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Abstract 

Objective:  To quantify gait abnormalities in people with Dravet syndrome (DS).  

Methods:   Individuals with a confirmed diagnosis of DS were enrolled.  They were stratified 

according to knee flexion at initial contact (IC) and range of motion (ROM) during stance 

[crouch gait if knee flexion >20° at IC and knee range of motion (ROM) >15°; straight gait: 

knee flexion <20° at IC]. A 1D ANOVA (α = 0.05) was used to test statistical differences among 

the joint kinematics and spatio-temporal parameters of the cohort and an age-matched 

control group. Clinical (neurological and orthopedic evaluation) and anamnestic data (seizure 

type, drugs, genetic mutation) were collected; distribution between the two gait phenotypes 

was assessed with the Fisher exact test and, for mutation, with the chi-squared test (p-value 

< 0.05). 

Results: Seventy-one subjects were enrolled and evaluated with instrumented gait analysis. 

Fifty-two were included in the final analysis (mean age 13.8 ± 7.3; M 26). Two gait patterns 

were detected: an atypical crouch gait (34.6%) with increased ankle, knee and hip flexion 

during stance, and reduced walking speed and stride length without any muscle-tendon 

retraction; and a pattern resembling those of healthy age-matched controls, but still showing 

reduced walking speed and stride length. No difference in clinical or anamnestic data 

emerged between the two groups.  

Significance: Objectively quantified gait in DS shows two gait patterns with no clear-cut 

relation to clinical data. Kinematic parameters abnormalities are likely due to stabilization 

issues. These findings may guide rehabilitative and preventive measures. 

Keywords: SCN1A mutation, gait analysis, crouch gait, comorbidity. 

  



Highlights 

• Dravet syndrome presents a clear-cut gait abnormality, “atypical crouch gait” (AC) 

• AC does not present major orthopaedic deviation as typical crouch gait 

• No correlation with genetic mutation, seizure types, and antiepileptic treatment   



1 Introduction 

Dravet syndrome (DS) is characterized by drug-resistant seizures, intellectual disability and 

neurological signs 1. A mutation in the α-subunit of the SCN1A sodium channel gene, is 

deemed causative in more than 80% of cases.  At onset neurological examination is usually 

normal, but ataxic gait 2 may appear from early childhood. Extrapyramidal signs manifest with 

older age 3. A report based on gait observational analysis described gait as “crouch”, with 

increased lower limb joint flexion and segments misalignment 4, with onset in early teens. A 

putative link between gait impairment and genetic mutation has been suggested with 

mutations in the pore-forming region (PFR) of the SCN1A gene more likely to be associated 

with crouch gait 5. Recently, electromyographic data suggested the coexistence of an axonal 

motor neuropathy 6, considered a causative factor of crouch gait. Clinical experience, 

however, suggests that gait problems may appear much earlier, accounted by different 

abnormalities, and may change pattern from adolescents to adults. Full quantitative 

characterization of gait in people with DS could provide an alternative explanation for these 

features and clarify its natural history, allowing the design of rehabilitative/preventive 

measures.  

Previous observations were based on observational gait analysis – i.e. standardized visual 

description of gait – due to the challenge of subjects’ collaboration for a full instrumental gait 

analysis. Instrumental gait analysis provides quantitative information on human locomotion, 

but is more demanding in terms of equipment (Motion Analysis Laboratory), personnel 

expertise and participant cooperation. 

Our aim was to assess quantitatively gait in people with Dravet syndrome to identify 

biomechanical determinants of gait abnormalities. 



2 Material and methods 

Inclusion criterion was a genetically confirmed diagnosis. Subjects unable to walk without 

assistance or whose carers reported at least a convulsive seizure in the week prior to the 

examination were excluded.  

Data were collected at the M²OCEAN Movement Analysis Laboratory, University of Antwerp, 

Belgium, and at the Laboratory of Clinical Analysis and Biomechanics of Movement, University 

Hospital of Padova, Italy. Subjects were recruited at the Pediatric Neurology Units of Antwerp 

University Hospital (Belgium), Istituto Neurologico C. Besta, Milano, Padova University 

Hospital, and Verona University Hospital (both in Italy). Enrollment started in 2017 in Padova 

and in 2016 in Antwerp. 

2.1 Standard Protocol Approvals, Registrations, and Patient Consents 

Legal guardians provided written informed assent. The study was approved by the Ethic 

Committees of Antwerp University Hospital (B300 2016 27079) and Padova (protocol number 

4276/AO/17). 

2.2 Anamnestic and Clinical data 

Anamnestic data collection included: pharmacotherapy, type/types of seizures, SCN1A gene 

mutation, severity of cognitive/behavioral impairment. Clinical data included: tests for 

ileopsoas, hamstrings and calf muscles contractures, Adam’s test to test for scoliosis, Root 

test for flat-foot identification 7.  

2.3 Gait Analysis procedure 

------------------------------ START OF BOX 1 CONTENTS --------------------------------------- 

Instrumental gait analysis provides quantitative information on human motion during 

walking: it measures ankle, knee and hip angles modifications during each step, quantifies 



forces between feet and floor, and measures spatiotemporal parameters, such as speed of 

walking and gait cycle timing. Reflective markers are placed on subjects by a trained operator 

according to a specified biomechanical model 8. Subjects walk back and forth on a walkway 

with implanted force platforms until a certain number of full strides (3-6) is collected 9. A 

system of infrared cameras, placed along the laboratory perimeter and conveniently 

calibrated, captures the 3D position of the markers during walking, while the force platforms 

register the foot contact forces with the floor 10,11. Post-processing procedures provide the 

variables of interest (i.e., joint kinematics and dynamics, and spatio-temporal parameters), 

which are normalized over the percentage time of the gait cycle, body weight and height 9.  In 

particular, kinematics and dynamics are calculated on the sagittal, coronal and transversal 

planes of each articular joint, providing information on both angular joint modifications 

during each step and the interaction forces between the adjacent body segments. Spatio-

temporal parameters, instead, describe the body movement as a whole: e.g. the walking 

speed, the number of complete strides the subject performs in a minute (cadence), the 

distance between feet while walking (stride width), or between two footsteps (stride length) 

[see Table A.1 in Supplemental materials for more details]. The obtained variables describe 

the implemented gait strategies, providing a more comprehensive picture of the walking 

patterns and the generated energies than what could be obtained by visual inspection alone 

(i.e., observational gait analysis). 

BOX 1 Caption: Basics of Gait Analysis. 

--------------------------------- END OF BOX 1 CONTENTS --------------------------------------- 

The subjects were equipped with the marker-set used in clinical practice (Davis protocol) 12 in 

Padova and with its modified commercial version (Plug-in-Gait with KAD – Knee Alignment 



Device) in Antwerp. Marker 3D trajectories were registered via the stereophotogrammetric 

systems (Padova: 10 cameras, SMART D-500, BTS Motion Capture, Italy - 200 Hz; Antwerp: 8 

cameras, Vicon T10, Vicon Motion Systems, UK - 100 Hz). Subjects were asked to stand as still 

as possible and stare at a fixed point at their eye-level for a few seconds to acquire static data 

and then to walk barefoot at a self-selected speed back and forth within the capture volume. 

A minimum of five left and five right full strides per subjects were collected 9. Video recordings 

were also collected during participants walking for preliminary observational analysis by using 

3 video-cameras in Padova and 2 in Antwerp and scored according to the Rancho Los Amigos 

Observational Gait Analysis 13. 

Segmental (pelvic and foot) and joint (hip, knee and ankle) kinematics and spatiotemporal 

parameters calculation were run within the proprietary software (Vicon Nexus v1.8.6 – 2.1 in 

Antwerp, BTS SMART Tracker and Analyzer v1.5 in Padova), and according to the relevant 

biomechanical models. Kinematics were time-normalized over the percentage of the gait 

cycle (GC). Participants’ data were compared to age-matched healthy subject data assumed 

as control group (C: Padova: 10 subjects, mean age 21.4 ± 7.7 years; Antwerp: 10 subjects, 

14.3 ± 7.3), which were collected following the same procedure.  

Within-Subject consistency for each kinematic variable and each subject (people with DS and 

controls) was tested via visual inspection of the curves and subsequently via the robust score 

(R-score) method 14. This method detects and excludes outliers when the R-score exceeds a 

predefined cut-off value. Typical cut-offs range between 2 (2.5% of type I error) and 3.5 (<1% 

of type I error) 15. For our dataset, the R-score was chosen equal to 3, as participants’ gait was 

often observed to be poorly repeatable and lower cut-off would potentially lead to the 

exclusion of representative gait patterns. The selected strides were averaged for each 

participant, obtaining one curve per variable for the left and one curve for the right lower 



limb. For the controls, curves for right and left limbs were pooled, checked for outliers with 

the R-score 14 and averaged, obtaining one representative curve per variable. Data analyses 

and results will be performed and discussed separately for the two centers, as pooling the 

data would imply comparing variables outcomes obtained with two different biomechanical 

protocols and models, with the relevant variables defined differently and, thus, not directly 

comparable 16,17. 

2.4 Data Analysis 

Observational Gait Analysis (Rancho Los Amigos Observational Gait Analysis) findings 

suggested the presence of various degrees of knee flexion throughout the gait cycle in DS 13. 

Given the lack of a consensus on knee angle flexion cut-offs to define crouch gait 18, we 

adopted the following cut-offs of knee flexion to stratify people with DS: atypical-crouch (AC, 

see results section for data supporting the definition of atypical) with knee flexion >20° at 

initial contact (IC) and knee range of motion (ROM) >15° over the stance phase (St) 19, and 

straight (S) walkers, with knee flexion <20° at IC 20. 

2.4.1 Anamnestic and Clinical data 

Differences in the distribution of anamnestic and clinical data between the two gait 

phenotypes (i.e., AC and S) were assessed with the chi-squared test (p-value < 0.05). 

2.4.2 Gait Analysis variables 

A 1D ANOVA (α = 0.05) was used to test statistical differences among the kinematics of the 

participants’ sub-groups and controls (C) 21. The 1D ANOVA is based on the Statistical 

Parametric Mapping (SPM) theory 22, which is used to analyze statistical differences among 

continuous variables, without reducing the test to summary metrics (such as maximum or 

minimum values at specific instants of the gait cycle) that potentially lead to false positives or 

negatives 23.  This methodology allows considering the time-continuous variables (such as 



human joint kinematics) as composed by points that are not independent from each other: 

they represent the evolving values of the same variable. The analysis was performed using 

the SPM1D open-source package for MATLAB (spm1d.org) and generated: map of F-values 

(SPM{F}), F* limit and areas where differences were found with relevant p-values. In case 

statistical differences emerged, a Bonferroni correction was considered for the post-hoc test. 

A classical one-way ANOVA (α = 0.05) was performed on spatiotemporal parameters among 

DS groups and controls, followed by a Bonferroni correction for post-hoc tests when relevant. 

Moreover, in order to better understand the walking strategies, the linear regression between 

the maximum knee flexion angle and the normalised walking speed was calculated (a1 and a0 

are the regression coefficients, with a1 indicating the line slope, R2 is a measure of the data 

dispersion, and the p-values gives the significance of the linear model – i.e. p < 0.05 was 

considered as significant). 

3 Results   

Seventy-one participants were enrolled, 31 in Antwerp and 40 in Padova. One subject in 

Antwerp was excluded due to an additional diagnosis of cerebral palsy. Eighteen subjects in 

Padova failed to cooperate with the procedure and stereophotogrammetric data were not 

obtained (see Figure 1 for study flow-chart). Three of these subjects were obese and markers 

could not be positioned appropriately; eleven did not collaborate and marker positioning, 

walking on the walkway for a sufficient number of strides, or maintaining a still posture for at 

least 15 seconds for static data acquisition was not possible; in 4 cases technical issues arose 

(e.g. repositioning of markers). Of note, 12 of these subjects presented a diagnosis of severe 

cognitive impairment and/or behavioural problems. Only in the Italian cohort, 2 subjects were 

not referred to the lab due to lack of independent gait (one 26 years old male, whose gait 



deteriorated over time, and a 9 years-old obese girl with severe cognitive impairment). The 

occurrence of seizures in the previous week did not impact on the number of enrolled 

subjects: families were aware of this constraint and the visit to the lab was re-scheduled. 

3.1 Observational gait analysis 

Observational Gait Analysis identified 2 two knee flexion patterns (normal, excessive flexion), 

which provided the preliminary subdivision based on gait angle degrees during stance, 

confirmed by instrumental gait analysis. 

3.2 Anamnestic and Clinical data  

Clinical and demographic data are reported in Table 1 & Figure 2. No statistical differences 

emerged among the three groups (AC, S and controls) for age, body mass, height, BMI and leg 

length. Clinical presence of scoliosis, flatfoot or valgus knee, type of antiepileptic drug, seizure 

types and kind of SCN1A mutation (classified as missense, truncating, nonsense, splice site, 

and frameshift) did not show any difference between the two gait phenotypes.  The 

prevalence of scoliosis in our DS cohort was 13,7% and flat foot 54,9% on the right and 58,8% 

on the left. Only one subject had shortening of hamstrings muscles. 

The 19.7% of the included subjects presented with mild intellectual disability (10 subjects in 

Padova, 4 in Antwerp), 33.8% with a moderate intellectual disability (11 subjects in Padova, 

13 in Antwerp) and 21.1% with a severe intellectual disability (9 subjects in Padova, 6 in 

Antwerp).  15.5% presented with behavioural problems (6 subjects in Padova, 5 in Antwerp). 

Data from 18 subjects (11 subjects in Padova, 7 in Antwerp) were missing. 

3.3 Gait Analysis variables 

Data were analysed separately for each laboratory. Indeed, Since different biomechanical 

models were used at the two centres,. The kinematic variables are defined differently and, 



thus, are not directly comparable and were analysed separately.  

3.3.1 Spatiotemporal parameters  

Spatiotemporal parameters (raw values and statistical significance) are reported in Table 2. 

In both laboratories, DS subjects walked at lower speed (Antwerp lab: AC vs C: p=0.003; 

Padova lab: AC vs C: p=0.002; S vs C: p<0.001) and had a reduced stride length than controls 

(Antwerp: AC vs C:  p=0.001 on the right and 0.002 on the left; S vs C:  p=0.01 on the right; 

Padova: AC vs C:  p<0.001 on the right and 0.004 on the left; S vs C:  p=0.002 on the right and 

0.002 on the left). Step width was significantly increased in DS (Antwerp: AC vs C:  p<0.001; 

S vs C:  p=0.003).  

INSERT TABLE 2 HERE 

3.3.2 Joint kinematics 

In the Padova cohort (see Figures 3 and 4), kinematic data showed a persistent pelvic 

anteversion in AC (AC vs S: p<0.01) during the whole gait cycle, associated with increased hip 

flexion over the gait cycle (AC vs C: p<0.01; AC vs S: p<0.01) and increased knee flexion during 

stance (AC vs C: p<0.01; AC vs S: p<0.01) and mid-terminal swing (80-100% of the gait cycle; 

AC vs C: p<0.01; AC vs S: p<0.01) bilaterally. On the left side an increase ankle dorsiflexion 

during loading response (5-30% of gait cycle) was detected (AC vs C: p<0.01; AC vs S: p<0.01). 

No significant differences emerged for the straight walkers’ group in comparison with 

controls, despite the increased kinematic curves’ variability. 

In the Antwerp cohort (Figures A.1 and A.2), kinematic data from the atypical-crouch gait did 

not differ from those collected in the Padova lab. Straight walkers in Antwerp showed an 

increased hip flexion in terminal stance (35-60% of gait cycle; S vs C: p<0.01) and increased 



plantar flexion in loading response (8-20% of gait cycle; S vs C: p<0.01). 

3.3.3 Walking speed and knee flexion correlation 

For the Padua cohort, two outliers were removed before the analysis of the Straight group. 

These two people with DS, although being correctly classified as Straight walkers, showed an 

akin stiff-knee walking pattern, with a strong hip strategy to grant a good clearance during 

the gait cycle. Two additional outlier values were not included in the analysis: one for the right 

side in the S group and one for the left side in the AC group. 

Overall, normalised walking speed and maximum knee flexion gave good and significant 

correlation at both centres, with knee flexion increasing as walking speed increases 

(maximum p-value equal to 0.02, see Figure A.3 and A.4 in the Supplemental Materials). The 

only exception was obtained for the AC group enrolled at the University of Antwerp (p-values 

equal to 0.36 and 0.39 for the left and right side, respectively), with the cloud of points 

showing no clear trend and giving a low R2 (0.12 and 0.11 for the left and right side, 

respectively). 

4 Discussion 

We confirmed abnormalities of gait in DS, objectively quantified, and we identified two 

distinct patterns. It is worthy to underline that, although data from both centres confirm the 

same trend and no loss of significance for the discussion is implied, data cannot be pooled 

together as two different biomechanical models have been considered in the two centres and 

results had to be interpreted separately.  

The first pattern, which we defined “atypical-crouch” (AC), displays marked knee and hip 

flexion throughout stance associated with increased ankle dorsiflexion in loading response 

and increased step width. The second, defined as “straight” (S), does not substantially differ 



from those of healthy age-matched volunteers, except for an increased hip flexion in terminal 

stance and increased step width.  

Previous reports have described DS walking as “crouch-gait”, with almost all developing this 

by age 13 years 4,5. Crouch gait definition includes increased ankle, knee and hip flexion during 

the whole gait cycle, plus rotations of the femur and/or tibia and muscle retractions.  This 

pattern is well described in children with cerebral palsy (CP): in this population, crouch gait is 

typically related to ankle plantar-flexors weakness, lever arm dysfunctions due to skeletal 

deformities, knee and hip flexor, and hamstrings contractures 24. We used the definition of 

“atypical crouch” in DS in light of the increased joint flexion prevalent during stance but less 

evident in swing and the lack of association with muscle contractures, as is the case in CP. 

Most likely atypical-crouch gait denotes a strategy to stabilize walking: the increased step 

width and the increased flexion of the three joints in the legs lowers the Centre of Mass 

(CoM), augmenting the area of the support base, and, thus, increasing stability. A stabilization 

mechanism could also be present in the second pattern (Straight) as a widening of the step 

width, which was indeed statistically significant only in the Antwerp cohort. Even though the 

ANOVA on the temporal parameters was not significant, data highlighted a trend towards 

increased stance time, as well as in double support time compared to swing and single 

support, respectively. Despite the neurological signs presented by our cohort, the lack of 

significantly prolonged stance or double support could be interpreted as a good efficacy of 

the motor strategy. 

The analysis on the correlation between walking speeds and knee flexion angles of people 

with DS reported good correlations in both centres, which is in line with the biomechanics of 

walking. Unexpectedly no correlation was obtained for the AC group enrolled at the University 

of Antwerp. By definition, the AC group should be characterised by a higher knee flexion than 



S group, as for the Padua cohort. Instead, the AC group in Antwerp showed scattered results, 

and maximum knee flexion angles (ranging between 50° and 75°) comparable with those of 

the S group (between 46° and 77°). Comparing the knee flexion angle over the whole gait 

cycle in Padua (Figure 3 and 4) and in Antwerp (Figure A.1 and A.2), differences between AC 

and S were obtained over both stance and swing in Padua and only in the stance phase in 

Antwerp. This finding has no clear-cut meaning, and we can only speculate on this: differences 

in the adopted biomechanical models, and specifically in the knee angles calculation, could 

have affected the results. Indeed, according to the Davis protocol 12, the knee flexion axis was 

calculated starting from physical markers attached on the patient skin in Padua, whereas the 

KAD (knee alignment device) was used in Antwerp, which virtually registers the axis during 

standing, and knee axis reconstruction is then performed starting from the physical and 

virtual markers of the lower limb. Therefore, different cross-talks between flexion extension 

movement and non-sagittal rotations (i.e. internal-external rotation and ab-adduction) may 

have hidden higher expected knee flexions in the AC group during the swing phase 25. Further 

investigations are still needed to clarify this aspect. A longitudinal study with a larger sample 

is ongoing, with data collected each year for 5 consecutive years. This wealth of data may 

contribute to clarify this issue. 

Gait abnormalities appear quite early in the natural history (as early as 4 years of age), in 

contrast with previous reports 1,4.  Only a minority (9/30 in Antwerp and 9/22 in Padova) 

developed AC, with no clear cut age distribution. This is different from observational data 4, 

which report that by the age of 13 years up to 80% of people with DS walk with a “crouch 

gait”. The determinants of gait pattern and how to develop individualized rehabilitative and 

preventive measures are still to be elucidated. 

A previous report 6 postulated a motor neuropathy, as the causative factor of crouch gait. We 



cannot exclude a neuropathy contributing to plantarflexor muscles weakness, but in our view 

different factors, including biomechanical ones, such as flat foot, contribute to the gait 

disturbances. Identifying causative biomechanical factors opens up new perspectives in terms 

of rehabilitative approaches. Foot lever dysfunctions can be corrected with insoles to restore 

proper propulsion; ankle-foot orthosis with an anterior rigid tibial shell (e.g. GRAFO 26) can 

reduce excessive tibial anteposition and consequently reduce knee flexion. 

The lack of a clear cut correlation with clinical findings was surprising: based on clinical 

observation alone, we hypothesised the presence of different clinical signs in the two groups 

or different drug regimens. Larger cohorts are likely needed to confirm this finding. 

Even if there is no difference in term of orthopaedic abnormalities (scoliosis, pes planus, knee 

valgus) between the two groups, it is of note that the prevalence of scoliosis and pes planus 

in our DS population is higher than in the general population (scoliosis in DS 13,7% vs 7% in 

general population, flatfoot 55% ca vs 5%) 27–30. This may be determined by ligament 

hyperlaxity, a frequent clinical finding in DS: hyperlaxity may be caused by the antiepileptic 

polytherapy, but we cannot exclude an articular capsule and ligaments interest due to the 

pathology itself and which could be the focus of further research. 

Our study has limitations. We did not factor in possible effects of duration of treatment, which 

has been reported to affect motor development. Seizure frequency was also not taken into 

account, although we excluded subjects who had a convulsive seizure in the previous week 

to avoid carry-over effects. Community functioning data were collected, but 

questionnaires/evaluations were heterogeneous between centres: the Padova Lab 

administered the Functional Independence Measure (FIM)31 or the WeeFIM (Functional 

Independence Measure in Children)32 in children aged 8 or younger, whereas in Antwerp data 

focused on mobility, based on the Functional Mobility Scale (FMS)33. In light of the 



heterogeneity of these data and the non-specificity of the scales, we considered more 

appropriate not to report these findings. The scarce consistency of trials, related to cognitive 

and behavioural deficits, was most likely responsible for the high standard deviations, which 

reduce statistical significance. Lastly, the cohort in Padova had a high number of 

non-collaborative subjects with severe behavioural disturbances, which had to be excluded 

from final analysis. While we have no clear hypothesis for this observation, we observe that 

the whole population referred to Padova (more than 50 subjects) may have included also 

more cognitively/behaviourally impaired individuals. 

An intriguing question is what the different patterns we identified represent: are they part of 

the same spectrum or do they represent truly different patterns with a diverse natural 

history? Will we be able to modify their evolution through focused rehabilitative programs 

and/or orthosis? Longitudinal data can hopefully provide more insight into these issues. 

Data Availability Statement 

We will share the data supporting these findings with researchers upon reasonable request 

to the corresponding author. 
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Table 1 

Demographics of the two cohort of people with Dravet in Antwerp and Padova. 

 

Table 2 

Spatio-temporal parameters and statistical significance between atypical crouch (AC) versus 

controls (C), atypical crouch (AC) versus straight walkers (S), and straight walkers (S) vs controls (C). 

 

Figure 1 

Flow chart of the study. 

 

Figure 2 

Clinical and Anamnestic data. 

 

Figure 3 

Kinematics obtained on the sagittal plane for the right side for controls (bands in black), 

atypical-crouch (red) and straight (blue). Data recorded in the University of Padova Movement 

Analysis laboratory. Bands are centered on the average curve and encompass 1 standard deviation. 

Differences from the 1D statistical analysis are highlighted in: green) for the ANOVA, red) for the 

post-hoc AC vs C, blue) S vs C, and magenta) for the post-hoc AC vs S. 

 

Figure 4 



 

 

Kinematics obtained on the sagittal plane for the left side for controls (bands in black), 

atypical-crouch (red) and straight (blue). Data recorded in the University of Padova Movement 

Analysis laboratory. Bands are centered on the average curve and encompass 1 standard deviation. 

Differences from the 1D statistical analysis are highlighted in: green) for the ANOVA, red) for the 

post-hoc AC vs C, blue) S vs C, and magenta) for the post-hoc AC vs S. 

 

 

 



 

 

Table1 

  ANTWERP PADOVA 

Parameter Units AC (9) S (21) C (10) ANOVA AC (9) S (13) C (10) ANOVA 

Age years 14.3 ± 7.3 8.7 ± 4.4 9.2 ± 3.9 ns 15.1 ± 7.1  17.6 ± 8.0 21.4 ± 7.7 ns 

Body mass kg 48.0 ± 21.6 36.1 ± 20.0 31.0 ± 15.2 ns 38.7 ± 9.6 49.1 ± 20.2 57.1 ± 25.0 ns 

Height (H) m 1.48 ± 0.30 1.38 ± 0.30 1.36 ± 0.26 ns 1.45 ± 0.14 1.53 ± 0.22 1.60 ± 0.29 ns 

BMI kg/m2 20.40 ± 4.79 17.24 ± 3.87 15.91 ± 2.39 ns 18.17 ± 2.94 20.01 ± 4.35 20.61 ± 4.96 ns 

Leg Length (LL) m 0.80 ± 0.18 0.82 ± 0.40 0.71 ± 0.15 ns 0.76 ± 0.09 0.82 ± 0.13 0.83 ± 0.19 ns 

 

 

 

 

 

 

 

 

 



 

 

Table 2 

 Parameter Units AC S C ANOVA AC vs C S vs C AC vs S 

A
N

TW
ER

P
 

Right StanceTime s 0.56 ± 0.23 0.59 ± 0.14 0.52 ± 0.09 ns    

 %GC 62.52 ± 2.48 60.87 ± 3.49 58.96 ± 2.57 ns    

Left StanceTime s 0.55 ± 0.23 0.57 ± 0.12 0.52 ± 0.09 ns    

 %GC 61.75 ± 2.63 60.54 ± 3.22 58.96 ± 2.57 ns    

Right SwingTime s 0.34 ± 0.13 0.37 ± 0.06 0.36 ± 0.06 ns    

 %GC 37.48 ± 2.48 39.13 ± 3.49 41.05 ± 2.57 ns    

Left SwingTime s 0.34 ± 0.13 0.37 ± 0.07 0.36 ± 0.06 ns    

 %GC 38.25 ± 2.63 39.46 ± 3.22 41.05 ± 2.57 ns    

Right Single Support s 0.39 ± 0.05 0.38 ± 0.07 0.38 ± 0.05 ns    

 %GC 38.86 ± 1.53 39.80 ± 2.51 40.88 ± 1.93 ns    

Left Single Support s 0.39 ± 0.05 0.37 ± 0.06 0.38 ± 0.05 ns    

 %GC 38.69 ± 2.48 39.48 ± 3.20 40.88 ± 1.93 ns    

Right Double Support s 0.24 ± 0.08 0.20 ± 0.08 0.17 ± 0.05 ns    

 %GC 23.25 ± 6.24 20.24 ± 5.47 18.30 ± 3.63 ns    

Left Double Support s 0.24 ± 0.06 0.20 ± 0.08 0.17 ± 0.05 ns    

 %GC 23.48 ± 4.23 21.12 ± 6.36 18.30 ± 3.63 0.04 0.003 ns ns 

Right StrideLength m 0.97 ± 0.24 0.97 ± 0.29 1.16 ± 0.21 ns    

 %H 1.16 ± 0.33 1.29 ± 0.38 1.63 ± 0.18 0.01 0.001 0.01 ns 

Left StrideLength m 0.98 ± 0.24 0.98 ± 0.26 1.16 ± 0.21 ns    

 %H 1.25 ± 0.27 1.37 ± 0.30 1.63 ± 0.18 0.01 0.002 0.016 ns 

Right StrideTime s 1.00 ± 0.12 0.96 ± 0.19 0.93 ± 0.15 ns    

Left StrideTime s 1.00 ± 0.14 0.94 ± 0.18 0.93 ± 0.15 ns    



 

 

Walking Speed m/s 0.97 ± 0.17 1.03 ± 0.29 1.26 ± 0.19 0.03 0.003 ns ns 

 %H/s 0.68 ± 0.17 0.81 ± 0.27 0.94 ± 0.21 0.03 0.009 ns ns 

Step Width m 0.19 ± 0.05 0.20 ± 0.09 0.11 ± 0.02 0.005 < 0.001 0.003 ns 

P
A

D
O

V
A

 

Right StanceTime s 0.66 ± 0.17 0.72 ± 0.10 0.63 ± 0.07 ns    

 %GC 61.16 ± 4.03 61.60 ± 3.00 59.57 ± 1.63 ns    

Left StanceTime s 0.69 ± 0.20 0.73 ± 0.09 0.63 ± 0.07 ns    

 %GC 62.61 ± 4.63 61.90 ± 2.26 59.57 ± 1.63 ns    

Right SwingTime s 0.41 ± 0.04 0.44 ± 0.06 0.43 ± 0.04 ns    

 %GC 38.83 ± 4.06 38.27 ± 3.03 40.46 ± 1.63 ns    

Left SwingTime s 0.40 ± 0.04 0.45 ± 0.06 0.43 ± 0.04 ns    

 %GC 37.32 ± 4.65 38.88 ± 2.08 40.46 ± 1.63 ns    

Right Single Support s 0.39 ± 0.03 0.45 ± 0.05 0.43 ± 0.04 0.03 ns ns 0.012 

 %GC 37.56 ± 4.44 38.85 ± 2.20 40.61 ± 1.34 ns    

Left Single Support s 0.41 ± 0.05 0.45 ± 0.06 0.43 ± 0.03 ns    

 %GC 38.40 ± 3.48 38.66 ± 3.66 40.42 ± 2.00 ns    

Right Double Support s 0.13 ± 0.06 0.14 ± 0.03 0.10 ± 0.02 ns    

 %GC 11.97 ± 3.07 12.05 ± 2.91 9.49 ± 1.54 ns    

Left Double Support s 0.13 ± 0.06 0.13 ± 0.04 0.10 ± 0.02 ns    

 %GC 11.56 ± 3.54 11.13 ± 2.68 9.48 ± 1.41 ns    

Right StrideLength m 0.98 ± 0.18 1.05 ± 0.21 1.33 ± 0.19 0.001 < 0.001 0.004 ns 

 %H 68.00 ± 12.36 68.43 ± 8.67 79.73 ± 5.93 0.01 0.016 0.002 ns 

Left StrideLength m 0.99 ± 0.17 1.05 ± 0.21 1.33 ± 0.19 0.001 < 0.001 0.003 ns 

 %H 68.53 ± 11.96 68.16 ± 8.71 79.73 ± 5.93 0.01 ns 0.002 ns 

Right StrideTime s 1.07 ± 0.20 1.17 ± 0.13 1.06 ± 0.11 ns    



 

 

Left StrideTime s 1.08 ± 0.22 1.17 ± 0.15 1.06 ± 0.11 ns    

Walking Speed m/s 0.91 ± 0.24 0.91 ± 0.21 1.24 ± 0.13 < 0.001 0.002 < 0.001 ns 

 %H/s 67.1 ± 10.9 61.9 ± 11.7 75.8 ± 11.7 0.026 ns 0.01 ns 

Step Width m 0.12 ± 0.17 0.12 ± 0.05 0.06 ± 0.03 0.02 ns 0.006 ns 

 



 

 

Figure 1 
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Figure 3 



 

 

Figure 4 



Supplemental materials 

Table A.1 – Definition of the main gait phases and spatio-temporal parameters. 

Quantity Definition 

Foot strike Instant at which the foot hits the ground during walking. 

Foot off Instant at which the foot completely lifts from the ground. 

Stride or Gait Cycle Defined between two subsequent foot strikes of the same limb. Its 
duration is expressed in seconds (s). 

Step Defined between a foot strike and the subsequent foot strike of the 
contralateral limb (half of the gait cycle). Its duration is expressed in 
seconds (s) and gait cycle percentage (%GC). 

Stance Period of time with the foot in contact with the ground (from a 
foot-strike to a foot-off). It is normally the 60% of the gait cycle. Its 
duration is expressed in seconds (s) and gait cycle percentage (%GC). 

Swing Period of time with the foot not in contact with the ground (from a 
foot-off to a foot-strike). It is normally the 40% of the gait cycle. Its 
duration is expressed in seconds (s) and gait cycle percentage (%GC). 

Single support Period of stance with the ipsilateral limb on swing. It is normally the 50% 
of the gait cycle. Its duration is expressed in seconds (s) and gait cycle 
percentage (%GC). 

Double support Period of stance with both feet in contact with the ground. It is normally 
the first 10% of the gait cycle. Its duration is expressed in seconds (s) and 
gait cycle percentage (%GC). 

Stride length Length between the foot at two subsequent foot-strike of the same limb. 
It is normally measured in meters (m) and normalized with respect to 
the subject height (%H). 

Step width Length between the feet at two subsequent foot-strikes of the two 
limbs. It is normally measured in meters (m) and normalized with respect 
to the subject height (%H). 

Walking speed The velocity the subject is walking at. It is normally expressed in both 
meter per seconds (m/s) and normalized with respect to the subject 
height (%H/s). 

  



 
Figure A.1 – Kinematics obtained on the sagittal plane for the right side for controls (bands in black), 
atypical crouch (red) and straight (blue). Data recorded at the University of Antwerp Movement Analysis 
laboratory. Bands are centred on the average curve and encompass 1 standard deviation. Differences from 
the 1D statistical analysis are highlighted in: green) for the ANOVA, red) for the post-hoc AC vs C, blue) S 
vs C, and magenta) for the post-hoc AC vs S.  



 
Figure A.2 – Kinematics obtained on the sagittal plane for the left side for controls (bands in black), atypical 
crouch (red) and straight (blue). Data recorded at the University of Antwerp Movement Analysis 
laboratory. Bands are centred on the average curve and encompass 1 standard deviation. Differences from 
the 1D statistical analysis are highlighted in: green) for the ANOVA, red) for the post-hoc AC vs C, blue) S 
vs C, and magenta) for the post-hoc AC vs S.  



 

Figure A.3 – Correlation between normalized walking speed and maximum knee flexion angle for the 
patients enrolled in Antwerp and classified as AC (atypical-crouch) and S (straight). Red lines, dots and 
parameters refer to the left limb; whereas green plots refer to the right limb. The box shows the regression 
coefficients (a1, a0 and R2) and the relevant significance of the linear model (p-value lower than 0.05 give 
significant correlation). 

 



 

Figure A.4 – Correlation between normalised walking speed and maximum knee flexion angle for the 
patients enrolled in Padova and classified as AC (atypical-crouch) and S (straight). Red lines, dots and 
parameters refer to the left limb; whereas green plots refer to the right limb. The box shows the regression 
coefficients (a1, a0 and R2) and the relevant significance of the linear model (p-value lower than 0.05 give 
significant correlation). 


