0.3305	0.7908	0.7257	0.7619	1.2391	1.3498	1.3442
4FT-C-2	0.7299	0.2203	0.785	0.7291	0.8571	1.1194	1.1143
4FT-C-3	1.2503	0.8701	1.1683	1.11	0.2242	1.1839	0.9013
4FT-C-4	0.365	0.8069	0.7489	0.7785	1.4223	1.3207	1.3065
4FT-C-5	0.7744	0.3773	0.7371	0.759	0.9183	1.1777	1.135
4FT-C-6	1.319	1.1185	1.4021	1.3783	0.9734	0.5765	0.2866

Table S6. Root mean square displacements in Å between the zwitterionic and anionic forms of the 4F-Thr. The hydrogen atoms of NH_2 and NH_3 groups were excluded in the rms calculations.

	4FT-Z-1	4FT-Z-2	4FT-Z-3	4FT-Z-4	4FT-Z-5	4FT-Z-6	4FT-Z-7
4FT-A-1	1.4481	1.374	1.6204	1.5612	1.3404	0.8464	1.0339
4FT-A-2	0.9323	0.5178	0.9052	0.9095	0.8723	1.2346	1.1479
4FT-A-3	0.8012	1.0979	1.0343	1.1094	1.3651	1.4092	1.4374
4FT-A-4	0.8346	0.3293	0.8822	0.8259	0.9293	1.1058	1.173
4FT-A-5	1.3828	0.9984	1.2633	1.2566	0.4025	1.0645	0.9785
4FT-A-6	1.2886	1.296	1.0475	1.0547	0.9149	1.3064	1.2219
4FT-A-7	1.6059	1.3952	1.4538	1.435	0.8469	1.3562	1.2294

Table S7. Root mean square displacements in Å between the anionic forms of the 4F-Thr and Thr. The hydrogen and fluorine atoms of the methyl groups were excluded in the rms calculations.

	4FT-A-1	4FT-A-2	4FT-A-3	4FT-A-4	4FT-A-5	4FT-A-6	4FT-A-7
T-A-1	1.3008	0.6015	0.4272	1.0917	1.1286	1.0113	1.252
T-A-2	1.2305	0.7113	0.1362	0.6507	1.0425	1.0641	1.1408
T-A-3	1.0479	0.0894	0.727	0.5521	0.9092	0.9334	1.0986
T-A-4	1.0609	0.5422	0.7106	0.0917	1.0056	1.0365	1.1657

Table S8. Root mean square displacements in Å between the zwitterionic forms of the 4F-Thr and Thr. The hydrogen and fluorine atoms of the methyl groups were excluded in the rms calculations.

	4FT-Z-1	4FT-Z-2	4FT-Z-3	4FT-Z-4	4FT-Z-5	4FT-Z-6	4FT-Z-7
T-Z-1	0.3302	0.3606	0.1142	0.9803	0.8641	1.0767	1.2937
T-Z-2	0.099	0.0859	0.2944	0.1001	0.8458	1.0904	1.0682
T-Z-3	0.8358	0.8176	0.8208	0.8251	0.0838	1.2072	0.8882
T-Z-4	1.2526	1.0596	1.0737	1.0588	0.9583	0.4517	0.3315
T-Z-5	1.3026	1.0731	1.1099	1.0806	0.9189	0.4941	0.1056

Table S9. Root mean square displacements in Å between the cationic forms of the 4F-Thr and Thr. The hydrogen and fluorine atoms of the methyl groups were excluded in the rms calculations.

	4FT-C-1	4FT-C-2	4FT-C-3	4FT-C-4	4FT-C-5	4FT-C-6
T-C-1	0.2727	0.1064	0.9103	0.489	0.5023	1.1482
T-C-2	0.4797	0.5487	1.0299	0.737	0.1177	1.2047
T-C-3	0.3915	0.4664	0.8873	0.2064	0.7305	1.0967

Figure S3. Clusters containing the water molecules of the first-solvation shell for the anionic (left), zwitterionic (middle), and cationic (right) forms of Thr.

Simulated NMR Chemical Shifts and J spin-spin coupling constants

<u>Threonine</u>

Table S10. Experimental and Boltzmann averaged chemical shifts in ppm of Thr in zwitterionic form. B3 stands for B3LYP-D3(BJ), juldz for jul-cc-pVDZ, juntz for jun-cc-pVTZ.

Nucleus	Index	Exp.	B3juldz	B3juntz
¹³ C	1-C	173.4	167.68	171.17
¹³ C	4-C	61.0	59.87	60.80
¹³ C	10-C	66.5	66.86	67.66
¹³ C	14-C	20.1	17.53	16.55
ΙΗ	5-H	3.57	3.10	3.19
1H	11-H	4.24	4.37	4.47
¹ H	CH ₃	1.32	0.88	0.97

Table S11. Experimental and absolute values of the Boltzmann averaged simulated J spin-spin coupling constants (Hz) of Thr in zwitterionic form. B3 stands for B3LYP-D3(BJ), juldz for jul-cc-pVDZ, juntz for jun-cc-pVTZ.

				Exp.	B3juldz		B3juntz	
Index	Nucleus	Index	Nucleus		spinspin	mixed	spinspin	mixed
5	ΙΗ	11	¹ H	4.9	2.04	2.46	2.19	2.59
11	ΙΗ	CH ₃	¹ H	6.6	5.06	6.92	6.09	7.21

4-Fluoro-threonine

Table S12. Experimental and Boltzmann averaged chemical shifts in ppm of 4F-Thr in zwitterionic form. B3 stands for B3LYP-D3(BJ), juldz for jul-cc-pVDZ, juntz for jun-cc-pVTZ.

Nucleus	Index	Exp.	B3juldz	B3juntz
¹³ C	1-C	172.5	166.88	170.29
¹³ C	4-C	56.8	54.58	55.15
¹³ C	10-C	68.4	68.46	69.31
¹³ C	14-C	85.6	84.76	87.54
'Η	5-H	3.87	3.26	3.37
'Η	11-H	4.35	4.60	4.70
¹ H	15-H	4.72	4.37	4.40
¹ H	16-H	4.60	4.39	4.42
¹⁹ F	17-F	-232	-238.26	-245.23

				Exp.	B3j	uldz	B3j	untz
Index	Nucleus	Index	Nucleus		spinspin	mixed	spinspin	mixed
4	¹³ C	17	¹⁹ F	4.4	2.25	1.57	1.14	1.61
10	¹³ C	17	¹⁹ F	19.1	16.88	17.58	15.14	18.14
14	¹³ C	17	¹⁹ F	163.3	162.01	220.90	206.60	215.26
5	¹ H	11	¹ H	4.7	1.25	1.40	1.24	1.46
11	¹ H	15	$^{1}\mathrm{H}$	3.7	4.31	5.92	5.24	6.17
11	¹ H	16	¹ H	3.1	3.01	3.98	3.53	4.14
15	¹ H	16	¹ H	10.8	9.51	11.07	9.12	11.16
11	¹ H	17	¹⁹ F	24.9	17.66	21.28	17.87	21.80
15	¹ H	17	¹⁹ F	46.6	31.88	52.04	41.25	52.93
16	¹ H	17	¹⁹ F	47.0	31.81	51.85	41.25	52.75

Table S13. Experimental and absolute values of the Boltzmann averaged simulated J spin-spin coupling constants (Hz) of 4F-Thr in zwit-terionic form. B3 stands for B3LYP-D3(BJ), juldz for jul-cc-pVDZ, juntz for jun-cc-pVTZ.

Figure S4. Experimental (red values) and simulated (blue values) chemical shifts (δ in ppm) and coupling constants (J in Hz) of the zwitterionic form of Thr (left) and 4F-Thr (right) in D₂O. Simulated values taken at the B3/jul-cc-pVDZ (spin-spin) level.

Molecular Structures

Table S14. Molecular structures and key atomic distances of Anionic 4F-Thr.

Table S15. Molecular structures and key atomic distances of Zwitterionic 4F-Thr.

Table S16. Molecular structures and key atomic distances of Cationic 4F-Thr.

2.12 Å	2.05 Å 2.1 Å 2.4	2.2 Å
4F-Thr-C-1	4F-Thr-C-2	4F-Thr-C-3

Cartesian coordinates in XYZ format

In the following, the number of imaginary frequencies (IF), the electronic energy (EE) and the sum of electronic and thermal Free Energies (TE) in Hartree at B2 level of theory are reported in the comment line of xyz format (Angstrom).

Anionic 4F-Thr

16			
4FT-A-1, IB	F=0,EE= -536.92	577542,TE=	-536.83976342
С	1.26098	-0.51731	-0.04743
0	2.16146	-0.09942	-0.80835
0	0 95337	-1 73317	0 15831
C	0.45946	0 52082	0.778/2
	0.43940	0.32002	1 017092
н	0.73803	0.32235	1.81/69
N	0.78399	1.89145	0.38882
H	1.63386	1.84710	-0.16344
H	0.97347	2.46085	1.20191
С	-1.06409	0.27820	0.70946
Н	-1.53532	0.97014	1.41457
0	-1.38300	-1.04440	1.12173
Н	-0 60723	-1 57550	0 81568
C	-1 68254	0 60741	-0 63128
с u	-1 50527	1 64654	-0.89204
11	-1.50527	0.20250	-0.09204
H —	-2./4881	0.39258	-0.61200
F,	-1.12602	-0.18035	-1.65918
16			
4FT-A-2,IH	F=0,EE= -536.92	511668,TE=	-536.83837168
С	1.78452	-0.45865	0.11228
0	2.74053	0.24978	-0.29877
0	1.75639	-1.71011	0.22115
С	0.50039	0.28949	0.56976
Н	0.41290	0.10378	1.64335
N	0 58886	1 71929	0 26073
ч	1 56711	1 92057	0 08168
и и	0 27/10	2 20250	1 02006
11 C	0.2/410	2.29330	1.03000
	-0./406/	-0.28905	-0.13291
H	-0.65357	-1.3/188	-0.17759
0	-0.79180	0.19761	-1.47026
H	-0.42983	1.09949	-1.38968
С	-1.99726	0.07829	0.62340
Н	-2.16206	1.15452	0.62674
Н	-1.96161	-0.29905	1.64401
F	-3.12133	-0.50608	0.00713
16			
4FT-A-3.TF	F=0.EE= -536.92	172954.TE=	-536.83586554
C	-1 78970	-0 01683	-0 15070
0	-2 72061	0.62147	-0 6/095
0	1 00004	0.03147 1 11157	-0.04905
0	-1.89094	-1.11157	0.49295
C	-0.36964	0.59533	-0.26649
Н	-0.3/247	1.2/412	-1.11896
N	-0.03380	1.37727	0.93523
Н	0.09285	0.74211	1.71496
Н	-0.82088	1.96956	1.17375
С	0.66769	-0.49953	-0.53883
Н	0.36105	-0.97488	-1.48223
0	0.69436	-1.46391	0.50448
Н	-0.26723	-1.59117	0.69858
	· · · •		

С	2.07855	-0.02887	-0.80987
Н	2.07958	0.75664	-1.56341
Н	2.68340	-0.86699	-1.15126
F	2.71560	0.47791	0.33297
-	2.,2000	0.1,,01	0.00207
16			
4 FT-Δ-4	TF=0 EE= -536	92073512 TE= -5	36 83524012
	_1 80858	-0 38250	_0 15117
0	-1.00000	-0.38230	-0.1J117
0	-2.74240	0.27186	0.3/945
0	-1.81269	-1.60488	-0.45336
С	-0.51916	0.40651	-0.53412
Н	-0.47716	0.36830	-1.62620
N	-0.50303	1.81092	-0.11598
Н	-0.25261	1.83854	0.86689
Н	-1.46452	2.13268	-0.13953
С	0.72290	-0.31205	-0.02596
Н	0.66685	-1.35064	-0.35187
0	0 71183	-0 25243	1 40589
о ц	1 50877	-0 68981	1 72302
п	1.00050	-0.08981	1.72392 0.ECE70
	1.99050	0.30522	-0.56578
H	2.12646	1.32479	-0.21851
H	2.01940	0.26292	-1.65213
F	3.09179	-0.44253	-0.08715
16			
4 FT-A-5,	IF=0,EE= -536	.92002636,TE= -5	36.83429636
С	-1.55590	-0.60267	-0.03171
0	-2.16236	-0.45914	1.06215
0	-1.59381	-1.60116	-0.79712
C	-0 63151	0 56359	-0 45690
с ц	-0 50709	0 51802	-1 5/058
N	-1 24605	1 94005	_0 09677
	-1.24003	1.04095	-0.09077
H 	-0.52918	2.55397	-0.02651
H	-1.65424	1.72188	0.82456
С	0.75906	0.39369	0.18698
H	0.64473	0.40815	1.27105
0	1.59623	1.51857	-0.10648
Н	1.74059	1.54967	-1.05973
С	1.43190	-0.89750	-0.21995
Н	1.67636	-0.90097	-1.28193
Н	0.81300	-1.75757	0.01433
ч	2 64404	-1 04319	0 48192
-	2.01101	1.01010	0.10192
16			
1	TE-0 EE526	0100000 7552	6 0226502
4F1-A-0,	1 40120	0 E1E0E	0.000092
	1.49130	-U.51585	0.00835
0	1.4584/	-1.6/981	0.48492
0	2.29883	-0.07091	-0.85077
С	0.40468	0.47414	0.49465
Н	0.03449	0.13550	1.46070
N	0.98866	1.80873	0.64319
Н	0.25103	2.50258	0.61586
Н	1.58646	1.96258	-0.16201
С	-0.77066	0.46322	-0.49386
Н	-0 38795	0 74471	-1 48019
0	-1 70871	1 4/650	-0 03500
с ц		1 65210	_0 75515
11 C	-2.JI414 1 //010	U 00407	-0./3313
C .	-1.44013	-0.8849/	-0.65032
Н	-0./3222	-1.63215	-0.99926

S17

Н	-2.28273	-0.81920	-1.33685
F	-1.95283	-1.33264	0.57959
16			
4FT-A-	-7,IF=0,EE= -536.	91471083, TE= -	536.82866783
С	1.39344	-0.22537	0.20652
0	2.04836	-0.21834	-0.87030
0	1.54965	-1.00096	1.18585
С	0.27531	0.84321	0.33880
Н	0.12368	1.03498	1.40036
N	0.61224	2.10741	-0.33025
Н	1.17098	1.85688	-1.14138
Н	1.23347	2.63982	0.26723
С	-1.05894	0.33349	-0.20983
Н	-1.03794	0.40476	-1.30079
0	-2.07848	1.18678	0.32580
Н	-2.87694	1.07764	-0.20131
С	-1.40935	-1.09925	0.16756
Н	-2.47524	-1.26708	0.02721
Н	-1.12262	-1.33102	1.18997
F	-0.74000	-2.00225	-0.67540

Zwitterionic 4F-Thr

17

1 /			
4 FT - 2 - 1	,IF=0,EE= -537	.38539075,TE= -5	37.28463175
С	-1.79915	-0.16323	-0.21578
0	-2.49882	0.77869	0.24614
0	-2.13133	-1.32554	-0.50591
С	-0.31037	0.21147	-0.49726
Н	-0.18623	0.29920	-1.57269
Ν	-0.09452	1.56092	0.11349
Н	0.39568	1.46364	1.00278
Н	-1.06631	1.88209	0.30020
Н	0.41683	2.20621	-0.47916
С	0.67820	-0.79630	0.06973
Н	0.30700	-1.78678	-0.19671
0	0.65140	-0.59750	1.48221
Н	1.21021	-1.25322	1.91182
С	2.07132	-0.65472	-0.50143
Н	2.07380	-0.87992	-1.56549
Н	2.77677	-1.30035	0.01658
F	2.52487	0.66824	-0.34697
17			
4 FT - 2 - 2	,IF=0,EE= -537	.3846941,TE= -53	7.2843401
С	-1.79796	-0.48571	-0.11633
0	-2.71011	0.27665	0.30591
0	-1.79353	-1.72100	-0.24180
С	-0.50136	0.25518	-0.57893
H	-0.45678	0.20189	-1.66282
N	-0.67984	1.68637	-0.17805
H	-1.68881	1.70197	0.09676
H	-0.48306	2.35902	-0.91221
H	-0.11540	1.89528	0.64630
С	0.76168	-0.32514	0.03670
H	0.68181	-1.40970	-0.03545
0	0.76603	0.09049	1.40024
Н	1.58823	-0.20348	1.80795

С	2.01859	0.12968	-0.67278
Н	2.15056	1.20933	-0.63401
Н	2.03484	-0.21743	-1.70300
ч	3.11807	-0.43940	-0.00933
-			
17			
/ FT - 7 - 3	TE=0 EE= -537	38368053 777=	-537 2835/753
	_1 6705/	_0 /5910	_0 10210
	-1.67954	-0.45619	-0.10319
0	-2.61102	0.39067	-0.24284
0	-1.73516	-1.67549	0.06360
С	-0.26044	0.11338	-0.48851
Н	0.03646	-0.22884	-1.47579
N	-0.41436	1.60068	-0.52456
Н	0.03438	2.05705	-1.31228
н	-0.08175	2.00977	0.34983
Н	-1 45218	1 70815	-0 55958
C	0 78203	-0 29319	0.535500
с ц	0.70205	_1 26201	0.34700
п О	0.07300	-1.30391	1 75(0)
0	0.58541	0.43664	1./5623
Н	-0.06911	-0.01/11	2.29782
С	2.20845	0.01580	0.12681
Н	2.90686	-0.36446	0.86664
Н	2.36929	1.08383	-0.01137
F	2.47397	-0.61896	-1.09072
17			
4FT-Z-4	, IF=0, EE= -537	.38318281,TE=	-537.28291781
С	1.66945	0.51991	-0.07221
0	2.62469	-0.29001	-0.23047
0	1.68775	1.68952	0.34597
C	0 27416	-0 03371	-0 49884
н	-0 03047	0 47473	-1 40871
N	0.00047	_1 10111	_0 00071
	0.40470	-1.40441	-0.00029
п 11	1 50001	-2.07134	-0.03090
H 	1.52921	-1.54/24	-0./9/1/
Н	0.10396	-1.78702	-1.69869
С	-0.78744	0.13898	0.57362
H	-0.69080	1.15474	0.95347
0	-0.49324	-0.82729	1.57938
Н	-1.01002	-0.64285	2.37033
С	-2.20357	-0.08096	0.06389
Н	-2.92138	0.03217	0.87322
Н	-2.32639	-1.05975	-0.39643
F	-2.49275	0.88826	-0.90409
17			
4FT-Z-5	, IF=0, EE= -537	.38307705,TE=	-537.28235705
С	1.53706	-0.74313	0.00936
0	1.30021	-1.88253	0.45058
0	2 41464	-0 36887	-0 81354
c	2 · · · · · · · · · · · · · · · · · · ·	0 20/1/	0.01004
с ц	0.000/0	0.00414	1 50/00
11 NT	U.4/JIJ 1 0E044	1 00400	L.J0400
IN	1.20044	1.08468	0.14/21
H	0.57486	2.36906	-0.17925
Н	1.93604	1.40843	-0.58901
Н	1.77321	2.08549	0.92610
С	-0.76914	0.35632	-0.20182
Н	-0.61082	0.21364	-1.27075
0	-1.42513	1.61799	-0.09753

Н	-1.76680	1.72786	0.79881
С	-1.61850	-0.77666	0.32707
Н	-1.93447	-0.58197	1.35174
Н	-1.07866	-1.71649	0.27744
F	-2.77444	-0.88545	-0.45511
17			
4FT-Z-6,IH	E=0,EE= -537.38	346062,TE=	-537.28228962
С	1.43797	-0.54597	-0.26319
0	2.28175	0.05423	-0.97060
0	1.13373	-1.76116	-0.25226
С	0.64802	0.34263	0.73955
Н	0.94560	0.07491	1.74827
Ν	1.08442	1.75498	0.49197
Н	0.34829	2.36440	0.14511
Н	1.81797	1.63726	-0.24175
Н	1.48505	2.19302	1.31688
С	-0.86983	0.12946	0.63614
Н	-1.38018	0.81649	1.31198
0	-1.15844	-1.18329	1.07856
Н	-0.47538	-1.74468	0.65546
С	-1.39549	0.35900	-0.77111
Н	-1.05828	-0.42527	-1.44510
Н	-1.11573	1.33212	-1.17320
F	-2.79319	0.31977	-0.73947
17			
4FT-Z-7,IH	F=0,EE= -537.37	653087,TE=	-537.27638887
C ,	-1.44330	-0.61723	0.19209
0	-1.37536	-1.82332	-0.09015
0	-2.04255	-0.05188	1.15082
С	-0.65957	0.36671	-0.73515
Н	-0.87585	0.15987	-1.77689
Ν	-1.17988	1.73213	-0.39356
Н	-1.68283	1.55303	0.50669
Н	-1.85083	2.06406	-1.08109
Н	-0.46454	2.44736	-0.28736
С	0.86349	0.31227	-0.54997
Н	1.28482	1.26712	-0.88162
0	1.34324	-0.72919	-1.38315
Н	2.29801	-0.78619	-1.26194
С	1.27364	0.08926	0.89211
Н	0.95752	-0.88992	1.24230
ц			
п	0.89978	0.86829	1.55282

Cationic 4F-Thr

18			
4FT-C-1,	IF=0,EE= -53	7.82552094,TE=	-537.71179494
С	1.73858	0.01422	-0.19586
0	2.47560	-0.83015	0.25579
0	2.08282	1.25335	-0.52416
Н	3.03068	1.37746	-0.35381
С	0.26733	-0.24439	-0.48923
Н	0.14441	-0.27798	-1.56918
Ν	-0.04961	-1.59036	0.06874
Н	-0.31924	-1.47548	1.05104
Н	0.77915	-2.18771	0.03477
Н	-0.82351	-2.03098	-0.42435

С	-0.68145	0.79697	0.13857
Н	-0.27539	1.78712	-0.05670
0	-0 78031	0 53202	1 53194
о ц	-0 18690	1 11025	2 02274
C	-2 06074	0 74646	-0 17615
	-2.00074	1 02205	1 52270
H	-2.03037	1.03395	-1.52370
Н	-2.74222	1.38380	0.07816
E'	-2.55963	-0.56770	-0.41252
18			
4FT-C-2,I	F=0, EE= -53	7.82350108,TE= -53	7.70952708
С	-1.76457	-0.32776	-0.10955
0	-2.67516	0.31423	0.35939
0	-1.75449	-1.63702	-0.30799
Н	-2.60129	-2.01198	-0.01616
C	-0 46782	0 31916	-0 58918
ч	-0 44209	0 25449	-1 67353
N	-0 55090	1 75786	_0 18899
IN	-0.55090	1 00565	-0.10099
H	-0.05019	1.88565	0.69592
H	-1.53662	1.98867	-0.02081
Н	-0.1/423	2.39449	-0.88/55
С	0.77319	-0.32519	0.02806
H	0.66971	-1.40544	-0.06734
0	0.75099	0.06982	1.39136
Н	1.54994	-0.25061	1.82586
С	2.05634	0.10119	-0.65837
Н	2.22602	1.17398	-0.59782
Н	2.07768	-0.23036	-1.69334
F	3.10931	-0.52050	0.02109
18			
18 4FT-C-3,I	F=0,EE= -53	7.8220353.TE= -537	.7075483
18 4FT-C-3,I C	F=0,EE= -53	7.8220353,TE= -537 -0.55388	.7075483 -0.03327
18 4FT-C-3,I C	F=0,EE= -53 1.57346 2 39204	7.8220353,TE= -537 -0.55388 -0.28276	.7075483 -0.03327 -0.87964
18 4FT-C-3,I C	F=0,EE= -53 1.57346 2.39204 1.41383	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697	.7075483 -0.03327 -0.87964 0.54664
18 4FT-C-3,I C O U	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744	.7075483 -0.03327 -0.87964 0.54664
18 4FT-C-3,I C O H	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102	.7075483 -0.03327 -0.87964 0.54664 0.16800
18 4FT-C-3,I C O H C	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659
18 4FT-C-3,I C O H C H	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486
18 4FT-C-3,I C O H C H N	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170
18 4FT-C-3,I C O H C H N H	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271
18 4FT-C-3,I C O H C H N H H	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786
18 4FT-C-3,I C O O H C H N H H H	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905
18 4FT-C-3,I C O O H C H N H H C	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635
18 4FT-C-3,I C O O H C H N H H H H H H	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125
18 4FT-C-3,I C O O H C H N H H H C H O	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180 -1.53442	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087 1.54827	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125 -0.04057
18 4FT-C-3,I C O O H C H N H H H C H O H	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180 -1.53442 -1.96779	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087 1.54827 1.55563	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125 -0.04057 0.82281
18 4FT-C-3,I C O O H C H N H H H C H C H C H C	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180 -1.53442 -1.96779 -1.59066	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087 1.54827 1.55563 -0.86705	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125 -0.04057 0.82281 0.28865
18 4FT-C-3,I C O O H C H H H C H C H C H	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180 -1.53442 -1.96779 -1.59066 -1.87303	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087 1.54827 1.55563 -0.86705 -0.74027	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125 -0.04057 0.82281 0.28865 1.33311
18 4FT-C-3,I C O O H C H H H C H H C H H	F=0, EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180 -1.53442 -1.96779 -1.59066 -1.87303 -1.02122	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087 1.54827 1.55563 -0.86705 -0.74027 -1.78354	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125 -0.04057 0.82281 0.28865 1.33311 0.17100
18 4FT-C-3,I C O O H C H H H C H O H C H H C H F	F=0, EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180 -1.53442 -1.96779 -1.59066 -1.87303 -1.02122 -2.76077	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087 1.54827 1.55563 -0.86705 -0.74027 -1.78354 -0.98493	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125 -0.04057 0.82281 0.28865 1.33311 0.17100 -0.45886
18 4FT-C-3,I C O H C H H H H C H C H C H F	F=0, EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180 -1.53442 -1.96779 -1.59066 -1.87303 -1.02122 -2.76077	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087 1.54827 1.55563 -0.86705 -0.74027 -1.78354 -0.98493	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125 -0.04057 0.82281 0.28865 1.33311 0.17100 -0.45886
18 4FT-C-3,I C O O H C H H H C H C H C H F	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180 -1.53442 -1.96779 -1.59066 -1.87303 -1.02122 -2.76077	7.8220353, TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087 1.54827 1.55563 -0.86705 -0.74027 -1.78354 -0.98493	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125 -0.04057 0.82281 0.28865 1.33311 0.17100 -0.45886
18 4FT-C-3, I C O O H C H H H H C H H C H H C H H F 18 4FT-C-4 T	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180 -1.53442 -1.96779 -1.59066 -1.87303 -1.02122 -2.76077 F=0 FF= -52	7.8220353, TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087 1.54827 1.55563 -0.86705 -0.74027 -1.78354 -0.98493	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125 -0.04057 0.82281 0.28865 1.33311 0.17100 -0.45886
18 4FT-C-3,I C O O H C H H H H C H H C H H C H H F 18 4FT-C-4,I C	F=0, EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180 -1.53442 -1.96779 -1.59066 -1.87303 -1.02122 -2.76077 F=0, EE= -53 -1.74522	7.8220353, TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087 1.54827 1.55563 -0.86705 -0.74027 -1.78354 -0.98493 7.81889397, TE= -53	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125 -0.04057 0.82281 0.28865 1.33311 0.17100 -0.45886 7.70642097
18 4FT-C-3,I C O O H C H N H H H H C H C H C H H F 18 4FT-C-4,I C	F=0, EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180 -1.53442 -1.96779 -1.59066 -1.87303 -1.02122 -2.76077 F=0, EE= -53 -1.74532 -2.25882	7.8220353, TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087 1.54827 1.55563 -0.86705 -0.74027 -1.78354 -0.98493 7.81889397, TE= -53 -0.03725 0.80366	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125 -0.04057 0.82281 0.28865 1.33311 0.17100 -0.45886 7.70642097 -0.16651 0.44172
18 4FT-C-3,I C O O H C H H H H C H H C H H C H H F 18 4FT-C-4,I C O	F=0, EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180 -1.53442 -1.96779 -1.59066 -1.87303 -1.02122 -2.76077 F=0, EE= -53 -1.74532 -2.35883 -2.35883	7.8220353, TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087 1.54827 1.55563 -0.86705 -0.74027 -1.78354 -0.98493 7.81889397, TE= -53 -0.03725 0.80366 1.10000	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125 -0.04057 0.82281 0.28865 1.33311 0.17100 -0.45886 7.70642097 -0.16651 0.44173 0.2000
18 4FT-C-3,I C O O H C H N H H H C H H C H H C H H F 18 4FT-C-4,I C O O	F=0, EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180 -1.53442 -1.96779 -1.59066 -1.87303 -1.02122 -2.76077 F=0, EE= -53 -1.74532 -2.35883 -2.31518 -1.74532	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087 1.54827 1.55563 -0.86705 -0.74027 -1.78354 -0.98493 7.81889397,TE= -53 -0.03725 0.80366 -1.18802 1.5755	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125 -0.04057 0.82281 0.28865 1.33311 0.17100 -0.45886 7.70642097 -0.16651 0.44173 -0.52395
18 4FT-C-3,I C O O H C H H H H H H C H H C H H C H H F 18 4FT-C-4,I C O O H	F=0, EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180 -1.53442 -1.96779 -1.59066 -1.87303 -1.02122 -2.76077 F=0, EE= -53 -1.74532 -2.35883 -2.31518 -1.74729	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087 1.54827 1.55563 -0.86705 -0.74027 -1.78354 -0.98493 7.81889397,TE= -53 -0.03725 0.80366 -1.18802 -1.74770 0.74770	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125 -0.04057 0.82281 0.28865 1.33311 0.17100 -0.45886 7.70642097 -0.16651 0.44173 -0.52395 -1.07187
18 4FT-C-3,I C O O H C H H H H H H C H H C H H F 18 4FT-C-4,I C O O H C C H C H H C H C H C H C H C H	F=0,EE= -53 1.57346 2.39204 1.41383 2.04860 0.56296 0.45561 1.09954 1.61435 1.73792 0.31092 -0.82159 -0.67180 -1.53442 -1.96779 -1.59066 -1.87303 -1.02122 -2.76077 F=0,EE= -53 -1.74532 -2.35883 -2.31518 -1.74729 -0.27936	7.8220353,TE= -537 -0.55388 -0.28276 -1.73697 -2.36744 0.46102 0.38972 1.81303 1.77515 2.15485 2.46327 0.33600 0.24087 1.54827 1.55563 -0.86705 -0.74027 -1.78354 -0.98493 7.81889397,TE= -53 0.80366 -1.18802 -1.74770 0.15336	.7075483 -0.03327 -0.87964 0.54664 0.16800 0.47659 1.55486 0.15170 -0.73271 0.86786 0.06905 -0.21635 -1.29125 -0.04057 0.82281 0.28865 1.33311 0.17100 -0.45886 7.70642097 -0.16651 0.44173 -0.52395 -1.07187 -0.54051

Ν	0.06278	1.57197	-0.23342
Н	0.12469	1.67635	0.78309
Н	-0.64915	2.21502	-0.57622
Н	0.97039	1.81577	-0.63054
С	0.66183	-0.75744	0.28594
Н	0.25890	-1.76954	0.28740
0	0 74876	-0 22987	1 59993
с н	0 21711	-0 75462	2 20708
C	2 04432	-0 8/191	-0 32348
	2.01432	1 21406	1 20147
п	2.01040	-1.31400	-1.30147
н	2./1252	-1.3/922	0.34162
E.	2.36848	0.45277	-0.49700
18			
157-0-5	TE-0 EE537	91965132 mm _ F	537 70618732
411-0-5	1 CONEN	.0190J132,1E	0 10007
	-1.00434	-0.50611	-0.19907
0	-1.67765	-1./1049	-0.22592
0	-2.74213	0.25760	0.08216
H	-3.51282	-0.30436	0.26237
С	-0.45357	0.32753	-0.54318
H	-0.39942	0.37397	-1.62901
N	-0.60545	1.72443	-0.02433
Н	-0.31735	1.73846	0.95966
Н	-1.57650	2.03332	-0.07886
Н	-0.03347	2.39137	-0.53977
С	0.81642	-0.29734	0.05541
Н	0.75645	-1.37048	-0.11049
0	0.86597	0.01473	1.44109
Н	0.54495	-0.73084	1.95900
C	2 07237	0 22891	-0 60475
с н	2 25852	1 27168	-0 35267
и П	2.23032	0 10689	-1 68406
	2.02145	-0.50009	_0 12700
Ľ	3.13000	-0.50908	-0.13780
18			
4FT-C-6	,IF=0,EE= -537	.81552574,TE= -5	537.70260574
С	1.44977	-0.36940	-0.27983
0	1.85303	0.16750	-1.28702
0	1.62764	-1.63719	0.05260
н	2 11929	-2 08464	-0 65617
C	0 62567	0 38460	0 75654
с ч	0.02007	0.08765	1 761/2
II NI	0.96116	1 02177	0 50202
IN	0.90110	2 44665	0.00022
н	0.24004	2.44003	0.97320
H	1.08695	2.04447	-0.41081
H	1.84095	2.06020	1.04692
С	-0.88918	0.15103	0.60476
Н	-1.39984	0.91131	1.20293
0	-1.12484	-1.13396	1.13867
Н	-2.06940	-1.31719	1.07255
С	-1.38587	0.25328	-0.82692
H	-0.97002	-0.53417	-1.45144
Н	-1.19453	1.22840	-1.27028
F	-2.77157	0.07190	-0.79024

Copies of NMR spectra

Figure S5. ¹H (top) and ¹³C (bottom) NMR spectra of 1 (CDCl₃, 400 and 101 MHz, respectively).

Figure S6. ¹H (top) and ¹³C (bottom) NMR spectra of 2 (CDCl₃, 400 and 101 MHz, respectively).

Figure S7. ¹H NMR spectrum of 3 (CDCl₃, 400 MHz).

Figure S8. ¹H (top) and ¹³C (bottom) NMR spectra of *trans*-4 (CDCl₃, 400 and 101 MHz, respectively).

Figure S9. 1 H (top) and 13 C (bottom) NMR spectra of *cis*-4 (CDCl₃, 400 and 101 MHz, respectively).

Figure S10. ¹H (top) and ¹³C (bottom) NMR spectra of 5 (CDCl₃, 400 and 101 MHz, respectively).

Figure S11. ¹H (top) and ¹³C (bottom) NMR spectra of 6 (CDCl₃, 400 and 101 MHz, respectively).

Figure S12. ¹⁹F NMR spectrum of 6 (CDCl₃, 376.5 MHz).

Figure S13. ¹H (top) and ¹³C (bottom) NMR spectra of 7 (D₂O, 400 and 101 MHz, respectively). Methanol was added as a reference (far-right signals, 3.34 ppm for ¹H NMR and 49.5 ppm for ¹³C NMR).

Figure S15. ¹H (top) and ¹³C (bottom) NMR spectra of **8** (D₂O, 400 and 101 MHz, respectively). Methanol was added as a reference (far-right signals, 3.34 ppm for ¹H NMR and 49.5 ppm for ¹³C NMR).

0

Figure S16. 19 F NMR spectrum of 8 (D₂O, 376.5 MHz).

Figure S17. ¹H (top) and ¹³C (bottom) NMR spectra of Thr (D₂O, 400 and 101 MHz, respectively). Methanol was added as a reference (3.34 ppm for ¹H NMR and 49.5 ppm for ¹³C NMR). Thr, ¹H NMR δ : 4.24 (1H, dq, J = 6.6, 4.9 Hz), 3.57 (1H, d, J = 4.9 Hz), 1.32 (3H, d, J = 6.6 Hz). ¹³C NMR δ : 173.4, 66.5, 61.0, 20.1.

Figure S18. Stacked ¹H (top) and ¹³C (bottom) NMR spectra (D_2O , 400 and 101 MHz, respectively) of Thr (red) and 4F-Thr (green). Methanol was added as a reference (3.34 ppm for ¹H NMR and 49.5 ppm for ¹³C NMR).