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Multi-Robot Coordination for
Estimation and Coverage of Unknown Spatial Fields

Alessia Benevento1, Marı́a Santos2, Giuseppe Notarstefano3, Kamran Paynabar4, Matthieu Bloch2, and Magnus Egerstedt2

Abstract— We present an algorithm for multi-robot coverage
of an initially unknown spatial scalar field characterized by
a density function, whereby a team of robots simultaneously
estimates and optimizes its coverage of the density function
over the domain. The proposed algorithm borrows powerful
concepts from Bayesian Optimization with Gaussian Processes
that, when combined with control laws to achieve centroidal
Voronoi tessellation, give rise to an adaptive sequential sampling
method to explore and cover the domain. The crux of the
approach is to apply a control law using a surrogate function of
the true density function, which is then successively refined as
robots gather more samples for estimation. The performance of
the algorithm is justified theoretically under slightly idealized
assumptions, by demonstrating asymptotic no-regret with re-
spect to the coverage obtained with a known density function.
The performance is also evaluated in simulation and on the
Robotarium with small teams of robots, confirming the good
performance suggested by the theoretical analysis.

I. INTRODUCTION

Coverage of an environment constitutes a common task of
multi-robot systems, whereby communicating robots coordi-
nate their locations to achieve optimal coverage of a given
area. Coverage is measured in terms of the robots’ ability
to collectively capture events whose importance is described
by the density function of a scalar field [1]–[3]. Solutions
to the coverage control problem find direct applications to
autonomous environmental monitoring [4] or autonomous
search-and rescue missions [5]. While most studies have
concentrated on the coverage control problem with a known
density function [6]–[8] or the estimation of an unknown
density function [4], [9], follow-up works have only recently
attempted to investigate the joint estimation and coverage
of a domain in presence of an a priori unknown density
function [5], [10]–[13].
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Two previous approaches are particularly relevant to the
present work. The first approach [10], [11] consists in assum-
ing that the unknown density function can be parametrized as
a linear combination of known basis functions. Consequently,
the robots have to estimate the coefficients of the linear
combination through sampling while attempting to achieve
coverage. Although a complete protocol with provable guar-
antees has been proposed to achieve coverage, the protocol
requires noiseless sensor observations and proceeds in a se-
quential manner, first estimating parameters and then running
a distributed coverage control. The second approach [12],
[13] consists in applying concepts from Bayesian Optimiza-
tion and modeling the unknown density as the realization
of a Gaussian Process [14]. This approach allows one to
encourage simultaneous exploration and exploitation, and
numerical results have demonstrated the good performance of
a distributed adaptive coverage control strategy with online
density function modeling through a mixture of Gaussian
Processes.

In this paper, we further investigate the Bayesian approach
to coverage control by leveraging recent advances in the
regret analysis of Bayesian optimization problems. Similar
to [12], [13], we propose an algorithm that combines the
coverage control law of [1] with the powerful Gaussian
Process Upper Confidence Bound (GP-UCB) algorithm [15]
to create a surrogate density that is refined by acquiring
more samples over time. However, a major difference be-
tween [12], [13] and the present work is that we take
full advantage of some theoretical guarantees offered by
Bayesian optimization developed over the last few years
and we propose an algorithm that, under slightly idealized
assumptions, offers asymptotically no-regret compared to the
situation with a known density function. Despite high-level
conceptual similarities with the algorithms proposed in [12],
[13], our algorithm exhibits a few subtle differences that
prove crucial to establish theoretical guarantees.

The remainder of the paper is organized as follows. In
Section II, we formally introduce the optimal coverage prob-
lem. In Section III, we describe the proposed probabilistic
model. In Section IV, we describe the proposed Prediction
Correction Coverage (PCC) algorithm for the estimation and
the coverage of spatial fields and demonstrate its asymptotic
no-regret under slightly restrictive assumptions. In Section V,
we corroborate the theoretical analysis in simulation and on
the Robotarium.
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II. PRELIMINARIES

We consider n mobile robots with sensing capability
operating in an area described by a convex compact set
D ⊂ R2. The position of each robot i ∈ J1, nK is denoted
by xi ∈ R2, and positions are collectively grouped into a
vector x = [xᵀ1 , · · · , xᵀn]ᵀ ∈ R2n. An event occurs in the
area according to an a priori unknown event density function
φ : R2 → R+. By communicating their positions x with
their neighbors, the robots can compute a Voronoi partition
{Vi}ni=1 of the space D, such that for all i ∈ J1, nK

Vi , {q ∈ R2 : ∀j 6= i ‖q − xi‖2 6 ‖q − xj‖2}. (1)

Voronoi cell Vi can be viewed as the region of dominance of
robot i, in which it is responsible for covering the domain.
The centroid of each voronoi cell Vi is defined as

ci(φ) ,
1∫

Vi φ(q)dq

∫
Vi
qφ(q)dq. (2)

The set of locations {ci(φ)}ni=1 is known as a centroidal
Voronoi tessellation (CVT) with respect to the density func-
tion φ. The objective is to design a distributed control law
and a communication scheme such that the robots minimize
the so-called locational cost [1]

`(φ,x) ,
n∑
i=1

∫
q∈Vi
‖q − xi‖22φ(q)dq. (3)

The locational cost captures the need for the robots to col-
lectively move in positions that capture the relative areas of
importance of the event, as defined by φ(·). When the density
function φ(·) is known, a local minimizer (not necessarily
unique) of the locational cost consists of the centroids of the
Voronoi cells, which can be reached using a continuous-time
version of Lloyd’s algorithm [16].

We assume in this work that the density function is
unknown; however, when in position xi, robot i has the
ability to sense the event and to obtain a noisy measurement
of the density function according to the sensing model

y = φ(xi) + ε, (4)

where ε ∼ N (0, σ2). We assume that the measurement noise
ε is independent and identically distributed (i.i.d.) across time
and space.

Since the proposed algorithm operates over T steps in-
dexed by t ∈ J1, T K, we now introduce some useful notation.
All the variables related to step t are affixed with a super-
script (·)(t). In particular, each robot i ∈ J1, nK occupies
location x(t)i ∈ R2 at step t and all locations are regrouped
in a vector x(t) ,

[
x
(t)
1 , · · · , x(t)n

]ᵀ
∈ R2n. Each robot is

then able to obtain a measurement y(t)i = φ(x
(t)
i ) + ε

(t)
i ,

and all measurements are regrouped in a vector y(t) ,
[y

(t)
1 , · · · , y(t)n ]ᵀ ∈ Rn. It is also sometimes convenient to

collect together the positions and measurements of the robots
across consecutive time steps. We indicate this by replacing
the superscript (·)(t) by a superscript with the range of
time steps, e.g., (·)(1:t). In particular, all the positions of

the robots during the algorithm are regrouped in a vector
x(1:T ) ∈ R2nT , and their corresponding measurements in a
vector y(1:T ) ∈ RnT .

III. BAYESIAN MODEL FOR GAUSSIAN PROCESSES

The key idea behind the proposed algorithm is to model
the unknown density function φ(·) as the realization of a
Gaussian Process. Gaussian Process models are widely used
for function estimation because of the flexibility they offer in
modeling nonlinearities and thanks to the simple estimation
of their associated parameters. A Gaussian Process is fully
specified by a mean function µ : D → R and a covariance
function k : D × D → R [14]. There are many possible
choices of mean and covariance functions [14]. In order to
keep the model general, we only assume that the structures
of µ and k are known up to certain hyper-parameters ρ and
τ as

µ = µ(·; ρ) k = k(·, ·; τ),

and are continuous in those parameters. The proposed algo-
rithm therefore only assumes that

φ(·) ∼ GP(µ(·; ρ), k(·, ·; τ)).

In particular, the experimental results in Section V are based
on using a squared-exponential kernel for the covariance

k(x, x′; τ) , exp

(
−
‖x− x′‖22

2τ2

)
, (5)

where τ is a hyper-parameter known as the characteristic
length scale, and a linear model for the mean function

µ(x; ρ) , ρᵀx. (6)

Notice that (5) and (6) can model nonlinear functions. In
particular, (6) should not be confused with (12) describing
the mean of the posterior distribution of φ(·). To deal with the
presence of unknown hyper-parameters, we propose to follow
an Empirical Bayes approach [17] by which we alternate
between (i) the estimation of the hyper-parameters from
collected observations; and (ii) Bayesian inference assuming
that the estimated hyper-parameters are the true ones.

Specifically, at each step t ∈ J1, T K of the proposed algo-
rithm, the observations y(1:t) at locations x(1:t) accumulated
thus far by the n robots are used to perform Maximum
Likelihood (ML) estimation of the hyper-parameters as

(ρ, τ) = argmax
ρ,τ

p(y(1:t)|x(1:t); ρ, τ). (7)

Conveniently, the density p(y(1:t)|x(1:t); ρ, τ) is known in
closed form with log-likelihood function

log(p(y(1:t)|x(1:t); ρ, τ)) =

−1

2
(µ(1:t)(ρ)−y(1:t))ᵀ(Kx(1:t)(τ)+σ2I)−1(µ(1:t)(ρ)−y(1:t))

− 1

2
log |Kx(1:t)(τ) + σ2I| − t

2
log(2π), (8)



where µ(1:t)(ρ) ∈ Rnt is the vector of mean values at all
points sampled

µ(1:t)(ρ) , [µ(x
(1)
1 ; ρ) · · ·µ(x(t)n ; ρ)]ᵀ, (9)

I is the identity matrix, and Kx(1:t)(τ) ∈ Rnt×nt is the
covariance matrix with entries

k(x
(j)
i , x

(j′)
i′ ; τ) for i, i′ ∈ J1, nK and j, j′ ∈ J1, tK. (10)

The first term of the log-likelihood function can be viewed
as the estimation based on the data, while the second one can
be viewed as a complexity penalty term. The ML estimation
of ρ and τ at step t is therefore given by

(ρ(t), τ (t)) = argmin
ρ,τ

[(µ(1:t)(ρ)−y(1:t))ᵀ(Kx(1:t)(τ)+σ2I)−1

(µ(1:t)(ρ)− y(1:t))] + log |Kx(1:t)(τ) + σ2I| (11)

Note that the maximum likelihood solution of (11) improves
over time as more and more locations are sampled. We
call such a computation a correction step since it corrects
the possibly imprecise values of the hyper-parameters. Once
the parameters ρ(t) and τ (t) are available, µ(·; ρ(t)) and
k(·, ·; τ (t)) are treated as the true mean and covariance of
the Gaussian Process.

Given mean and covariance functions, the posterior func-
tion of φ(·), is given by a multivariate Gaussian distribution.
Specifically, given the noisy observations y(1:t) and the
known sampling locations x(1:t), the posterior distribution
of φ(·) is again a Gaussian Process with mean µ(t)(x),
covariance k(t)(x, x′), and variance σ(t)(x) given by [15]

µ(t)(x) = µ(x; ρ(t))+k(x;x(1:t))ᵀ(Kx(1:t)(τ (t))+σ2I)−1

(y(1:t) − µ(1:t)(ρ(t))) (12)

k(t)(x, x′) = k(x, x′; τ (t))

− k(x;x(1:t))ᵀ(Kx(1:t)(τ (t)) + σ2I)−1k(x′;x(1:t)) (13)

and σ(t)(x) = k(t)(x, x), where Kx(1:t)(τ (t)) is defined as
in (10) and k(x;x(1:t)) ∈ RnT is the vector with entries

k(x
(j)
i , x; τ (t)) for i ∈ J1, nK and j ∈ J1, tK. (14)

We call such a computation a prediction step since it predicts
the value of the density function φ(·) in yet unexplored
locations.

Note that the described procedure requires a centralized
communication method to suitably fuse the collected data
coming from different robots. How to make the procedure
decentralized is left as a topic for future work [17].

IV. PREDICTION-CORRECTION ALGORITHM

We now propose an algorithm, dubbed the Prediction-
Correction Coverage (PCC) algorithm, which governs the
trajectories and sensing of the robots, eventually leading
them to a CVT for the true density function φ(·). The
algorithm allows a team of robot to simultaneously estimate
and cover a spatial field by alternating between a prediction
step, allowing the multi-robot team to select new points to

be sampled, and a correction step, allowing the multi-robot
team to update their estimation of the hyper-parameters for
the underlying φ(·), as explained in Section III.

Prediction-Correction Coverage Algorithm PCC
Initialization:
Define a non decreasing sequence

{
β(t)

}T
t=1

.
Randomly select locations x(0) = [x

(0)
1 · · ·x

(0)
n ]ᵀ.

Compute ρ(0) and τ (0) as per (11).
Compute µ(0)(·) and σ(0)(·) as per (12)-(13).
for t = 1 . . . T do

Prediction
Compute surrogate φ(t) for all q ∈ D as

φ(t)(q) , µ(t−1)(q)−
√
β(t)σ(t−1)(q).

Run control of [1] with φ(t) for robots to reach

x(t) , CVT(φ(t)).

Move drone to location

x̃(t) = argmax
x∈D

σ(t−1)(x).

Sample at locations of robots to obtain measurements

∀i ∈ J1, nK y
(t)
i = φ(x

(t)
i ) + ε

(t)
i .

Sample at location of drone to obtain measurement

ỹ(t) = φ(x̃(t)) + ε̃(t).

Update µ(t)(·) and σ(t)(·) as per (12)-(13).
Correction
Compute ρ(t) and τ (t) as per (11).

A. Algorithm description

The proposed algorithm is explicitly given in the table
above and we provide here supporting information and
additional discussion. We assume the existence of an n+1th
robot that does not engage in the coverage of the domain
and merely helps the others acquire one extra sample of the
density function per step. We refer to this robot as the drone
while we simply refer to the others as the robots. As will
be clear from the algorithm and its analysis, the drone need
not really exist and its role could be played by another robot
at the cost of further movement in the domain. As will be
seen in the analysis of Section IV-B, the introduction of the
drone is merely for analytical reasons and the algorithm runs
equally well without this step.

The algorithm requires a non-decreasing sequence{
β(t)

}T
t=1

that will be precisely justified in Section IV-B.
For now, assume that we set for some δ ∈ [0, 1]

β(t) , 2 log

(
|D| t2π

2

6δ

)
, (15)

where the domain D has been discretized. The mathematical
meaning of δ will be clarified in Lemma IV.5. At the



beginning of each iteration t ∈ J1, T K, the robots update
a surrogate density function

φ(t)(q) , µ(t−1)(q)−
√
β(t)σ(t−1)(q), (16)

which they use as their current approximation of the true
density function φ. Note the presence of a minus sign in (16),
which subtly differs from [12], [13] but plays a crucial role
in Section IV-B. The intuition behind the choice of the
surrogate density function is that we seek to underestimate
the true density function to “push” robots towards areas of
higher importance. The positivity of function (16) is not
guaranteed. However, simulations suggest that the method
converges even if we do not take into account this issue. We
defer the precise study of this aspect for future work.

Once the surrogate density function is computed,
the robots move to the centroidal Voronoi tessellation
{ci(φ(t))}ni=1 using the control law of [1]. This operation
is concisely described as

x(t) , CVT(φ(t)). (17)

Concurrently, the drone moves to the location in the domain
where σ(t−1) is maximum according to

x̃(t) = argmax
x∈D

σ(t−1)(x). (18)

We do not specify the exact method to create this trajectory,
which is irrelevant to the performance of the proposed
algorithm. Note that the main cost in performing these
movements lies with the CVT, and the calculations required
by the drone are already part of those performed by the
robots.

Once the robots and the drone reach their locations, they
collect new measurements according to

∀i ∈ J1, nK y
(t)
i = φ(x

(t)
i ) + ε

(t)
i (19)

ỹ(t) = φ(x̃(t)) + ε̃(t) (20)

These new measurements are finally used to update µ(t) and
σ(t) and perform a correction step for the hyper-parameters
ρ(t) and τ (t).

B. Approximate No-regret Analysis of Coverage Control

We now show that, under some assumptions that we
precisely state, the regret between the optimal cost and the
cost effectively obtained through the proposed algorithm is
sub-linear in T . Specifically, the regret r(t) at stage t ∈
J1, T K is defined as the difference between the locational
cost incurred with the current locations x(t) and the optimal
locational cost, i.e.,

r(t) , `(φ,x(t))−min
x
`(φ,x) > 0. (21)

The cumulative regret is then RT ,
∑T
t=1 r

(t). If
one can show that RT grows sub-linearly with T , then
limT→∞RT /T = 0 and one establishes a so-called asymp-
totic no-regret. An asymptotic no-regret implies that the
algorithm is close to optimal on average in the long run.

We emphasize that our regret analysis does not strictly
hold in the setup described earlier in the paper. Specifically,
we make the following three restricting assumptions.

Assumption IV.1. The hyper-parameters ρ and τ are known.

Assumption IV.2. The domain D is discrete.

Assumption IV.3. The coverage control law [1] for CVT
solves the optimization problem: x = argminx̃ `(φ, x̃)

Assumption IV.1 greatly simplifies our proof but is likely
not so critical and could be removed in the future [18].
Assumption IV.2 is not fundamentally problematic either
since the results can be generalized to a compact do-
main [15] and since our simulations already discretize D.
Assumption IV.3 is, however, central to our analysis. It is
know that the coverage control law of [1] only achieves
local optima of the locational cost with no guarantee of
global optimality. Nevertheless, we heuristically justify our
assumption by viewing the local optimum reached by the
algorithm as an “attracting” optimum that effectively plays
the role of a reachable global optimum. Furthermore, our
analysis would hold if the coverage control law were shown
to be optimal, and extensive simulations suggest that the
control law provides a very good solution if not an optimal
one. The proposed approach also offers additional benefits:
• Should another control law be constructed to achieve

improved coverage based on a surrogate density func-
tion, this new control law could be plugged into our
protocol without changing the sampling procedure.

• The proposed protocol performance can be precisely
evaluated along several dimensions, including how
much storage and computation is required at every node.
This provides a clean framework to start developing fair
comparisons between various protocols.

The main result of this section is then as follows.

Theorem IV.4. Let δ ∈ [0; 1] and β(t) =
2 log

(
|D| t2π2/6δ

)
. Under Assumptions IV.1-IV.3, if

the event density function φ(·) is the realization of a
Gaussian Process with mean µ(·) and covariance function
k(·, ·) 6 1, then running the PCC algorithm ensures that

P
(
∀T > 1 RT 6

√
c1(n+ 1)Tβ(T )γT

)
> 1− δ

where c1 , 8 |D|2 maxx,x′ ‖x− x′‖42/ log(1 + σ−2) and
γT , maxA⊂D:|A|=T I(yA;φA) with I(yA;φA) the mu-
tual information between the density and observations in
locations in A. For many kernels γT = o(T ), so that the
PCC algorithm asymptotically has no-regret.

Proof: We first recall a result from [15, Lemma 5.6].

Lemma IV.5. Pick δ ∈ [0; 1] and set β(t) = 2 log(|D|πt/δ),
where

∑
t>1 π

−1
t = 1, πt > 0 (say πt = π2t2

6 ). Then,∣∣∣φ(x)− µ(t−1)(x)
∣∣∣ 6√β(t)σ(t−1)(x)

holds for any x ∈ D and any t > 1 with probability at least
1− δ.



In the remaining of the proof, we assume that the high-
probability event of Lemma IV.5 holds. We let `∗ ,
minx `(φ,x) and x∗ , argminx `(φ,x). By Assump-
tion IV.3, we have

`(φ(t),x(t)) 6 `(φ(t),x∗) 6 `∗, (22)

where the last inequality follows because we are assuming
that the event in Lemma IV.5 holds. The regret at step t is
then

r(t) , `(φ,x(t))− `∗
(a)

6 `(φ,x(t))− `(φ(t),x(t))

(b)
=
∑
i

∑
q∈V(t)

i

‖q − x(t)i ‖
2
2

(
φ(q)− φ(t)(q)

)
(c)

6 2
√
β(t)

∑
i

∑
q∈V(t)

i

∥∥∥q − x(t)i ∥∥∥2
2

max
q∈D

σ(t−1)(q)

(d)

6 2c0
√
β(t) max

q∈D
σ(t−1)(q) , 2c0

√
β(t)σ(t−1)(x̃(t)),

(23)

where (a) follows from (22), (b) follows by the definition of
the locational cost, (c) follows because φ(q) 6 µ(t−1)(q) +√
β(t)σ(t−1)(q) and φ(t)(q) = µ(t−1)(q)−

√
β(t)σ(t−1)(q),

and (d) follows by setting c0 = |D|maxx,x′∈D ‖x− x′‖22.
Note that c0 only depends on the geometry of the domain
D and not on the number of robots n. One might hope to
develop a bound that decreases with the number of robots,
but this is left for future work.

Following standard steps [15, Lemma 5.4] and using the
fact that β(t) is non-decreasing with t, we obtain(

r(t)
)2

6 4c20β
(t)
(
σ(t−1)(x̃(t))

)2
(24)

6 c1β
(T ) 1

2
log

(
1 +

(
σ(t−1)(x̃(t))

σ

)2
)

(25)

for c1 = 8c20/ log(1 + σ−2). Therefore,
T∑
t=1

(
r(t)
)2

6 c1β
(T )

T∑
t=1

log

(
1 +

σ(t−1)(x̃(t))
2

σ2

)
.

We now develop an information gain bound. For t ∈ J1, T K,
we slightly abuse notation and define φ(x(1:t)) ∈ Rnt

as

φ(x(1:t)) ,
[
φ(x

(1)
1 ) · · ·φ(x(1)n ) · · ·φ(x(t)1 ) · · ·φ(x(t)n )

]ᵀ
.

Similarly we define φ(x̃(1:t)) ∈ Rt as

φ(x̃(1:t)) ,
[
φ(x̃(1)) · · ·φ(x̃(t))

]ᵀ
.

Recall that for every i ∈ J1, nK and every t ∈ J1, T K, we
have

y
(t)
i , φ(x

(t)
i ) + εi,t ỹ(t) = φ(x̃(t)) + ε̃t (26)

where all the additive noises are N (0, σ2) and i.i.d. Then,

I(φ(x(1:T )), φ(x̃(1:T ));y(1:T ), ỹ(1:T ))

= h(y(1:T ), ỹ(1:T ))− h(y(1:T ), ỹ(1:T )|φ(x(1:T )), φ(x̃(1:T )))

= h(y(1:T ), ỹ(1:T ))− (n+ 1)T

2
log
(
2πeσ2

)
, (27)

where the last equality follows by definition of the sensing
model (26). By the chain rule of differential entropy, we have

h(y(1:T ), ỹ(1:T )) =

T∑
t=1

h(y(t), ỹ(t)|y(1:t−1), ỹ(1:t−1)) (28)

with h(y(t), ỹ(t)|y(1:t−1), ỹ(1:t−1))

= h(ỹ(t)|y(1:t−1), ỹ(1:t−1)) + h(y(t)|y(1:t−1), ỹ(1:t)). (29)

We analyze each term in (29) independently. With the
proposed algorithm, the sequence of sensing points x(1:t)

and x̃(1:t) is a deterministic function of y(1:t−1) and ỹ(1:t−1).
Therefore,

h(ỹ(t)|y(1:t−1), ỹ(1:t−1))

= h(ỹ(t)|x(1:t), x̃(1:t),y(1:t−1), ỹ(1:t−1))

=
1

2
log
(
2πe(σ2 + σ(t−1)(x̃(t))

2
)
)
,

(30)

where the last equality follows since ỹ(t) conditioned on
x(1:t), x̃(1:t),y(1:t−1), ỹ(1:t−1) is distributed according to
N (µ(t−1)(x̃(t)), σ2 + σ(t−1)(x̃(t))

2
) and σ(t−1)(x̃(t)) does

not depend on y(1:t−1), ỹ(1:t−1). Similarly,

h(y(t)|y(1:t−1), ỹ(1:t))

= h(y(t)|x(1:t), x̃(1:t),y(1:t−1), ỹ(1:t))

=
1

2
log
∣∣2πe (σ2I + Σt

)∣∣ (31)

where the last equality follows since y(t) conditioned
on x(1:t), x̃(1:t),y(1:t−1), ỹ(1:t) is distributed according to
N (µ̃t,Σt(x

(1:t))) with some µ̃ ∈ Rn and Σ(t)(x(1:t)) ∈
Rn×n computed appropriately. Combining (27)-(31) and
using the non-negativity of mutual information, we obtain

I(φ(x(1:T )), φ(x̃(1:T ));y(1:T ), ỹ(1:T ))

=

T∑
t=1

[
1

2
log

(
1 +

σ(t−1)(x̃(t))
2

σ2

)
+

1

2
log

∣∣∣∣I + 1

σ2
Σt

∣∣∣∣
]

>
T∑
t=1

1

2
log

(
1 +

σ(t−1)(x̃(t))
2

σ2

)
. (32)

The exact behavior of I(φ(x(1:T )), φ(x̃(1:T ));y(1:T ), ỹ(1:T ))
is difficult to analyze because of how the sequence of robot
positions evolve at each step of the algorithm. Fortunately,
we can use the universal upper bound

I(φ(x(1:T )), φ(x̃(1:T ));y(1:T ), ỹ(1:T ))

(a)
= I(ỹ(1:T );φ(x(1:T )), φ(x̃(1:T )))+
n∑
i=1

I(y
(1:T )
i ;φ(x(1:T )), φ(x̃(1:T ))|y(1:T )

1 , . . . , y
(1:T )
i−1 , ỹ(1:T ))

(b)

6 I(ỹ(1:T );φ(x̃(1:T ))) +

n∑
i=1

I(y
(1:T )
i ;φ(x

(1:T )
i ))

(c)

6 (n+ 1) max
A⊂D:|A|=T

I(yA;φA), (33)



where (a) follows by the chain rule of mutual information;
(b) follows because conditioning does not increase entropy;
and (c) follows trivially upon defining yA and φA appro-
priately [15]. Upon setting γT , maxA⊂D:|A|=T I(yA;φA)
and combining (25), (32), and (33), we obtain

T∑
t=1

(
r(t)
)2

6 c1β
(T )(n+ 1)γT ,

so that with a direct application of Cauchy-Schwarz inequal-
ity

T∑
t=1

r(t) 6
√
c1(n+ 1)Tβ(T )γT .

From [19, Theorem 8], we know that γT scales sub-linearly
with T for many kernels. In particular, for the squared
exponential kernel, we have γT = O([log(T 3 log T )]3).

V. EXPERIMENTAL RESULTS

The performance of the proposed algorithm was evalu-
ated in simulation and on the Robotarium [20], a remotely
accessible multi-robot testbed at the Georgia Institute of
Technology. The Robotarium is populated by small-scale
differential-drive robots that move according to a script
uploaded by the web.

In all experiments, the robots start from a randomly chosen
set of positions x(0) and the standard deviation of the
observation noise is σ = 0.01. The value of δ in (15) is
set to 0.01. The algorithm was tested with teams of four and
six robots and with the following density function:

φ(x) = 3(1− x1)2e−x
2
1−(x2+1)2 − 1

3
e−(x1+1)2−x2

2 +
7

2

− 10
(x1
5
− x31 − x52

)
e−(x

2
1−x

2
2). (34)

The mean and covariance of the Gaussian Process are chosen
to be a squared exponential kernel and a linear model as
per (5) and (6), respectively.

The trajectories followed by a team of four robots in
the Robotarium and in simulation are shown in Fig. 1 and
Fig. 2, respectively. In each figure, the right panel displays
the trajectories that robots would have followed had they
known the true density function, while the left panel shows
the actual trajectories followed with the proposed algorithm.
As expected, the trajectories do not sample the entire domain
and take advantage of the prediction step in the algorithm to
only select significant new sampling points.

To develop additional insight into the benefits of the
proposed algorithm, the evolution of the locational cost
`(φ,x(t)) as the function of time with teams of four and six
robots is shown in Fig. 3.The time instants when observations
are obtained (corresponding to steps t in the algorithm) are
indicated with markers (×) but the locational cost is tracked
at all times when robots are moving. While the cost is always
slightly larger than the one incurred with known φ, the loss
of performance vanishes with the number of iterations and
confirms the ability of the proposed algorithm to efficiently
explore while achieving good coverage. Figure 3 also shows

Fig. 1. Snapshot of the experiment performed with four robots when the
true density function is φ.The right panel shows the projection of φ on the
domain. The red lines represent the trajectories that the robots would have
if they knew φ. The left panel shows the projection of the estimation of the
function at the end of the experiment. The red lines represent the trajectories
of the robots.

Fig. 2. Trajectories of four robots when the true density function is φ.
The right panel shows the projection of φ on the domain. The red lines
represent the trajectories that the robots would have if they knew φ. The
left panel shows the projection of the estimation of the function at the end
of the simulation. The red lines represent the trajectories assigned by the
proposed algorithm.

the evolution of the locational cost when the robots move
according to the GP-UCB algorithm [12]. While the GP-
UCB algorithm approaches the cost of the algorithm under
a known φ faster than the approach proposed in this paper,
the GP-UCB algorithm does not offer theoretical guarantees.
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Fig. 3. Evolution of the locational cost for the density function φ. The
group of lines above is the evolution of the cost in presence of four robots.
The triplet of lines below is the evolution of it in presence of six robots.
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