Rapid Non-Invasive Skin Monitoring by Surface Mass Recording and Data Learning

Yingdi Zhu,¹ Andreas Lesch,² Xiaoyun Li,^{3,4} Tzu-En Lin,⁵ Natalia Gasilova,¹ Milica Jović,¹ Horst Matthias Pick,⁶ Ping-Chih Ho,^{3,4} Hubert H. Girault¹*

¹Institute of Chemical Sciences and Engineering, School of Basic Science, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

²Department of Industrial Chemistry "Toso Montanari", Universita degli Studi di Bologna, 40136 Bologna, Italy.

³Department of Fundamental Oncology, Université de Lausanne, 1066 Epalinges, Switzerland.

⁴Ludwig Institute for Cancer Research, Université de Lausanne, 1066 Epalinges, Switzerland.

⁵Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 30010 Hsinchu, Taiwan.

⁶Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

*Correspondence: hubert.girault@epfl.ch

Table of Content

Supplementary Methods	3
Algorithm Description	4
Figure S1. A photo of the sampling discs	5
Figure S2. Influence of the sampling disc on MALDI-TOF MS measurement	5
Figure S3. MALDI-TOF mass spectra of blank sampling discs	6
Figure S4. Skin surface mass fingerprints from human volunteers	7
Figure S5. Classification of mass fingerprints from normal skins	
Figure S6. Influence of sampling repetition times	9
Figure S7. Microscopic image of mouse skin cells collected from a fourth sampling	10
Figure S8. Skin surface mass fingerprints from six healthy mice	11
Figure S9. Bright field images of melanoma skin lesions at early progression stages	12
Figure S10. Microscopic images of mouse skin cells collected by adhesive sampling	13
Figure S11. Hierarchical clustering dendrogram of mouse skin surface mass fingerprints	14
Figure S12. Comparison of mass fingerprints by Jaccard index	15
Figure S13. Comparison of mass fingerprints by Euclidean distance	
Figure S14. Statistical analysis of the mouse skin surface mass fingerprint PCA scores	17
Figure S15. Summary of mouse skin surface mass fingerprint peaks	
Figure S16. Label-Free Quantitative Proteomic Data	20
Figure S17. Images of cells collected from healthy skin and adjacent non-tumor skin	21
Figure S18. Analysis of mass fingerprints from adjacent non-tumor skin surface	
Figure S19. MALDI-TOF mass spectra of mouse blood-circulating exosomes	
Figure S20. Hierarchical clustering dendrogram from the mouse blood test	
Figure S21. Statistical analysis of the mouse blood test PCA scores	
Figure S22. Comparison of mass fingerprints by intensity-weighted Euclidean distance	
Figure S23. Mass fingerprints from normal skins, skin moles and melanoma cells	
Table S1. Human skin sample information	
Table S2. Human skin surface mass fingerprint peak information	30
Table S3. Cosine similarities of mouse skin surface mass fingerprints	34
Table S4. Comparison of peak intensities between healthy and speckle skins from mice	
Table S5. A list of all investigated machine learning classification algorithms	
Table S6. PCA scores of mouse skin surface mass fingerprints	
Table S7. One-way ANOVA test of mouse skin surface mass fingerprint PCA scores	39
Table S8. Mass spectral cosine similarities of mouse blood-circulating exosomes	40
Table S9. PCA scores of the mouse blood test	42
Table S10. One-way ANOVA statistic of the mouse blood test PCA scores	43
Data File S1. Proteomic data for peak assignment on mouse skin surface mass fingerprints	44
Data File S2. Quantitative proteomic data of mouse skin tissues	49
Data File S3. Quantitative proteomic data of melanoma biomarkers	51
Data File S4. Proteomic data for the assignment of exosomal mass spectral peaks	
References	58

Supplementary Methods

Cell culture

Human cell lines SBCL2 and WM239 obtained from American Type Culture Condition (ATCC®, Virginia, USA) were cultured in Dulbecco's modified Eagle's medium supplemented with 10% of newborn fetal calf serum and 1% of $100 \times$ penicillin/streptomycin (Gibco Life Technologies, Basel, Switzerland) at 37 °C in a humidified atmosphere filled with 5% CO₂. When reaching 80% flask confluency, the cells were harvested by trypsinization. Around 10^3 cells were pipetted on MALDI target and covered with MALDI matrix for MALDI-TOF MS measurement.

Isolation of blood exosomes

Mouse blood was collected in EDTA-treated tubes. The tubes were kept upright at 37 °C for 30 min, followed by centrifugation at 1500 *g* at 4 °C for 12 min. Blood plasma present on the top layer was collected. Exosomes were isolated from the blood plasma using ExoQuickTM Plasma prep and Exosome precipitation kit (Catalog # EXOQ5TM-1, System Bioscience, Palo Alto, Canada) according to the user manual. The obtained exosomes were suspended in ice-cold deionized water or phosphate-buffered saline, purified using 100 kDa cut-off centrifugal filters to remove the co-precipitated blood plasma proteins, and stored in -80 °C for later measurements. The exosome concentration was measured by nanoparticle tracking analysis using NanoSight NS300 (Malvern Panalytical Ltd, United Kingdom). 1 μ L of exosomes (~5·10⁷ exosome particles) was pipetted on MALDI target and covered with MALDI matrix for MALDI-TOF MS measurement.

Top-down proteomic analysis

Skin tissues excised from mice were flashily frozen on dry ice, crushed in the frozen state, and homogenized for 2 h in ice-cold protein extraction buffer, *i.e.* Laemmli $2 \times$ buffer (pH 6.8) containing 4% SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.004% bromphenol blue and 0.125 M Tris HCl. As for mouse blood exosomes, they were homogenized in ice-cold Laemmli $2 \times$ buffer for 20 min. The tissue or exosome samples were incubated at 95 °C for 10 min to denature the proteins. After centrifugation at 10,000 g for 10 min, the supernatants were collected for protein isolation through methanol-chloroform precipitation. After enrichment using 30 kDa-cut off Amicon[®] Ultra centrifugal filters, proteins smaller than 30 kDa were subjected to top-down proteomic analysis using liquid chromatograph-tandem mass spectrometry (Thermo Fisher UPLC Ultimate 3000 – Q Exactive HF Hybrid Quadrupole Orbitrap Mass Spectrometer), with the analysis conducted in ISIC Mass Spectrometry Facility in École Polytechnique Fédérale de Lausanne.

Quantitative proteomic analysis

Proteins were extracted from the excised mouse skin tissues in the same way as described in the above *Top-down proteomic analysis* section. After methanol-chloroform precipitation, the proteins were digested in trypsin/Lys-C protease mix to generate short peptides. After peptide quantification using a colorimetric assay kit (PierceTM, Thermo Fisher), an identical amount of peptides were analyzed for each mouse sample using liquid chromatography-tandem mass spectrometry (Thermo Fisher Ultimate 3000 RSLC nano -Q Exactive HF Orbitrap mass spectrometer). Proteins were identified through the observation of unique peptides by using Scaffold and MaxQuant proteome software. The relative quantity of each protein was determined by the spectral counting data, mainly the normalized total spectrum count, *i.e.* the normalized total number of peptide spectra identified for a protein group. The proteins were also performed label-free quantification (LFQ) by using MaxQuant software based on the LFQ intensity. This quantitative bottom-up proteomic analysis was conducted in Proteomics Core Facility in École Polytechnique Fédérale de Lausanne.

Algorithm Description

In the present work, mass spectral similarity scores were calculated by using one of the four algorithms, *i.e.* cosine correlation, Jaccard index, relative Euclidean distance, and intensity-weighted Euclidean distance. The algorithm details are described below.

1) The cosine similarity (or cosine correlation) between mass spectrum A and B is calculated as:

$$\cos(A,B) = \frac{A \cdot B}{\|A\| \cdot \|B\|} = \frac{\sum_{k=1}^{n_{AB}} y_{Ak} \cdot y_{Bk}}{\sqrt{\sum_{i=1}^{N_A} y_{Ai}^2} \cdot \sqrt{\sum_{j=1}^{N_B} y_{Bj}^2}}$$
(1)

In this algorithm, N_A or N_B is the peak number in spectrum A or B, and n_{AB} is the number of identical peaks shared by the two spectra, while y_A or y_B is the relative intensity of a peak measured from spectrum A or B.³

2) Jaccard index, also known as Jaccard similarity coefficient or Intersection over Union, considers only the number of identical peaks between two spectra. It defines the similarity between spectrum *A* and *B* as:

$$J(A,B) = \frac{(A \cap B)}{(A \cup B)} = \frac{n_{AB}}{N_A + N_B - n_{AB}}$$
(2)

In this algorithm, N_A or N_B is the peak number in spectrum A or B, while n_{AB} is the number of identical peaks between the two spectra.

3) The relative Euclidean (*Eu*) similarity considers the *Eu* distance in m/z value and intensity of each pair of identical peak in two spectra. *Eu* distance of the *k*th pair of identical peak between spectrum A and B is defined as

$$Eu_{k} = \frac{\sqrt{(x_{Ak} - x_{Bk})^{2} + (y_{Ak} - y_{Bk})^{2}}}{\sqrt{[\max(x_{Ak}, x_{Bk})^{2} \cdot tolerance^{2} + \max(y_{Ak}, y_{Bk})^{2}]}}$$
(3)

Here, x_{Ak} or x_{Bk} is the m/z value of the identical peak k in spectrum A or B, while y_{Ak} or y_{Bk} is the relative intensity of peak k in spectrum A or B, and the *tolerance* is the mass tolerance allowing the definition of identical peaks (1000 ppm here). The Eu similarity between spectrum A and B is then defined as

$$Eu = 1 - \frac{\sum_{k=1}^{n_{AB}} Eu_k + N_A + N_B - 2n_{AB}}{N_A + N_B - n_{AB}}$$
(4)

Here, N_A or N_B is the peak number in spectrum A or B, while n_{AB} is the number of their identical peaks. This algorithm has been described in detail by Yang Y. *et al.*⁴

4) As for the intensity-weighted relative Euclidean (iEu) similarity, the above mentioned relative Eu distance is weighted by the peak intensity, and is defined as below.

$$iEu = 1 - \frac{\sum_{k=1}^{n_{AB}} Eu_k(y_{Ak} + y_{Bk}) + \sum_{i=1}^{N_A} y_{Ai} + \sum_{j=1}^{N_B} y_{Bj} - \sum_{k=1}^{n_{AB}} (y_{Ak} + y_{Bk})}{\sum_{i=1}^{N_A} y_{Ai} + \sum_{j=1}^{N_B} y_{Bj}}$$
(5)

Figure S1. A photo of the sampling discs. D-Squame® brand sampling discs were used in this work.

Figure S2. Influence of the sampling disc on MALDI-TOF MS measurement. Comparison of MALDI-TOF mass spectra generated from human melanoma cells WM239 under two different conditions: (**A**) with the presence of a sampling disc (*i.e.*, the cells were prepared on a sampling disc, and the disc thereafter was fixed on the MALDI target for MS measurement, (**B**) without the sampling disc (*i.e.*, the cells were directly prepared on the MALDI target for the measurement). The cells were *in vitro* grown in Petri dishes and harvested by trypsinization. Each of the spectra was generated from ~1000 cells, and each assay was repeated three times. Sinapinic acid was used as the matrix.

Figure S3. MALDI-TOF mass spectra of blank sampling discs. The matrix used for the measurement was (A) α -cyano-4-hydroxycinnamic acid (HCCA), (B) 2,5-dihydroxybenzoic acid (DHB), and (C) sinapinic acid (SA), respectively. The matrix was prepared with the concentration of 10 mg·mL⁻¹ (for HCCA and DHB) or 15 mg·mL⁻¹ (for SA) in the mixture of 50/49.9/0.1% (volume percentage) acetonitrile/water/trifluoroacetic acid.

Figure S4. Skin surface mass fingerprints from human volunteers. The skin conditions are (A) normal healthy skins on different body sites, (B) black skin moles on different body sites, and (C) dry-itchy dehydrated skins on different body sites. Nine healthy volunteers from different districts were involved in the test, and all the spectra were obtained from the third samplings on each selected skin region.

Figure S5. Classification of mass fingerprints from normal skins. The normal skin surface mass fingerprints obtained from healthy volunteers were classified according to factors including (A) the host gender (female or male), (B) the host age (here 20 to 30 years old, 30 to 40 years old, and 45 to 65 years old) (C) skin tone (here including white, yellow, and brown), and (D) body site (here including neck, upper arm, forearm, the back of hand, and the back of waist).

More information about the volunteers was provided in **Table S1**. The classification was conducted by using principal component analysis according to the first three principal components. The classification results shown in **Figure S5** indicate that the skin surface mass fingerprints could be influenced by all these factors together.

Figure S6. Influence of sampling repetition times. (A-J) MALDI-TOF mass spectra generated from ten sequential samplings from an individual normal skin region on the back of a 7-week-old healthy mouse, using a new sampling disc each time.

Figure S7. Microscopic image of mouse skin cells collected from a fourth sampling. Epidermal cells were collected from the back skin of an arbitrary healthy mouse using the adhesive sampling discs. (A) 3D laser scanning microscopy image of the epidermal cells generated from the fourth sampling. (B) Height profile of the epidermal cells collected on the sampling disc.

In order to optimize the sampling procedure, a healthy mouse was repetitively sampled on an individual normal skin region ten times for MALDI-TOF MS measurements. Results show that the first three samplings produced slightly more mass spectral peaks than the last three (**Figure S6**). The first few samplings were more likely suffering from interferences caused by dander, hair or dust on the skin surface, while the last few could harvest a smaller amount of skin cells due to the more adhering skin layers in depth.⁵ Following this, each skin region tested below was sampled four times in a row and the fourth sample was analyzed. The examination using laser scanning microscopy confirms that the fourth sampling can collect enough skin cells with a cell layer thickness around 3 μ m (**Figure S7**). With this unified sampling procedure, the collected samples are comparable among mouse individuals. During mass spectrometry measurements, in order to diminish the 'sweet spots' effect caused by the heterogeneous distribution of cells and the MALDI matrix, each sample was measured three times, each being an accumulation from 2×300 laser shots all over the lesion area.

Figure S8. Skin surface mass fingerprints from six healthy mice. The mice were at different ages, *i.e.* (**A**, **B**) 7-week-old, (**C**, **D**) 10-week-old and (**E**, **F**) 12-week-old. All the mice were sampled on their back skin, and skin cells collected from the fourth adhesive samplings were analyzed by MALDI-TOF MS.

Figure S9. Bright field images of melanoma skin lesions at early progression stages. The skin lesions on four mouse individuals are imaged as representatives. (A) A mouse developed a few black speckles on the skin four weeks after the 4-HT administration (speckle number <10). (B) A mouse developed more black speckles on the skin four weeks after the 4-HT administration (speckle number >20). (C) A mouse developed tumor nodules with ~15 mm² total superficial surface area on the skin six weeks after the 4-HT administration. (D) A mouse developed tumor nodules with ~24 mm² total superficial surface area on the skin significant change in the physical appearance except for the increase of the tumor nodule size. The images were taken with DNT Digimicro Profi digital microscope.

Figure S10. Microscopic images of mouse skin cells collected by adhesive sampling. 3D laser scanning microscopy images of mouse epidermal cells collected from: (A-C) a normal skin region on three healthy mice, (D-F) the skin tumor region on three cancerous mice. The three healthy mice were at different ages, *i.e.* (A) 7-week-old, (B) 10-week-old and (C) 12-week-old. The three cancerous mice carried different size of skin tumor, *i.e.* (D) 70 mm², (F) 130 mm² and (F) 182 mm² of superficial surface area. In each image, the cells were collected from the fourth adhesive samplings.

Figure S11. Hierarchical clustering dendrogram of mouse skin surface mass fingerprints. Hierarchical cluster analysis (HCA) was conducted with the mouse skin surface mass fingerprints by using the cosine similarity and the average linkage. The inter-group distance is determined based on the mean distance between all objects in one group and all objects in the other group, and each single-pair distance is calculated as one minus the single-pair cosine similarity (*i.e.* 1-cosine similarity).

The cosine similarity (or cosine correlation) between mass spectrum A and B is calculated as:

$$\cos(A,B) = \frac{A \cdot B}{\|A\| \cdot \|B\|} = \frac{\sum_{k=1}^{n_{AB}} y_{Ak} \cdot y_{Bk}}{\sqrt{\sum_{i=1}^{N_A} y_{Ai}^2} \cdot \sqrt{\sum_{j=1}^{N_B} y_{Bj}^2}}$$
(1)

In this algorithm, N_A or N_B is the peak number in spectrum A or B, and n_{AB} is the number of identical peaks shared by the two spectra, while y_A or y_B is the relative intensity of a peak measured from spectrum A or B^3 .

HCA is an unsupervised machine learning method to group objects in such a way that the objects in the same group are more similar to each other than to those in other groups. The average linkage method (*i.e.* unweighted pair group method with arithmetic mean) determines the inter-group distance based on the mean distance between all objects in one group and all objects in the other group, and thus helps to avoid problems caused by the chaining effect or outlying data.

Figure S12. Comparison of mass fingerprints by Jaccard index

Jaccard index, also known as Jaccard similarity coefficient or Intersection over Union, considers only the number of identical peaks between two spectra. It defines the similarity between spectrum A and B as

$$J(A,B) = \frac{(A \cap B)}{(A \cup B)} = \frac{n_{AB}}{N_A + N_B - n_{AB}}$$
(2)

where N_A or N_B is the peak number in spectrum A or B, while n_{AB} is the number of identical peaks between the two spectra.

Figure S12 shows the hierarchal clustering heat map of the mouse skin surface mass fingerprints according to the fingerprint Jaccard similarity with the average linkage method.

Figure S13. Comparison of mass fingerprints by Euclidean distance

The relative Euclidean (*Eu*) similarity considers the *Eu* distance in m/z value and intensity of each pair of identical peak in two spectra. *Eu* distance of the *k*th pair of identical peak between spectrum *A* and *B* is defined as

$$Eu_{k} = \frac{\sqrt{(x_{Ak} - x_{Bk})^{2} + (y_{Ak} - y_{Bk})^{2}}}{\sqrt{[\max(x_{Ak}, x_{Bk})^{2} \cdot tolerance^{2} + \max(y_{Ak}, y_{Bk})^{2}]}}$$
(3)

where x_{Ak} or x_{Bk} is the m/z value of the identical peak k in spectrum A or B, while y_{Ak} or y_{Bk} is the relative intensity of peak k in spectrum A or B, and the *tolerance* is the mass tolerance allowing the definition of identical peaks (1000 ppm here). The *Eu* similarity between spectrum A and B is then defined as

$$Eu = 1 - \frac{\sum_{k=1}^{n_{AB}} Eu_k + N_A + N_B - 2n_{AB}}{N_A + N_B - n_{AB}}$$
(4)

where N_A or N_B is the peak number in spectrum A or B, while n_{AB} is the number of their identical peaks. This algorithm has been described in detail by Yang Y. *et al.*⁴

Figure S13 shows the hierarchal clustering heat map of the mouse skin surface mass fingerprints according to the fingerprint *Eu* similarity with the average linkage method.

Figure S14. Statistical analysis of the mouse skin surface mass fingerprint PCA scores. Changes in the PCA scores along with the cancer development are plotted in (**A**) for PC0, (**B**) for PC1 and (**C**) for PC2. Differences in the PCA scores between each two skin groups are plotted in (**D**) for PC0, (**E**) for PC1 and (**F**) for PC2, with the level of statistical significance (P-value) from one-way ANOVA statistical labeled on each plot.

Figure S15. Summary of mouse skin surface mass fingerprint peaks. (A) The minimum and maximum peak mass (m/z) detected from each mouse skin. (B) The peak number detected from each mouse skin. (C) Statistical analysis of the peak number per fingerprint at different skin stages. (D) Statistical analysis of the sum of relative peak intensity per fingerprint at different skin stages. The peaks were extracted from the mass fingerprints by using MALDIquant algorithm on the Mass-Up software platform, with the peak-picking parameters set as relative peak intensity threshold 2%, *signal-to-noise* ratio threshold 3.0, and half window size 60.

Mass fingerprints derived from the mouse skins during the malignancy growth were compared in terms of peak mass (m/z value), peak number and relative peak intensity. The minimum and maximum peak masses were observed as 2,018 m/z and 17,860 m/z, respectively, not significantly changed during the cancer development (**Figure S15A**). The number of well-resolved peaks per fingerprint was increased from 41(±4) to 62(±3), 71(±6), 65(±4) and 75(±9) respectively when the skins turned from healthy state to lesions with speckles, early tumors, medium-size tumors and further metastatic tumors (**Figure S15B-C**). At the same time, the sum of relative peak intensity per fingerprint increased from 3.13(±0.28) to 4.99(±0.73), 5.47(±0.59), 5.36(±0.37) and 7.41(±1.22), respectively (**Figure S15D**). Such increases should be related with the disorder progression.

Figure S16. Label-Free Quantitative Proteomic Data. Label-free quantitative (LFQ) bottom-up proteomics was performed with the excised mouse skin tissues, with the data processed using MaxQuant proteome software. Three tumor lesions (70, 130 and 182 mm²) were analyzed as representatives, with the quantitative value (*i.e.* LFQ intensity $\times 10^7$) of each identified protein statistically compared to the healthy controls. (**A**) A comparison of all the protein quantitative values between skin tumors and healthy skins, with the paired t-test statistical significance (P-value) plotted versus the magnitude of log2 fold change. (**B**) A comparison of quantitative values from six well-established melanoma biomarkers between skin tumors and healthy skins, with the displaying of mean value bars, median value lines, data dot distribution and paired t-test P-values (star rating: * P-value ≤ 0.05). A significant difference was conditioned by the absolute log2 fold change absolute value ≥ 1 and the paired t-test P-value ≤ 0.05 .

Two procedures were employed for the quantitative proteomic analysis, *i.e.* spectral counting by using Scaffold proteome software (results in **Figure 6**), and label-free quantification (LFQ) by using MaxQuant proteome software (results in **Figure S16**). Generally, the results provided by the two procedures were consistent with each other. Both results were thus presented in this manuscript to serve as a support to each other.

With the MaxQuant LFQ, altogether 5,463 proteins were identified. Compared to the healthy controls, the tumor lesions had more than 30% of proteins differently expressed, including 23% up-regulated (1,249/5,463) and 8% down-regulated (413/5,463), as shown in **Figure S16A**. These values were close to the Scaffold values in **Figure 6A**. Among the differently expressed proteins, the two quantification procedures shared 795 common up-regulated proteins and 253 common down-regulated proteins (**Data File S2**). This proteomic quantification outcome confirmed a significant difference in the protein expression between the healthy and tumorous skins. It coincided with the change of the skin surface mass fingerprint patterns.

The six well-known melanoma biomarkers were all detected from the tumor lesions, but not detected or detected with much lower quantity from the healthy controls, as shown in both **Figure S16B** by MaxQuant LFQ and in **Figure 6B** by Scaffold spectral counting (details in **Data File S3**). The melanoma diagnostic sensitivity and specificity provided by the six biomarkers have been reported as 72-100% and 91-100% by *Pmel*, 90-100% and 97-100% by *Tyr*, 89% (specificity not available) by *Cspg4*, 89-100% and 70-79% by *S100b*, 95-99% and 100% by *Fn1*, respectively; and the *Mcam* has been suggested as an independent prognostic predictor with a higher expression associated with a worse prognosis.⁶ This result confirmed that the tumor lesions we developed in the mouse skin were indeed melanoma-type skin cancer.

Figure S17. Images of cells collected from healthy skin and adjacent non-tumor skin. 3D laser scanning microscopy images of epidermal cells collected from the skin surface of: (A) a healthy mouse, (B) an adjacent non-tumor skin region of the T182 mouse (the mouse carrying 182 mm² tumor). The non-tumor skin region was located 15 mm away from the tumor lesion. The cells were collected using the adhesive discs with the same sampling protocol, both from the fourth samplings.

Figure S18. Analysis of mass fingerprints from adjacent non-tumor skin surface. The fingerprints were compared to the corresponding tumor regions as well as the healthy controls. The test was conducted on three cancerous mice: (A) T130 mouse, (B) T168 mouse, (C) T182 mouse, with the fingerprint cosine similarity heat map shown in (D), (E), (F), respectively. All the fingerprints came from the fourth samplings.

Figure S19. MALDI-TOF mass spectra of mouse blood-circulating exosomes. (A-N) The mouse skins progress from healthy state (*H1*, *H2*, *H3* for three healthy mouse individuals) to the lesions with different numbers of black speckles (B_F for few speckles, B_M for more speckles), and to skin tumors with the superficial surface area increased from 10 to 182 mm² (*T10*, *T15*, *T24*, *T50*, *T70*, *T130*, *T140*, *T168*, *T182*). Each spectrum was generated from ~5·10⁷ intact exosomes, using the matrix of sinapinic acid. The peaks differently detected from cancerous mice are marked out, with their possible protein identities list on the bottom. The protein identities were tentatively clarified through a correlation of the MALDI-TOF mass spectra with the exosomal top-down proteomic data, as explained in **Data File S4** with details.

Figure S20. Hierarchical clustering dendrogram from the mouse blood test. Hierarchical cluster analysis (HCA) was conducted with the mass spectra generated from the mouse blood-circulating exosomes by using the cosine similarity and the average linkage. The inter-group distance is determined based on the mean distance between all objects in one group and all objects in the other group, and each single-pair distance is calculated as one minus the single-pair cosine similarity (*i.e.* 1-cosine similarity).

Figure S21. Statistical analysis of the mouse blood test PCA scores. Changes in the PCA scores along with the cancer development are plotted in (A) for PC0, (B) for PC1 and (C) for PC2. Differences in the PCA scores between each two skin groups are plotted in (D) for PC0, (E) for PC1 and (F) for PC2, with the level of statistical significance (P-value) from one-way ANOVA statistical labeled.

Figure S22. Comparison of mass fingerprints by intensity-weighted Euclidean distance

As for the intensity-weighted relative Euclidean (iEu) similarity, the previously mentioned relative Eu distance (**Figure S13**) is weighted by the peak intensity, and is defined as below.⁴

$$iEu = 1 - \frac{\sum_{k=1}^{n_{AB}} Eu_k(y_{Ak} + y_{Bk}) + \sum_{i=1}^{N_A} y_{Ai} + \sum_{j=1}^{N_B} y_{Bj} - \sum_{k=1}^{n_{AB}} (y_{Ak} + y_{Bk})}{\sum_{i=1}^{N_A} y_{Ai} + \sum_{j=1}^{N_B} y_{Bj}}$$
(5)

Figure S22 shows the hierarchal clustering heat map of the mouse skin surface mass fingerprints according to the fingerprint iEu similarity with the average linkage method.

Figure S23. Mass fingerprints from normal skins, skin moles and melanoma cells. A normal skin region or a dark skin mole (with a lateral diameter of 3 mm and 5 mm, respectively) on the forearm of two healthy adult volunteers *A* and *B* were adhesively sampled three times in a row, with mass fingerprints obtained from the third samplings shown in (**A-D**), respectively. In (**E-G**), the mass fingerprints were obtained from human melanoma-mimic samples, prepared with human primary non-tumorigenic melanoma cells SBCL2, primary tumorigenic vertical growth phase (VGP) melanoma cells WM115, and metastatic melanoma cells WM239, respectively.

The mass fingerprints in **Figure S23** were obtained from two healthy volunteers, one female with yellow skin (healthy volunteer A) and one male with white skin (healthy volunteer B). Both individuals were in their early

30s and tested on a normal skin region on the right forearm. Their mass fingerprints displayed a mutual cosine similarity of 0.823±0.005, a value considerably high (Figure S23 A-B). The fingerprints in Figure S23 C-D were derived from black skin moles on the forearm of volunteer A (3 mm lateral diameter) and volunteer B (5 mm lateral diameter), displaying 0.749±0.027 and 0.503±0.037 cosine similarity to their corresponding healthy skins, and shared a mutual similarity of 0.556±0.026. The two moles had been confirmed as benign by a local dermatologist in Valais, Switzerland. A skin mole occurs when melanocytes grow in a cluster instead of spreading throughout the epidermis. Melanocytes produce melanin pigment and give the skin color. Melanocytes could also transform into melanoma cancer cells after accumulated genetic mutations.⁷ The cancer at early progression stages often resembles skin moles in physical appearance, as in both cases the topical accumulation of melanin makes the skin brown-black in color. It is thus often a challenge to differentiate between the two skin conditions via visual examinations. With the proposed method, it is, nevertheless, possible to solve this problem, as the cellular composition of the cancer cells is different from that of normal melanocytes due to the accumulated genetic mutations. As shown in Figure S23, mass fingerprints of the skin moles and normal skins are quite different from the mimic melanoma samples at either the non-tumorigenic primary stage (Figure S23E), vertical growth phase (Figure S23F) or the metastatic stage (Figure S23G), sharing only few common peaks with cosine similarities lower than 0.160, i.e. 0.083±0.038 generally, and 0.066±0.028 between the skin moles and early non-tumorigenic primary melanoma-mimic samples. While, mass fingerprints from the melanoma-mimic samples with different stages of melanoma cells shared mutual similarities higher than 0.540 (0.723±0.181). In the melanoma-mimic samples, the cancer cells were in vitro grown and then deposited on the sampling discs with already the collected skin surface cells from a normal skin region on the forearm of volunteer B. The cancer cells were deposited on the human skin samples with surface density of ~60 cells mm⁻². The above results indicate that the proposed methodology could be used for the differentiation between skin nevi and melanoma lesions at early stages.

Table S1. Human skin sample information

	1					
Sample ID	Description	Volunteer	Volunteer District	Volunteer Age	Volunteer Gender	Skin Site
D1	skin dehydration 01	А	Mainland China	30	male	front waist_left
D2	skin dehydration 02	А	Mainland China	30	male	front waist left
D3	skin dehydration 03	Δ	Mainland China	30	male	front waist_left
DJ D4	skin denydration 05	л ,	Mainland China	30	maic 	front short left
D4	skin denydration 04	A	Mainiand China	30	male	front chest_left
D5	skin dehydration 05	А	Mainland China	30	male	front chest_left
D6	skin dehydration 06	А	Mainland China	30	male	front chest_left
D7	skin dehydration 07	А	Mainland China	30	male	leg_left
D8	skin dehydration 08	А	Mainland China	30	male	leg left
D9	skin dehydration 09	Δ	Mainland China	30	male	leg left
D10	alvin dehydration 10	A .	Mainland China	20	male	healt maint right
D10	skin denydration 10	A	Mainland China	30	male	back waist_right
D11	skin dehydration 11	А	Mainland China	30	male	back waist_right
D12	skin dehydration 12	А	Mainland China	30	male	back waist_right
M1	skin mole 01	В	France	63	male	uparm_right
M2	skin mole 02	В	France	63	male	uparm right
M3	skin mole 03	В	France	63	male	hand back right
M4	skin mole 02	D	Erango	63	malo	hand back right
14	skill mole 04	Б	France	03	male	hand back_fight
M5	skin mole 05	В	France	63	male	hand back_right
M6	skin mole 06	С	Brazil	29	male	neck
M7	skin mole 07	С	Brazil	29	male	neck
M8	skin mole 08	С	Brazil	29	male	neck
M9	skin mole 09	B	France	63	male	hand back right
M10	skin mole 09	D	Mainland China	20	famala	forecome right
MIU	skin mole 10	D		50	lemale	Torearm_right
MII	skin mole 11	D	Mainland China	30	female	forearm_right
M12	skin mole 12	D	Mainland China	30	female	forearm_right
M13	skin mole 13	E	Serbia	31	female	forearm_right
M14	skin mole 14	Е	Serbia	31	female	forearm right
M15	skin mole 15	F	Serbia	31	female	forearm right
M16	alvin mole 16	C C	Brogil	20	mala	wearen sicht
MIO	skin mole 16	C	Diazii	29	male	uparm_right
M17	skin mole 17	C	Brazil	29	male	uparm_right
M18	skin mole 18	С	Brazil	29	male	uparm_right
M19	skin mole 19	F	Switzerland	28	male	neck
M20	skin mole 20	F	Switzerland	28	male	neck
M21	skin mole 21	F	Switzerland	28	male	neck
M22	skin mole 21	ſ	Cormonu	25	male	forecent right
MZZ	skin mole 22	G	Germany	35	male	forearm_right
M23	skin mole 23	G	Germany	35	male	forearm_right
M24	skin mole 24	G	Germany	35	male	forearm_right
N1	normal skin 01	G	Germany	35	male	forearm_right
N2	normal skin 02	Н	Taiwan	33	female	forearm right
N3	normal skin 03	В	France	63	male	hand back right
N/4	normal skin 04	E	Sarbia	21	famala	forcerm right
114	normai skii 04	L	Serbia	31	lemale	Torear III_Tight
N5	normal skin 05	D	Mainland China	30	female	forearm_right
N6	normal skin 06	A	Mainland China	30	male	back waist_right
N7	normal skin 07	А	Mainland China	30	male	back waist_right
N8	normal skin 08	Н	Taiwan	33	female	forearm right
N9	normal skin 09	Н	Taiwan	33	female	forearm right
N10	normal skin 10	I	India	25	male	uparm_right
N11	normal skii 10	I I	Ladia	25	mate	uparin_right
INTI	normal skin 11	1	India	25	maie	uparm_right
N12	normal skin 12	С	Brazil	29	male	uparm_right
N13	normal skin 13	С	Brazil	29	male	uparm_right
N14	normal skin 14	С	Brazil	29	male	uparm_right
N15	normal skin 15	G	Germany	35	male	forearm right
N16	normal skin 16	B	France	63	male	hand back right
N17	normal skin 17	D	Erance	63	male	hand back_right
IN17		Б	Fiance	03	male	hand back_fight
N18	normal skin 18	E	Serbia	31	female	forearm_right
N19	normal skin 19	E	Serbia	31	female	forearm_right
N20	normal skin 20	D	Mainland China	30	female	forearm_right
N21	normal skin 21	D	Mainland China	30	female	forearm right
N22	normal skin 22	G	Germany	35	male	forearm right
1122	normal -1-in 22	U T	Le 1:-	35 25	mate 1-	where the state
IN23	normai skin 23	1	India	25	male	uparm_right
N24	normal skin 24	F	Switzerland	28	male	neck
N25	normal skin 25	F	Switzerland	28	male	neck
N26	normal skin 26	F	Switzerland	28	male	neck
N27	normal skin 27	А	Mainland China	30	male	back waist right
N28	normal skin 28	А	Mainland China	30	male	hack waist right
N20	normal skin 20	7 1 A	Mainland China	20	mela	book woist wight
11/29	normai skin 29	A	Maimand China	50	male	back waist_right
N30	normal skin 30	А	Mainland China	30	male	back waist_right

Table S2. Human skin surface mass fingerprint peak information

Altogether 179 well-resolved peaks were detected from the investigated human skins, including dehydrated skins (D1-D12), skin moles (M1-M24) and healthy normal skins (N1-N30). The table below lists the normalized relative intensity of each peak (%) detected from each of the investigated skin samples.

Part I (skin sample #D1-D12, M1-M21)

m/z	D 1	D 2	D 3	D 4	D 5	D 6	D 7	D 8	D 9	D 10	D 11	D 12	M 1	M 2	M 3	M 4	M 5	M 6	M 7	M 8	M 9	M 10	M 11	M 12	M 13	M 14	M 15	M 16	M 17	M 18	M 19	M 20	M 21
5475	0	0	0	0	0	0	5	5	5	0	4	6	5	4	4	0	4	0	0	0	6	0	0	0	0	0	0	0	3	3	0	0	0
11339	0	0	0	0	0	0	0	0	0	0	8	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9990	0	0	0	0	0	0	0	0	0	0	3	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10065	7	7	7	21	21	19	29	27	28	14	6	8	8	14	3	0	0	14	10	12	10	7	6	7	3	0	3	7	6	4	5	3	3
7739	4	4	4	7	7	6	9	7	7	4	4	4	0	0	0	0	0	4	0	3	0	0	0	0	0	0	0	0	0	0	7	6	4
7490	6 8	7	7	11 8	10	10 6	6	5	5	7	8	7 4	0	0	0	0	0	3	0	3	0	0	0	0	0	0	0	0	0	0	12	6	0
8522	0	0	0	0	0	0	6	6	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	3	0	0	0	4	0	4
3934	0	0	0	0	4	3	5	6	6	4	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12396	0	0	0	0	0	0	5	6	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7551	6	0	0	4	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5372	5	8	8	4	4	3	5	5	4	4	5	6	4	0	4	5	4	0	0	0	4	0	0	0	0	0	0	0	0	0	8	0	4
7540	0	7	7	0	0	3	5	4	0	3	4	0	0	0	0	0	0	4	3	4	0	0	0	0	0	0	0	0	0	0	0	3	0
10758	18	21	19	13	10	13	7	6	4	5	0	0	3	4	0	0	0	0	0	0	5	4	4	5	5	3	4	0	0	0	7	4	4
12848	4	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13245	4	5	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13337	3	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4472	4	4	4	0	0	0	3	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12906 6146	5	5	5	0	0	0	4	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0
6708	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0
4114	11	10	11	7	9	8	34	41	40	27	16	17	0	0	0	0	0	35	32	35	0	20	19	17	19	15	20	0	19	29	4	0	6
8107	10	10	4	11	11	10	9	10	9	6	8	8	23	32	9	7	8	27	38	33	-+	50	49	50	61	52	59	33	36	27	3	0	0
8315	6	6	6	7	7	7	4	5	4	5	5	4	10	10	11	11	11	13	13	13	11	14	14	15	16	14	16	12	12	10	0	0	0
8235 8451	100	100	100	100 5	100 6	100 5	100	100	100	100	100	100 9	100 7	100 8	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100 9	8	0	0
3869	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	5	0	0	0	0	0	0	0	11	0	0	9	0	0	0	0	0
4710	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21	0	0	0	4	0	5	0	0	0	0	0	0
4860	0	0	0	0	0	0	0	0	0	0	0	0	5	5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0
11287	0	0	0	0	0	0	0	0	0	0	0	0	3	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3511	0	0	0	0	0	0	0	0	0	0	0	0	4	3	0	0	0	5	4	4	4	0	0	0	0	0	0	4	5	0	0	0	0
8470	0	0	0	0	0	0	0	0	0	0	9	8	7	0	12	12	12	0	10	11	9	0	0	0	0	11	0	11	14	12	0	0	0
4415	7	8	8	0	0	0	0	0	0	32	23	21	4	4	26 4	15	20	8	8	8	6	0	0	0	0	0	0	13	26	18	0	0	0
4650	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	0	0	0	0	0	0	0	0	0	0	6	4	5	0	0	0
4346	0	0	0	0	0	0	0	0	0	4	4	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	9	6	0	0	0
4909	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	6	0	0	0	0
3747	0	0	0	0	0	0	0	0	0	0	0	0	3	5	0	0	0	3	5	4	5	0	0	0	4	0	0	7	6	7	7	5	8
6348	3	3	3	0	0	0	0	0	0	0	0	0	3	5	4	3	4	5	6	6	4	0	0	0	0	0	0	4	3	4 8	4	3	8
3790	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	õ	0	0	0	0	0	3	0	3	4	3	3
6408	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	4	0	0	0	0	3	0	3	5	0	5	5	0	5
6245	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	4	0	0	0	0	0	0	0	4	3	5	0	0	3
6541	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	4	4	0	0
4979 4053	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	20	3	0	0
4921	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0
3706	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	6 10	6 9	8 10	0 7	0 7	0
3572	0	0	0	5	5	6	0	0	0	6	4	6	6	6	0	0	0	18	16	18	7	4	4	0	4	6	4	14	11	15	0	0	0
3689	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	12	13	12	4	0	0	0	0	0	0	9	0	0	0	0	0
3034 3917	3	0	0	4	5	4	4	0	3	4	0	5	4 0	3	0	4	4	12	24	9 19	5	0	0	0	3	5 9	5	0	6	6	8	5	9
3552	0	0	0	0	0	4	0	0	0	5	0	0	6	10	11	5	8	0	13	0	10	0	3	0	5	6	5	8	6	7	0	0	0
4595	0	0	0	0	0	0	0	0	0	3	0	4	0	0	0	3	0	4	6	6	0	5	4	4	0	0	0	9	10	0	5	0	6
8112	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3602	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0888 7925	4	0	0	0	0	0	0	0	0	6	6	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	36	0	0	10	12	10
4321	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3767 4078	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8795	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3825	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4145	0	0	0	0	0	0	0	0	0	0	0	0	3	4	5	7	6	6	5	6	4	3	4	3	0	0	0	0	0	0	0	0	0
4186	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	4	0	0	0	0	0	0	0	0	0	0	0	0	0
4097	0	0	0	0	0	0	0	0 8	0	0 8	0	0 20	19	17	29 28	27	28 29	0	0	0	23	0	0	0 8	0	0	0	21	0	0	0	0	0
8667	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	6	5	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0
7935	0	4	4	7	8	7	13	13	13	0	8	9	26	31	9	8	8	43	39	41	26	19 7	16	19	10	15	11	0	41	26	0	0	0

8044	0	3	0	0	0) (0	3	3	0	0	3	5	5	5	5	8	6
3958	0	0	0	0	Δ	1 (0	0	0	0	3	0	3	6	6	7	12	9
0,000	0	0	0	0	-		0	0	0	0	0	0	0	0	0	,	0	<i>^</i>
8203	0	0	0	0	() (0	0	0	0	0	0	0	0	0 .	19	0	0.
11069	0	0	0	3	0) (0	0	0	0	0	0	13 1	28	0	0	0	0
4564	0	0	0	0	() (n	0	0	0	0	0	0	0	0	0	0	0
4504	0	0	0	0	0	, ,	0	0	0	0	0	0	0	0	0	0	0	0
4768	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0	0
8948	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0
10807	21	23	22	12	2	3 2	1	15	15	10	19 1	12 '	23	0	0	0	0	0 7
10057	21					0 1		<i>r</i>	7	4		4 1	7	0	0	0	0	0
11068	0	6	2	9	1	0 9	9	2	2	4	5	4	1	0	0	0	0	0
4289	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	8	0	7
3527	0	0	0	0	() (n	0	0	0	0	0	٥	0	0	0	0	0
3321	0	0	0	0		, ,	-	0	0	-	0	-	-	0	0	0	0	0
6378	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	4	0
8146	0	0	0	0	0) (0	0	0	0	0	0	0	0	5	0	0	0
(430	2	2	2	0				2	0	0	0	0	0	0	0	0	4	2
6438	3	3	3	0	U) (0	3	0	0	0	0	0	0	0	0	4	3
5391	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0
8629	0	0	0	0	() (0	3	3	0	4	0	0	0	0	0	0	0
2660	0	0	0	0		<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0
3660	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0	0
8849	0	0	0	0	0) (0	0	0	0	0	0	0	7	0	0	0	0
6416	0	0	0	0	() (n in the second s	0	0	0	0	0	0	0	0	0	0	0
0410	0	0	0	0	t) (0	0	0	0	0	0	0	0	0	0	0	0
7466	0	0	0	0	() (0	0	0	0	0	3	0	0	0	0	0	0
4371	3	4	3	7	1	0	8	0	0	0	0	0	7	0	0	0	0	0
3000	0	4	0	4	4	. .	4	0	0	0	0	0	٥	0	4	0	0	0
3900	0	4	0	4	-	, .	+	0	0	0	0	0	0	0		0	0	0
4433	- 33	- 35	34	49	6	2 4	9	20	16	13	0	0	0	0	0	0	0	0
5204	0	0	0	0	0) (0	0	0	0	0	0	4	0	0	0	0	0
5695	0	0	0	0	() (0	0	0	0	0	2	5	0	0	0	0	0
3083	0	0	0	0	ι) (0	0	0	0	0	3	5	0	0	0	0	0
11199	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0
11549	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0	0
2671	0	0	0	0		<u> </u>	0	0	0	0	0	0	0	0	3	4	0	0
30/1	0	U	0	U		, (-	5	5	5	5		v	5	5		0	5
5697	5	5	5	15	1	6 1	3	8	7	8	7 1	12 1	20	0	0	0	0	0
11481	0	0	0	5	f	5 .	5	0	0	0	6	4	5	0	0	0	0	0
5777	ň	0	0	-			n	0	0	0	0	0	0	0	0	0	0	0
5/33	U	0	U	0	(, (0	0	U	U	0	0	0	0	0	U	U
11765	0	0	0	0	0) (U	0	0	0	0	U	U	0	U	0	0	0
11819	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0	0
=====	~	~		-			4	5		4	0	4	6	5	6	6	6	6
5035	5	3	3	5	5	, 4	+	3	4	4	U	4	υ	3	0	U	0	U
5802	0	0	0	0	3	3 (0	0	0	0	0	4	5	0	0	0	0	0
11283	5	5	5	14	1	6 1	4	6	6	5	7	7	10	4	5	3	0	0
11207	16	12	15	. 19	5	2 /	0 /	22	22	20	24 /	12 4	(2)	0	0	0	0	0
11337	10	15	15	40	5	5 4		2.5	22	20		+J (0	0	0	0	0
11615	0	0	0	1	9))	8	3	3	0	7	7	9	0	0	0	0	0
6688	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0
6870	0	0	0	0	() (n	0	0	0	0	0	0	0	0	0	0	0
0870	0	0	0	0	(, (0	0	0	0	0	0	0	0	0	0	0
5295	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0	0
7372	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0
12234	0	0	0	0	() (n	0	0	0	0	0	0	0	0	0	0	0
12234	0	0	0	0		, , 	0	0	0	0	0	0	0	0	0	0	0	0
5279	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0	0
12019	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0
7140	0	0	0	12	1	0 1	0	0	0	0	0	4	6	0	0	0	0	0
11(9(0	0	0	0		<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0
11080	0	0	0	0	U) (0	0	0	0	0	0	0	0	0	0	0	0
3586	0	0	0	0	0) (U	0	0	0	0	0	0	0	0	0	0	0
7244	0	0	0	0	() (n	0	0	0	0	0	0	0	0	0	0	0
0001	0	0	0	0		, , , ,	0	0	0	0	4	0	0	0	0	0	0	0
9901	0	0	0	0	() (0	0	0	0	4	0	0	0	0	0	0	0
4696	0	0	0	0	0) (0	0	0	0	0	0	3	16	15	8	8	8
4212	16	15	16	i 7	8	<u>۲</u>	7	13	13	11	11 1	3	11	4	4	6	5	5
1010	10		10	, ,		, , ,	, .	0	0	0	0	0	0	0		0	0	0
5839	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0	0
8867	5	5	5	12	1	4 1	5	9	12	12	11 1	15 2	23	0	5	7	9	8
10898	0	0	0	19	8	3 1	1	15	15	14	0 1	4	19 4	43	0	0	0	0
92(2	0	0	0	0) /	0	0	0	0	0	0	0	0	0	0	0	0
8263	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0	0
4391	0	0	0	0	0) (0	0	0	0	5	5	3	0	0	0	0	0
4175	0	0	0	0	() (0	4	3	4	4	3	4	0	0	3	3	3
4056	0	0	0			· ·	~ ^	0	0		0	0	0	0	0	0	0	0
4250	0	0	0	0	t) (0	0	0	0	0	0	0	0	0	0	0	0
3809	0	0	0	0	()(0	0	0	0	0	0	0	0	0	0	0	0
3980	0	0	0	0	() (0	3	4	3	5	4	5	0	4	0	5	3
4240	Ο	0	0	Λ) 4	0	0	0	0	0	0	0	0	0	0	0	0
4025	1.4	12	12	10			~ 4		7	-	10	7	0	5	57	~	50	
4035	14	13	13) 12	1	4 1	.4	0	1	0	10	1	U S	54 .	3/ (00	32	55 i
4286	0	0	0	0	0) (0	4	4	4	6	6	9	0	0	0	8	0
3878	7	7	7	8	1	0 1	0	9	10	9	13 1	10	17	4	0	6	7	7
5447	0	0	0	6	-	, 1	6	6	6	5	5		. 7		2	- 14	. 14	14
5447	8	8	8	0	1	r (υ	U	0	3	. ر	4	1	4	3	14	14	14
5531	0	0	0	0	0) (3	3	3	3	0	0	4	4	0	0	0	0
4493	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0	0
5003	Ň	0	0	0	-		0	0	0	, 0	0	0	0	0	0	0	0	0
5003	0	0	0	0	(, (U	U	U	U	U	U	U	U	U	U	0	U
5033	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0
6106	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0	0
4520	0	0	0					0	0	0	0	<u>,</u>	-	0	5	0	2	2
4538	0	0	0	0	(, (U	U	U	U	U	U	U	U	3	U	5	5
4828	6	0	7	0	C) (0	0	0	0	0	0	0	12	16	9	0	9
5538	5	5	5	Ω	ſ) (0	4	4	4	0	3	5	0	0	7	6	6
5550	5	5	5	0		<u>, (</u>	0	, ,	0	0	0	0	2	0	0	,	0	0
5159	0	0	0	0	() (0	0	0	0	0	0	3	0	0	0	0	0
7291	0	0	0	0	0) (0	0	0	0	0	0	0	0	0	0	0	0
14580	0	Ω	0	Ο	ſ) (0	0	0	0	0	0	0	0	0	0	0	0
1007		-	-	-	(~	~	0	-	~	~	~	~		~	24	~
10907	0	0	0	0	() (U	0	0	0	0	0	0	0 -	42 3	36	36	36
11084	11	12	12	0	() (0	9	9	8	12	8	0	0	30	18	17	17
4919	0	7	0	10	1	4 1	Δ	0	0	0	0	0	0	0	0	0	9	0
4010	0	/	0	10	1	- I	-+	0	0	0	0	0	0	0	0	0	2	0
17062	0	0	0	0	()(U	0	0	0	0	0	0	U	0	0	0	0
16904	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0	0
9360	Δ	0	0	0	, () (n	0	0	0	0	0	0	0	0	0	0	0
7300	Ű	-		-	C	, (0	0	0	0	0	0	0	0	0	0	0	0
14796	0	0	0	0	() (U	0	0	0	0	0	U	U	U	0	0	U
6002	0	0	0	0	() (0 0	0	0	0	0	0	0	0	0	3	0	0
4524	Δ	0	0	0) 4	n	0	0	0	0	0	0	0	0	0	0	0
+324	0	0	0	U	(, (0	0	0	0	0	0	0	0	0	0	0	0
16980	0	0	0	0	(<u> </u>	U	U	0	0	U	U	υ	U	U	U	0	υ
17014	0	0	0	0	() (0	0	0	0	0	0	0	0	0	0	0	0
10504	7	0	0			1	3	0	0	0	3	0	0	0	0	0	0	0
10394		0	ð	4	4	r .	, ,	0	0	0	ر ٥	0	0	0	0	0	0	0
10693	0	0	0	0	0) (U	0	0	0	0	U	U	0	0	0	0	0
16718	0	0	0	0	() (0 0	0	0	0	0	0	0	0	0	0	0	0
168/15	0	Ω	0	Ο	ſ) (0	0	0	0	0	0	0	0	0	0	0	0
10043					-		~		4	4		5		0	~	0	0	~
5226	4	4	4	0	() (U	4	4	4	4	5	4	0	0	0	0	0
10325	0	0	0	0	() (0	0	3	0	3	5	5	0	0	0	0	0
40486	ő	0	0	4			4	10	10	0	16	12	12	0	0	0	0	0
		~	~	4						~								

Part II (skin sample #M22-M24, N1-N30)

m/7	М	М	M	N N	Ν	N	N	N I	N N	I N	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	N	N	N N	N N	N	Ν	N	N	N N	Ν
5475	22	23	24	$\frac{1}{0}$ 0	3	4	5	6 2	7 8	9	10	11	12	13	14	15	16	17	18	19	20	21	22 2	<u>3 24</u>	25	5 26	2	$\frac{7 2}{2}$	8 29) 0	30
11339	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 0	0
15890	0	0	0	4 0	0	0	0	0	0 0) 0	0	0	0	0	0	3	3	0	0	0	0	0	3	0 0	0	0	0) (0 0	0
9990	0	0	0	0 0	0	0	0	0	0 () 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 (0
10065	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 0	0
7875	5	0	3	0 0	0	0	0	3	5 ($\frac{0}{2}$ 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	4		5 3	5
7490	0	0	0	0 0	0	0	0	0	4 (0 ($\frac{1}{2}$	4	4	0	0	0	0	0	0	0	0	0	0	0	0 0	0		0) ($\frac{1}{2}$	4
7592	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 0	0
8522	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 0	0
3934	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 (0
11105	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 0	0
12396	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	4		$\frac{0}{0}$	3
11007	0	0	0	0 0	0	0	0	0	0 0	$\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0		0) ($\frac{1}{2}$	0
5372	0	0	0	0 7	0	3	0	4	3 5	5 5	3	4	0	6	4	0	0	0	3	4	3	4	0	0 3	3	3	0) (0 0	4
7540	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	C) (0 0	0
10758	4	4	3	0 4	3	5	9	4	4 5	53	5	7	4	4	5	0	7	5	7	6	9	8	3	4 0	3	3	6	б 4	4 4	5
12752	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 0	0
12848	0	3	0	0 0	0	0	0	0	0 () 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 (0
13245	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0) 0	0
13464	0	0	0	0 0	0	0	0	0	0 0	$\frac{5}{0}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) ($\frac{0}{0}$	0
4472	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	C) (0 0	0
12906	0	0	0	0 0	0	0	0	0	0 () 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 0	0
6146	0	0	0	0 4	0	0	0	0	0 () 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	C) (0 (0
6708	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0	3	0	0	0 0	0	0	0) (0 0	0
4114	9	6	5	4 9	0	13	9	3	5 () 0	7	8	0	10	0	0	0	10	16	26	12	13	0	/ 4	0	0 0	($\frac{0}{0}$	6
8358	12	14	5		4	18	8	0	0 0	$\frac{1}{2}$	0	0	0	4	4	0		0	20	21	3	5	0		0		($\frac{1}{2}$	0
8315	5	6	0	0 0	4	8	5	0	0 () ()	0	0	0	0	0	0	5	3	8	8	6	5	0	0 0	0	0	0) () 0	0
8235	57	56	23	0 10	27	52	41	7	9 8	8 8	5	7	0	10	0	0	25	21	56	58	36	41	0	4 4	5	0	7	9	9 7	9
8451	9	9	4	4 3	5	8	6	0	0 3	3 3	0	4	7	7	8	4	9	5	8	8	7	5	4	0 0	0	0	0) (0 0	0
3869	0	0	0	0 0	18	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	C) (0 (0
4710	0	0	0	0 0	0	0	0	0	0 () 0	0	0	0	0	0	0	0	4	0	0	0	0	0	0 0	0	0	0) (0 (0
4619	0	0	0	0 0	0	0	0	0	0 0	$\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0		4	- 4	0		$\frac{1}{2}$	0
11287	0	0	0	0 0	0	0	0	0	0 0	$\frac{0}{0}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0	0
3511	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	3	0	0	0	0	0	0	0	0	3	0 0	0	0	C) (0 0	0
3724	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 (0
8470	0	8	4	0 0	6	9	6	0	0 0	0 0	0	0	0	0	0	0	0	0	8	8	0	6	0	0 0	0	0	0) (0 0	0
4415	0	0	0	0 0	0	0	0	0	0 () 0	0	0	0	6	0	0	3	6	4	4	0	0	3	0 0	0	0	0) (0 (0
4650	0	0	4	0 0	0	0	0	0	0 0	$\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0		$\frac{1}{2}$	0
4346	0	0	0	0 0	0	0	0	0	0 0	$\frac{0}{0}$	0	0	0	4	4	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 0	0
4909	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 0	0
4965	0	0	0	0 0	0	0	0	0	0 () 0	0	0	0	0	4	0	0	0	0	0	0	0	3	0 0	0	0	0) (0 (0
3747	0	0	0	5 0	0	0	0	4	0 3	3 4	0	0	0	0	0	4	0	0	3	3	0	0	3	0 0	5	7	0) () 4	0
6348	0	0	0	0 0	0	0	0	4	3 () 0	0	0	0	0	0	0	0	0	7	5	0	0	0	0 0	0	4	0) () 3	3
3855	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	4	3	3	0	0	0	0	0	0	0	0		0) 0	0
6408	3	3	3	0 0	0	0	0	3	0 0	$\frac{0}{0}$	0	0	0	3	3	0	0	0	0	0	0	0	0	0 0	0	4	0) (0	0
6189	0	0	0	0 0	0	5	5	10	9 () 0	3	0	10	17	18	0	0	0	10	7	6	4	0	3 5	11	1 18	1 7	1 8	8 9	6
6245	0	0	0	0 0	0	0	0	0	0 () 0	0	0	0	3	3	0	0	0	0	0	0	0	0	0 0	0	3	C) (0 (0
6541	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 0	0
4979	0	0	0	0 0	3	0	0	0	0 () 0	0	0	0	0	0	0	3	0	0	0	0	0	4	0 0	0	0	0) (0 (0
4055	0	0	0	0 0	0	0	0	0	0 0	$\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0		0) ($\frac{1}{2}$	0
3706	4	0	3	3 0	0	0	0	3	0 3	3 5	0	0	0	0	0	0	0	0	0	0	3	0	6	0 0	0	0	0) 4	4 0	0
4750	8	5	8	5 5	6	6	0	6	5 4	4 6	5	5	9	10	12	5	5	5	5	7	0	3	6	4 3	4	. 0	0) 4	4 4	5
3572	0	0	0	0 8	4	3	4	10	10 7	79	7	6	9	10	18	0	0	4	4	4	6	5	10	7 0	5	5	7	/ 1	1 7	9
3689	0	0	0	7 0	5	0	0	4	4 (0 0	3	0	8	13	14	9	4	5	0	0	3	4	11	3 0	0	4	3	3 4	4 0	4
3634	3	0	0	9 9	2	4	4	12	12 6	5 7	12	12	21	33	20	10	8	4	1	/	3	4	10 1	2 9	13	3 13	8	5 I) 1	1 9	10
3552	0	0	4	8 4	5	0	5	9	10 4	5 7 1 4	7	6	9	8	12	11	0	0	0	0	6	6	14	7 0	5	5 13	7	7 0	1 <u>8</u> 9 5	8
4595	0	0	0	10 6	0	0	5	7	7 6	5 8	5	5	4	6	4	12	0	0	0	0	7	5	14	4 0	6	6	7	7 8	3 6	7
5990	0	3	0	0 0	0	0	0	0	0 () 0	0	0	0	0	4	0	0	0	0	0	0	0	5	0 0	0	0	0) (0 (0
8112	0	0	0	0 0	3	0	0	0	0 0) 0	0	0	0	0	6	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 0	0
3602	0	0	0	0 0	0	0	0	0	0 ($\frac{1}{2}$	0	0	0	0	5	0	0	0	0	0	0	0	0	0 0	0	0	0	, () 4	<u> </u>	0
7925	0	0	0	0 0	0	0	0	0	0 0	$\frac{1}{2}$	0	0	0	41	4	0	0	0	0	0	0	0	19	0 10	10	$\frac{1}{2}$ 11	0		$\frac{1}{2}$	0
4321	3	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	5	3	0	0	0	0	0	0	0	3	0 0	0	0	0) (0 0	0
3767	0	0	0	4 0	0	0	0	0	0 0) 0	0	0	9	17	11	5	0	0	0	0	0	0	7	0 0	0	0	0) (0 (0
4078	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	17	13	0	0	0	0	0	0	0	0	0 0	0	5	0) () 0	4
8795	0	0	0	0 0	0	0	0	0	0 0	0 0	0	0	0	3	4	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 0	0
3825	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	4	2	0	0	0	0	0	0	0	0	0 0	0	0	0			0
4145	0	0	0	0 0	0	0	0	0	4 ($\frac{1}{2}$	0	0	7	17	11	0	0	0	0	0	3	3	0	0 0	0		3	, (; ($\frac{1}{2}$	0
4145	3	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	4	5	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 0	0
4097	0	0	0	6 11	17	13	0	0	0 1	1 10) 7	7	13	17	15	4	13	11	16	27	0	0	0	63	4	. 0	0) (0 0	0
8588	0	4	0	28 11	21	13	23	4	5 1	7 10) 11	14	34	38	40	25	23	25	11	12	26	22	25	7 0	0	0	6	<u>ó</u> 4	4 4	4
8667	0	0	0	3 0	4	0	0	0	0 0) 0	0	0	4	4	4	0	4	4	0	0	0	0	0	0 0	0	0	C) (0 0	0
7935	9	13	11	20 25	12	27	8	12	11 2	5 22	2 13	17	33	0	0	18	16	16	33	33	12	7	0 1	0 0	0	0	1	1 9	<i>y</i> 11	10
8409	5	U 4	0	<u>v 0</u> 8 = =	4	9	0	0	7 4	, 0 5 4	0	3	11	3	3	3	7	0	9	9	5	5	3	<u>v 0</u>	0	0		, (, ·	ι <u>0</u> 7 4	0
3958	0	4 0	0	0 3	4	/ 19	9	0	<u>/ 3</u> 0 1.	, 4 4 14	5 10	10	11	11	15	9	4	5	23	18	13	9	10	- 0 9 7	10) 10) () (, <u> </u>	0
8203	0	0	0	20 20	19	55	17	10	5 2	3 19) 12	17	32	37	40	18	0	17	61	62	21	15	18	8 0	0	0	5	5	5 4	5
11069	0	0	0	0 0	0	0	0	0	0 3	6 0	0	0	23	0	0	0	0	0	0	0	0	22	42	0 0	0	0	0) 2	5 0	0
4564	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	4	5	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 0	0
4768	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	8	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0) (0 0	0
8948	0	U 30	0	0 0	0	0	0	0	0 0	$\frac{1}{2}$	0	0	0	42	47	0	0	0	4	0	0	0	U 1	U 0	0	0	0) (J 0	0
10897	0	22	17	0 0	42	0	0	0	0 0	, <u>0</u>) 0	0	0	44	20	4/	0	08	0	32	31	23	04	0 1		54 0	+ 54	- 0	0 4) 4) 26	28
4289	0	0	0	0 0		0	10	0 3	21 (. 0	0	0	0	0	0	0	0	0	0	0	0	0	0 3	15 0	0	0	. () (0 0	0
3527	0	0	0	0 0	0	0	0	0	0 0) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	5	5	0) (0 0	0
6378	0	0	0	0 0	0	0	0	0	0 () 0	0	0	0	4	0	0	0	0	0	0	0	0	0	0 0	0	0	0) () ()	0

8146	0	0	0	0	3	0	0	0	0	0	0	3	0	0	5	5	0 () (0	0	0 () () ()	0	0	0	0	0	0
6438	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0 4	1 (0	0	0 (n () (n in the second s	5	0	0	0	0	0
0430	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0 1	+ (0	0	0 0	0 (5	5	0	0	0	0	0
5391	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 () () ()	0	0	0	0	0	0
8629	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 () () ()	0	0	0	0	0	0
3660	Ő	0	12	5	0	0	0	0	7	0	0	0	0	0	0	0	0 (2	0	0 (0 () (, n	0	0	5	6	0	4
3000	0	"	15	5	0	0	0	0	/	0	0	0	0	0	0	0	0 1	, .	3	0	0 1	<u> </u>	, (J	0	0	5	0	0	4
8849	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3 () (0	0	0 (0 () ()	0	0	0	0	0	0
6416	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3 () (0	0	0 () () ()	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	<u> </u>	0	0	0 1		· · ·	0	0	0	0	0	0	0
7466	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 (0 () ()	0	0	0	0	0	0
4371	0	0	0	0	0	0	0	0	5	4	0	0	0	0	0	0	0 () (0	0	0 (0 () ()	0	0	0	0	0	4
2000	Ő	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 /) (0	0	0 (0 (° 7	0	0	0	1.4	1.4	0
3900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1) (0	0	0 () () (J	0	0	0	14	14	0
4433	9	8	9	5	5	0	7	4	13	8	5	5	6	7	10	9 1	0 1	7 (0	0 1	10 1	1 5	5 5	5	9	5	26	41 .	45	11
5204	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 (n () (n	0	0	0	0	0	0
5204	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	, ,	0	0	0 1	0 (, (5	0	0	0	0	0	0
5685	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 () () ()	0	0	4	4	4	0
11199	6	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 (0 () (n in the second s	0	0	0	0	0	0
111//	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	<u></u>	0	0	0 0			2	0	0	0	0	0	0
11549	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 () () ()	0	0	0	0	0	0
3671	17	0	0	0	0	5	0	0	0	6	0	0	0	0	5	8	4 (í (0	0	0 () ()	3	7	3	5	0	0	0
5607	25	25	21	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1) (0	0	0 (0 (2	0	0	0	0	0	0
5097	33	23	21	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1) (0	0	0 (J () (J	0	0	0	0	0	0
11481	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 (0 () ()	0	0	0	0	0	0
5722	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 (n () (h	0	0	0	0	0	0
5755	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1) (0	0	0 1	<u> </u>	, (J	0	0	0	0	0	0
11765	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 (0 () ()	0	0	0	0	0	0
11819	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 () () ()	0	0	0	0	0	0
5(25	12	12	10	5	0	6	2	0	6	5	6	6	5	6	4	2	2	_	c .	2	2	4 4		4	6	4	5	5	4	4
5035	15	15	12	3	0	0	3	0	0	3	0	0	3	0	4	3	5) :	3	3	5 4	4 4	- 4	+	0	4	3	3	4	4
5802	9	7	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 (0 () ()	0	0	0	0	0	0
11283	33	47	49	9	7	11	7	4	7	6	5	5	5	7	4	0	3 () 1	0	8	7 '	7 4	; ()	9	4	6	5	5	8
11205	55	77	77	-	-		/	-	,	0	5	5	5	,	-	0		/ 1		-	/ .	/ ·		-	-	-	0	5	5	0
11397	100	100	100	5	0	0	9	3	10	6	0	U	0	0	U	U	U :	<u>)</u>	U	U	0 (b <u>1</u>	2 (J	2	0	9	9	10	0
11615	24	23	22	6	0	0	0	0	0	0	0	0	0	0	0	0	0 4	4 (0	0	0 () () ()	0	0	0	0	0	0
((00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	。 0 /		0	0	0 (0 (° 7	0	0	0	0	0	0
6688	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1) (0	0	0 (J () (J	0	0	0	0	0	0
6870	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0 () (0	0	0 (0 () ()	0	0	0	0	0	0
5205	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 (n () (n	0	0	4	0	3	0
5495	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	, ,	0	0	0 1	0 (, (5	0	0	4	0	5	0
7372	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 () () ()	0	0	0	0	0	0
12234	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 () () ()	0	0	0	0	0	0
5270	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (0	0	0 (0 () ('n	0	0	0	0	0	0
5419	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1) (0	0	0 1	0 () (J	0	0	0	0	0	0
12019	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 (0 () ()	0	0	0	0	0	0
7140	3	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 (n () (n	0	0	0	3	0	0
1140	5	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	<u></u>	0	0	0 0			2	0	0	0	5	0	0
11686	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 () () ()	0	0	0	0	0	0
3586	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 (0 () ()	0	0	0	0	0	0
7244	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1) (0	0	0 (0 () (n	0	0	2	0	2	0
7244	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1) (0	0	0 (J () (J	0	0	3	0	3	0
9901	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0 () (0	0	0 (0 () ()	0	0	0	0	0	0
4696	0	0	0	0	0	0	0	0	12	10	0	0	0	0	4	5	5 () (0	0	0 (n /		n	0	0	0	0	0	8
4070	0	0	0	0	0	0	0	0	12	10	0	0	0	0	4	5	5 1	, (0	-			5	-	0	0	0	0	0
4212	0	0	0	5	11	4	4	1	26	18	П	13	9	9	8	7 1	5 :) 4	4.	5	/ 8	8 8	5 1	/	7	9	5	10	12	16
5839	0	0	0	0	0	0	0	3	18	12	3	4	4	4	3	5	9 () (0	0	3 (0 3	3 ()	0	4	4	7	7	11
00/7	0	2	2	15	6	0	10	11	25	21	6	7	14	17	10	11 1	4 1	2	4	6 1	7 1	5 1	2 1	0 1	12	11	12	17	17	20
8867	0	3	3	15	0	0	10	11	23	31	0	1	14	1/	10	11 1	4 1	3 4	4	0 1	1/ 1	3 1	5 1	0 1	12	11	15	17	1/	29
10898	0	0	0	0	0	66	63	60	56	53	81	63	58	72	0	0	0 () (0	0	0 (0 () ()	0	0	0	0	0	0
8263	0	0	0	0	0	0	0	0	0	0	0	4	4	5	0	0	0 () (0	0	0 (n () (n	0	3	0	0	0	0
0203	0	0	0	0	0	0	0	0	0	0	0	4	4	5	0	0	0 1) (0	0	0 1	<u> </u>	, (J	0	3	0	0	0	0
4391	0	0	0	0	7	0	0	0	4	0	7	7	12	13	6	8	9 () (0	0	0 (0 () ()	0	10	5	8	10	0
4175	0	0	0	0	4	0	0	0	5	0	4	5	11	11	0	0	0 1	3 (0	0	0 1	3 () ()	4	11	0	6	4	0
4175	0	0	0	0	0	0	0	0	-	2	-	0		7	0	4	0 1	<u>, ,</u>	4	0	<u> </u>			-	0		0	7	-	4
4256	0	0	0	0	0	0	0	0	2	3	4	0	8	/	0	4	0 () 4	4	0	0 4	4 () :	>	0	8	0	/	2	4
3809	4	0	0	0	4	0	0	0	4	0	0	3	0	0	0	0	0 () (0	0	0 (0 () ()	0	0	0	0	0	0
3080	26	20	20	8	21	0	17	4	27	24	16	21	12	12	7	8	7 () <i>'</i>	7	0	0 1	2		n 1	11	12	16	10	18	20
3700	20	20	23	0	21	0	1/	4	21	24	10	21	12	12	/	0	/	,	-	0	0 1	2 5				12	10	19	-	20
4240	0	0	0	4	7	5	3	6	0	0	6	5	6	6	7	8 .	4 :	5	5	6	4 :	56	5 ()	6	0	3	6	5	0
4035	30	31	30	100	100	100	100	100	100	100	100	100	100	100	100	100 1	00 1	0 1	00 1	00 1	00 1	00 10	0 10	00 1	00	100	100	100	100	100
4296	25	10	20	20	50	5	16	0	24	0	12	54	27	40	16	12 1	7 2	A 1	6	6 1	14 1	5 (1	0 3	20	0	26	10	77	19
4280	25	19	20	30	52	5	10	0	24	0	45	54	31	40	10	12 1	1 3	4 1	0	0 1	14 1	5 3	/ 1	0 .	00	0	20	20	21	10
3878	17	14	16	19	33	0	22	20	24	21	27	29	26	26	17	13 1	7 2	32	21 1	17 2	22 2	2 2	1 1	9 2	28	26	22	31	30	19
5447	12	14	19	24	50	20	20	12	23	19	41	36	28	33	18	14 1	3 2	6 1	7	9 2	27 2	9 1	92	4 3	30	23	31	26	21	23
5521	0	0	10		07	1.4		~	0	1.7	20	10		0	0	0		~ ·	0		0 1	4 4			0	0	0	10	10	0
5551	0	0	12	0	21	14	0	0	0	15	20	19	0	0	0	0	/ () (0.	3	0 1	.4 () (J	0	0	0	15	10	0
4493	0	0	3	3	5	0	0	0	0	0	5	7	4	4	0	0	0 () (0	0	0 (0 () ()	0	3	0	0	0	0
5003	0	0	0	0	3	0	0	0	0	0	0	3	0	0	0	0	0 () (0	0	0 () () ()	0	0	0	0	0	0
5000	é	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0 4		0	2	0 4	n (, ,	2	4	0	0	0	0	0
5033	U	U	U	U	U	U	U	U	0	U	U	U	U	U	U	U	υ (, (U .	3	υ (, (, (J	4	U	U	U	U	U
6106	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0 3	3 (0	0	0 (0 () ()	4	0	0	0	0	0
4538	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0 0) (0 0	7	0 () () ()	7	0	0	0	0	0
4000	ć	0	0	<u> </u>	0	6	0	0	0	0	0	0	6	6		0	0 7	2 4	0	4	0 4	<u> </u>		- 	20	6	0	2	5	0
4828	U	U	v	U	U	U	U	U	U	U	U	U	U	U	U	U	v 3) ر	v .	4	v (, (, (, .	צו	U	U	ر	J	U
5538	7	0	0	13	0	0	9	0	14	0	0	0	14	16	8	0	0 1	4 1	0	0 1	12 (0 8	3 1	0 1	15	11	14	0	0	14
5150	0	0	0	4	6	0	0	0	4	6	6	8	5	5	0	0	0 4	1 /	4	0	0 () () ()	5	4	0	0	0	3
5155	ć	0	0	<u>.</u>	0	0	0	0		0	0	2	~	-	~	~	~ ·			~		- (. (~	-		~	~	~	-
7291	0	U	0	4	0	0	0	0	6	0	0	5	4	5	υ	0	U _ 1	<u>s</u> (0	0	<u> </u>	<u> </u>) (J	5	4	U	υ	υ	U
14589	0	0	0	8	0	4	4	0	5	5	0	0	3	4	0	0	0 0	5 (0	0	5 5	5 () ()	6	0	0	0	0	6
10007	24	0	0	91	01	0	0	0	0	0	0	0	0	0	0	0	0 4		0	0	0 1	n (<u> </u>	n	0	0	0	0	0	0
10907	54	U	U	01	71	U	U	U	U	U	0	U	U	U	U	U	U (, (v	v	<u> </u>	, (, (,	U	U	U	U	v	0
11084	21	0	0	42	45	0	28	24	27	26	0	32	28	35	0	0	0 4	1 4	н 3	30	0 (0 () ()	0	0	0	23	0	32
4919	0	0	0	27	0	0	0	0	8	9	0	0	0	0	0	3	4 4) 4	6	0	0 (n () (h	0	0	0	0	0	0
4010	0	0	0	41	0	0	0	0	0	2	0	0	0	0	0	5	- I	, (0	0	0 1	<u> </u>	, (0	0	0	0	~	0
17062	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	U () (U	0	U (U () (J	U	0	0	0	0	U
16904	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 () () ()	0	0	0	0	0	0
03(0	ć	0	0		0	0	0	0	0	0	0	0	0	0	0	0	<u> </u>	. (~ 0	0	. (. (0	0	0	0	~	0
9360	0	U	0	4	0	0	0	0	0	0	0	U	0	0	U	U	υ () (U	U	U (U () (J	U	0	U	U	U	U
14796	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0 () () ()	0	0	0	0	0	0
(003	é	0	0	4	0	0	0	0	0	0	0	3	0	0	0	0	0	1 4	0	0	0 0	n (, è	h	0	0	0	0	0	0
0002	U	U	U	4	U	U	U	U	U	U	U	3	U	U	U	U	0 4	+ (v	v	v (, (, (,	U	U	U	U	v	U
4524	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0 (5 (0	0	0 (0 () (0	0	0	0	0	0	0
16980	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0 1	3 (0	0	0 (0 0) ()	0	0	0	0	0	0
10,00	6	0	0		0	0	0	0	0	0	0	0	0	0	0	0	<u> </u>	. (0	0	0	<u> </u>	<u> </u>	<i></i>	0	0	0	0	0	0
17014	U	U	U	4	U	0	U	U	U	U	U	U	U	U	U	U	υ .) (U	U	υ (J (, (J	U	U	U	U	U	U
10594	0	0	0	0	0	0	0	8	4	4	0	0	3	4	0	0	0 () :	5	0	0 0	0 7	1 7	7	0 -	0	4	4	4	5
10402	0	0	0	0	0	0	0	5	0	0	0	0	0	4	0	0	0 4)	4	0	0 0	n /		1	0	0	0	0	0	3
10093	U	U	U	U	U	U	U	5	U	U	U	U	U	4	U	U	U (, 4	4	v	v (<i>y</i> 4	+ 4	+	U	U	U	U	v	ر
16718	0	0	0	4	0	0	0	4	0	0	0	0	0	0	0	0	0 3	3 4	4	0	0 (0 4	<u> </u>)	3	0	0	0	0	0
16845	0	0	0	5	0	0	0	4	0	0	0	0	0	0	0	0	0 '	5 4	4	0	0 () :	()	4	0	0	0	0	0
5000	ć	ő	ő	-		<u> </u>	4	Ē	0	2	-	2	ő	10	4	2	4		4	0	0			~	/	-	0	0	0	0
5220	U	U	U	э	0	U	4	э	U	3	0	1	0	10	4	3	+ (4 ر	4	v	υ (v (, (5	υ	1	U	U	v	11
10325	0	3	4	12	8	0	6	12	7	10	7	9	8	10	0	0	0 1	2 1	6	0	5 (0 7	<u> </u>	5 1	12	7	0	0	3	9
10325 10456	0	3	4	12	8 5	0	6 7	12	7	10	7	9	8	10	0	0	0 1	2 1 2 1	6 5	0	5 (6 4	0 7 4 1	2 1	5 1 1 1	12 12	7	0	0	3 3	9 5

Table S3. Cosine similarities of mouse skin surface mass fingerprints

	H2_3	H2_2	H2_1	H1_2	H1_1	H1_3	H3_3	H3_2	H3_1	B_F_1	B_F_3	B_F_2	B_M_3	B_M_1	B_M_2	T10_2	T10_3	T10_1	T15_2	T15_3	T15_1
H2_3	1	0.996	0.996	0.988	0.985	0.984	0.984	0.984	0.986	0.87	0.877	0.868	0.872	0.863	0.856	0.286	0.29	0.272	0.217	0.178	0.126
H2_2	0.996	1	0.996	0.986	0.985	0.984	0.986	0.987	0.987	0.868	0.876	0.866	0.873	0.863	0.858	0.295	0.299	0.28	0.227	0.187	0.137
H2_1	0.996	0.996	1	0.984	0.985	0.987	0.983	0.984	0.984	0.871	0.877	0.869	0.871	0.861	0.853	0.288	0.292	0.273	0.221	0.182	0.13
H1_2	0.988	0.986	0.984	1	0.98	0.978	0.974	0.974	0.977	0.872	0.877	0.87	0.863	0.854	0.849	0.297	0.3	0.284	0.218	0.178	0.127
H1_1	0.985	0.985	0.985	0.98	1	0.995	0.973	0.976	0.979	0.871	0.877	0.87	0.865	0.855	0.849	0.294	0.296	0.279	0.215	0.175	0.125
H1_3	0.984	0.984	0.987	0.978	0.995	1	0.97	0.972	0.975	0.876	0.88	0.874	0.867	0.858	0.849	0.295	0.297	0.28	0.213	0.174	0.124
H3_3	0.984	0.986	0.983	0.974	0.973	0.97	1	0.998	0.996	0.837	0.849	0.837	0.851	0.84	0.831	0.273	0.277	0.258	0.219	0.177	0.125
H3_2	0.984	0.987	0.984	0.974	0.976	0.972	0.998	1	0.996	0.838	0.849	0.837	0.851	0.84	0.832	0.276	0.28	0.262	0.22	0.178	0.127
H3_1	0.986	0.987	0.984	0.977	0.979	0.975	0.996	0.996	1	0.847	0.857	0.847	0.854	0.844	0.835	0.279	0.283	0.265	0.218	0.177	0.125
B_F_1	0.87	0.868	0.871	0.872	0.871	0.876	0.837	0.838	0.847	1	0.997	0.996	0.835	0.832	0.846	0.458	0.455	0.446	0.276	0.234	0.19
B_F_3	0.877	0.876	0.877	0.877	0.877	0.88	0.849	0.849	0.857	0.997	1	0.996	0.841	0.838	0.852	0.457	0.455	0.445	0.279	0.236	0.194
B_F_2	0.868	0.866	0.869	0.87	0.87	0.874	0.837	0.837	0.847	0.996	0.996	1	0.832	0.829	0.841	0.453	0.45	0.44	0.273	0.23	0.187
B_M_3	0.872	0.873	0.871	0.863	0.865	0.867	0.851	0.851	0.854	0.835	0.841	0.832	1	0.996	0.99	0.621	0.623	0.612	0.526	0.49	0.451
B_M_1	0.863	0.863	0.861	0.854	0.855	0.858	0.84	0.84	0.844	0.832	0.838	0.829	0.996	1	0.992	0.634	0.637	0.627	0.534	0.498	0.46
B_M_2	0.856	0.858	0.853	0.849	0.849	0.849	0.831	0.832	0.835	0.846	0.852	0.841	0.99	0.992	1	0.652	0.654	0.642	0.539	0.504	0.467
T10_2	0.286	0.295	0.288	0.297	0.294	0.295	0.273	0.276	0.279	0.458	0.457	0.453	0.621	0.634	0.652	1	0.997	0.994	0.905	0.895	0.899
T10_3	0.29	0.299	0.292	0.3	0.296	0.297	0.277	0.28	0.283	0.455	0.455	0.45	0.623	0.637	0.654	0.997	1	0.995	0.909	0.899	0.893
T10_1	0.272	0.28	0.273	0.284	0.279	0.28	0.258	0.262	0.265	0.446	0.445	0.44	0.612	0.627	0.642	0.994	0.995	1	0.901	0.891	0.887
T15_2	0.217	0.227	0.221	0.218	0.215	0.213	0.219	0.22	0.218	0.276	0.279	0.273	0.526	0.534	0.539	0.905	0.909	0.901	1	0.992	0.989
T15_3	0.178	0.187	0.182	0.178	0.175	0.174	0.177	0.178	0.177	0.234	0.236	0.23	0.49	0.498	0.504	0.895	0.899	0.891	0.992	1	0.991
T15_1	0.126	0.137	0.13	0.127	0.125	0.124	0.125	0.127	0.125	0.19	0.194	0.187	0.451	0.46	0.467	0.899	0.893	0.887	0.989	0.991	1
T24_3	0.121	0.13	0.123	0.116	0.118	0.117	0.122	0.125	0.12	0.145	0.151	0.141	0.468	0.477	0.48	0.882	0.888	0.883	0.962	0.962	0.971
T24_2	0.113	0.122	0.115	0.109	0.111	0.11	0.112	0.114	0.11	0.146	0.151	0.143	0.459	0.467	0.471	0.878	0.88	0.876	0.961	0.969	0.971
T24_1	0.125	0.135	0.128	0.12	0.122	0.12	0.128	0.13	0.125	0.149	0.154	0.144	0.466	0.474	0.477	0.871	0.874	0.871	0.961	0.965	0.97
T50_3	0.117	0.129	0.124	0.108	0.118	0.117	0.115	0.119	0.115	0.14	0.145	0.137	0.428	0.426	0.427	0.764	0.762	0.761	0.867	0.867	0.888
T50_1	0.109	0.121	0.117	0.101	0.109	0.108	0.107	0.11	0.106	0.128	0.133	0.128	0.415	0.415	0.418	0.773	0.773	0.768	0.884	0.886	0.904
T50_2	0.108	0.118	0.115	0.1	0.107	0.107	0.105	0.108	0.105	0.128	0.132	0.126	0.414	0.414	0.414	0.783	0.782	0.779	0.889	0.892	0.909
T70_3	0.104	0.114	0.108	0.096	0.103	0.1	0.1	0.105	0.1	0.127	0.133	0.123	0.419	0.42	0.422	0.785	0.785	0.789	0.888	0.886	0.908
T70_2	0.092	0.102	0.097	0.087	0.092	0.088	0.09	0.093	0.09	0.116	0.122	0.112	0.416	0.418	0.419	0.792	0.791	0.786	0.894	0.893	0.914
T70_1	0.099	0.11	0.104	0.092	0.099	0.096	0.097	0.101	0.097	0.122	0.127	0.117	0.415	0.417	0.417	0.785	0.782	0.778	0.886	0.887	0.906
T130_1	0.131	0.139	0.14	0.12	0.124	0.126	0.126	0.131	0.123	0.124	0.129	0.124	0.371	0.37	0.361	0.641	0.646	0.638	0.756	0.76	0.778
T130_2	0.124	0.131	0.133	0.111	0.115	0.118	0.116	0.121	0.112	0.115	0.119	0.115	0.355	0.354	0.345	0.607	0.611	0.604	0.721	0.725	0.745
T130_3	0.12	0.127	0.13	0.107	0.111	0.114	0.115	0.119	0.11	0.113	0.117	0.113	0.351	0.349	0.341	0.606	0.612	0.605	0.728	0.732	0.752
T140_2	0.129	0.137	0.14	0.117	0.123	0.126	0.122	0.128	0.118	0.137	0.14	0.137	0.38	0.381	0.376	0.674	0.677	0.669	0.788	0.798	0.809
T140_1	0.133	0.141	0.146	0.121	0.126	0.129	0.124	0.131	0.12	0.139	0.142	0.139	0.383	0.386	0.378	0.673	0.681	0.672	0.789	0.789	0.808
T140_3	0.131	0.139	0.144	0.118	0.124	0.127	0.124	0.13	0.119	0.135	0.139	0.135	0.384	0.387	0.378	0.67	0.678	0.668	0.786	0.784	0.804
T168_1	0.146	0.155	0.159	0.133	0.141	0.142	0.137	0.146	0.131	0.147	0.152	0.147	0.34	0.345	0.328	0.471	0.486	0.47	0.544	0.535	0.556
T168_2	0.144	0.153	0.157	0.13	0.138	0.139	0.133	0.142	0.127	0.146	0.151	0.147	0.339	0.344	0.327	0.469	0.484	0.468	0.541	0.532	0.552
T168_3	0.154	0.164	0.168	0.14	0.148	0.15	0.146	0.155	0.139	0.142	0.147	0.142	0.321	0.326	0.307	0.394	0.408	0.392	0.464	0.456	0.474
T182_1	0.151	0.138	0.144	0.117	0.125	0.128	0.123	0.131	0.116	0.129	0.133	0.13	0.301	0.307	0.287	0.399	0.415	0.398	0.465	0.458	0.478
T182_3	0.135	0.142	0.149	0.119	0.129	0.132	0.126	0.135	0.119	0.128	0.131	0.129	0.298	0.304	0.281	0.388	0.403	0.388	0.455	0.448	0.468
T182_2	0.13	0.137	0.144	0.115	0.123	0.126	0.122	0.131	0.115	0.126	0.129	0.127	0.292	0.299	0.278	0.376	0.392	0.376	0.438	0.429	0.449
	L																				

(To be continued on next page)

(Continued from the last page)

	T24_3	T24_2	T24_1	T50_3	T50_1	T50_2	T70_3	T70_2	T70_1	T130_1	T130_2	T130_3	T140_2	T140_1	T140_3	T168_1	T168_2	T168_3	T182_1	T182_3	T182_2
H2_3	0.121	0.113	0.125	0.117	0.109	0.108	0.104	0.092	0.099	0.131	0.124	0.12	0.129	0.133	0.131	0.146	0.144	0.154	0.151	0.135	0.13
H2_2	0.13	0.122	0.135	0.129	0.121	0.118	0.114	0.102	0.11	0.139	0.131	0.127	0.137	0.141	0.139	0.155	0.153	0.164	0.138	0.142	0.137
H2_1	0.123	0.115	0.128	0.124	0.117	0.115	0.108	0.097	0.104	0.14	0.133	0.13	0.14	0.146	0.144	0.159	0.157	0.168	0.144	0.149	0.144
H1_2	0.116	0.109	0.12	0.108	0.101	0.1	0.096	0.087	0.092	0.12	0.111	0.107	0.117	0.121	0.118	0.133	0.13	0.14	0.117	0.119	0.115
H1_1	0.118	0.111	0.122	0.118	0.109	0.107	0.103	0.092	0.099	0.124	0.115	0.111	0.123	0.126	0.124	0.141	0.138	0.148	0.125	0.129	0.123
H1_3	0.117	0.11	0.12	0.117	0.108	0.107	0.1	0.088	0.096	0.126	0.118	0.114	0.126	0.129	0.127	0.142	0.139	0.15	0.128	0.132	0.126
H3_3	0.122	0.112	0.128	0.115	0.107	0.105	0.1	0.09	0.097	0.126	0.116	0.115	0.122	0.124	0.124	0.137	0.133	0.146	0.123	0.126	0.122
H3_2	0.125	0.114	0.13	0.119	0.11	0.108	0.105	0.093	0.101	0.131	0.121	0.119	0.128	0.131	0.13	0.146	0.142	0.155	0.131	0.135	0.131
H3_1	0.12	0.11	0.125	0.115	0.106	0.105	0.1	0.09	0.097	0.123	0.112	0.11	0.118	0.12	0.119	0.131	0.127	0.139	0.116	0.119	0.115
B_F_1	0.145	0.146	0.149	0.14	0.128	0.128	0.127	0.116	0.122	0.124	0.115	0.113	0.137	0.139	0.135	0.147	0.146	0.142	0.129	0.128	0.126
B_F_3	0.151	0.151	0.154	0.145	0.133	0.132	0.133	0.122	0.127	0.129	0.119	0.117	0.14	0.142	0.139	0.152	0.151	0.147	0.133	0.131	0.129
B_F_2	0.141	0.143	0.144	0.137	0.128	0.126	0.123	0.112	0.117	0.124	0.115	0.113	0.137	0.139	0.135	0.147	0.147	0.142	0.13	0.129	0.127
B_M_3	0.468	0.459	0.466	0.428	0.415	0.414	0.419	0.416	0.415	0.371	0.355	0.351	0.38	0.383	0.384	0.34	0.339	0.321	0.301	0.298	0.292
B_M_1	0.477	0.467	0.474	0.426	0.415	0.414	0.42	0.418	0.417	0.37	0.354	0.349	0.381	0.386	0.387	0.345	0.344	0.326	0.307	0.304	0.299
B_M_2	0.48	0.471	0.477	0.427	0.418	0.414	0.422	0.419	0.417	0.361	0.345	0.341	0.376	0.378	0.378	0.328	0.327	0.307	0.287	0.281	0.278
T10_2	0.882	0.878	0.871	0.764	0.773	0.783	0.785	0.792	0.785	0.641	0.607	0.606	0.674	0.673	0.67	0.471	0.469	0.394	0.399	0.388	0.376
T10_3	0.888	0.88	0.874	0.762	0.773	0.782	0.785	0.791	0.782	0.646	0.611	0.612	0.677	0.681	0.678	0.486	0.484	0.408	0.415	0.403	0.392
T10_1	0.883	0.876	0.871	0.761	0.768	0.779	0.789	0.786	0.778	0.638	0.604	0.605	0.669	0.672	0.668	0.47	0.468	0.392	0.398	0.388	0.376
T15_2	0.962	0.961	0.961	0.867	0.884	0.889	0.888	0.894	0.886	0.756	0.721	0.728	0.788	0.789	0.786	0.544	0.541	0.464	0.465	0.455	0.438
T15_3	0.962	0.969	0.965	0.867	0.886	0.892	0.886	0.893	0.887	0.76	0.725	0.732	0.798	0.789	0.784	0.535	0.532	0.456	0.458	0.448	0.429
T15_1	0.971	0.971	0.97	0.888	0.904	0.909	0.908	0.914	0.906	0.778	0.745	0.752	0.809	0.808	0.804	0.556	0.552	0.474	0.478	0.468	0.449
T24_3	1	0.989	0.987	0.896	0.919	0.914	0.918	0.924	0.913	0.774	0.741	0.747	0.802	0.803	0.8	0.554	0.551	0.473	0.474	0.462	0.445
T24_2	0.989	1	0.99	0.898	0.911	0.916	0.915	0.924	0.914	0.774	0.741	0.746	0.812	0.797	0.793	0.537	0.534	0.459	0.458	0.447	0.427
T24_1	0.987	0.99	1	0.91	0.924	0.929	0.924	0.932	0.922	0.797	0.769	0.776	0.836	0.823	0.82	0.566	0.562	0.491	0.492	0.481	0.459
T50_3	0.896	0.898	0.91	1	0.99	0.988	0.98	0.978	0.982	0.894	0.876	0.876	0.896	0.877	0.875	0.635	0.631	0.561	0.553	0.537	0.512
T50_1	0.919	0.911	0.924	0.99	1	0.993	0.978	0.974	0.976	0.901	0.88	0.884	0.909	0.893	0.889	0.646	0.642	0.569	0.567	0.55	0.528
T50_2	0.914	0.916	0.929	0.988	0.993	1	0.978	0.974	0.977	0.911	0.891	0.892	0.919	0.903	0.898	0.64	0.636	0.564	0.563	0.548	0.521
T70_3	0.918	0.915	0.924	0.98	0.978	0.978	1	0.994	0.993	0.88	0.857	0.851	0.883	0.873	0.87	0.635	0.63	0.558	0.555	0.536	0.514
170_2	0.924	0.924	0.932	0.978	0.974	0.974	0.994	1	0.993	0.865	0.842	0.836	0.869	0.857	0.853	0.617	0.611	0.537	0.534	0.515	0.494
170_1	0.913	0.914	0.922	0.982	0.976	0.977	0.993	0.993	0.075	0.875	0.851	0.845	0.876	0.859	0.856	0.618	0.612	0.54	0.533	0.517	0.494
T130_1	0.774	0.774	0.797	0.894	0.901	0.911	0.88	0.865	0.875	1	0.993	0.986	0.97	0.967	0.965	0.814	0.812	0.768	0.765	0.755	0.73
T130_2	0.741	0.741	0.769	0.876	0.884	0.891	0.857	0.842	0.851	0.995	0.080	0.989	0.967	0.964	0.961	0.818	0.810	0.779	0.772	0.764	0.74
T140_3	0.747	0.740	0.776	0.876	0.884	0.892	0.851	0.850	0.845	0.980	0.989	1	0.969	0.967	0.965	0.822	0.818	0.782	0.775	0.760	0.742
T140_2	0.802	0.812	0.830	0.890	0.909	0.919	0.865	0.809	0.870	0.97	0.907	0.909	0.085	0.965	0.964	0.812	0.81	0.77	0.771	0.705	0.758
T140_1 T140_2	0.805	0.797	0.825	0.877	0.895	0.905	0.875	0.857	0.859	0.907	0.904	0.907	0.965	0.007	0.997	0.850	0.840	0.807	0.812	0.805	0.785
T140_5	0.554	0.795	0.82	0.675	0.669	0.696	0.67	0.655	0.630	0.905	0.901	0.905	0.964	0.997	0.862	0.805	0.007	0.821	0.024	0.017	0.790
T168 2	0.551	0.537	0.560	0.035	0.640	0.04	0.055	0.611	0.612	0.814	0.816	0.822	0.812	0.830	0.805	0.007	0.997	0.969	0.975	0.971	0.909
T168 3	0.331	0.334	0.302	0.031	0.042	0.050	0.03	0.537	0.012	0.812	0.810	0.818	0.81	0.848	0.801	0.997	0.086	0.980	0.974	0.971	0.975
T182 1	0.473	0.459	0.491	0.501	0.567	0.563	0.555	0.534	0.54	0.765	0.772	0.762	0.771	0.807	0.824	0.909	0.960	0.981	0.901	0.909	0.976
T182 3	0.474	0.4.53	0.492	0.555	0.55	0.505	0.555	0.515	0.555	0.755	0.764	0.766	0.763	0.805	0.817	0.975	0.974	0.980	0.996	0.220	0.995
T182_3	0.402	0.447	0.459	0.557	0.528	0.548	0.550	0.494	0.317	0.755	0.704	0.742	0.705	0.305	0.017	0.971	0.971	0.909	0.990	0.995	0.225
1104_2	0.445	0.427	0.459	0.512	0.528	0.521	0.514	0.494	0.494	0.75	0.74	0.742	0.758	0.765	0.790	0.909	0.973	0.978	0.993	0.993	1

Peak Mass (m/z)	log2 FC*	P-value*	Figure 3 Presence	Peak Mass (m/z)	log2 FC	P-value	Figure 3 Presence	Peak Mass (m/z)	log2 FC	P-value	Figure 3 Presence
2018.1	2.474	9.19E-2		5443.6	0.553	3.42E-2		9837.3	1.319	3.83E-2	
2032.3	1.889	7.62E-2		5476.8	-2.999	5.16E-5		9929.3	-0.650	2.29E-1	
2111.1	2.412	9.05E-2		5494.0	3.156	5.04E-4		9978.9	0.000		Peak 6
2167.8	0.037	3.63E-1		5528.4	-2.676	4.13E-3		10165.2	-0.155	8.82E-2	Peak 7
2351.0	-2.683	1.42E-4		5546.5	1.613	7.56E-2		10294.8	0.421	1.56E-1	
3094.9	0.126	3.63E-1		5656.9	-2.117	1.38E-2		10406.3	0.660	1.66E-1	
3415.5	4.170	6.79E-4		5673.7	-1.809	2.29E-2		10870.7	1.360	1.79E-1	Peak 9
3531.8	3.476	6.23E-4		5693.8	3.766	7.91E-5		10970.6	0.391	4.11E-1	
3661.0	3.284	7.95E-2		5709.7	-0.218	4.21E-1		11075.9	-0.165	3.67E-1	
3726.7	0.152	3.63E-1		5837.1	1.994	4.47E-6		11102.8	-0.207	5.15E-1	
3802.5	4.175	2.48E-2		5910.2	1.775	1.58E-1		11304.5	-0.235	6.76E-1	
3820.3	3.624	7.13E-3		6190.3	-1.934	3.63E-1		11345.2	-0.030	3.17E-1	
3891.1	2.299	1.68E-2		6579.9	-1.349	4.86E-1		11515.0	-2.924	8.26E-4	
3901.0	2.669	3.62E-2		6706.4	-0.051	8.91E-1		11545.8	0.606	5.40E-2	Peak 10
3949.1	4.747	3.90E-3		6909.5	-0.629	1.50E-1		11634.0	0.633	3.41E-1	
3991.4	0.991	4.36E-1		7010.3	-0.773	1.37E-1		12370.8	0.615	1.81E-1	
4109.4	2.218	4.13E-2		7030.7	-0.739	1.02E-1		12721.8	3.794	1.22E-2	
4193.9	2.700	3.44E-2		7492.7	4.405	2.66E-3	Peak 2	13799.8	0.121	2.73E-1	
4244.4	1.854	6.26E-3		7552.5	-1.120	8.05E-3		14003.5	-0.487	3.56E-1	
4334.0	4.278	3.80E-3		7658.3	-0.758	8.63E-3		14043.0	-0.155	6.53E-1	
4374.4	2.175	2.52E-1		7810.6	3.941	4.12E-4	Peak 3	14877.6	2.220	2.87E-2	
4453.8	-0.264	1.39E-1		8185.1	2.452	4.52E-3		15098.8	0.149	2.51E-1	
4463.4	3.175	3.84E-2		8419.1	0.486	8.93E-1		15311.5	-0.135	9.55E-1	
4621.2	3.621	2.90E-2		8560.5	4.518	3.78E-5		16669.4	2.611	2.93E-4	
4690.3	5.516	1.77E-2	Peak 1	8627.4	0.329	3.63E-1		16782.1	2.209	6.61E-2	
4752.2	1.972	5.91E-2		8712.0	3.687	1.93E-2	Peak 4				
4836.8	2.641	7.71E-2		8825.9	2.051	8.61E-2					
4865.7	4.711	1.53E-2		8947.9	3.359	3.56E-2					
4909.8	2.368	5.52E-3		9235.2	2.648	2.29E-2					
4957.7	-1.148	4.09E-1		9272.0	3.578	1.72E-2					
4981.5	-0.048	8.73E-1		9365.9	3.963	5.39E-2	Peak 5				
5086.0	-0.394	1.07E-2		9663.4	0.742	2.59E-1					
5139.2	-2.934	8.57E-6		9721.4	2.872	4.44E-5					

Table S4. Comparison of peak intensities between healthy and speckle skins from mice

*log2 FC: log2 fold change. For each peak, the value is calculated as log_2 ((mean value of the relative peak intensity in black speckle skins) divided by (mean value of the relative peak intensity in healthy skins)).

* P-value: the value of probability, *i.e.* the level of statistical significance generated from paired t-test.

Table S5. A list of all investigated machine learning classification algorithms

Altogether 84 classifiers on the Weka (Waikato environment for knowledge analysis) machine learning workbench have been investigated for the skin lesion classification. These classifiers come from the common learning models like Bayes, Functions, Lazy, Meta and Trees.

Model	Subtype Algorithm	Model	Subtype Algorithm
Bayes	AODE	Functions	GaussianProcesses
	AODEsr		IsotonicRegression
	BayesianLogisticRegression		LeastMedSq
	BayesNet		LibLINEAR
	ComplementNaiveBayes		LibSVM
	DMNBtext		LinearRegression
	HNB		Logistic
	NaiveBayes		MultilayerPerceptron
	NaiveBayesMultinomial		MultilayerPerceptronCS
	NaiveBayesMultinomialUpdateable		PaceRegression
	NaiveBayesSimple		PLSClassififier
	NaiveBayesUpdateable		RBFNetwork
	WAODE		SimpleLinearRegression
Meta	AdoBoostM1		SimpleLogstic
	AdditiveRegression		SMO
	AltributedSelectedClassifier		SMOreg
	Bagging		SPegasos
	ClassificationViaClustering		VotedPerceptron
	ClassificationViaRegression		Winnow
	CostSensitiveClassifier	Lazy	IB1
	CVParameterSelection	-	IBk
	Dagging		KStar
	Decorate		LBR
	END		LWL
	EnsembleSelection	Trees	ADTree
	FilteredClassifier		BFTree
	Grading		DecisionStump
	GridSearch		FT
	LogitBoost		Id3
	MetaBoost		J48
	MultiBoostAB		J48graft
	MultiClassClassifier(MCC)		LADTree
	OneClassClassifier		LMT
	OrdinalClassClassifier		M5P
	RacedIncrementalLogitBoost		NBTree
	RandomCommittee		RandomForest
	RandomSubSpace		RandomTree
	RealAdaBoost		REPTree
	RegressionByDiscretization		SimpleCart
	RotationForest		UserClassifier
	Stacking		
	StackingC		
	ThresholdSelector		
	Vote		

Table S6. PCA scores of mouse skin surface mass fingerprints

ID	PC0 score	PC1 score	PC2 score
Eigenvalue	49.6885	25.2124	14.7624
Variance	0.246	0.1248	0.0731
Cumulative	0.246	0.3708	0.4439
Healthy#0	2.0453	-0.6454	0.4114
Healthy#1	2.1018	-0.3138	0.9412
Healthy#2	2.1424	-0.6484	0.4888
Healthy#3	2.232	-0.4812	0.4576
Healthy#4	2.1454	-0.2578	0.8263
Healthy#5	2.2527	-0.6591	0.4995
Healthy#6	2.0751	-0.4181	0.3603
Healthy#7	2.2543	-0.6794	0.4103
Healthy#8	2.1857	-0.6146	0.4358
Healthy#9	2.0406	-0.3393	0.9936
Healthy#10	1.8724	-0.5457	0.5394
Healthy#11	2.1097	-0.329	0.6884
Healthv#12	2.1049	-0.5073	0.5784
Healthy#13	1.8186	-0.5133	0.3727
Healthy#14	1.9607	-0.7878	0.3836
Healthy#15	2 1262	-0 583	0.3616
Healthy#16	2 1716	-0.4233	0.2466
Healthy#17	1 7338	-0 538	0.3656
Few Black Speckles#18	1.7530	1 3487	2 192
Few Black Speckles#19	1.1527	1.3467	2.192
Few Black Speckles#20	1 1492	1.5045	2.2000
More Black Speekles#21	0.116	2 5091	2.4201
More Black Speckles#21	0.2646	2.3071	2.2082
More Black Speckles#22	-0.0218	2.3531	2.45
Farly Tumor#24	-0.0218	4 3615	2 / 35/
Early Tumor#25	-0.9701	4.3013	2.4334
Early Tumor#26	-0.402	4.1276	2.7703
Early Tumor#27	-0.7047	4.1220	2.5379
Early Tulliof#27 Early Tulliof#29	-2.1457	3.1228	1.3342
Early Tulliof#28	-1.0114	4./518	1.4338
Early Tumor#29	-1.5254	4.4655	0.5080
Early Tumor#30	-2.4041	4.3143	0.5089
Early Tulliof#31	-2.2272	5.6720	0.0321
Early 1umor#32	-2.1822	4.3972	0.1422
Medium-Sized Tumor#33	-3.1803	2.0701	-2.331/
Modium Sized Tumor#34	-3.344/	1./315	-1.8449
Medium-Sized Tumor#35	-3.38/2	1.024/	-2.1229
Medium-Sized Tumor#36	-3.3838	2.1007	-2.2309
Neuron-Sized Tumor#37	-3./1/6	2.421	-2.214
Wiedium-Sized Tumor#38	-3./337	2.5372	-2.7673
Metastatic Tumor#39	-4.0701	0.0571	0.1718
Metastatic Tumor#40	-4.9189	-0.2811	0.2056
Metastatic Tumor#41	-4.6723	0.1132	0.1847
Metastatic Tumor#42	-5.1344	0.2141	0.7391
Metastatic Tumor#43	-5.4726	-0.0423	0.9852
Metastatic Tumor#44	-5.471	0.2033	1.2368
Metastatic Tumor#45	-6.3074	-0.8416	1.7319
Metastatic Tumor#46	-6.2541	-0.3785	1.7916
Metastatic Tumor#47	-6.4719	-0.8822	1.9109
Metastatic Tumor#48	-5.9317	-0.9352	2.1828
Metastatic Tumor#49	-6.1009	-0.6065	2.2472
Metastatic Tumor#50	-6.0403	-0.7367	2.3632

Table S7. One-way ANOVA test of mouse skin surface mass fingerprint PCA scores

ID*		PC0	score			PCI	score			PC2	score	
	MeanDiff*	SEM*	F-value	P-value	MeanDiff	SEM	F-value	P-value	MeanDiff	SEM	F-value	P-value
Speckles & Healthy	-1.4225	0.2475	8.2570	4.17E-05	2.4203	0.1650	53.8242	8.90E-17	1.6926	0.2929	8.3467	3.78E-05
Early T & Healthy	-3.6708	0.2144	73.3125	2.30E-19	4.9307	0.1429	297.8502	3.02E-32	0.9229	0.2537	3.3088	1.83E-02
Early T & Speckles	-2.2483	0.2767	16.5013	1.88E-08	2.5104	0.1844	46.3256	1.43E-15	-0.7697	0.3275	1.3808	2.55E-01
Medium T & Healthy	-5.5352	0.2475	125.0186	4.27E-24	2.5967	0.1650	61.9543	6.13E-18	-2.7720	0.2929	22.3873	2.60E-10
Medium T & Speckles	-4.1127	0.3032	46.0117	1.62E-15	0.1764	0.2020	0.1905	9.42E-01	-4.4646	0.3588	38.7156	3.54E-14
Medium T & Early T	-1.8644	0.2767	11.3464	1.73E-06	-2.3341	0.1844	40.0451	1.96E-14	-3.6949	0.3275	31.8208	1.01E-12
Metastatic T & Healthy	-7.6468	0.1957	381.7567	1.22E-34	0.1728	0.1304	0.4388	7.80E-01	0.7925	0.2316	2.9278	3.08E-02
Metastatic T & Speckles	-6.2243	0.2625	140.5186	3.63E-25	-2.2475	0.1750	41.2569	1.15E-14	-0.9001	0.3107	2.0981	9.64E-02
Metastatic T & Early T	-3.9759	0.2315	73.7195	2.06E-19	-4.7580	0.1543	237.7223	4.32E-30	-0.1304	0.2740	0.0566	9.94E-01
Metastatic T & Medium T	-2.1116	0.2625	16.1725	2.45E-08	-2.4239	0.1750	47.9859	7.51E-16	3.5645	0.3107	32.9049	5.77E-13

*MeanDiff: mean difference in the PCA scores.

*SEM: standard error of the mean.

*ID. Speckles: Black speckles; Early T: Early tumor; Medium T: Medium-sized tumor; Metastatic T: Metastatic tumor

Table S8. Mass spectral cosine similarities of mouse blood-circulating exosomes

	H2 1	H2 3	H2 2	H3 1	H3 2	НЗ 3	H1 1	H1 3	H1 2	BF2	BF1	BF3	B M 2	ВМЗ	B M 1	T10 3	T10 1	T10 2	T15 2	T15 3	T15 1
H2 1	- 1	0.997	0.998	0.992	0.993	0.991	0.99	0.988	0.988	0.955	0.957	0.955	0.951	0.951	0.946	0.88	0.868	0.866	0.844	0.844	0.841
H2_3	0.997	1	0.996	0.991	0.991	0.99	0.985	0.986	0.985	0.954	0.955	0.952	0.949	0.948	0.944	0.881	0.866	0.865	0.845	0.842	0.847
H2_2	0.998	0.996	1	0.99	0.991	0.987	0.991	0.989	0.99	0.954	0.955	0.953	0.95	0.949	0.945	0.878	0.865	0.867	0.843	0.843	0.846
H3_1	0.992	0.991	0.99	1	0.996	0.998	0.99	0.988	0.984	0.953	0.955	0.954	0.951	0.95	0.944	0.873	0.86	0.855	0.836	0.835	0.838
H3_2	0.993	0.991	0.991	0.996	1	0.998	0.99	0.986	0.989	0.954	0.955	0.954	0.953	0.951	0.945	0.881	0.866	0.865	0.844	0.844	0.845
Н3_3	0.991	0.99	0.987	0.998	0.998	1	0.985	0.985	0.987	0.948	0.95	0.947	0.944	0.943	0.937	0.87	0.857	0.854	0.834	0.832	0.836
H1_1	0.99	0.985	0.991	0.99	0.99	0.985	1	0.992	0.991	0.958	0.963	0.961	0.957	0.959	0.952	0.887	0.873	0.87	0.85	0.851	0.85
H1_3	0.988	0.986	0.989	0.988	0.986	0.985	0.992	1	0.997	0.967	0.969	0.965	0.963	0.963	0.96	0.886	0.875	0.873	0.853	0.852	0.853
H1_2	0.988	0.985	0.99	0.984	0.989	0.987	0.991	0.997	1	0.968	0.97	0.968	0.965	0.965	0.961	0.89	0.879	0.877	0.854	0.854	0.855
B_F_2	0.955	0.954	0.954	0.953	0.954	0.948	0.958	0.967	0.968	1	0.997	0.996	0.991	0.989	0.986	0.947	0.938	0.937	0.912	0.915	0.913
B_F_1	0.957	0.955	0.955	0.955	0.955	0.95	0.963	0.969	0.97	0.997	1	0.998	0.99	0.985	0.99	0.945	0.935	0.934	0.913	0.913	0.912
B_F_3	0.955	0.952	0.953	0.954	0.954	0.947	0.961	0.965	0.968	0.996	0.998	1	0.988	0.987	0.989	0.949	0.938	0.937	0.916	0.914	0.913
B_M_2	0.951	0.949	0.95	0.951	0.953	0.944	0.957	0.963	0.965	0.991	0.99	0.988	1	0.997	0.998	0.951	0.941	0.94	0.919	0.921	0.918
B_M_3	0.951	0.948	0.949	0.95	0.951	0.943	0.959	0.963	0.965	0.989	0.985	0.987	0.997	1	0.997	0.949	0.94	0.941	0.918	0.922	0.916
B_M_1	0.946	0.944	0.945	0.944	0.945	0.937	0.952	0.96	0.961	0.986	0.99	0.989	0.998	0.997	1	0.95	0.943	0.942	0.922	0.924	0.917
T10_3	0.88	0.881	0.878	0.873	0.881	0.87	0.887	0.886	0.89	0.947	0.945	0.949	0.951	0.949	0.95	1	0.997	0.996	0.981	0.983	0.98
T10_1	0.868	0.866	0.865	0.86	0.866	0.857	0.873	0.875	0.879	0.938	0.935	0.938	0.941	0.94	0.943	0.997	1	0.997	0.982	0.983	0.984
T10_2	0.866	0.865	0.867	0.855	0.865	0.854	0.87	0.873	0.877	0.937	0.934	0.937	0.94	0.941	0.942	0.996	0.997	1	0.986	0.988	0.983
T15_2	0.844	0.845	0.843	0.836	0.844	0.834	0.85	0.853	0.854	0.912	0.913	0.916	0.919	0.918	0.922	0.981	0.982	0.986	1	0.996	0.994
T15_3	0.844	0.842	0.843	0.835	0.844	0.832	0.851	0.852	0.854	0.915	0.913	0.914	0.921	0.922	0.924	0.983	0.983	0.988	0.996	1	0.993
T15_1	0.841	0.847	0.846	0.838	0.845	0.836	0.85	0.853	0.855	0.913	0.912	0.913	0.918	0.916	0.917	0.98	0.984	0.983	0.994	0.993	1
T24_2	0.839	0.838	0.84	0.833	0.84	0.829	0.848	0.85	0.852	0.902	0.9	0.906	0.91	0.909	0.911	0.975	0.975	0.977	0.986	0.985	0.984
T24_1	0.83	0.837	0.835	0.826	0.834	0.823	0.84	0.842	0.845	0.895	0.891	0.895	0.9	0.899	0.901	0.968	0.968	0.97	0.983	0.981	0.982
T24_3	0.832	0.834	0.835	0.824	0.832	0.819	0.841	0.843	0.845	0.901	0.897	0.902	0.906	0.905	0.908	0.977	0.973	0.978	0.984	0.985	0.987
T50_3	0.797	0.796	0.796	0.786	0.797	0.784	0.801	0.813	0.816	0.865	0.861	0.867	0.866	0.865	0.869	0.953	0.957	0.96	0.973	0.971	0.97
T50_1	0.789	0.789	0.788	0.775	0.789	0.779	0.791	0.805	0.808	0.855	0.85	0.856	0.856	0.855	0.86	0.951	0.954	0.955	0.969	0.97	0.968
150_2 T70_2	0.791	0.79	0.79	0.754	0.791	0.775	0.795	0.807	0.809	0.857	0.852	0.857	0.857	0.855	0.801	0.947	0.951	0.955	0.967	0.965	0.965
170_2 T70_2	0.700	0.703	0.703	0.754	0.703	0.757	0.775	0.787	0.789	0.841	0.838	0.845	0.840	0.84	0.040	0.945	0.949	0.95	0.905	0.903	0.902
170_5 T70_1	0.775	0.772	0.774	0.763	0.772	0.759	0.782	0.794	0.790	0.85	0.845	0.852	0.852	0.852	0.857	0.95	0.954	0.955	0.967	0.967	0.900
T130 3	0.801	0.806	0.774	0.705	0.802	0.79	0.762	0.82	0.812	0.87	0.869	0.874	0.878	0.879	0.878	0.929	0.93	0.931	0.948	0.946	0.945
T130_2	0.8	0.797	0.801	0.795	0.803	0.791	0.807	0.809	0.812	0.868	0.867	0.872	0.875	0.876	0.877	0.924	0.925	0.927	0.942	0.943	0.939
T130_1	0.8	0.796	0.8	0.794	0.802	0.79	0.805	0.808	0.811	0.867	0.865	0.87	0.873	0.874	0.875	0.923	0.924	0.921	0.942	0.94	0.939
T140 3	0.814	0.81	0.815	0.806	0.813	0.8	0.799	0.803	0.804	0.887	0.886	0.89	0.89	0.891	0.893	0.933	0.932	0.934	0.944	0.943	0.942
T140 2	0.815	0.811	0.816	0.807	0.815	0.802	0.8	0.804	0.806	0.885	0.88	0.889	0.879	0.89	0.893	0.934	0.933	0.936	0.943	0.943	0.942
T140 1	0.803	0.8	0.804	0.796	0.804	0.791	0.808	0.813	0.815	0.877	0.875	0.88	0.881	0.881	0.883	0.928	0.927	0.93	0.938	0.937	0.937
T168_1	0.803	0.8	0.805	0.796	0.804	0.791	0.793	0.798	0.799	0.881	0.88	0.885	0.886	0.886	0.887	0.938	0.936	0.94	0.949	0.95	0.943
	0.812	0.809	0.814	0.806	0.814	0.801	0.801	0.805	0.806	0.886	0.886	0.886	0.892	0.892	0.893	0.937	0.934	0.939	0.947	0.948	0.941
T168_2	0.811	0.807	0.812	0.804	0.812	0.799	0.799	0.803	0.805	0.883	0.884	0.879	0.89	0.89	0.891	0.936	0.934	0.938	0.948	0.946	0.941
T182_2	0.815	0.809	0.817	0.807	0.815	0.8	0.804	0.807	0.809	0.887	0.886	0.89	0.889	0.891	0.892	0.941	0.94	0.944	0.951	0.953	0.945
T182_3	0.819	0.814	0.821	0.812	0.819	0.805	0.809	0.812	0.818	0.892	0.89	0.896	0.895	0.897	0.897	0.943	0.942	0.946	0.953	0.96	0.947
T182_1	0.811	0.806	0.812	0.803	0.81	0.796	0.8	0.803	0.804	0.883	0.883	0.887	0.886	0.889	0.889	0.938	0.937	0.942	0.95	0.951	0.943

(To be continued on next page)

(Continued from the last page)

	T24_2	T24_1	T24_3	T50_3	T50_1	T50_2	T70_2	T70_3	T70_1	T130_3	T130_2	T130_1	T140_3	T140_2	T140_1	T168_1	T168_3	T168_2	T182_2	T182_3	T182_1
H2_1	0.839	0.83	0.832	0.797	0.789	0.791	0.766	0.772	0.775	0.801	0.8	0.8	0.814	0.815	0.803	0.803	0.812	0.811	0.815	0.819	0.811
H2_3	0.838	0.837	0.834	0.796	0.789	0.79	0.763	0.771	0.772	0.806	0.797	0.796	0.81	0.811	0.8	0.8	0.809	0.807	0.809	0.814	0.806
H2_2	0.84	0.835	0.835	0.796	0.788	0.79	0.765	0.773	0.774	0.8	0.801	0.8	0.815	0.816	0.804	0.805	0.814	0.812	0.817	0.821	0.812
H3_1	0.833	0.826	0.824	0.786	0.775	0.78	0.754	0.761	0.763	0.795	0.795	0.794	0.806	0.807	0.796	0.796	0.806	0.804	0.807	0.812	0.803
H3_2	0.84	0.834	0.832	0.797	0.789	0.791	0.765	0.772	0.772	0.802	0.803	0.802	0.813	0.815	0.804	0.804	0.814	0.812	0.815	0.819	0.81
H3_3	0.829	0.823	0.819	0.784	0.777	0.778	0.75	0.757	0.759	0.79	0.791	0.79	0.8	0.802	0.791	0.791	0.801	0.799	0.8	0.805	0.796
H1_1	0.848	0.84	0.841	0.801	0.791	0.795	0.773	0.779	0.782	0.807	0.807	0.805	0.799	0.8	0.808	0.793	0.801	0.799	0.804	0.809	0.8
H1_3	0.85	0.842	0.843	0.813	0.805	0.807	0.787	0.794	0.796	0.82	0.809	0.808	0.803	0.804	0.813	0.798	0.805	0.803	0.807	0.812	0.803
H1_2	0.852	0.845	0.845	0.816	0.808	0.809	0.789	0.796	0.798	0.812	0.812	0.811	0.804	0.806	0.815	0.799	0.806	0.805	0.809	0.818	0.804
B_F_2	0.902	0.895	0.901	0.865	0.855	0.857	0.841	0.847	0.85	0.87	0.868	0.867	0.887	0.885	0.877	0.881	0.886	0.883	0.887	0.892	0.883
B_F_1	0.9	0.891	0.897	0.861	0.85	0.852	0.838	0.843	0.845	0.869	0.867	0.865	0.886	0.88	0.875	0.88	0.886	0.884	0.886	0.89	0.883
B_F_3	0.906	0.895	0.902	0.867	0.856	0.857	0.843	0.85	0.852	0.874	0.872	0.87	0.89	0.889	0.88	0.885	0.886	0.879	0.89	0.896	0.887
B_M_2	0.91	0.9	0.906	0.866	0.856	0.857	0.843	0.849	0.852	0.878	0.875	0.873	0.89	0.879	0.881	0.886	0.892	0.89	0.889	0.895	0.886
B_M_3	0.909	0.899	0.905	0.865	0.855	0.855	0.84	0.849	0.852	0.879	0.876	0.874	0.891	0.89	0.881	0.886	0.892	0.89	0.891	0.897	0.889
B_M_1	0.911	0.901	0.908	0.869	0.86	0.861	0.848	0.854	0.857	0.878	0.877	0.875	0.893	0.893	0.883	0.887	0.893	0.891	0.892	0.897	0.889
T10_3	0.975	0.968	0.977	0.953	0.951	0.947	0.945	0.95	0.949	0.929	0.924	0.923	0.933	0.934	0.928	0.938	0.937	0.936	0.941	0.943	0.938
T10_1	0.975	0.968	0.973	0.957	0.954	0.951	0.949	0.954	0.953	0.93	0.925	0.924	0.932	0.933	0.927	0.936	0.934	0.934	0.94	0.942	0.937
T10_2	0.977	0.97	0.978	0.96	0.955	0.953	0.95	0.955	0.956	0.931	0.927	0.921	0.934	0.936	0.93	0.94	0.939	0.938	0.944	0.946	0.942
T15_2	0.986	0.983	0.984	0.973	0.969	0.967	0.963	0.967	0.966	0.948	0.942	0.942	0.944	0.943	0.938	0.949	0.947	0.948	0.951	0.953	0.95
T15_3	0.985	0.981	0.985	0.971	0.97	0.965	0.963	0.967	0.967	0.946	0.943	0.94	0.943	0.943	0.937	0.95	0.948	0.946	0.953	0.96	0.951
T15_1	0.984	0.982	0.987	0.97	0.968	0.965	0.962	0.966	0.963	0.945	0.939	0.939	0.942	0.942	0.937	0.943	0.941	0.941	0.945	0.947	0.943
T24_2	1	0.996	0.998	0.976	0.972	0.971	0.973	0.974	0.971	0.952	0.947	0.947	0.938	0.941	0.936	0.949	0.946	0.945	0.951	0.953	0.948
T24_1	0.996	1	0.997	0.975	0.974	0.972	0.973	0.973	0.971	0.954	0.949	0.948	0.936	0.939	0.934	0.947	0.945	0.944	0.948	0.951	0.946
T24_3	0.998	0.997	1	0.978	0.975	0.972	0.976	0.977	0.973	0.952	0.946	0.945	0.939	0.941	0.936	0.948	0.945	0.944	0.95	0.952	0.947
T50_3	0.976	0.975	0.978	1	0.996	0.996	0.985	0.986	0.986	0.969	0.967	0.965	0.949	0.951	0.948	0.953	0.95	0.949	0.961	0.96	0.956
T50_1	0.972	0.974	0.975	0.996	1	0.995	0.988	0.99	0.986	0.967	0.966	0.964	0.943	0.947	0.945	0.949	0.945	0.946	0.958	0.954	0.955
T50_2	0.971	0.972	0.972	0.996	0.995	1	0.985	0.984	0.983	0.97	0.968	0.969	0.947	0.95	0.948	0.951	0.948	0.947	0.96	0.957	0.954
T70_2	0.973	0.973	0.976	0.985	0.988	0.985	1	0.996	0.995	0.97	0.967	0.965	0.951	0.952	0.951	0.959	0.954	0.953	0.962	0.96	0.957
T70_3	0.974	0.973	0.977	0.986	0.99	0.984	0.996	1	0.996	0.969	0.966	0.963	0.952	0.954	0.952	0.96	0.955	0.955	0.962	0.961	0.958
170_1	0.971	0.971	0.973	0.986	0.986	0.983	0.995	0.996	1	0.968	0.965	0.962	0.953	0.955	0.951	0.96	0.951	0.955	0.961	0.962	0.958
1130_3	0.952	0.954	0.952	0.969	0.967	0.97	0.97	0.969	0.968	1	0.996	0.997	0.968	0.97	0.967	0.966	0.966	0.964	0.974	0.973	0.97
T130_2	0.947	0.949	0.946	0.967	0.966	0.968	0.967	0.966	0.965	0.996	0.005	0.995	0.967	0.969	0.965	0.964	0.963	0.962	0.973	0.972	0.969
T140_2	0.947	0.948	0.945	0.965	0.964	0.969	0.965	0.965	0.962	0.997	0.995	1	0.965	0.967	0.964	0.965	0.962	0.96	0.97	0.969	0.968
T140_5	0.938	0.930	0.939	0.949	0.945	0.947	0.951	0.952	0.955	0.968	0.967	0.965	0.001	0.991	0.99	0.971	0.972	0.968	0.966	0.964	0.96
T140_2	0.941	0.939	0.941	0.951	0.947	0.95	0.952	0.954	0.955	0.97	0.969	0.967	0.991	0.002	0.992	0.972	0.975	0.969	0.967	0.966	0.962
T140_1	0.930	0.934	0.930	0.946	0.945	0.946	0.951	0.952	0.951	0.907	0.905	0.904	0.99	0.992	0.07	0.97	0.971	0.908	0.901	0.901	0.950
T168 2	0.949	0.947	0.946	0.955	0.949	0.931	0.959	0.90	0.90	0.900	0.904	0.905	0.971	0.972	0.97	0.008	0.998	0.997	0.982	0.964	0.981
T168 2	0.940	0.943	0.943	0.93	0.945	0.946	0.954	0.955	0.951	0.900	0.903	0.902	0.972	0.973	0.971	0.998	0.006	0.990	0.962	0.964	0.961
T182 2	0.943	0.944	0.944	0.949	0.940	0.947	0.955	0.955	0.955	0.904	0.902	0.90	0.908	0.909	0.908	0.997	0.990	0.081	0.901	0.963	0.26
T182_2	0.951	0.940	0.95	0.901	0.958	0.90	0.902	0.902	0.901	0.974	0.973	0.97	0.900	0.907	0.901	0.962	0.962	0.983	0.996	0.990	0.990
1104_3 T182 1	0.955	0.951	0.952	0.90	0.954	0.957	0.90	0.901	0.902	0.973	0.972	0.909	0.904	0.900	0.901	0.964	0.964	0.263	0.990	0.007	0.997
1 184_1	0.948	0.940	0.947	0.930	0.955	0.954	0.957	0.958	0.958	0.97	0.909	0.908	0.90	0.962	0.950	0.981	0.981	0.98	0.990	0.99/	1

Table S9. PCA scores of the mouse blood test

The PCA was conducted with the MALDI-TOF mass spectra generated from the mouse blood-circulating exosomes.

ID	PC0 score	PC1 score	PC2 score
Eigenvalue	35.0857	32.9911	25.505
Variance	0.1124	0.1057	0.0818
Cumulative	0.1124	0.2182	0.2999
Healthy#0	-2.845	0.0238	0.5115
Healthy #1	-3.506	-0.6076	0.8602
Healthy #2	-2.577	-0.6106	1.0045
Healthy #3	-2.5073	-0.3133	0.1758
Healthy #4	-3.5222	-0.5861	0.8634
Healthy #5	-2.9575	-0.4617	0.8853
Healthy #6	-2.3827	-0.1228	0.2223
Healthy #7	-2.1278	-0.0231	0.274
Healthy #8	-2.211	-0.0758	0.2248
Black speckles #9	2.8543	-1.9927	-3.9047
Black speckles #10	2.8967	-2.0763	-3.8099
Black speckles #11	2.8384	-1.8751	-3.567
Black speckles #12	3.2152	-2.115	-3.5057
Black speckles #13	3.5637	-2.027	-3.6436
Black speckles #14	3.2517	-2.1104	-3.7089
Early tumor #15	1.9425	2.9715	-1.5136
Early tumor #16	2.9895	2.0178	-0.9105
Early tumor #17	2.4455	1.824	-1.2308
Early tumor #18	1.5592	1.4817	-1.3795
Early tumor #19	2.6029	1.5973	-1.3356
Early tumor #20	2.5536	1.51	-1.9417
Early tumor #21	0.5645	4.1782	-0.7465
Early tumor #22	0.8393	4.0668	-0.8041
Early tumor #23	0.0026	4.4776	-0.5846
Medium-sized tumor #24	0.8488	4.8923	-1.4507
Medium-sized tumor #25	1.2292	4.7409	-1.1084
Medium-sized tumor #26	1.0444	4.8329	-1.4922
Medium-sized tumor #27	1.7531	4.0881	-1.0494
Medium-sized tumor #28	1.9261	4.431	-0.8766
Medium-sized tumor #29	1.7083	4.4121	-0.5944
Metastatic tumor #30	1.7481	4.2987	-0.2469
Metastatic tumor #31	1.5484	4.4456	0.2622
Metastatic tumor #32	1.8388	5.0595	-0.4944
Metastatic tumor #33	4.5161	-0.3519	3.2159
Metastatic tumor #34	4.2136	0.1064	3.235
Metastatic tumor #35	4.3659	-0.1885	2.7912
Metastatic tumor #36	4.1562	0.6183	2.0702
Metastatic tumor #37	4.2358	0.5092	2.2076
Metastatic tumor #38	4.2512	0.4619	2.5514
Metastatic tumor #39	1.3134	2.3977	0.2114
Metastatic tumor #40	1.2279	2.6103	0.2821
Metastatic tumor #41	1.4487	2.5544	0.4454

Table S10. One-way ANOVA statistic of the mouse blood test PCA scores

ID*		PC0	score			PC1	score		PC2 score				
	MeanDiff*	SEM*	F-value	P-value	MeanDiff	SEM	F-value	P-value	MeanDiff	SEM	F-value	P-value	
Speckles & Healthy	5.84072	0.5171	31.89527	1.57E-11	-1.72417	0.64491	1.7869	1.52E-01	-4.24794	0.43619	23.71133	8.83E-10	
Early T & Healthy	4.45957	0.46251	23.24281	1.15E-09	2.98912	0.57683	6.71331	3.63E-04	-1.71874	0.39014	4.85211	3.01E-03	
Early T & Speckles	-1.38116	0.5171	1.78E+00	1.53E-01	4.71329	0.64491	13.35329	7.91E-07	2.5292	0.43619	8.40552	6.28E-05	
Medium T & Healthy	4.15571	0.5171	16.14666	9.80E-08	4.87479	0.64491	14.28406	3.84E-07	-1.65326	0.43619	3.59154	1.43E-02	
Medium T & Speckles	-1.68502	0.56645	2.21218	8.65E-02	6.59897	0.70647	21.81271	2.59E-09	2.59468	0.47782	7.37201	1.80E-04	
Medium T & Early T	-0.30386	0.5171	0.08633	9.86E-01	1.88567	0.64491	2.13733	9.56E-02	0.06548	0.43619	0.00563	1.00E+00	
Metastatic T & Healthy	5.64273	0.43264	42.52789	2.35E-13	2.18538	0.53957	4.10104	7.53E-03	0.81961	0.36494	1.26101	3.03E-01	
Metastatic T & Speckles	-0.19799	0.49056	0.04072	9.97E-01	3.90955	0.61182	10.20822	1.13E-05	5.06756	0.4138	37.49326	1.53E-12	
Metastatic T & Early T	1.18316	0.43264	1.86976	1.36E-01	-0.80374	0.53957	0.55472	6.97E-01	2.53836	0.36494	12.095	2.20E-06	
Metastatic T & Medium T	1.48702	0.49056	2.29714	7.73E-02	-2.68942	0.61182	4.83073	3.09E-03	2.47288	0.4138	8.92812	3.76E-05	

*MeanDiff: difference in the mean value.

*SEM: standard error of the mean.

*ID. Speckles: Black speckles; Early T: Early tumor; Medium T: Medium-sized tumor; Metastatic T: Metastatic tumor.

Data File S1. Proteomic data for peak assignment on mouse skin surface mass fingerprints

Skin tissues were excised from the tumor region of T130, T168 and T182 mouse, *i.e.* the mouse carrying skin tumor with superficial surface area of 130, 168 and 182 mm², respectively. Proteins were extracted from the skin tissues, and afterwards subjected to top-down proteomic analysis. The epidermal MALDI-TOF MS fingerprint peaks were tentatively assigned to proteins by correlation with the top-down proteomic data, according to the measured protein mass. Results obtained from the T182 mouse were shown below as the representative. In order to further confirm the protein identities, the T182 mouse skin tissue was also subjected to bottom-up proteomic analysis, which analyzed the digestion products (peptides) of the tissue proteins using liquid chromatography-tandem mass spectrometry. The peak mass values obtained from MALDI-TOF MS measurements allow a relative mass tolerance of 1,000 ppm. The number label of each peak is consistent with **Figure 3** and **Figure 5** in the main article.

Peak 1. $T\beta 4$ _ thymosin beta-4 (isoform short) [*Mus musculus* (house mouse)], UniProt accession number P20065-2;

A). MALDI-TOF MS peak: 4,690 *m*/*z*;

B). Top-down proteomic analysis: precursor monoisotopic mass 4687.421653 Da, adjusted precursor monoisotopic mass 4687.39016 Da, theoretical average mass 4690.232 Da, number of matched fragment ions 15, E value 6.5E-12, P value 6.5E-12, protein sequencing:

M.(S)[Acetyl]DKPDMAEIEKFDKSKLKKTETQEKNPLPSKETIEQEKQA.G

C). According to the UniProt database, the theoretical full protein sequence shall be:

MSDKPDMAEIEKFDKSKLKKTETQEKNPLPSKETIEQEKQAGES

Peak 2. Vim _ vimentin [Mus musculus (house mouse)], fragment, UniProt accession number P20152;

A). MALDI-TOF MS peak: 7,493 *m*/*z*;

B). Top-down proteomic analysis: precursor monoisotopic mass 7488.740313 Da, adjusted precursor monoisotopic mass 7489.7282 Da, theoretical average mass 7494.144 Da, number of matched fragment ions 33, E value 2.00E-29, P value 2.00E-29, protein sequencing:

M.(S)[Acetyl]TRSVSSSSYRRMFGGSGTSSRPSSNRSYVTTSTRTYSLGSALRPSTSRSLYSSSPGGAYVTRSSAVR LR.S

C). Bottom-up proteomic analysis: 100% identification, 58 exclusive unique peptides, 104 exclusive unique spectra, 512 total spectra, 376/466 amino acids (81% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

MSTR <u>SVSSSS</u>	<u>YR</u> RMFGGSGT	SSRPSSNR <u>SY</u>	VTTSTRTYSL	GSALRPSTSR	SLYSSSPGGA	<u>YVTR</u> SSAVRL
RSSVPGVRLL	QDSVDFSLAD	AINTEFKNTR	TNEKVELQEL	NDRFANYIDK	VRFLEQQNKI	LLAELEQLKG
QGKSRLGDLY	EEEMRELRRQ	VDQLTNDKAR	VEVERDNLAE	DIMRLREKLQ	EEMLQREEAE	STLQSFRQDV
DNASLARLDL	ERKVESLQEE	IAFLKKLHDE	EIQELQAQIQ	EQHVQIDVDV	SKPDLTAALR	DVRQQYESVA
AKNLQEAEEW	YKSKFADLSE	AANRNNDALR	QAKQESNEYR	RQVQSLTCEV	DALKGTNESL	ERQMREMEEN
FALEAANYQD	TIGRLQDEIQ	NMKEEMARHL	REYQDLLNVK	MALDIEIATY	RKLLEGEESR	ISLPLPTFSS
LNLRETNLES	LPLVDTHSKR	TLLIKTVETR	DGQVINETSQ	HHDDLE		

Peak 3. *L1-ORF1p* _ LINE-1 retrotransposable element ORF1 protein [*Mus musculus* (house mouse)], fragment, UniProt accession number P11260;

A). MALDI-TOF MS peak: 7,811 *m*/*z*;

B). Top-down proteomic analysis: precursor monoisotopic mass 7807.923456 Da, adjusted precursor monoisotopic mass 7806.908825 Da, theoretical average mass 7811.677 Da, number of matched fragment ions 13, E value 1.90E-5, P value 1.90E-5, protein sequencing:

K.QENTAKQVMEMNKTILELKGEVDTIKKTQSEATLEIETLGKRSGTIDASISNRIQEMEERISGAEDSIEN.I

C). According to the UniProt database, the theoretical full protein sequence shall be:

```
MAKGKRKNPT NRNQDHSPSS ERSTPTPPSP GHPNTTENLD PDLKTFLMMM IEDIKKDFHK SLKDLQESTA
KELQALKEKQ ENTAKQVMEM NKTILELKGE VDTIKKTQSE ATLEIETLGK RSGTIDASIS NRIQEMEERI
SGAEDSIENI DTTVKENTKC KRILTQNIQV IQDTMRRPNL RIIGIDENED FQLKGPANIF NKIIEENFPN
IKKEMPMIIQ EAYRTPNRLD QKRNSSRHII IRTTNALNKD RILKAVREKG QVTYKGRPIR ITPDFSPETM
KARRAWTDVI QTLREHKCQP RLLYPAKLSI TIDGETKVFH DKTKFTQYLS TNPALQRIIT EKKQYKDGNH
ALEQPRK
```

Peak 4. Actb _ actin, beta [Mus musculus (house mouse)], fragment, UniProt accession number P60710;

A). MALDI-TOF MS peak: 8,712 *m*/*z*;

B). Top-down proteomic analysis: precursor monoisotopic mass 8707.536708 Da, adjusted precursor monoisotopic mass 8707.510615 Da, theoretical average mass 8713.084 Da, number of matched fragment ions 23, E value 3.97E-15, P value 3.97E-15, protein sequencing:

Y.ANTVLSGGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQEYDESGPSIVHR K.C

C). Bottom-up proteomic analysis identified this protein as beta-actin-like protein 2 (alternate ID Actbl2): 100% identification, 2 exclusive unique peptides, 4 exclusive unique spectra, 13 total spectra, 193/376 amino acids (51% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

MVDDELTALV	VDNGSGMCKA	GFGGDDAPRA	VFPSMVGRPR	HQGVMVGMGQ	KDCYVGDEAQ	SK <u>RGILTLK</u> Y
PIEHGVVTNW	DDMEKIWY <u>HT</u>	FYNELRVAPD	EHPILLTEAP	LNPKINREKM	TQIMFEAFNT	PAMYVAIQAV
LSLYASGRTT	GIVMDSGDGV	THTVPIYEGY	ALPHAILRLD	LAGRDLTDYL	MKILTERGYN	FTTTAEREIV
RDVKEKLCYV	ALDFEQEMVT	AAASSSLERS	YELPDGQVIT	IGNERFRCPE	AIFQPSFLGI	ESRGIHETTF
NSIMKCDVDI	RKDLFANTVL	SGGSTMYPGI	ADRMQKEIVT	LAPSTMKIKI	IAPPERKYSV	WIGGSILASL
STFQQMWISK	QEYDEAGPPI	VHRKCF				

Peak 5. *Atpif1* _ ATPase inhibitor, mitochondrial [*Mus musculus* (house mouse)], UniProt accession number O35143;

A). MALDI-TOF MS peak: 9,366 *m*/*z*;

B). Top-down proteomic analysis: precursor monoisotopic mass 9361.767326 Da, adjusted precursor monoisotopic mass 9361.739925 Da, theoretical average mass 9367.289 Da, number of matched fragment ions 22, E value 4.04E-15, P value 4.04E-15, protein sequencing:

V.SDSSDSMDTGAGSIREAGGAFGKREKAEEDRYFREKTKEQLAALRKHHEDEIDHHSKEIERLQKQIERHKKKIQQLKN NH.

C). Bottom-up proteomic analysis: 100% identification, 2 exclusive unique peptides, 3 exclusive unique spectra, 3 total spectra, 12/106 amino acids (11% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

Peak 7. *S100a8* _ S100 calcium binding protein A8 [*Mus musculus* (house mouse)], UniProt accession number P27005;

A). MALDI-TOF MS peak: 10,165 *m*/*z*;

B-1). Top-down proteomic analysis: precursor monoisotopic mass 10157.00076 Da, adjusted precursor monoisotopic mass 10157.02537 Da, theoretical average mass 10163.373 Da, number of matched fragment ions 73, E value 3.82E-59, P value 3.82E-59, protein sequencing:

M.PSELEKALSNLIDVYHNYSNIQGNHHALYKNDFKKMVTTECPQFVQNINIENLFRELDINSDNAINFEEFLAMVIKVG VASHKDSHKE.

B-2). Top-down proteomic analysis: precursor monoisotopic mass 10173.04361 Da, adjusted precursor monoisotopic mass 10173.34861 Da, theoretical average mass 10180.292 Da, number of matched fragment ions 37, E value 3.19E-23, P value 3.19E-23, protein sequencing:

M.PSELEKALSNLIDVYHNYSNIQGNHHALYKNDFKKMVTTECPQF(VQNINIENLFRELDINSDNA)[16.91937]IN FEEFLAMVIKVGVASHKDSHKE.

B-3). Top-down proteomic analysis: precursor monoisotopic mass 10191.03962 Da, adjusted precursor monoisotopic mass 10191.16962 Da, theoretical average mass 10197.517 Da, number of matched fragment ions 36, E value 1.53E-22, P value 1.53E-22, protein sequencing:

M.PSELEKALSNLIDVYHNYSNIQGNHHALYKNDFKKMVTTECPQFV(QNINIENLFRELDINSD)[34.14424]NAIN FEEFLAMVIKVGVASHKDSHKE.

C). Bottom-up proteomic analysis: 100% identification, 6 exclusive unique peptides, 12 exclusive unique spectra, 15 total spectra, 77/89 amino acids (87% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

MPSELEKALS <u>NLIDVYHNYS</u> <u>NIQGNHHALY</u> <u>KNDFKKMVTT</u> <u>ECPQFVQNIN</u> <u>IENLFRELDI</u> <u>NSDNAINFEE</u> <u>FLAMVIKVGV</u> <u>ASHKDSHKE</u>

Peak 8. (Probably) *S100b* _ S100 calcium binding protein B (S100 protein, beta polypeptide, neural) [*Mus musculus* (house mouse)], UniProt accession number P50114;

A). MALDI-TOF MS peak: 10,598 *m*/*z*;

B). Top-down proteomic analysis did not detect any protein around 10520-10700 Da. But the bottom-up proteomic analysis detected S100b protein around this mass, and this protein was detectable only from the tumor mouse not from the healthy mouse.

C). Bottom-up proteomic analysis: 100% identification, 3 exclusive unique peptides, 7 exclusive unique spectra, 7 total spectra, 37/92 amino acids (40% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

MSELEKAMVA LIDVFHQYSG REGDKHKLKK SELKELINNE LSHFLEEIKE QEVVDKVMET LDEDGDGECD FQEFMAFVAM VTTACHEFFEHE

According to the peak m/z value, the sequence detected by MALDI-TOF MS could be:

M.SELEKAMVALIDVFHQYSGREGDKHKLKKSELKELINNELSHFLEEIKEQEVVDKVMETLDEDGDGECDFQEFMAFVA MVTTACHEFFEHE. (theoretical monoisotopic mass 10589.998 Da, theoretical average mass 10596.839 Da) **Peak 9.** *Hspe1* _ 10 kDa heat shock protein, mitochondrial [*Mus musculus* (house mouse)], UniProt accession number Q64433;

A). MALDI-TOF MS peak: 10,871 *m/z*;

B).Top-down proteomic analysis: precursor monoisotopic mass 10866.82702 Da, adjusted precursor monoisotopic mass 10866.83556 Da, theoretical average mass 10873.510 Da, number of matched fragment ions 21, E value 1.42E-13, P value 1.42E-13, protein sequencing:

M.(A) [Acetyl]GQAFRKFLPLFDRVLVERSAAETVTKGGIMLPEKSQGKVLQATVVAVGSGGKGKSGEIEPVSVKVGD KVLLPEYGGTKVVLDDKDYFLFRDSDILGKYVD.

C). Bottom-up proteomic analysis: 100% identification, 6 exclusive unique peptides, 7 exclusive unique spectra, 7 total spectra, 44/102 amino acids (43% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

MAGQAFR<u>KFL</u> <u>PLFDR</u>VLVER SAAETVTKGG IMLPEKSQGK <u>VLQATVVAVG</u> <u>SGGK</u>GKSGEI EPVSVKVGDK <u>VLLPEYGGTK</u> <u>VVLDDKDYFL</u> <u>FRDSDILGKY</u> VD

Peak 10. *Actg1* _ actin, gamma, cytoplasmic 1 (also named actin, cytoplasmic 2) [*Mus musculus* (house mouse)], fragment, UniProt accession number P63260;

A). MALDI-TOF MS peak: 11,546 *m*/*z*;

B). Top-down proteomic analysis: precursor monoisotopic mass 11537.68519 Da, adjusted precursor monoisotopic mass 11537.18019 Da, theoretical average mass 11545.204 Da, number of matched fragment ions 26, E value 3.19E-09, P value 3.19E-09, protein sequencing:

.((M)[Acetyl]EEEI)[-173.08687]AALVIDNGSGMCKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSY VGDEAQSKRGILTLKYPIEH GIVTNWDDMEKIWHHTFYNELRVAPEEHPVLL.T

C). Bottom-up proteomic analysis: 100% identification, 60 exclusive unique peptides, 106 exclusive unique spectra, 478 total spectra, 330/375 amino acids (88% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

MEEEIAALVI	DNGSGMCKAG	FAGDDAPRAV	FPSIVGRPRH	QGVMVGMGQK	DSYVGDEAQS	KRGILTLKYP
IEHGIVTNWD	DMEKIWHHTF	YNELRVAPEE	HPVLLTEAPL	NPKANREKMT	QIMFETFNTP	AMYVAIQAVL
SLYASGRTTG	IVMDSGDGVT	HTVPIYEGYA	LPHAILRLDL	AGRDLTDYLM	KILTERGYSF	TTTAEREIVR
DIKEKLCYVA	LDFEQEMATA	ASSSSLEKSY	ELPDGQVITI	GNERFRCPEA	LFQPSFLGME	SCGIHETTFN
SIMKCDVDIR	KDLYANTVLS	GGTTMYPGIA	DRMQKEITAL	APSTMKIKII	APPERKYSVW	IGGSILASLS
TFQQMWISKQ	EYDESGPSIV	HRKCF				

Peak 11. *Hba-al* _ hemoglobin subunit alpha [*Mus musculus* (house mouse)], UniProt accession number P01942;

A). MALDI-TOF MS peak: 14,975 *m/z*;

B). Top-down proteomic analysis: precursor monoisotopic mass 14971.73697 Da, adjusted precursor monoisotopic mass 14971.75197 Da, theoretical average mass 14980.834 Da, number of matched fragment ions 38, E value 2.81E-10, P value 2.81E-10, protein sequencing:

L.SGEDKSNIKAAWGKIGGHGAEYGAEALERMFASFPTTKTYFPHFDVSHGSAQVKGHGKKVADALA(SAAGHLD)[239.18462]DLPGALSALSDLHAHKLRVDPVNFKLLSHCLLVTLASHHPADFTPAVHASLDKFLASVSTVLTSKYR

C). Bottom-up proteomic analysis: 100% identification, 25 exclusive unique peptides, 45 exclusive unique spectra, 142 total spectra, 120/142 amino acids (85% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

Peak 12. *Hbb-b2* _ hemoglobin subunit beta-2 [*Mus musculus* (house mouse)], UniProt accession number P02089;

A). MALDI-TOF MS peak: 15,615 *m*/*z*;

B).Top-down proteomic analysis: precursor monoisotopic mass 15608.42467 Da, adjusted precursor monoisotopic mass 15608.14285 Da, theoretical average mass 15617.887 Da, number of matched fragment ions 16, E value 1.17E-12, P value 1.17E-12, protein sequencing:

V.HLTDAEKSAVSCLWAKVNPDEVGGEALGRLLVVYPWTQRYFDSFGDLSSASAIMGNPKVKAHGKKVITAFNEGLKNLD NLKGTFASLSELHCDKLHVDPENFRLLGNAIVIVLGHHLGKDFTPAAQAAFQKVVAGVA (T) [-30.00172] ALAHKY H.

C). Bottom-up proteomic analysis: 100% identification, 2 exclusive unique peptides, 2 exclusive unique spectra, 2 total spectra, 90/147 amino acids (61% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

MVHLTDAEKS AVSCLWAKVN PDEVGGEALG RLLVVYPWTQ RYFDSFGDLS SASAIMGNPK VKAHGKKVIT AFNEGLKNLD NLKGTFASLS ELHCDKLHVD PENFRLLGNA IVIVLGHHLG KDFTPAAQAA FQKVVAGVAT ALAHKYH

Data File S2. Quantitative proteomic data of mouse skin tissues

The quantity of each identified protein was compared between skin tumors and healthy skins. The increased or decreased expression of a protein due to the tumor development was conditioned by absolute log2 fold change higher than 1 and the paired t-test statistical significant level (P-value) lower than 0.05. This file lists the differently expressed proteins caused by the growth of melanoma. It is related to the data shown in **Figure 6A** (from Scaffold spectral counting) and **Figure S16A** (from MaxQuant LFQ), respectively. The two quantification procedures shared 795 common up-regulated proteins and 253 common down-regulated proteins, as listed below. The protein names were given in their abbreviations (according to the gene name).

(1) Down-regulated proteins

Aacs	Ak1	Bbox1	Cisd1	Crat	Eci1	Folr2	Hnmt	Krt79	Mcee	Mylpf	Pdlim3	Procr	Serpina3j	Tmod4
Abcc4	Aldh1a1	Bcat2	Ckap4	Cryab	Ecm2	Galm	Hspb1	Lama3	Mcpt4	Myom2	Pdlim5	Prx	Serpinb1a	Tnmd
Abhd5	Aldh112	Bgn	Ckm	Csrp3	Eno2	Gcat	Hspb2	Lamb3	Mfap4	Myot	Pdlim7	Pvalb	Serpinb6	Tnnc2
Abi3bp	Aldh3a1	C1qtnf3	Ckmt2	Cthrc1	Eno3	Glt8d2	Hspb6	Lamc2	Mgl2	Myoz1	Pfkm	Pygm	Serpinb6c	Tnnt3
Acadl	Aldh4a1	Ca1	Clec10a	Ctsk	Eppk1	Glul	Idh2	Ldb3	Mgst1	Ndufa2	Pgam2	Rab43	Sh3bgr	Tnxb
Ace	Aldoa	Ca3	Clec11a	Cycs	F13a1	Got1	Idh3a	Lgals3	Mmp3	Ndufa412	Pgm1	Rarres2	Sh3bgrl2	Tpi 1
Aco2	Amacr	Camk2a	Clec3b	Cyp2b10	Fabp3	Got2	Igkv5-39	Lipe	Mp68	Ndufa5	Pgm5	Retn	Slc25a13	Tpm2
Acot13	Ang	Casq1	Clybl	Cyp2f2	Fabp4	Gpt	Igkv6-32	Lox	Mpz	Ndufb4	Phkg1	Rnase2b	Sncg	Trappc4
Acta1	Angptl2	Ccdc90b	Cnn1	Dcn	Fam213a	Gpx8	Il1rn	Lrrc57	Mrps26	Neb	Pkp3	Rtn2	Sord	Trim29
Actn2	Anxa8	Ccl27a	Col17a1	Des	Far2	Gsta3	Inmt	Lum	Msra	Nefl	Plin1	Ryr1	Srl	Trim72
Actn3	Apobec2	Cd209d	Col1a1	Dhdh	Fbp2	Gstm1	Jsrp1	Ly6c1	Mybpc1	Nefm	Plin2	S100a14	Srpx	Tst
Acyp2	Arg1	Cd34	Col1a2	Dhrs7	Fhl1	Gstt1	Jup	Ly6d	Mybpc2	Neu2	Plin4	Samhd1	Suclg2	Ugt1a1
Adh1	Aspn	Cd36	Col3a1	Dhrs7c	Fkbp14	Gstt3	Klhl41	Ly6g6c	Myh1	Ogn	Podn	Sbsn	Susd2	Uqcrc2
Adh7	Atp2a1	Cdh13	Col5a1	Dpp4	Fkbp9	Gstz1	Klk10	Macrod1	Myh11	Olfml3	Pof1b	Scel	Sypl2	Xdh
Adssl1	Atp2a2	Cenpv	Coq9	Dpt	Flg2	Gys1	Krt10	Maob	Myh2	P4ha2	Ppa1	Scin	Tacstd2	
Aebp1	Atp5f1	Ces1d	Cox6a2	Dusp23	Fmod	Hba	Krt15	Mb	Myh4	Pam16	Ppl	Sdr39u1	Tmed5	
Agl	Atp5j2	Chdh	Cpa3	Echdc1	Fndc1	Hhatl	Krt76	Mbp	Myl1	Pcolce	Prelp	Sec1414	Tmod1	

(2) Up-regulated proteins

Aars	Get4	Psmc4	Atp2b4	Ilf2	Rock2	Cnn2	Man2a1	Sntb1	Ddx42	Nae1	Tcerg1	Elovl4	Pex11b	Uaca
Abca6	Gfpt1	Psmd1	Atp6v1h	Ilf3	Rp2	Cnn3	Man2c1	Snx1	Ddx58	Naglu	Tecpr1	Emc1	Pfas	Uba2
Abca8a	Ggcx	Psmd12	Atp8a1	Ilk	Rpa1	Cnot1	Manba	Snx27	Degs1	Nap111	Tfg	Emc3	Pglyrp2	Uba5
Abca8b	Gid8	Psmd2	Atp9a	Impad1	Rpia	Cnp	Map1b	Snx4	Denr	Nap114	Thbd	Eml2	Phldb1	Uba6
Abce1	Git1	Psmd3	Bag6	Inf2	Rpp30	Col12a1	Map1s	Snx7	Dera	Nars	Thoc2	Eml4	Pigu	Ube2e3
Abcg2	Glg1	Psmd4	Bax	Ints1	Rps6ka3	Col14a1	Map2k6	Soat1	Dhcr7	Ncam1	Thrap3	Endod1	Pik3r4	Ube2g1
Abhd12	Gmds	Psmg1	Bche	Ipo4	Rtkn	Col15a1	Map4	Sorbs1	Dhrs1	Ncbp2	Thyn1	Endou	Pla2g4a	Ube2h
Acaca	Gmps	Psmg2	Bcl211	Ipo9	Ruvbl2	Col18a1	Map4k4	Sorbs2	Dhx15	Nckap1	Timm44	Enoph1	Plaa	Ube2z
Acin1	Gnb4	Pspc1	Bicd2	Islr	S100b	Col20a1	Mapk3	Sorcs2	Dhx9	Ncln	Timp3	Epb4112	Plcb3	Ube3c
Acot7	Golga2	Ptk2	Bpgm	Isyna1	Sart3	Col4a1	Mapre2	Sort1	Diaph1	Ncoa5	Tinagl1	Epx	Pld1	Ubqln2
Acox1	Golga3	Ptk7	C4bpa	Itga1	Sbds	Col4a2	Marcks	Spag9	Diaph2	Ndrg3	Tjp1	Erc1	Plek	Ubr4
Acp2	Golgb1	Ptn	Cad	Itga2	Scamp3	Colec12	Marcks11	Sparcl1	Dip2b	Nek9	Tln2	Esyt2	Plekha6	Uchl3
Acsl4	Golim4	Ptpn1	Calu	Itga5	Scly	Cops6	Mars	Specc1	Dlg3	Nf1	Tm9sf1	Exoc2	Plekho2	Uchl5
Actr10	Gpc1	Ptpn11	Camk1	Itga8	Sdf4	Coro1b	Matn2	Spon1	Dmd	Nhlrc2	Tm9sf2	Exoc4	Plod3	Ugt1a6
Adam10	Gpld1	Ptpn13	Caprin1	Itgav	Sec1412	Coro7	Matr3	Sppl2b	Dnajc13	Nid1	Tm9sf3	Exoc5	Plp1	Unc119b
Add1	Gpm6b	Ptpn23	Casp14	Itgb1	Sec23ip	Cotl1	Mavs	Sptan1	Dnajc3	Nid2	Tm9sf4	Exoc6b	Plxnb2	Unc45a
Afap112	Gpr107	Ptpn9	Casp3	Itih5	Sec24c	Cpd	Mcam	Srp68	Dnajc5	Nip7	Tmed1	Exosc1	Plxnb3	Upf1
Afm	Gps1	Ptpra	Cbfb	Itm2b	Sec61a1	Cpm	Mcts1	Srp72	Dnajc7	Nisch	Tmem165	Fabp7	Pno1	Urm1
Agfg1	Grn	Ptprj	Ccar1	Itpr3	Seh11	Cpn1	Me2	Srrm1	Dock1	Nmt1	Tmem167	Faf2	Pofut1	Usp14
Agpat3	Gsdmc	Puf60	Ccar2	Jagn1	Sf3a1	Cpne2	Metap2	Srrt	Dock11	Nnmt	Tmem63a	FAM120A	Polr2b	Usp39
Agrn	Gsk3b	Pus7	Ccdc124	Kank2	Sf3a2	Cpsf1	Mgam	Srsf7	Dock7	Nomo1	Tmem87a	Fam129a	Polr2d	Usp4
Ahcyl1	Gspt1	Pxdn	Ccdc47	Kank4	Sf3a3	Cpsf6	Mlec	Srsf9	Dpysl3	Nono	Tmem9b	Fam177a1	Pon2	Usp5
Aif1	Gss	Pxn	Ccl6	Kcnab2	Sf3b1	Cpt1a	Mmgt1	Ssrp1	Dr1	Nop58	Tmlhe	Fam206a	Postn	Usp7
Aip	Gulp1	Qars	Ccnd3	Kif5b	Sf3b2	Crot	Mms19	Stag2	Dscr3	Npc1	Tmod2	Fam49a	Ppfibp1	Usp8
Aldh1a3	Gusb	Qki	Ccs	Klc1	Sf3b3	Crp	Mon2	Stam	Dst	Npep11	Tmtc3	Fam98b	Ppig	Usp9x
Aldh3b1	H2afy2	Rab12	Cd109	Klkb1	Sf3b5	Crym	Moxd1	Stam2	Dus31	Nploc4	Tmx4	Fap	Ppil3	Utrn
Ampd3	Hacd3	Rab23	Cd151	Kpna4	Sgcd	Csde1	Mpdu1	Stat3	Dync1h1	Nrbp1	Tnfaip8l2	Farp1	Ppm1b	Vars
Ankfy1	Hbs11	Rab31	Cd2ap	Kpna6	Sgpp1	Csell	Mpp1	Steap4	Dync1li1	Nrd1	Tnks1bp1	Fbln2	Ppp1r12a	Vasp
Ano10	Hcfc1	Rab3gap2	Cdc42bpb	Ktn1	Sgsh	Csflr	Mprip	Stfa3	Dync1li2	Nsfl1c	Tnpo1	Fbn2	Ppp1r18	Vav1

Ano6 Heatrl Rab8b Cdc5l L1cam Sh3bp1 Csk Mrpl11 Stk39 Earl Nsun2 Tnpo2 Fcgrt Ppp1r2	Vcan
Anp52e Heatr5a Rabgap1 Cdh19 Lama2 Sh3kbp1 Csnk1a1 Mrp120 Stom Ear2 Nucb1 Tnpo3 Fcho2 Ppp2r2a	Vcl
Ap1m1 Hgs Rad21 Cdh2 Lama4 Sirt2 Cspg4 Mrps23 Strip1 Ear6 Nudcd2 Tns1 Fermt2 Ppp2r5a	Vps13c
Ap2a1 Hip1 Rai14 Cdk2 Lamb1 Sirt5 Ctbp2 Mrto4 Strn Ecpas Nudt4 Tns2 Fermt3 Ppp2r5e	Vps16
Ap3d1 Hmbs Ranbp2 Cdk4 Lars Slc12a4 Ctnnal1 Msi2 Strn3 Edf1 Nudt9 Tns3 Fgl2 Ppp4c	Vps45
Apip Hmox1 Ranbp3 Celf2 Lbr Slc12a9 Ctnnb1 Mta2 Strn4 Eea1 Numa1 Tomm34 Fhl2 Ppp6r3	Vps51
Apon Hmox2 Rap1gds1 Cers2 Lgals3bp Slc25a17 Ctnnd1 Mtch1 Sts Efhd1 Nup155 Top2b Fhod1 Prcp	Vps8
Appl1 Hnrnpdl Rap2a Cfl1 Lgmn Slc35b2 Cttn Mthfd11 Stt3b Efnb1 Nup205 Tor1aip1 Fkbp15 Prg2	Vrk1
Arap1 Hnrnph3 Rasa1 Chd4 Lima1 Slc39a7 Cul4a Mtmr6 Stx18 Eftud2 Nup93 Tor1b Flg Prg3	Vwa1
Arfip1 Hnrnpul1 Raver1 Chid1 Lims1 Slc3a2 Cul5 Mxra7 Sugt1 Egf18 Ola1 Tpp2 Flii Prkaa1	Wars
Arhgefl Hrnr Rbm14 Chkb Lipa Slc44a1 Cyfip1 Myadm Sun1 Egflam Osbp Tpr Flot2 Prkacb	Wasl
Arhgef10 Hsdl2 Rbm25 Chl1 Lmf2 Slc9a3r1 Cyp20a1 Mybbp1a Swap70 Egfr Osbpl9 Tpsb2 Fmnl2 Prkar1a	Wdfy1
Arhgef2 Hspa12a Rbm8a Chmp4b Lpar1 Slk Cyp51a1 Myef2 Syk Eif2a Oxsr1 Trappc6b Fmo1 Prkar2b	Wdr11
Arhgef7 Hspg2 Rbms1 Chordc1 Lpcat2 Smad2 Cyth1 Myh10 Syne1 Eif2b1 P2ry12 Trim2 Fn1 Prkra	Wdr6
Armc10 Huwe1 Rbp1 Chtop Lpp Smap2 Dag1 Myo18a Syne2 Eif2s2 Paics Trim25 Fscn1 Prmt1	Xpo1
Arpin Hyou1 Rela Ciapin1 Lrba Smarca4 Dbn1 Myo1b Syvn1 Eif2s3x Pak2 Trim47 Fstl1 Prmt5	Xpo7
Arsb Iars Rerl Ckap5 Lrpprc Smarcb1 Dcaf8 Myo1e Tacc1 Eif3c Palld Triobp Fxr1 Pros1	Yars
As3mt Igbp1 Rftn2 Clasp1 Lrrc15 Smarcc2 Dcakd Myo1f Tars Eif3d Parva Trip11 G3bp1 Prpf31	Ythdf1
Asap2 Igf2r Rheb Clasp2 Lsamp Smc3 Dctn2 Myo5a Tbc1d15 Eif4g1 Pcid2 Trip12 G3bp2 Prpf40a	Ythdf2
Asl Igfals Rhoj Clip2 Lsm1 Snap23 Dctn4 Myo6 Tbc1d8b Eif4g2 Pdcd5 Tubb4a Ganc Prpf8	Zc3hav1
Atp11b Igfbp7 Ric8a Clptm1 Ltbp4 Snrnp200 Dcun1d1 Myo9b Tbcc Eif4g3 Pdlim1 Txndc12 Gas7 Prps2	Zfpl1
Atp13a1 Igha Rnmt Clptm11 Luc712 Snrnp40 Ddrgk1 Myof Tbcd Eif5 Pdlim4 Txndc9 Gbf1 Psen1	Zmpste24
Atp1b2 Il1rap Robo2 Cmpk2 Macf1 Snrnp70 Ddx21 Naa10 Tcaf2 Eif5b Pds5b Tyr Gbp7 Psip1	Znf22
Atp2b1 Il6st Rock1 Cmtm7 Maged2 Snrpa1 Ddx3y Naalad2 Tcea1 Elmo2 Pef1 U2af2 Gclm Psmc3	Zyx

Data File S3. Quantitative proteomic data of melanoma biomarkers

Tissue excised from a normal skin region on a healthy mouse and the tissues excised from the cancerous skin of the T70 mouse, T130 mouse and T182 mouse (*i.e.* the mouse carrying skin tumor with superficial surface area of 70, 130, 182 mm², respectively) were conducted quantitative proteomic analysis using liquid chromatography-tandem mass spectrometry. The data obtained for six well-established melanoma biomarkers are summarized below, with the corresponding unique peptides listed. Unique peptides are the distinct peptide sequences unique to a single protein group, regardless of any modification. The file is related to **Figure 6B** and **Figure S16B**.

Biomarker 1: Pmel _ premelanosome protein [Mus musculus (house mouse)], UniProt accession Q60696;

A). Pmel was not detectable from Healthy Mouse Skins.

B). *Pmel* detected from *Mouse Skin Tumors* Protein identification probability: 100%; Quantitative value (normalized total spectrum count): 2.021 ± 0.621 ; Quantitative value (LFQ intensity $\times 10^7$): 2.009 ± 0.516 ; Exclusive unique peptides detected for this protein:

(K) YWQVLGGPVSR(L) (R) LSIATGHAK(L) (R) SFVYVWK(T)

Biomarker 2: Tyr_tyrosinase [Mus musculus (house mouse)], UniProt accession P11344;

A). Tyr was not detectable from Healthy Mouse Skins.

B). *Tyr* detected from *Mouse Skin Tumors* Protein identification probability: 100%; Quantitative value (normalized total spectrum count): 2.401 ± 2.897 ; Quantitative value (LFQ intensity $\times 10^7$): 3.135 ± 2.332 ; Exclusive unique peptides detected for this protein:

(R)GScQDILLSSAPSGPQFPFK(G)	(R)DTLLGGSEIWR(D)	(K) DLGYDYSYLQESDPGFYR (N)	(K) FFSYLTLAK (H)
(R)NYIEPYLEQASR(I)	(R) DIDFAHEAPGFLPWHR (L)	(R) HPENPNLLSPASFFSSWQIICSR(S)	

Biomarker 3: S100b_S100 calcium binding protein B [*Mus musculus (house mouse)*], UniProt accession P50114;

A). S100b was not detectable from Healthy Mouse Skins.

B). S100b detected from the Mouse Skin Tumors Protein identification probability: 100%; Quantitative value (normalized total spectrum count): 6.818 ± 0.366 ; Quantitative value (LFQ intensity $\times 10^7$): 6.754 ± 0.386 ; Exclusive unique peptides detected for this protein:

(K) AMVALIDVFHQYSGR(E) (K) ELINNELSHFLEEIK(E) (K) ELINNELSHFLEEIKEQEVVDK(V)

Biomarker 4: *Cspg4_ chondroitin sulfate proteoglycan 4 [Mus musculus (house mouse)*], UniProt accession Q8VHY0;

A). Cspg4 detected from Healthy Mouse Skins
Protein identification probability: 100%;
Quantitative value (normalized total spectrum count): 4.826±0.879;

Quantitative value (LFQ intensity $\times 10^7$): 4.560±0.722; Exclusive unique peptides detected for this protein:

(K) ITVAALDAANLLASVPASQR(S) (K) SYSVALLSVPEAVR(T)

B). Cspg4 detected from the Mouse Skin Tumors Protein identification probability: 100%; Quantitative value (normalized total spectrum count): 330.413 ± 55.843 ; Quantitative value (LFQ intensity $\times 10^7$): 332.940 ± 48.185 ; Exclusive unique peptides detected for this protein:

(H) TFHYELVQAPR (R)	(R) DGQSVTSFSQR (D)	(R) GVLSYLEPR (G)	(R) SQQAPLAFQAGDKR (G)
(K) GLWVPEGQR (A)	(R) DQPGEPATEFScR(E)	(R) HDVLFQVTQFPTR (G)	(R) TGSMPHFR(L)
(K) GQGTMLLR (N)	(R)EEGTLEFTLTTR(S)	(R) HGDLELDILGAQTR(K)	(R) TPNPALR (N)
(K) HDVQVLTAK (P)	(R)EEPDVAYR(L)	(R) HVQPTLDLTEAELR(K)	(R) TSEAADDSFR (F)
(K) HDVQVLTAKPR (N)	(R)ELEVGDIVYVHR(G)	(R) HVQPTLDLTEAELRK (S)	(R) VAPDTEVHR (F)
(K)IYVFQGEAAEIR(R)	(R)ELEVGDIVYVHRG(G)	(R) KMFTLLDVVNR (K)	(R) VTGTLQFGELQK (Q)
(K) KIYVFQGEAAEIR (R)	(R)EVEEQLIR(Y)	(R) KSQVLFSVSQSAR (H)	(T) AGPQWGQLLR (D)
(K)MFTLLDVVNR(K)	(R) FTQEDLR (K)	(R) LEISVDQYPTR(T)	(V) APDTEVHR (F)
(K)MFTLLDVVNRK (A)	(R) FTQEDLRK (K)	(R) LLAGPR (Y)	(Y) AHGGGGTQQDGFR (F)
(K)QALLSLEGTR(K)	(R)GcLHSAILNGR(N)	(R) LTLELWAK (G)	(Y) SVALLSVPEAVR(T)
(K) qALLSLEGTRK (L)	(R) GGPAQDLTFR (V)	(R)NGLAGDTETFR(K)	(R) VSDGMQASAPATLK (V)
(K) SQVLFSVSQSAR (H)	(R)GNFIYVDIFEGHLR(A)	(R)QQLQVISDR(E)	(R) SRHDVLFQVTQFPTR (G)
(K) SYSVALLSVPEAVR (T)	(M) SLAVDVLPSTIEVQLR (A)	(R) NLLRPLTSDVHEGcA (E)	(R) VAIQPVNDHAPVQTISR (V)
(F) SGPHSLAAFPAWSTR (E)	(R) DVNERPPQPQASIPLR (V)	(R)QQLQVISDREEPDVAYR(L)	(V) PPAVALLDFATEPYHAAK (S)
(K) EDHSQDGSLSTFSWR (E)	(R) FTQAQLDSGLVLFSHR (G)	(R) LSDGESFSQSDLQAGR(V)	(R)RGQIYILPIQVNPVNDPPR(I)
(K) STPVTSFTNEDLLHGR (L)	(R) FTQAQLDSGLVLFSHRG (A)	(R)GQIYILPIQVNPVNDPPR(I)	(R) RPYFLQSELAAGQLVYAH (G)
(K) SLNSASYLYEVMEQPHHGK (L)	(R) DLEEGQLGLEVGKPEGR(S)	(R) KDLLFGSIVAMEEPTRPIYR(F)	(R) SGNEVHYHVTAGPQWGQLLR (D)
(K)QGAGGVEGTEWWDTLAFHQR(D)	(P)ASFFGENHLEVPVPSALTR(V)	(K) DLLFGSIVAMEEPTRPIYR (F)	(K) ITVAALDAANLLASVPASQR(S)
(K)ATYGLFVGSSGSLDLPYLK(G)	(R)DQLEVVQEAVLPADIMFSLR(S)	<pre>(R) LVYQHDDSETIEDDIPFVATR (Q)</pre>	(Y) FLQSELAAGQLVYAHGGGGTQQD GFR(F)
(R)NSVPVADGQPHEVSVHIDVHR(L)	(R)AQLSVVDPDSAPGEIEYEVQR(A)	<pre>(R)GTDNDSGPEDLVYTIEQPSNGR(I)</pre>	NLLRPLTSDVHEGCAEEFSAGDEVGL GFSGPH(S)
(K) GVPPAVALLDFATEPYHAAK(S)	(R)AHLQGPTGTSVAGPQTSEAFVIT VR(D)	(R) LLTTDDVAFSDADSGFSDAQLVL TR(K)	(R) VTSPPHFSPLYTFPIHIGGDPNA PVLTN (V)
(R)RDQLEVVQEAVLPADIMFSLR(S)	(R) GALEGGFHFDLSDGAHTSPGHFF R(V)	(R) KLTVCPESVQPLSSQSLSASSST GADPR (H)	(R) VTSPPHFSPLYTFPIHIGGDPNA PVLTNVLL (M)
(H) GASAEEPPSLDPVQSFSQEAVNS GR (V)	(R)DLAATLAVMVSFDAAcPQRPSR(L)	(R)NLLRPLTSDVHEGCAEEFSAGDE VGLGFSGPH(S)	(R) RPYFLQSELAAGQLVYAHGGGGT QQDGFR (F)
(K) LTVCPESVQPLSSQSLSASSSTG ADPR(H)	(M) VSHGASAEEPPSLDPVQSFSQEA VNSGR(V)	<pre>(R) KVEPGQAIPLITVPGQGPPPGGQ PDPELLQFcR(T)</pre>	(R) TLAPPLVQITGPYFPTLPGLVLQ VLEPPQHGALQK(E)
(F)TITILPVNDQPPVLTTNTGLQIW EGAIVPIPPEALR(G)	(N)EDLLHGRLVYQHDDSETIEDDIP FVATR(Q)	(R) LEPLHTQNPHQETLTPAHLEASL EEEEEEGSPQPH(T)	(R) SPPNAGYLVMVSHGASAEEPPSL DPVQSFSQEAVNSGR(V)
(L) TSDVHEGcAEEFSAGDEVGLGFS	(R) APHNGFLSLAGDNTGPVTHFTQA	(R) NLLRPLTSDVHEGCAEEFSAGDE	(R)QSQPVAFTITILPVNDQPPVLTT
GPHSLAAFPAWSTR (E)	DVDAGR (L)	VGLGFSGPHSLAAFPAWSTR (E)	NTGLQIWEGAIVPIPPEALR(G)

Biomarker 5: Fn1_ fibronectin 1 [Mus musculus (house mouse)], UniProt accession P11276;

A). Fn1 detected from Healthy Mouse Skins

Protein identification probability: 100%;

Quantitative value (normalized total spectrum count): 154.667±5.132;

Quantitative value (LFQ intensity $\times 10^7$): 148.182 ± 0.093 ;

Exclusive unique peptides detected for this protein:

(R) GFNCESKPEPEETcFDK (Y)	(R) VEVLPVSLPGEHGQR(L)	(R) VTWAPPPSIELTNLLVR(Y)	(R)APITGYIIR(H)
(K) VGDTYERPK (D)	<pre>(R)NTFAEITGLSPGVTYLFK(V)</pre>	(R) SSPVIIDASTAIDAPSNLR(F)	(K)ATGVFTTLQPLR(S)
(R)GEWACIPYSQLR(D)	(R) TVLVTWTPPR (A)	(R) EESPPLIGQQATVSDIPR (D)	(R)ITGYIIK(Y)
(K) STATINNIKPGADYTITLYAVTG	(K) DDKESAPISDTVVPAVPPPTDLR	(R) DLEVIASTPTSLLISWEPPAVSVR	(R) ITYGETGGNSPVQEFTVPGSK
R (G)	(F)	(Y)	(S)
(R) TFYQIGDSWEK (F)	(R) FLTTTPNSLLVSWQAPR (A)	(K) YEVSVYALK (D)	(R) GVTYNIIVEALQNQR (R)
(K) YIVNVYQISEEGK (Q)	(R) SDNVPPPTDLQFVELTDVK (V)	(K)GLTPGVIYEGQLISIQQYGHR(E)	(K) LTcQcLGFGSGHFR (C)
(K) SEPLIGR (K)	(R)NLQPGSEYTVTLVAVK(G)	(R) VVTPLSPPTNLHLEANPDTGVLTVSW	ER(S)

B). Fn1 detected from the Mouse Skin Tumors

Protein identification probability: 100%;

Quantitative value (normalized total spectrum count): 342.680±65.337;

Quantitative value (LFQ intensity $\times 10^7$): 341.255 \pm 56.63;

Exclusive unique peptides detected for this protein:

(F) TAQWIAPSVQLTGYR (V)	(K) VGDTYERPK (D)	(R) GNLLQcVcTGNGR (G)	(R) TFYQIGDSWEK(F)
(K) ATGVFTTLQPLR(S)	(K) WCGTTQNYDADQK (F)	(R) HHAEHSVGRPR (Q)	(R) TFYScTTEGR (Q)
(K) ATGVFTTLQPLR (S)	(K)WcHDNGVNYK(I)	(R) IGDQWDK (Q)	(R) TTPPTAATPVR (L)
(K) cDPHEATcYDDGK (T)	(K) YEKPGSPPR (E)	(R) IGDTWSK (K)	(R) TVLVTWTPPR (A)
(K) cDPIDQcQDSETR (T)	(K) YEVSVYALK (D)	(R) ISCTIANR (C)	(R)VTYSSPEDGIR(E)
(K)DSmIWDcTcIGAGR(G)	(K) YIVNVYQISEEGK (Q)	(R)ITGYIIK(Y)	(R)WLPSTSPVTGYR(V)
(K) EATIPGHLNSYTIK (G)	(K) YSFcTDHAVLVQTR (G)	(R) LSDAGFK (L)	(R)WSRPQAPITGYR(I)
(K) GEWTCKPIAEK (C)	(L) GVRPSQGGEAPR (E)	(R) RPHETGGY (M)	(R) YQCYCYGR (G)
(K) GLAFTDVDVDSIK(I)	(N) IIVEALQNQR(R)	(R) SISPDVR (S)	(W)NAPEPSHITK(Y)
(K) HYQINQQWER (T)	(N) SFTVHWVAPR (A)	(R) STTPDITGYR(I)	(Y) EKPGSPPR (E)
(K) IAWESPQGQVSR(Y)	(N) SLLVSWQAPR (A)	(R) SYTITGLQPGTDYK(I)	(R) TAIYQPQTHPQPAPY (G)
(K) IHLYTLNDNAR (S)	(R)APITGYIIR(H)	(R) GVTYNIIVEALQNQR (R)	(R) VEVLPVSLPGEHGQR (L)
(K) LGVRPSQGGEAPR (E)	(R) cHEGGQSYK (I)	(R) KYIVNVYQISEEGK (Q)	(R)VTDATETTITISWR(T)
(K) LTcQcLGFGSGHFR(C)	(R) DAPIVNR (V)	(R) PAQGVITTLENVSPPR(R)	(K)EYLGAIcScTcFGGQR(G)
(K) QYNVGPLASK (Y)	(R) FTNIGPDTMR (V)	(R) NLQPGSEYTVTLVAVK (G)	(R) TYLGNALVcTcYGGSR(G)
(K) SEPLIGR (K)	(R)GEWACIPYSQLR(D)	(R) HALQSASAGSGSFTDVR (T)	(R) VTWAPPPSIELTNLLVR (Y)
(K) TYHVGEQWQK (E)	(R) ESNPLTAQQTTK (L)	(R)NLQPGSEYTVTLVAVKG(N)	(R) TAIYQPQTHPQPAPYGH (C)
(K) VFAVHQGR (E)	(R)GDSPASSKPVSINYK(T)	(R) PYLPNVDEEVQIGHVPR (G)	(N) SHPIQWNAPEPSHITK (Y)
(R)NTFAEITGLSPGVTYLFK(V)	(K)VTImWTPPDSVVSGYR(V)	(R) SDNVPPPTDLQFVELTDVK (V)	(K)EINLSPDSSSVIVSGLMVATK(Y)
(R)QDGHLWcSTTSNYEQDQK(Y)	(R) FLTTTPNSLLVSWQAPR (A)	(R) ITYGETGGNSPVQEFTVPGSK(S)	(K)ESAPISDTVVPAVPPPTDLR(F)
(R) NGESQPLVQTAVTNIDRPK (G)	(R)GFNcESKPEPEETcFDK(Y)	(R) GGNSNGALCHFPFLYNNR (N)	(R) EESPPLIGQQATVSDIPR (D)
	(R)SIPPYNTEVTETTIVITWTPAP	(R) RPGAAEPSPDGTTGHTYNQYTQR ((K) FSQVTPTSFTAQWIAPSVQLTGYR
(R) SSPVIIDASTAIDAPSNLR (F)	R(I)	Y)	(V)
(K) TEIDKPSQMQVTDVQDNSISVR	(K) FGFcPmAAHEEIcTTNEGVmYR	(R)NSITLTNLNPGTEYVVSIIAVNGR	(K) DDKESAPISDTVVPAVPPPTDLR (
(W)	(I)	(E)	F)
(K) TETITGFQVDAIPANGQTPVQR	(K)GLTPGVIYEGQLISIQQYGHR((R) PGVTEATITGLEPGTEYTIYVIAL	(K) DTLTSRPAQGVITTLENVSPPR (R
(S)	Ε)	K (N))
(K) TGLDSPTGFDSSDITANSFTVH	(N) LLPGTEYLVSVSSVYEQHESIP	(R) PRPGVTEATITGLEPGTEYTIYVI	(R) TKTETITGFQVDAIPANGQTPVQR
(W)	LR(G)	ALK(N)	(S)
(K) TGLDSPTGFDSSDITANSFTVH	(R) DLEVIASTPTSLLISWEPPAVS	(R)NTFAEITGLSPGVTYLFKVFAVHQ	(\mathbf{R}) TNTNUMORTE OFMOLDUOADR (\mathbf{D})
(W)	VR(Y)	GRESNPLTAQQTTK(L)	
(K) STATINNIKPGADYTITLYAVT	(R) EVTSDSGSIVVSGLTPGVEYTY	(K)QSLILSTSQTTAPDAPPDPTVDQV	(R) VEYELSEEGDEPQYLDLPSTATSV
GR (G)	TIQVLR(D)	DDTSIVVR(W)	NIPDLLPGR(K)
(K) TGLDSPTGFDSSDITANSFTVH	(Q) TYPGTTGPVQVIITETPSQPNS	(K) TGPMKEINLSPDSSsVIVsGLMVA	(R) VEYELSEEGDEPQYLDLPSTATSV
WVAPR (A)	HPIQWNAPEPSHITK(Y)	TKYEVSVYALK (D)	NIPDLLPGRK (Y)
(K) TASPDQTEmTIEGLQPTVEYVV	(R) EEVVTVGNAVSEGLNQPTDDSc	(K) TPFITNPGYDTENGIQLPGTTHQQ	(R) VVTPLSPPTNLHLEANPDTGVLTV
SVYAQNR (N)	FDPYTVSHYAIGEEWER(L)	PSVGQQMIFEEHGFR(R)	SWER(S)
(K) TDELPQLVTLPHPNLHGPEILD	(K) VREEVVTVGNAVSEGLNQPTDD	(K) NEEDVAELSISPSDNAVVLTNLLP	(R) TAIYQPQTHPQPAPYGHcVTDSGV
VPSTVQK(T)	SCFDPYTVSHYAIGEEWER(L)	GTEYLVSVSSVYEQHESIPLR(G)	VYSVGmQWLK(S)
(K) KTDELPQLVTLPHPNLHGPEIL			
	1		

Biomarker 6: *Mcam_* melanoma cell adhesion molecule [*Mus musculus (house mouse)*], UniProt accession Q8R2Y2;

A). Mcam detected from Healthy Mouse Skins

Protein identification probability: 100%;

Quantitative value (normalized total spectrum count): 23.653±3.20612;

Quantitative value (LFQ intensity $\times 10^7$): 22.634 \pm 2.915;

Exclusive unique peptides detected for this protein:

(R)QILIFR(V)	(R)EVATCVGR(N)	(K) APEEPTIQANVVGIHVDR (Q)	(K) VWVEVEPVGLLK(E)
(R) LQDHYVELQVFK (A)	(K) GPVLQLNNVR (R)	(K)QPVPTPDLVEAEVGSTALLK(C)	

B). *Mcam* detected from the *T70 mouse*

Protein identification probability: 100%;

Quantitative value (normalized total spectrum count): 97.715±3.703;

Quantitative value (LFQ intensity $\times 10^7$): 97.369 \pm 3.564;

Exclusive unique peptides detected for this protein:

(K) DAQFYCELSYR (L)	(K) QEITLPPTR(K)	(R) YLcMASVPR(V)	(R) TQLVSVGIFGSPWMALK (E)
(K)EGDHVTIR(C)	(K) SEFVVEVK (S)	<pre>(K) VWVEVEPVGLLK(E)</pre>	(R) VHIQSSQIVESSGLYTLK (S)
(K) EVTVPVFYPAEK (V)	(R) DKTGQLLGK (G)	(R) LQDHYVELQVFK (A)	(R) cLTDGNPQPHFTINK(K)
(K) GPVLQLNNVR (R)	(R) EPGEYEHR (L)	(R)NGYPIPQVLWYK(N)	(R) cLTDGNPQPHFTINKK (D)
(K) GVVIVAVIVcT (L)	(R) EVATCVGR (N)	(K) EDKDAQFYCELSYR(L)	(K) APEEPTIQANVVGIHVDR (Q)
(K) KLPQPESK (G)	(R) KSEFVVEVK(S)	(R) cLTDGNPQPHFTIN(K)	<pre>(K) QPVPTPDLVEAEVGSTALLK (C)</pre>
(K) LPQPESK (G)	(R)QILIFR(V)	(R) EAGGRYLCMASVPR (V)	(R) LSLQDSVATLALSHVTPHDER (M)
(K)NSLPLQEEENR(V)			

Data File S4. Proteomic data for the assignment of exosomal mass spectral peaks

Intact proteins were extracted from the mouse blood exosomes, and afterwards subjected to top-down proteomic analysis. The exosome fingerprint peaks measured by MALDI-TOF MS were tentatively assigned to proteins by correlation with the top-down proteomic data. Results obtained from the mouse carrying 182 mm² tumor (T182 mouse) were shown below as the representative. In order to further confirm the protein identities, the T182 mouse blood exosomes were also subjected to bottom-up proteomic analysis, which analyzed the digestion products (peptides) of the exosome proteins using liquid chromatography-tandem mass spectrometry.

Peak 2. *HC-II* (*Serpind1*) _ heparin cofactor 2 [*Mus musculus* (house mouse)], fragment, UniProt accession number P49182;

A). MALDI-TOF MS peak: 4,190 *m*/*z*;

B). Top-down proteomic analysis: precursor monoisotopic mass 4187.192343 Da, adjusted precursor monoisotopic mass 4187.181195 Da, theoretical average mass 4189.888 Da, number of matched fragment ions 17, E value 5.49E-17, P value 5.49E-17, protein sequencing:

L.STQVRFTVDRPFLFLVYEHRTSCLLFMGKVTNPAKS.

C). Bottom-up proteomic analysis: 100% identification, 20 exclusive unique peptides, 35 exclusive unique spectra, 117 total spectra, 261/478 amino acids (55% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

MKHPLCTLLSLITFMCIGSKGLAEQLTNENLTTSFLPANFHKENTVTNDWIPEGEEDEDYLDLEKLLGEDDDYIYIIDAVSPTDSESSAGNILQLFQGKSRIQRLNILNAKFAFNLYRVLKDQATTSDNLFIAPVGISTAMGMISLGLRGETHEEVHSVLHFRDFVNASSKYEVTTIHNLFRKLTHRLFRRNFGYTLRSVNGLYIQKQFPIREDFKAAMREFYFAEAQEANFPDPAFISKANNHILKLTKGLIKEALENIDPATQMLILNCIYFKGTWVNKFPVEMTHNHNFRLNEREVVVLLPKFKLEKNYNLVEVLKSMGITKLFNKNGNMSGISDQRIAIDLFKHQSQLTPQVVERWQKSMTNRTREVLLPKFKLEKNYNLVEVLKSMGITKLFNKNGNMSGISDQRIAIDLFKHQSTITVNEEGTQAAAVTTVGFMPLSTQVRFTVDRPFLFLVYEHRTSCLLFMGKVTNPAKS

Peak 1&5. *C3* _ complement component 3 [*Mus musculus* (house mouse)], fragments, UniProt accession number P01027;

A). MALDI-TOF MS peak: 3,419 *m*/*z*; 8,715 *m*/*z*;

B-1). Top-down proteomic analysis: precursor monoisotopic mass 3418.815759 Da, adjusted precursor monoisotopic mass 3418.820805 Da, theoretical average mass 3420.847 Da, number of matched fragment ions 21, E value 7.43E-18, P value 7.43E-18, protein sequencing:

R.SEETKQNEAFSLTAKGKGRGTLSVVAVYHAKL.K

B-2). Top-down proteomic analysis: precursor monoisotopic mass 8708.24276 Da, adjusted precursor monoisotopic mass 8708.247625 Da, theoretical average mass 8714.096 Da, number of matched fragment ions 8, E value 1.76E-7, P value 1.76E-7, protein sequencing:

R.SVQLMERRMDKAGQYTDKGLRKCCEDGMRDIPMRYSCQRRARLITQGENCIKAFIDCCNHITKLREQHRRDHV.L

C). Bottom-up proteomic analysis: 100% identification, 244 exclusive unique peptides, 429 exclusive unique spectra, 2964 total spectra, 1358/1663 amino acids (82% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

MGPASGSQLL	VLLLLLASSP	LALGIPMYSI	ITPNVLRLES	EETIVLEAHD	AQGDIPVTVT	VQDFLKRQVL
TSEKTVLTGA	SGHLRSVSIK	IPASKEFNSD	KEGHKYVTVV	ANFGETVVEK	AVMVSFQSGY	LFIQTDKTIY
TPGSTVLYRI	FTVDNNLLPV	GKTVVILIET	PDGIPVKRDI	LSSNNQHGIL	PLSWNIPELV	NMGQWKIRAF
YEHAPKQIFS	AEFEVKEYVL	PSFEVRVEPT	ETFYYIDDPN	GLEVSIIAKF	LYGKNVDGTA	FVIFGVQDGD
KKISLAHSLT	RVVIEDGVGD	AVLTRKVLME	GVRPSNADAL	VGKSLYVSVT	VILHSGSDMV	EAERSGIPIV
TSPYQIHFTK	TPKFFKPAMP	FDLMVFVTNP	DGSPASKVLV	VTQGSNAKAL	TQDDGVAKLS	INTPNSRQPL
TITVRTKKDT	LPESRQATKT	MEAHPYSTMH	NSNNYLHLSV	SRMELKPGDN	LNVNFHLRTD	PGHEAKIRYY
TYLVMNKGKL	LKAGRQVREP	GQDLVVLSLP	ITPEFIPSFR	LVAYYTLIGA	SGQREVVADS	VWVDVKDSCI
GTLVVKGDPR	DNHLAPGQQT	TLRIEGNQGA	RVGLVAVDKG	VFVLNKKNKL	TQSKIWDVVE	KADIGCTPGS
GKNYAGVFMD	AGLAFKTSQG	LQTEQRADLE	CTKPAARRRR	SVQLMERRMD	KAGQYTDKGL	RKCCEDGMRD
IPMRYSCQRR	ARLITQGENC	IKAFIDCCNH	ITKLREQHRR	DHVLGLARSE	LEEDIIPEED	IISRSHFPQS
WLWTIEELKE	PEKNGISTKV	MNIFLKDSIT	TWEILAVSLS	DKKGICVADP	YEIRVMQDFF	IDLRLPYSVV
RNEQVEIRAV	LFNYREQEEL	KVRVELLHNP	AFCSMATAKN	RYFQTIKIPP	KSSVAVPYVI	VPLKIGQQEV
EVKAAVFNHF	ISDGVKKTLK	VVPEGMRINK	TVAIHTLDPE	KLGQGGVQKV	DVPAADLSDQ	VPDTDSETRI
ILQGSPVVQM	AEDAVDGERL	<u>K</u> HLIVTPAGC	GEQNMIGMTP	TVIAVHYLDQ	<u>TEQWEK</u> FGIE	KRQEALELIK
KGYTQQLAFK	QPSSAYAAFN	NRPPSTWLTA	YVVKVFSLAA	NLIAIDSHVL	CGAVKWLILE	KQKPDGVFQE
DGPVIHQEMI	GGFRNAKEAD	VSLTAFVLIA	LQEARDICEG	QVNSLPGSIN	KAGEYIEASY	MNLQRPYTVA
IAGYALALMN	KLEEPYLGKF	LNTAKDRNRW	EEPDQQLYNV	EATSYALLAL	LLLKDFDSVP	PVVRWLNEQR
YYGGGYGSTQ	ATFMVFQALA	QYQTDVPDHK	DLNMDVSFHL	PSRSSATTFR	LLWENGNLLR	SEETKQNEAF
SLTAKGKGRG	TLSVVAVYHA	<u>K</u> LKSKVTCKK	FDLRVSIRPA	PETAKKPEEA	KNTMFLEICT	KYLGDVDATM
SILDISMMTG	FAPDTKDLEL	LASGVDRYIS	KYEMNKAFSN	KNTLIYLEK	ISHTEEDCLT	<u>FKVHQYFNVG</u>
LIQPGSVKVY	SYYNLEESCT	RFYHPEKDDG	MLSKLCHSEM	CRCAEENCFM	QQSQEKINLN	VRLDKACEPG
VDYVYKTELT	NIELLDDFDE	YTMTIQQVIK	SGSDEVQAGQ	<u>QRK</u> FISHIKC	RNALKLQKGK	KYLMWGLSSD
LWGEKPNTSY	IIGKDTWVEH	WPEAEECQDQ	KYQKQCEELG	AFTESMVVYG	CPN	

Peak 3&6. *Fga* _ fibrinogen alpha chain [*Mus musculus* (house mouse)], fragments, UniProt accession number E9PV24;

A). MALDI-TOF MS peak: 4605 m/z; 9,320 m/z;

B-1). Top-down proteomic analysis: precursor monoisotopic mass 4600.198195 Da, adjusted precursor monoisotopic mass 4600.333195 Da, theoretical average mass 4603.007 Da, number of matched fragment ions 17, E value 2.77E-11, P value 2.77E-11, protein sequencing:

K.EFGSKTHSDSDIL(T)[35.09232]NIEDPSSHVPEFSSSSKTSTVKKQVTKT.Y

B-2). Top-down proteomic analysis: precursor monoisotopic mass 9316.284822 Da, adjusted precursor monoisotopic mass 9316.290325 Da, theoretical average mass 9322.150 Da, number of matched fragment ions 53, E value 3.52E-41, P value 3.52E-41, protein sequencing:

T.TDTEDKGEFLSEGGGVRGPRVVERHQSQCKDSDWPFCSDDDWNHKCPSGCRMKGLIDEANQDFTNRINKLKNSLFDFQ RNN.K

C). Bottom-up proteomic analysis: 100% identification, 141 exclusive unique peptides, 256 exclusive unique spectra, 1763 total spectra, 646/789 amino acids (82% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

MLSLRVTCLI	LSVASTVWTT	DTEDKGEFLS	EGGGVRGPRV	VERHQSQCKD	SDWPFCSDDD	WNHKCPSGCR
MKGLIDEANQ	DFTNRINKLK	NSLFDFQRNN	KDSNSLTRNI	MEYLRGDFAN	ANNFDNTYGQ	VSEDLRRRIE
ILRRKVIEKA	QQIQALQSNV	RAQLIDMKRL	EVDIDIKIRS	CKGSCSRAVN	REINLQDYEG	HQKQLQQVIA
KELLPTKDRQ	YLPALKMSPV	PDLVPGSFKS	QLQEAPPEWK	ALTEMRQMRM	ELERPGKDGG	SRGDSPGDSR
GDSRGDFATR	GPGSKAENPT	NPGPGGSGYW	RPGNSGSGSD	GNRNPGTTGS	DGTGDWGTGS	PRPGSDSGNF
RPANPNWGVF	SEFGDSSSPA	TRKEYHTGKA	VTSKGDKELL	IGKEKVTSSG	TSTTHRSCSK	TITKTVTGPD
GRREVVKEVI	TSDDGSDCGD	ATELDISHSF	SGSLDELSER	HPDLSGFFDN	HFGLISPNFK	EFGSKTHSDS
DILTNIEDPS	SHVPEFSSSS	KTSTVKKQVT	KTYKMADEAG	SEAHREGETR	NTKRGRARAR	PTRDCDDVLQ
TQTSGAQNGI	FSIKPPGSSK	VFSVYCDQET	SLGGWLLIQQ	RMDGSLNFNR	TWQDYKRGFG	SLNDKGEGEF
WLGNDYLHLL	TLRGSVLRVE	LEDWAGKEAY	AEYHFRVGSE	AEGYALQVSS	YRGTAGDALV	QGSVEEGTEY

Peak 7. Hp _ haptoglobin [Mus musculus (house mouse)], fragment, UniProt accession number Q61646;

A). MALDI-TOF MS peak: 9,468 *m*/*z*;

B). Top-down proteomic analysis: precursor monoisotopic mass 9462.497426 Da, adjusted precursor monoisotopic mass 9462.511675 Da, theoretical average mass 9468.546 Da, number of matched fragment ions 18, E value 5.10E-9, P value 5.10E-9, protein sequencing:

A.VELGNDAMDFEDDSCPKPPEIANGYVEHLVRYRCRQFYRLRAEGDGVYTLNDEKQWVNTVAGEKLPECEAVCGKPKHPVDQVQ.R

C). Bottom-up proteomic analysis: 100% identification, 82 exclusive unique peptides, 140 exclusive unique spectra, 1408 total spectra, 286/347 amino acids (82% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

MRALGAVVTLLLWGQLFAVELGNDAMDFEDDSCPKPPEIANGYVEHLVRYRCRQFYRLRAEGDGVYTLNDEKQWVNTVAGEKLPECEAVCGKPKHPVDQVQRIIGGSMDAKGSFPWQAKMISRHGLTTGATLISDQWLLTTAKNLFLNHSETASAKDITPTLTLYVGKNQLVEIEKVVLHPNHSVVDIGLIKLKQRVLVTERVMPICLPSKDYIAPGRVGYVSGWGRNANFRFTDRLKYVMLPVADQDKCVVHYENSTVPEKKNLTSPVGVQPILNEHTFCAGLTKYQEDTCYGDAGSAFAIHDMEEDTWYAAGILSFDKSCAVAEYGVYVRATDLKDWVQETMAKN

Peak 8. (Probably) *Saa1 & Saa2* _ serum amyloid A-1 & A-2 [*Mus musculus* (house mouse)], UniProt accession number P05366 & P05367

A). MALDI-TOF MS peak: 11,660 m/z, 11,755 m/z;

B). Top-down proteomics did not detect any protein in the mass range of 11-14 kDa. However, the bottom-up proteomics detected a high abundance of *Saa1* and *Saa2* around this mass from the tumor mouse. A total of 149 and 143 normalized total spectra of *Saa1* and *Saa2* were detected from the tumor mouse, while the values from the healthy mouse were only 21 and 4, respectively.

C-1). Bottom-up proteomic analysis for *Saa2*: 100% identification, 8 exclusive unique peptides, 18 exclusive unique spectra, 67 total spectra, 86/122 amino acids (70% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

MKLLTSLVFC SLLLGVCHGG FFSFIGEAFQ GAGDMWRAYT DMKEAGWKDG DKYFHARGNY DAAQRGPGGV WAAEKISDAR ESFQEFFGRG HEDTMADQEA NRHGRSGKDP NYYRPPGLPA KY

According to the peak m/z value, the sequence detected by MALDI-TOF MS is estimated to be

.GGFFSFIGEAFQGAGDMWRAYTDMKEAGWKDGDKYFHARGNYDAAQRGPGGVWAAEKISDARESFQEFFGRGHEDTMAD QEANRHGRSGKDPNYYRPPGLPAKY (theoretical monoisotopic mass 11655.379 Da, theoretical average mass 11662.647 Da)

C-2). Bottom-up proteomic analysis for *Saa1*: 100% identification, 12 exclusive unique peptides, 21 exclusive unique spectra, 114 total spectra, 85/122 amino acids (70% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

MKLLTSLVFC SLLLGVCHGG FFSFVHEA<u>FQ</u> <u>GAGDMWRAYT</u> <u>DMKEANWK</u>NS DKYFHAR<u>GNY</u> <u>DAAQRGPGGV</u> WAAEKISDGR <u>EAFQEFFGRG</u> <u>HEDTIADQEA</u> <u>NRHGRSGKDP</u> <u>NYYRPPGLPD</u> <u>KY</u>

According to the peak m/z value, the sequence detected by MALDI-TOF MS is estimated to be

G.GFFSFVHEAFQGAGDMWRAYTDMKEANWKNSDKYFHARGNYDAAQRGPGGVWAAEKISDGREAFQEFFGRGHEDTIAD QEANRHGRSGKDPNYYRPPGLPDKY (theoretical monoisotopic mass 11746.450 Da, theoretical average mass 11753.697 Da)

Peak 4&9. *Hba-al* _ hemoglobin subunit alpha [*Mus musculus* (house mouse)], UniProt accession number P01942;

A). MALDI-TOF MS peak: 5845 *m/z*, 14,975 *m/z*;

B-1). Top-down proteomic analysis: precursor monoisotopic mass 5842.106765 Da, adjusted precursor monoisotopic mass 5842.281765 Da, theoretical average mass 5845.944 Da, number of matched fragment ions 7, E value 5.58E-5, P value 5.58E-5, protein sequencing:

A. (HKLRVDPVNFKLLSHCLLVTLASHHPADFTPAVH) [-36.90064]ASLDKFLASVSTVLTSKY R.

B-2). Top-down proteomic analysis: precursor monoisotopic mass 14971.75934 Da, adjusted precursor monoisotopic mass 14971.68434 Da, theoretical average mass 14981.061 Da, number of matched fragment ions 9, E value 3.39E-9, P value 3.39E-9, protein sequencing:

.MVLSGEDKSNIKAAWGKIGGHGAEYGAEALERMFASFPTTKTYFPHFDVSHGSAQVKGHGKKVADALASAAGHLDDLPG ALSALSDLHAHKLRVDPVNFKLLSHCLL(VTLASHHPADFTPAVHASLDKFL)[-104.07597]ASVSTVLTSKY R.

C). Bottom-up proteomic analysis: 100% identification, 42 exclusive unique peptides, 61 exclusive unique spectra, 388 total spectra, 120/142 amino acids (85% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

MVLSGEDKSNIKAAWGKIGGHGAEYGAEALERMFASFPTTKTYFPHFDVSHGSAQVKGHGKKVADALASAAGHLDDLPGALSALSDLHAHKLRVDPVNFKLLSHCLLVTLASHHPADFTPAVHASLDKFLASVSTVLTSKYR

Peak 10. *Hbb-b2* _ hemoglobin subunit beta-2 [*Mus musculus* (house mouse)], UniProt accession number P02089;

A). MALDI-TOF MS peak: 15,615 *m*/*z*;

B). Top-down proteomic analysis: precursor monoisotopic mass 15606.13787 Da, adjusted precursor monoisotopic mass 15606.17787 Da, theoretical average mass 15615.986 Da, number of matched fragment ions 6, E value 8.88E-6, P value 8.88E-6, protein sequencing:

M.VHLTDAEKSAVSCLWAKVNPDEVGGEALGRLLVVYPWTQRYFDSFGDLSSASAIMGNPKVKAHGKKVITAFNEGLKNL DNLKGTFASLSELHCDKLHVDPENFRLLGNAIVIVLGHHLGKDF(TPAAQAAFQKVVAGVAT)[-131.03510]A LAHKYH.

C). Bottom-up proteomic analysis identified this protein as hemoglobin subunit beta *Hbb-bs* (UniProt accession A8DUK4): 100% identification, 39 exclusive unique peptides, 64 exclusive unique spectra, 800 total spectra, 124/147 amino acids (84% coverage), the theoretical full protein sequence shown below (the detected peptide sequences were underlined):

MVHLTDAEKA	AVSGLWGKVN	ADEVGGEALG	RLLVVYPWTQ	RYFDSFGDLS	SASAIMGNAK	VKAHGKKVIT
AFNDGLNHLD	SLKGTFASLS	ELHCDKLHVD	PENFRLLGNM	IVIVLGHHLG	KDFTPAAQAA	FQKVVAGVAA
ALAHKYH						

References

1. Dankort, D.; Curley, D. P.; Cartlidge, R. A.; Nelson, B.; Karnezis, A. N.; Damsky, W. E.; You, M. J.; DePinho, R. A.; McMahon, M.; Bosenberg, M., Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. *Nat Genet* **2009**, *41* (5), 544-552.

2. Cheng, W. C.; Tsui, Y. C.; Ragusa, S.; Koelzer, V. H.; Mina, M.; Franco, F.; Laubli, H.; Tschumi, B.; Speiser, D.; Romero, P.; Zippelius, A.; Petrova, T. V.; Mertz, K.; Ciriello, G.; Ho, P. C., Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle. *Nat Immunol* **2019**, *20* (4), 206-217.

3. Zhu, Y. D.; Qiao, L.; Prudent, M.; Bondarenko, A.; Gasilova, N.; Moller, S. B.; Lion, N.; Pick, H.; Gong, T. Q.; Chen, Z. X.; Yang, P. Y.; Loveyf, L. T.; Girault, H. H., Sensitive and fast identification of bacteria in blood samples by immunoaffinity mass spectrometry for quick BSI diagnosis. *Chem Sci* **2016**, 7 (5), 2987-2995.

4. Yang, Y.; Lin, Y.; Chen, Z. X.; Gong, T. Q.; Yang, P. Y.; Girault, H.; Liu, B. H.; Qiao, L., Bacterial Whole Cell Typing by Mass Spectra Pattern Matching with Bootstrapping Assessment. *Anal Chem* **2017**, *89* (22), 12556-12561.

5. Lademann, J.; Jacobi, U.; Surber, C.; Weigmann, H. J.; Fluhr, J. W., The tape stripping procedure - evaluation of some critical parameters. *Eur J Pharm Biopharm* **2009**, *72* (2), 317-323.

6. Weinstein, D.; Leininger, J.; Hamby, C.; Safai, B., Diagnostic and prognostic biomarkers in melanoma. *J Clin Aesthet Dermatol* **2014**, *7* (6), 13-24.

7. Miller, A. J.; Mihm Jr, M. C., Melanoma. *New Engl J Med* **2006**, *355* (1), 51-65.