
19 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

A Reference Model and Prototype Implementation for SDN-Based Multi Layer Routing in Fog Environments
/ Bellavista P.; Giannelli C.; Montenero D.D.P.. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE
MANAGEMENT. - ISSN 1932-4537. - STAMPA. - 17:3(2020), pp. 9097288.1460-9097288.1473.
[10.1109/TNSM.2020.2995903]

Published Version:

A Reference Model and Prototype Implementation for SDN-Based Multi Layer Routing in Fog Environments

Published:
DOI: http://doi.org/10.1109/TNSM.2020.2995903

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/788536 since: 2021-01-13

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TNSM.2020.2995903
https://hdl.handle.net/11585/788536

A Reference Model and Prototype Implementation
for SDN-based Multi Layer Routing

in Fog Environments
Paolo Bellavista

DISI, University of Bologna
Bologna, Italy

paolo.bellavista@unibo.it

Carlo Giannelli
DMI, University of Ferrara

Ferrara, Italy
carlo.giannelli@unife.it

Dmitrij David Padalino Montenero
DISI, University of Bologna

Bologna, Italy
dmitrij.padalino@unibo.it

Abstract—If compared with Cloud computing, Fog computing
is proving to support challenging scenarios imposing strict delay
requirements, e.g., tactile Internet and Industrial Internet of
Things (IIoT), and increased flexibility, e.g., dynamic Smart City
and users’ follow-me provisioning case. In fact, by exploiting
computing, storage, and connectivity resources in the proximity
of sensors and actuators (for IIoT) and of mobile nodes carried
by citizens (for Smart Cities), significant portions of services
and functionalities can be migrated outside datacenters. However,
such scenarios are characterized by increased heterogeneity of
nodes in terms of hardware/software, of time-varying applications
possibly offered by multiple service providers at the same time,
and frequent joining/leaving of nodes as a typical behavior.

To overcome these issues, the paper originally proposes Multi-
Layer Advanced Networking Environment (Multi-LANE), a
Multi Layer Routing (MLR) solution based on Software Defined
Networking (SDN) that specifically targets the emerging and
promising Fog-based deployment environments. Multi-LANE
dynamically selects and exploits (even at the same time) different
routing strategies and mechanisms suitable for applications
with heterogeneous features and requirements. Based on its
centralized point of view, our Multi-LANE SDN controller
determines the most suitable path and configures the proper
MLR forwarding mechanism, ranging from traditional IP and
sequence-based overlays to more articulated ones based on the
inspection of payload content types and values. In addition to
design/implementation insights and to the availability of the
Multi-LANE prototype, this paper also provides the community
with a significant contribution in terms of novel models for
forwarding mechanisms specialized for Fog computing scenarios.

Index Terms—Software Defined Networking, Overlay Net-
working, Management Middleware, Multi-layering.

I. INTRODUCTION

The adoption of the Internet of Things (IoT) is currently
spreading in industrial environments and Smart Cities, with
each scenario characterized by specific requirements. In par-
ticular, the Industrial Internet of Things (IIoT) specializes the
IoT by imposing stricter requirements in terms of not only re-
liability and security, to ensure that connected physical objects
are correctly configured/accessed only by authorized users,
but also performance, to always keep monitored parameters
up-to-date and to promptly deliver and actuate commands.
Smart City environments represent another interesting evo-

lution of IoT. Through IoT, municipalities can support and
provide novel and smarter services, ranging from transporta-
tion, parking, lighting, traffic, and waste management to safety
and law enforcement. Also note that citizens can not only
access to Smart City services, but also collaborate to share
resources and applications by allowing the dynamic integration
of their mobile devices within the Smart City environments.
However, there is the need of providing innovative solutions
to support the flexible management of network resources, also
considering that in these scenarios the network may include
several autonomous subnets with differentiated management
authorities, hardware capabilities, and service availability.

Fog Computing for IIoT and Smart City. In IIoT and
Smart City scenarios, Fog computing is proving to be a viable
solution [1], [2]. By deploying multiple devices with comput-
ing, storage, and connectivity capabilities closer to sensors and
actuators (for IIoT) and to mobile nodes carried by citizens
(for Smart Cities), it is possible to migrate some services
and functionalities typical of the Cloud outside datacenters.
For instance, by managing data on (and eventually issue
commands from) Multi-Access Edge Computing (MEC) nodes
[3], the latency between an alarm generation and a proper
countermeasure is dramatically reduced while the quality of
experience perceived by citizens improves, since there is no
need of sending packets back and forth the Internet.

Fog scenarios encompass not only MEC nodes (typically
deployed and managed by telco operators), but also other
Edge fixed/mobile devices deployed closer to end-users (e.g.,
within subnets where sensors, actuators, and citizens’ smart-
phones/tablets reside) and other nodes closer to the Cloud
providing connectivity, storage, and computing services. Such
nodes provide developers with a suitable environment to de-
ploy novel applications, ensuring better latency and reliability
performance if compared with the traditional global Cloud. In
the following, we use the Fog node term to generically indicate
any node within the Cloud-to-device continuum.

If compared with Cloud datacenters, Fog environments for
IIoT and Smart City scenarios are characterized by:

1) increased heterogeneity of nodes in terms of hardware/-
software characteristics. Every Fog node can differ in

terms of CPU performance, available RAM and storage,
wired/wireless interfaces, operating system and (more
generally) software libraries/capabilities;

2) time-varying applications of multiple service providers
running at the same time with differentiated require-
ments. Fog viability (also from an economical point of
view) benefits from the capability of hosting different
applications, by allowing their exploitation for different
use cases to fulfill (eventually conflicting) requirements
of different users;

3) frequent joining/leaving of nodes as a typical behavior,
not only due to failures or upgrade of nodes such as in
datacenters. Fog nodes are typically managed by differ-
ent administrators and by users willing to temporarily
share their computational and networking resources.

SDN-based MLR to Enhance Fog Environments. The
centralized approach of Software Defined Networking (SDN)
represents a valuable support to better manage heterogeneous
Fog environments. It allows to more easily gather requirements
of different applications running in Fog environments and
to take management decisions considering the state of the
whole network, e.g., to enforce traffic engineering policies and
perform rerouting and multicasting [4], [5].

To properly enforce such solutions it is required to introduce
the notion of traffic flow, thus making a relationship among
different packets related to the same service instance. Open-
Flow [6] supports such mechanism by extending traditional IP
forwarding with matching rules that take advantage of infor-
mation available on headers at different OSI layers, such as
MAC/IP/TCP or UDP. However, this solution cannot be easily
adopted in Fog environments based on overlay networks, since
packet forwarding may differ from the traditional IP one (e.g.,
we adopted DSR in our overlay network middleware [7]).
Moreover, traditional IP forwarding rules do not allow, e.g.,
to easily duplicate packets on intermediary nodes or specify
unique receiver identifiers apart from IP addresses. For these
reasons, we state that in Fog environments it is more suitable
to adopt a per-flow point of view by exploiting a flow id to
specifically tag packets on senders.

Exploiting only the flow id to differentiate traffic flows
greatly limits packet management granularity. Applications
tagging packets with flow ids could require finer granularity,
i.e., managing in a different manner different packets of the
same traffic flow. For instance, in case of a traffic flow
generated by a temperature sensor, packets carrying values
that are almost equal to previous ones should have a regular
priority while in the case of abrupt temperature change the
associated packet should have higher priority.

On the opposite, legacy network services not tagging pack-
ets with flow ids cannot achieve the benefits of traffic manage-
ment and rerouting/multicasting mechanisms (or cannot dis-
patch packets towards multi-hop paths at all). In fact, packets
sent via traditional socket-based applications are forwarded
in relation to the IP rules present at routing nodes. Thus,
typically there is the need of setting proper IP forwarding rules
to correctly dispatch packets at multi-hop distance to targeted

Fog nodes. However, the packet forwarding procedure based
on flow ids is typically performed at the overlay network layer,
without any modification of IP routing tables in the underlying
operating system.

The MLR proposal. To overcome these issues we propose
the Multi-Layer Advanced Networking Environment (Multi-
LANE) middleware, originally adopting a Multi Layer Routing
(MLR) approach in conjunction with SDN to fully enhance the
capabilities of heterogeneous Fog environments. Our Multi-
LANE SDN data plane is the first to adopt MLR by selectively
exploiting multiple forwarding mechanisms even at the same
time, each one suitable for different Fog applications with
heterogeneous requirements. The Multi-LANE SDN control
plane exploits dispatching features supported by the overlay
network to make possible the interaction among the centralized
SDN controller and Fog nodes, allowing to send monitoring
information and control messages back and forth. Then, based
on application requirements provided by clients and its cen-
tralized knowledge about the network status, the Multi-LANE
SDN controller is able not only to identify the most suitable
path but, most relevant, to select the proper MLR forwarding
mechanism, e.g., either IP- or overlay-based, by spreading
on sender and intermediary Fog nodes appropriate forwarding
rules. Then, applications can start sending traffic flows with
the forwarding mechanism suitable for their needs.

The remainder of the paper is organized as follows. Section
II outlines our MLR model while Section III presents the
architecture and selected implementation insights of our Multi-
LANE middleware. Section IV reports quantitative in-the-
field performance results, while related work and conclusive
remarks end the paper.

II. SDN-BASED MULTI LAYER ROUTING (MLR) MODEL

Different applications running on top of the same Fog
environment typically have different capabilities and require-
ments, pushing for the adoption of differentiated forwarding
and management rules. As a general consideration, lower
layer forwarding rules based on native IP impose minimum
overhead, but require to modify routing tables at the operating
system and do not easily allow to satisfy requests of different
applications at the same time. Higher layer forwarding rules
based on overlay networking, instead, more easily provide
sophisticated management capabilities, at the cost of increased
computational overhead on Fog nodes.

The MLR approach (combined with SDN) allows applica-
tions of the same Fog environment to use native IP, overlay
networking information, and payload content to drive packet
dispatching, even at the same time and based on application
capabilities and requirements. For instance, consider a video
streaming and a weather monitoring application running in
the same Fog environment and dispatching packets via multi-
hop paths. A starting configuration dispatches video and
weather data via the overlay network not to impose IP table
reconfiguration, at the cost of increased overhead. In case of an
alarm, e.g., due to the need of locating a kidnapped person, the
MLR approach switches the dispatching of video packets by

selected cameras to native IP, thus with increased performance
but requiring the collaboration of intermediary Fog nodes
to manage the involved routing tables. While looking for
the kidnapped person, weather packets are dispatched via
the overlay network at reduced priority, e.g., by randomly
dropping 50% of them, thus providing additional networking
resources to the video stream.

Fig. 1 compares overlay network (up) and physical network
(down) data planes. The physical network of the Fog environ-
ment consists of multiple subnets, each one virtually managed
in an autonomous and uncoordinated manner. For instance,
in Smart City environments the network backbone provided
by municipalities can be enhanced and extended by fixed
and mobile Fog nodes provided by citizens and organizations.
Moreover, in IIoT scenarios the shop floor network can be
integrated with subnets comprising a subset of involved appli-
ances and machines. In such scenarios, native IP forwarding
is possible only if the routing table of each node has rules
towards every other node. For instance, to send a packet from
the left-most to the right-most node of Fig. 1-down, there
is the need of deploying an IP forwarding rule towards IPf6
in every intermediary node. Overlay network routing exploits
information available within packets themselves to identify a
path, such as the sequence of nodes the packet must traverse
to reach the destination. For instance, a packet from node a
to node f could contain the [c, d, e, f] sequence (note that in
this case nodes are identified by their unique ids, not by their
IP addresses).

Since there is no single solution perfectly fitting any
application-specific feature and performance requirements, we
claim that a Fog environment can highly benefit from MLR.
In fact, through MLR, we can provide IIoT and Smart City
applications with the capability of selecting the forwarding
mechanism they deem most appropriate, even by activating
different mechanisms at the same time in the same network.
Moreover, the adoption of the SDN approach can relevantly
support the development of such an MLR solution. To this
purpose, we propose to exploit the overlay network to dispatch

Fig. 1: Fog environment composed of multiple physical sub-
nets (down) interacting to create a single overlay network (up).

control plane packets (Fig. 2, up). In this manner, information
and commands sent between clients and the SDN controller
can take advantage of the routing flexibility of overlay net-
works, e.g., to identify destinations based on a network-
independent unique node id rather than an IP address that
could change or could be duplicated in different subnets of the
same multi-hop Fog environment. In other words, the SDN
controller can dispatch packets related to the control plane
notwithstanding how (and if) routing tables on intermediary
Fog nodes have been configured. On the contrary, the data
plane can exploit MLR to support multiple sub-layers, e.g., by
providing forwarding rules at both the physical and the overlay
layer (Fig. 2, down), each one characterized by different
capabilities.

Below, we detail the forwarding model we have identified by
splitting among three primary categories (Table I), i.e., based
on native IP forwarding rules, exploiting information available
in the header of overlay network packets, and considering the
application payload within overlay network packets. Let us
note again that, by following our proposed MLR approach,
different data plane mechanisms can be adopted at the same
time, eventually even by the same application for different
packets/flows with a fine-grained granularity.

A. Native IP

From a forwarding abstraction point of view, the native IP
forwarding mechanism resides at the bottom layer, since it
directly exploits features provided by the Fog node operating
system.

At this layer, we identify two forwarding mechanisms. The
basic one adopts the IP longest prefix matching mechanism to
forward IP packets based on the destination IP address applied
to the local routing table. In addition, it is possible to adopt
the more sophisticated policy based routing mechanism, by
considering additional information such as sender IP address,
IP protocol, transport protocol ports, and packet payload size
in addition to the destination IP address. In this manner,
different packets sent between the same source/destination

Fig. 2: Control plane (up) is used to send forwarding rules,
both for IP routing (down, left) and overlay (down, right) data
planes.

TABLE I: The SDN-based MLR Model.
Forwarding
mechanism

Main activity of SDN Pros ConsControl Plane Data Plane

Native IP
Destination
IP address

IP table modification IP header read
Legacy-compatible, no sender

topology knowledge
Privileged access required, conflicting

IP addresses, conflicting rules
Policy based

routing
IP table modification IP header read

Also
multi-path

Privileged access required, conflicting IP
addresses, conflicting rules

Overlay
Network
Packet
Header

Path node
sequence

Network topology
provisioning

Overlay packet
header read

table independent, no conflicting
rules, no conflicting IP addresses

Topology knowledge,
single-path, no rerouting

Destination
identifier

On demand id
to path mapping

Overlay packet
header read

Also dynamic
rerouting, multi-path

Per-packet management only

Flow id and other
header fields

Forwarding rules
modification

Overlay packet
header history

Also traffic engineering,
rerouting/multicasting

Per-flow management only

Application
payload

Payload type
Forwarding rules

dynamic deployment
Payload
check

Also
per-type granularity

Required knowledge of
payload type

Payload content
Forwarding rules

dynamic deployment
Payload

deserialization
Also

per-content granularity
Required knowledge of

payload content semantic
Payload content

correlation
Forwarding rules

dynamic deployment
Deserialization

and history
Also

inter-packet content granularity
Required knowledge of

previous content
Inter-flow content

correlation
Forwarding rules

dynamic deployment
Deserialization

and history
Also

inter-flow content granularity
Required knowledge of

other traffic flows

couple can be managed in a differentiated manner, e.g., by
forwarding tiny and huge packets towards different paths or
by selecting the path in relation to the UDP/TCP destination
port.

To support such solutions, the SDN controller must dispatch
proper routing rules to Fog nodes between the sender and
the receiver (see routing rule towards IPf6 in Fig. 1). Then,
once routing rules are set on Fog nodes, the sender can start
sending packets in a completely transparent manner, without
any network topology knowledge and, most relevant, without
modifying network applications on clients. On the sender side,
the only requirement is that the sender application (or another
companion software module) interacts with the Multi-LANE
SDN controller via the overlay network based control plane
to properly require the configuration of IP forwarding rules
along the path. On the contrary, on the receiver application
there is no need of any modification/upgrade.

However, let us note that since such a solution need to
modify routing tables, the Multi-LANE control agent (i.e., the
software module on Fog nodes interacting with the SDN con-
troller) must have privileged access to the operating system,
representing a potential security threat. Moreover, there could
be conflicting forwarding rules, since the destination node is
identified by the IP address and in such Fog environment there
is no guarantee of IP address/subnet uniqueness, since each
subnet can be managed and configured in an autonomous
manner. However, policy based routing partially solves this
issue by allowing to discriminate among different destinations
also based on transport protocol and sender/receiver ports.
Finally, traditional IP forwarding rules do not natively provide
a mechanism to easily manage packets, e.g., to enforce traffic
engineering and packet rerouting/multicasting.

B. Overlay network packet header

The overlay network provides forwarding mechanisms by
abstracting from and extending features provided by the un-
derlying operating system. Of course, it exploits IP to dispatch
packets at one-hop distance, i.e., among Fog nodes belonging
to the same IP subnet. However, the actual forwarding among

different subnets between the sender and the receiver is
managed by the overlay network itself. As a primary and
notable consequence, in this case there is no need of modifying
operating system routing tables to allow multi-hop packet
dispatching, since physical connections (i.e., TCP and UDP
sockets) are exploited only to send packets among adjacent
nodes. Moreover, as long as nodes of the overlay network have
unique node ids, e.g., by exploiting a 128-bit long Universally
Unique IDentifier (UUID), there is no risk of conflicting
forwarding rules. In fact, such a solution finely works even
if different subnets of the same Fog environment exploit the
same IP addressing space (of course, such subnets cannot be
adjacent).

At this layer, forwarding mechanisms exploit information
available in the header of the overlay network packet. In
particular, we identify three forwarding mechanisms primarily
differing in relation to the header information they use. In case
the overlay network supports DSR-like routing, senders can
directly specify the path node sequence, i.e., the ordered set of
Fog node identifiers the packet should traverse in a step-wise
manner. For instance, to send a packet from node a to node f in
Fig. 1, the sender application can specify either [b, e, f] or [c,
d, e, f] (then translated to [IPb1, IPe3, IPf6] or [IPc2, IPd4, IPe5,
IPf6] IP address sequences by the overlay network) to send
the packet towards either the upper or lower path respectively.
In this case the sender must specify the whole path based on
the knowledge of the Fog environment topology it can retrieve
from the SDN controller. In any case, it can specify only one
path for each packet (even if the SDN controller identifies
multiple ones) and, in case of path disruption, there is no
possibility of rerouting it towards another path.

To lessen the burden on the sender application, the overlay
network can also support slightly higher-level communication
abstraction features by allowing senders to specify only the
destination identifier. In this case, it is the overlay network in
charge of dynamically discovering available paths towards the
destination Fog node and to select the best one, by adopting a
proper path selection algorithm ranging from very simple, e.g.,

the shortest path, to more articulated, e.g., the most reliable
path in terms of node mobility [8], ones. To this purpose, the
control agent in the sender node intercepts traversing packets
and, in a completely transparent manner, interacts with the
SDN controller to map the destination id to a path in terms
of set of traversed nodes. Note that such a solution is adopted
in a per-packet manner, i.e., different packets sent to the same
destination can go towards different paths. Moreover, if the
currently adopted path is not available anymore, not only
the sender but also Fog nodes can dynamically discover an
alternative path and reroute the packet towards the destination.

Senders can also tag packets related to the same traffic
flow with a unique flow id. In this manner, Fog nodes can
easily correlate different packets and manage them in a proper
manner. In particular, by tagging packets with the flow id it is
possible to adopt traffic engineering mechanisms by providing
higher priority to a traffic flow at the expense of others or
to support multicasting of the same packet towards different
destinations in a step-wise fashion. In this case, the SDN
controller deploys proper forwarding rules on Fog nodes and
then each node autonomously manages traversing traffic flows
by applying such rules. Finally, note that together with the flow
id, such mechanisms i) can need to maintain some history of
recent packets (e.g., inter-packet delay average and standard
deviation) and ii) can also use other packet header fields
provided by the overlay network and available on Fog nodes,
e.g., the hop count, the set of previously traversed nodes, or
the destination port.

C. Application payload

Further abstracting, it is possible to specify forwarding
rules based on the content provided by applications, in an
Information Centric Networking (ICN) fashion [9]. Also note
that such information can be (and usually are) exploited
together with overlay packet header ones. For instance, it is
possible to identify the set of paths based on the destination
id and then to select a path based on the payload content. To
this purpose, Fog nodes must have some knowledge about the
semantic of the content sent among nodes, with the purpose
of applying proper forwarding rules. It is worth noting that,
in general, it is not possible to statically identify the set of
content applications can generate. For this reason, the SDN
controller should be flexible enough to create forwarding rules
based on content syntax and semantic not yet available at node
deployment time and, most relevant, control agents should be
able to dynamically receive, deploy, and enforce such rules on
Fog nodes.

At this layer, forwarding mechanisms mainly differ in
relation to the required knowledge and inspection of packet
payload. In the most straightforward case, forwarding rules
only consider the payload type. In this case, while the SDN
controller and intermediary nodes must know the kind of
content is sent by applications, the additional complexity is
only due to check the type of payload. By considering also
the payload content, there is the notable additional overhead of
payload deserialization. In fact, it imposes the relevant burden

(a) Payload type.

(b) Payload content.

Fig. 3: Application payload routing examples.

of recomposing the message payload at each Fog node. Such
a task can be very CPU intensive and memory consuming,
also considering that Fog nodes can have limited hardware
capabilities, with the notable shortcoming of potentially de-
laying packet dispatching. However, this mechanism allows to
specify much finer-grained management rules, e.g., by rerout-
ing important content towards better paths or by selectively
assigning traffic engineering priorities not only based on the
flow id but also on the dynamically computed relevance of
content. Fig. 3 presents examples of payload type and content
type overlay network routing based on rules provided by the
SDN controller on node C. In the former case (Fig. 3a), the CA
node dispatches packets to CA1 and CA2 in case the carried
content is of type Temp and Pressure, respectively. In the latter
case (Fig. 3b), the CA node dispatches Temp packets towards
CA1 if the temperature value is lower than or equal to 60◦C,
towards CA2 otherwise.

Further increasing the level of information awareness and
exploitation, it is possible to correlate current and previous
content either of the same or even of different traffic flows.
In both cases the complexity of control agents relevantly
increases. In particular, in case of payload content correlation
there is the need of storing (part of) information carried by
previous packets, also adopting proper mechanisms to decide

Fig. 4: High-level architecture of Multi-LANE data plane (left) and control plane (right).

when previous content should be removed/pruned from mem-
ory. However, it is possible to specify meaningful forwarding
rules such as by assigning higher priority to packets of a
traffic flow identified by a flow id only if the carried value
differs from the average of the previous ten values more than
a percentage. Finally, in case of inter-flow content correlation
it is also possible to specify rules that have an impact on other
traffic flows, e.g., by temporarily lowering the priority of every
flow but the current one in case of very important and urgent
information with a strict temporal deadline.

III. IMPLEMENTING THE MLR APPROACH IN
MULTI-LANE

A. Multi-LANE architecture and selected implementation in-
sights

Fig. 4 presents the high-level architecture of our Multi-
LANE solution. The data plane (Fig. 4, left) is based on
two primary components. At the bottom layer resides the
operating system performing native IP forwarding and pro-
viding traditional UDP/TCP sockets to applications. Then, the
overlay network (based on our previous solution [7]) exploits
lower level features to dispatch packets and enforce traffic
engineering and reroute/multicast forwarding rules. Moreover,
it provides to applications communication API to send/re-
ceive unicast/multicast/broadcast packets at multi-hop distance
within the overlay network. Applications can adopt the MLR
approach by exploiting operating system, overlay network, or
both mechanisms, with a fine-grained per-packet granularity.
The control plane (Fig. 4, right) exploits the overlay network
to dispatch information and control packets among Fog nodes
and the SDN controller. Each Fog node runs a control agent:

• discovering available SDN controllers and joining to the
most suitable one, e.g., based on hop distance or RTT.
During the join phase, the control agent also provides lo-
cal forwarding capabilities, e.g., if local security policies
allow to modify operating system IP rules;

• periodically gathering and sending to the SDN controller
local information about, e.g., the number of interfaces,

local IP addresses, and the available bandwidth for each
interface (additional details in [5]);

• waiting for and applying SDN controller commands, e.g.,
asking to modify IP forwarding rules or overlay network
traffic engineering policies;

• providing API to local applications, e.g., to interact
with the SDN controller to get the best path towards a
destination and to enable multicast in a step-wise fashion,
or, eventually, also to retrieve the network topology and
locally identify a path towards the destination.

The SDN controller:
• receives information from Fog control agents and exploit

such information to generate a network graph represent-
ing the network topology;

• maintains a database of best path selection algorithms and
traffic engineering policies;

• receives requests from sender applications (via their local
Fog control agents) to get, e.g., the set of available paths
towards a destination by applying a given path metric;

• provides an API to, e.g., switch among traffic engineering
policies or deploy new path selection and traffic engi-
neering policies. The SDN controller API can be locally
exploited to create a graphical management console or to
remotely interact via remote procedure calls.

We have developed a Java prototype of our Multi-LANE
middleware not only to demonstrate the feasibility and the
efficiency of the presented model/features, but also to pro-
vide the community with a working solution to foster the
research in this field. The source code can be found at
https://github.com/DSG-UniFE/ramp (native IP supported on
Linux, the rest on Linux/Windows/macOS).

Fig. 5 presents a detailed overview of the Fog node ar-
chitecture. In the control plane, the Control Agent compo-
nent provides communication API to local applications and
interacts with the SDN controller by exploiting the overlay
network (supported by our previous RAMP solution) to send
locally gathered information and receive forwarding rules.
Based on received commands, the Control Agent component

Fig. 5: Multi-LANE node implementation insights.

can exploit the OS Routing Manager to modify the OS-level
routing tables or can interact with Data Plane Rules Manager
and Data Types Manager to deploy new forwarding rules and
new content types, respectively. In addition, the Control Agent
can de/activate predefined routing rules and traffic engineering
policies (presented in [5]). In the data plane, the Data Plane
Forwarding component intercepts overlay network packets and
forwards them accordingly to the forwarding rules set by
the Control Agent component. Also note that Kernel Routing
Tables logically reside in the data plane, even if outside the
Multi-LANE solution implementation.

B. Control-plane inter-node interactions

By properly exploiting Multi-LANE components, it is pos-
sible to support MLR communication features presented in
Section II. Let us note that supported communication layers
also greatly differ in the control plane phase. In particular, we
identify three primary characterizing aspects of the control
plane:

• which nodes are involved in the control plane phase,
i.e., with or without the involvement of intermediary Fog
nodes;

• where primary control plane actions happen, i.e., on the
sender, on the SDN controller, or on Fog nodes;

• the complexity of the sender, either dummily accessing
network features in a transparent manner or smartly
interacting with the local control agent in a direct way.

Fig. 6a shows the sequence diagram of the native IP control
plane. First of all, the sender application provides to the SDN
controller (by exploiting the API of the local control agent) the
destination node (identified by the node id) it is going to send

packets to. Optionally, the sender can also specify the best
path metric that should be adopted and other information in
case of policy based routing. Then, the SDN controller applies
the best path metric to identify a path between the sender and
the receiver, generates proper IP forwarding rules, and sends
them to Fog nodes along the path. Control agents of Fog nodes
along the path receive forwarding rules and apply them locally.
In case every Fog node correctly applies the rules, the SDN
controller notifies to the sender the destination IP address it
can use to send packets via the native IP data plane (otherwise,
an abort message).

We currently support three different path computation met-
rics (but additional metrics can be easily added):

• breadth first, by looking for a path from a source to a
destination with the breadth first search;

• minimum network load, by considering the current net-
work load of each link;

• minimum intersections, considering the amount of flows
already allocated to each link of the topology.

It is worth noting that the minimum intersections met-
ric tends to provide different paths from the source to the
destination and vice versa, with the notable benefit of fully
exploiting available link diversity also in the case of multi-
path TCP connections managed at the operating system level.
For instance, Fig. 7 presents how our Multi-LANE solution
allows IP packets of the same multi-hop TCP connection to
flow towards different paths on opposite directions, thus taking
full advantage of the network topology. In particular, packets
related to the multi-hop TCP connection between node CA1
and node CA5 flow towards CA2 in a direction and towards

CA3 in the other direction.
In the native IP solution there is the need of interacting

with every Fog node in the path, since routing tables at the
operating system must be properly configured. However, only
the SDN controller must have knowledge about the network
topology and how to compute the best path. Finally, the sender
node can be very simple, since it only interacts with the local
control agent to specify the destination IP and then it waits
for an acknowledgment together with the destination IP.

Fig. 6b shows the sequence diagram of the overlay network
with path node sequence control plane. First of all, the
sender application gathers the up-to-date network graph from
the SDN controller (via the local control agent). Based on
this information, the control agent of the sender node can
autonomously identify the best path towards the destination
and then it can start sending packets taking advantage of the
overlay network data plane.

Differing from the previous solution, intermediate Fog
nodes are not involved in the control plane phase since there
is no need of modifying their forwarding rules. Moreover, the
SDN controller only maintains the network topology based on
its centralized point of view while the sender node actually
exploits the network graph to identify the best path. Let us
stress that while this solution imposes on sender nodes network
overhead (to gather the network graph) and computational
overhead (to identify the path), it ensures high flexibility, since
the sender can adopt the path comparison metric it deems most
appropriate.

Fig. 6c shows the sequence diagram of the overlay network
based on destination node identifier control plane. First of
all, the sender application provides to the SDN controller the
unique node id of the receiver, eventually also specifying the
best path metric the SDN controller should adopt. Then, the
SDN controller replies with a path towards the destination,
exploited by the sender to dispatch packets via the overlay
network.

Even in this solution there is no need of involving intermedi-
ary Fog nodes. However, in this case it is the SDN controller in
charge of identifying the best path, with the notable benefit of
making easier the development of the client and of limiting the
communication overhead (no need of transferring the network
graph).

Fig. 6d shows the sequence diagram of the overlay network
based on flow id control plane. First of all, the sender appli-
cation provides to the SDN controller the id of the destination
node (multiple ids in case of multicasting), eventually also
specifying the required priority. Then, the SDN controller
identifies the best path(s), generates a flow id, and interacts
with Fog nodes to deploy/configure rerouting, multicasting,
and/or traffic engineering rules. If every Fog node correctly
installs/configures required rules, the SDN controller provides
the flow id to the sender application. Then, the sender ap-
plication can start sending packets via the overlay network
simply by tagging packets with the given flow id, without any
specific node sequence. In fact, in this case Fog nodes forward
packets actively contributing in a step-wise manner based on

(a) Native IP.

(b) Overlay network, path node sequence.

(c) Overlay network, destination identifier.

(d) Overlay network, flow id.

Fig. 6: Sequence diagrams of primary control plane actions.

Fig. 7: Multi-path bidirectional TCP connection.

previously deployed local forwarding rules.
In this solution the sender application is very simple, since

it only gathers the flow id and tags packets accordingly. On the
contrary, there is a deep involvement of Fog nodes, since each
node in the path must read the packet to verify if there is the
need of applying rerouting, multicasting, or traffic engineering
rules.

Finally, in case of overlay networking based on payload
type and payload content there are additional costs. In the
control plane, the SDN controller must also provide more
articulated rules to make control agents aware of the structure

of payload content, e.g., its serializable Java class or Protobuf
structure. In the data plane, Fog nodes must inspect each
packet, eventually also saving its content to enable payload
and inter-flow correlation solutions. Apart from these notable
differences, control plane sequence diagrams do not differ
from the flow id one and thus we do not provide them.

IV. MULTI-LANE IN-THE-FIELD EXPERIMENTAL
EVALUATION

Based on the implemented Multi-LANE prototype, we have
tested the primary features it supports at the control and
data planes. We have organized a real testbed consisting of
Raspberry Pi3 Model B+ connected one another via either
Ethernet or IEEE 802.11 in different configurations, e.g.,
the one depicted in Fig. 7. For each single-hop link there
is a different IP subnet, in order to stress the management
complexity and efficiency of the target environment. Moreover,
in the tested environments, devices and services are discov-
ered via a basic controlled-flood approach, thus dispatching
discovery messages along every available path (but avoiding
loops by dropping duplicated messages). In case of more
articulated topologies, scalability can be increased by adopting
a tree-based control packet dispatching schema, e.g., the one
presented in [10].

In particular, control plane performance analysis reports
about the time required (see Fig. 8a) and bytes transmitted
(see Fig. 8b) to set up a multi-hop path from node CA1 to
node CA5 in Fig. 7. In case of native IP, the time required
to set up the two-way path is 488 ms. It is worth noting
that about 286 ms are required by OS Routing Manager to
modify routing tables at the operating system level via the
iproute2 command, while the rest is due to packet dispatching
and path computation. The total amount of transferred data
is 16.0 KB, accounting for the request packet sent by node
CA1, packets with routing rules sent by the SDN controller
(one packet for nodes CA1 and CA5, two packets for Node
CA2, CA3, and CA4) with string commands control agents
should apply (and related acks), and the final response to
the requesting node. In case of overlay network with path
computation on the client node, performance results also
depend on the size of the topology, since the topology graph
must be transferred from the SDN controller to the client. For
instance, by considering the topology in Fig. 7, the required
time is 106 ms and the transmitted data 4.1 KB, 898 bytes for
the request and 3289 bytes for the response with the topology
graph (see Fig. 8a, ”Overlay, client-side, small topology”).
The latency is much lower than the native IP case since there
is no need of reconfiguring operating system routing tables.
However, note that the performance lowers in case of more
articulated topologies. Just to provide an example, in case of
a larger topology with 12 nodes and 36 links, as expected,
the associated performance indicators get worse (see Fig. 8a,
”Overlay, client-side, large topology”): the message with the
topology increases from 3289 bytes to 21184 bytes (total size
of 21.6 KB) while the time required slightly increases from
106 ms to 112 ms (the increased payload does not negatively

(a) Path setup latency.

(b) Path setup transmitted bytes.

Fig. 8: Control plane path setup performance.

impact on achieved performance since there is no congestion).
In case of overlay network with path computation on the SDN
controller and the path provided to the sender, the latency
further lowers to 48 ms and the amount of transferred data
to 2.6 KB, taking advantage of path computation on the SDN
controller with no need of transferring the topology graph.

Data plane performance results compare the different rout-
ing mechanisms when sending packets from CA1 to CA5 (see
Fig. 7) for 15 s at varying frequency (from 1 msg/s to 200
msg/s) with a fixed payload size of 5 KB and using only one
path. Let us note that by adopting only one path it is possible
to stress the load on intermediary nodes, thus allowing to
better differentiate and compare the overhead imposed by the
different forwarding mechanisms. Moreover, the sender CA1
in Fig. 7 dispatches packets in a sequential manner: in the
native IP case the sender periodically sends 5 KB messages
exploiting the same socket while in the overlay network case
each message is sent by exploiting the sendUnicast(...) API.

Fig. 9a presents the average end-to-end packet latency, that
is the average time required for the receiver on node CA5
to receive packets sent from the sender on node CA1. It
is worth noting that forwarding mechanisms based on the
overlay network achieve almost the same performance of the
native IP one for traffic load till 50 msg/s, demonstrating
the efficiency of the Multi-LANE solution. At 100 msg/s the
latency increases in the most challenging cases of content and
type payload inspection, while flow id and DSR-like node
sequence achieve only slightly higher values if compared with
the IP native baseline solution. Then, at 150 and 200 msg/s
emerges a considerable difference. In fact, the great amount
of transmitted packets imposes a notable computational load
on the intermediary node, causing the slowdown of more

computational intensive forwarding solutions, i.e., payload
type and payload content. In addition, even the flow id solution
presents a notable rise in the average packet dispatching time,
since it requires that each node performs a lookup procedure
to identify the next hop in relation to the flow id. Such
observation is also supported by the analysis of the CPU
load on node CA4 running the Multi-LANE solution. In fact,
Fig. 9b clearly outlines the additional computational cost of
payload type and payload content networking. Instead, the
node sequence solution imposes very limited overhead, thus
allowing to achieve performance results very close to the
native IP one. In relation to Fig. 9b, let us note that the average
CPU reaches its maximum at about 80% since it represents
the average value of the whole test, also considering starting
and ending phases with limited CPU consumption (and thus
lowering the overall average CPU consumption).

To further show how the computational load differently
impacts on performance of proposed forwarding solutions, we
introduce a packet ordering metric, computed on the receiver
node CA5 as∑

|(arrivalSeq#)− (departureSeq#)|/#sentPkts (1)

i.e., considering the sum of mismatch distances among ex-
pected and actual packet arrival sequence numbers, normalized
with the amount of sent packets. Fig.9c shows how packet
ordering is almost perfect till 50 msg/s. Then, the payload
content solution starts to significantly worsen at 100 msg/s,
while flow id and node sequence worsen at 150 msg/s. Such
performance results are also due to the non-blocking asyn-
chronous nature of our overlay network middleware solution
based on a pool of thread managing packet dispatching, while
the native IP solution delivers packets in order since the only
one sender thread sequentially delivers packets to the receiver.

To better analyse and compare the efficiency of our pro-
posed middleware, Fig. 10 presents the Cumulative Distribu-
tion Function (CDF) of the latency, by focusing on 100 msg/s
(see Fig. 10a) and 200 msg/s (see Fig. 10b) while removing
5% of outlier values. In case of 100 msg/s, only the payload
content solution presents high latency, with values even greater
than 5 s. Instead, in case of 200 msg/s both payload type
and payload content present latency values greater than 20
s and Flow id up to 12 s, while Node sequence is much
more efficient (most of its values are close to the OS routing
solution). In addition, Table II concisely depicts two different
metrics, one for efficiency in terms of CPU load and one
for efficacy in terms of packet timely arrival, defined as the
percentage of packets arrived within 2 s for a medium packet
rate of 100 msg/s (TCP as OS transport protocol). Of course,
payload content and type present worse performance for both
CPU load and packet delivery; however, let us stress that this
is the drawback of adopting a solution that is much more
powerful in terms of routing rule expressiveness.

To better analyse how payload size impacts on most com-
puting intensive solutions, Fig. 11 compares the time required
to apply type and content payload forwarding rules on the
intermediary node CA2. In this case, we fixed the message

rate at either 50 msg/s (thus before CPU load starts to
considerably increase) or 200 msg/s (thus in the challenging
case with saturated computing resources) and we varied the
payload size from 1 to 10 KB. Fig. 11a demonstrates that
the payload content solution imposes an additional overhead
if compared with the payload type one. However, as long
as the computational load is limited, the time required to
inspect the content of messages is in the order of few ms.
Moreover, the payload size does not considerably influence the
rule application time, rising from 1.8 ms for a 1 KB payload
to 3.1 ms for a 10 KB payload in the more challenging content
payload solution. Fig. 11b shows how at higher message
rate the payload content solution imposes additional overhead

(a) Data plane packet latency.

(b) Data plane CPU load.

(c) Data plane packet ordering.

Fig. 9: Data Plane performance (fixed payload of 5 KB).

(a) 100 msg/s.

(b) 200 msg/s.

Fig. 10: Latency CDF.

on the intermediary node, much greater than the payload
type one. Moreover, in this case the payload size clearly
affects achieved performance. In fact, the greater the content
size, the more time is required to apply the payload content
solution, rising from about 200 ms with a 1 KB payload to
about 500 ms for a 10 KB payload. Let us note that it is
possible to improve the achieved performance by adopting
more efficient de/serialization mechanisms. In particular, in
the tested environment the payload consists of several arrays
each one with tens of floats serialized by adopting the default
Java serialization mechanism, designed to maximize flexibility
at the cost of increased computational and size overhead. For
instance, by adopting protobuf it is possible to greatly reduce
the CPU load of de/serialization procedures (additional details
in our previous work [11]). However, regardless of the adopted
de/serialization mechanism OS routing, Node sequence, and
Flow id will be always more efficient, since they do not need
to deserialize the packet payload on intermediary nodes.

Finally, we have tested the capability of our solution to
switch among forwarding strategies in a dynamic manner,
also considering time-varying network conditions and appli-
cation requirements. To this purpose, we developed a vi-
bration monitoring application: a sensor on node CA5 (see
Fig. 7) gathers vibration data and send them to CA1. Each

TABLE II: Comparison of performance at 100 msg/s.
OS

routing
Node

sequence
Flow

id
Payload

type
Payload
content

CPU load
(%) 11.28 22.82 56.65 62.81 68.29

Packets
within 2 s (%) 100.00 98.27 79.07 52.37 47.47

(a) Message rate fixed at 50 msg/s.

(b) Message rate fixed at 200 msg/s.

Fig. 11: Type and content payload rule application.

Listing 1: Vibration data packet.

p u b l i c c l a s s V i b r a t i o n D a t a ex tends
A b s t r a c t D a t a T y p e implements S e r i a l i z a b l e {

p r i v a t e i n t m a x V i b r a t i o n I n d e x ;
p r i v a t e byte [] rawData ; / / 200 b y t e s
p r i v a t e long sen tT imes tamp ;
/ / f o l l o w g e t t e r s and s e t t e r s

}

packet contains the maximum vibration index till the previous
packet together with the set of sampled data (see Listing
1, maxVibrationIndex and rawData respectively). To
reach the destination, the packet can flow towards either CA3,
the default path used by regular packets, or CA2, a low latency
path (30 ms lesser latency) that should be exploited only for
urgent packets. The goal is to wisely dispatch packets, by
tuning the adopted forwarding mechanism in relation to the
importance of carried information and the currently achieved
performance. In particular, if maxVibrationIndex is in
the [0,10[range everything is fine, if it is in the [10,20[range
there is the need to better investigate the situation, otherwise
it means that there is an issue. Moreover, it is mandatory that
packets reach the destination in at most 250 ms.

To achieve the aforementioned objectives, we have devel-
oped an MLR-based application where the sender exploits
the node sequence mechanism by specifying the default path
[CA4, CA3, CA1]. Moreover, the intermediate node CA4
collaborates by adopting the payload content mechanism to
dispatch packets in relation to carried values, eventually trig-
gering the adoption of the OS routing mechanism whenever
required. Delving into finer details, Listing 2 sketches our Java

implementation of the payload content rule deployed on CA4,
allowing to dynamically manage the delivery of vibration data.
To this purpose, the applyRule method is invoked by the
Data Plane Forwarder for every traversing packet exploiting
the RAMP middleware and thus the overlay network. When-
ever a vibrationDataId is identified, the rule deserialize
the payload to appropriately manage the packet. In case the
maxVibrationIndex is low it discards 90% of the packets
and sends it towards the default path, thus still delivering
information to the receiver while limiting the network load
on the network. In case, the maxVibrationIndex is
medium it delivers every packet, still towards the regular path.
In case the maxVibrationIndex is high, it invokes the
findNewFastestPath method of the local CA to require
a faster path to the SDN controller.

Let us note that the findNewFastestPath method
triggers two control plane mechanisms by interacting with
the SDN controller. First of all, it activates the Get Path
Protocol to retrieve a faster path towards the destination; in
this case, the protocol is based on a one-shot request/response
interaction to send application requirements and to receive the
new path node sequence. In addition, while waiting for the
Get Path Protocol response it also activates a Get OS
Route Protocol to proactively configure the OS routing
path from CA5 to CA1. to this purpose, the control plane
exploits following messages:

• OS Routing Request: from CA4 to SDN controller
containing CA id, destination id, application requirements
and path selection metric;

• OS Routing Add Route: from SDN controller to
intermediary nodes of the computed path to configure
their routing tables;

• OS Routing ACK/Abort: from intermediary nodes
to the SDN controller reporting the routing table mod-
ification result;

• OS Routing Push: from the SDN controller to CA5
to notify the sender application the availability of an OS
routing path towards CA1.

Once received then new path node sequence, CA4 starts
modifying the payload header to reroute packets towards CA2.
Furthermore, the receiver on CA1 monitors the end-to-end
latency (by exploiting the sentTimestamp within vibration
packets) and triggers an alert as soon as the latency is greater
than 250 ms. In this case, it interacts with the local CA, in
charge of notifying the SDN controller to inform the sender
that it should switch to the OS routing mechanism.

Fig. 12 presents the per packet latency of vibration
data. In the first phase, the message rate is 50 msg/s
and the maxVibrationIndex is set to 5 and thus most
of the packets are discarded. After about 2000 ms the
maxVibrationIndex value rises to 15, with the conse-
quence that the payload content rule on node CA4 does
not drop packets anymore. Then, after about 5200 ms the
maxVibrationIndex is set to 25, triggering the identi-
fication of a faster path. To this purpose, it is worth noting

Listing 2: Vibration payload content rule.

p u b l i c c l a s s V i b r a t i o n D a t a P l a n e R u l e
ex tends A b s t r a c t D a t a P l a n e R u l e
implements S e r i a l i z a b l e {

p r i v a t e long v i b r a t i o n D a t a I d = 123456;
p r i v a t e boolean d r o p P a c k e t s E n a b l e d = t rue ;
p r i v a t e boolean f a s t P a t h F o u n d = f a l s e ;
p r i v a t e S t r i n g [] n e w F a s t e s t P a t h ;

p u b l i c vo id a p p l y R u l e (U n i c a s t P a c k e t up) {
U n i c a s t H e a d e r h e a d e r = up . g e t H e a d e r () ;
long d a t a T y p e I d = h e a d e r . ge tDa taType () ;
i f (d a t a T y p e I d == v i b r a t i o n D a t a I d) {

V i b r a t i o n D a t a message = (V i b r a t i o n D a t a)
U t i l s . d e s e r i a l i z e (up . g e t B y t e P a y l o a d ()) ;

i n t v a l u e = message . g e t M a x V i b r a t i o n I n d e x () ;
i f (v a l u e <= 10 && d r o p P a c k e t s E n a b l e d) {

i n t p r o b a b i l i t y = U t i l s . r andomIn t (1 0) ;
i f (p r o b a b i l i t y < 9) d r o p P a c k e t (up) ;

} e l s e i f (v a l u e <= 20) {
d r o p P a c k e t s E n a b l e d = f a l s e ;

} e l s e i f (! f a s t P a t h F o u n d) {
i f (d r o p P a c k e t s E n a b l e d) {

d r o p P a c k e t s E n a b l e d = f a l s e ;
}
n e w F a s t e s t P a t h =

f i n d N e w F a s t e s t P a t h (h e a d e r) ;
f a s t P a t h F o u n d = t rue ;

}
}
i f (f a s t P a t h F o u n d) {

up . s e t D e s t i n a t i o n (n e w F a s t e s t P a t h) ;
}}}

that the first packet routed towards the faster path suffers a
slightly greater latency, since its delivery is delayed by the
control plane Get Path Protocol between node CA2
and the SDN controller to identify the new path, lasting
about 36 ms. Following packets reach the destination in a
prompter manner, taking advantage of the lower latency of the
path towards CA2. However, after about 8100 ms the sender
increases the message rate to 150 msg/s, e.g., to better sample
vibration data. The increased network load negatively affects
the message delivery, since the increased load on nodes to
dispatch packets saturates the CPU. At about 9200 ms the end-
to-end latency exceeds 250 ms and thus the receiver alerts the
SDN controller requiring the sender to switch to OS routing. In
this manner, vibration data can reach the destination again in a
prompt manner with a reduced latency. Note that some packets
previously sent exploiting the payload content mechanism are
still flowing towards the destination exploiting the overlay
network and reach the destination later than some packets sent
via OS routing.

In conclusion, the performance results measured on real
deployment environments for our Multi-LANE working pro-
totype not only demonstrate the feasibility of the proposed
solution, but also its capability of adapting packet dispatching
in relation to (eventually time-varying) requirements in terms
of either expressiveness or limited overhead. In particular,

Fig. 12: MLR-based dynamic management of vibration data.

overlay network solutions exploiting type and payload content
provide much richer packet dispatching rule expressiveness,
e.g., by allowing to selectively drop packets based on the
payload content, at the cost of relatively low computing over-
head. However, the additional computation is limited, allowing
to achieve performance similar to the native IP solution till
100 msg/s on resource-limited nodes such as Raspberry Pi
ones, much less performing than currently spread laptops and
smartphones. At higher packet rates, only native IP and overlay
network node sequence forwarding mechanisms are efficient
enough to allow prompt packet dispatching. However, the
former has the notable drawback of imposing to manage op-
erating system routing tables, requiring administrative access
and incurring in long path setup latency.

V. RELATED WORK

While SDN emerged primarily to manage switches of closed
and geographically centralized environments, its adoption has
quickly proven its benefits also in more dynamic scenarios
with relaxed requirements in terms of closeness and geograph-
ical centralization.

Considering Fog and Edge computing, [12] proposes to
exploit SDN to deliver and deploy new services in IoT
environments in a faster and more cost-effective manner. In
addition, SDN can make easier the dynamic integration and
collaboration of Edge and Cloud environments [13]. The SDN
approach can be also adopted together with Blockchain to
deliver a fully-distributed Cloud architecture based on Fog
nodes [14]. Finally, SDN is fruitfully adopted to support load
balancing in Fog environments [15], [16]. Interested readers
can refer to [17], [18] for comprehensive studies on the
adoption of SDN in Edge and Fog environments.

Similarly to our proposal, the very recent effort of the Fog05
initiative [19] targets Fog environments characterized by nodes
with limited and heterogeneous resources and networks with
a high degree of node de/attaching rate. Fog05 pushes on the
adoption of a key/value store to provide a distributed storage,
monitoring, and configuring solution. Moreover, it supports the
runtime deployment of services in terms of VMs, containers,
Unikernels, and binary code to increase Fog node flexibility
and configurability. However, Fog05 does not consider net-
working issues arising from Fog environments composed of
several nodes. In fact, Fog05 assumes that Fog nodes are
located within a single network, which cannot be granted in
dynamic environments composed of Fog nodes managed by

different users/authorities. For these reasons, we consider our
SDN-based MLR solution as complementary w.r.t. the Fog05
initiative.

Similar approaches have been proposed also in research
fields that can be considered as predecessors of Edge com-
puting. Considering WSNs, [20] exploits the SDN approach
to efficiently manage cooperative communication and task
execution among nodes while [21] exploits SDN to allow the
adoption of a flow splitting algorithm minimizing the traffic
load. Furthermore, some solutions not only adopt the SDN
approach but also exploit OpenFlow-like protocols. For in-
stance, [22] proposes to adopt an OpenFlow extension to more
easily adapt the behavior of a WSN to dynamically changing
goals and applications and more efficiently enforce different
policies. SDN-WISE [23] extends OpenFlow to optimize the
communication among sensor nodes and the SDN controller
and to program nodes as finite state machines.

Focusing on the adoption of the SDN approach in MANET
environments, only recently a few contributions have started
to emerge. For instance, [24] presents a solution to offload
the cellular network by controlling mobile nodes (and their
routing tables) based on a centralized SDN controller residing
in the fixed infrastructure. [25] adopts the adaptive principles
of the SDN approach to seamlessly recover from disruptions
of computation-intensive MANETs. Similarly, [26] applies the
SDN approach to mobile clouds with the primary goal of
adapting/tuning the network in relation to varying wireless
environments, e.g., due to mobility and unreliable wireless link
conditions.

Finally, let us briefly note that the MLR approach has
some similarities with cross-layer routing solutions, since
they consider information from different abstraction layers to
manage networking resources. For instance, [27] compares
many contributions aiming at improving routing protocols in
VANETs by jointly exploiting information at the physical,
medium access control, and network layers. Instead, [28]
pushes for the cooperation between routing, scheduling, and
channel allocation functions by allowing such functions to
simultaneously update the routing table. However, the typical
goal of cross-layer routing is to identify the best path based
on heterogeneous information, not to exploit multiple routing
mechanisms at the same time like our MLR solution does.

To the best of our knowledge, our work is the first one
adopting the MLR approach in conjunction with SDN to
manage heterogeneous Fog environments. In particular, our

solution exploits MLR data plane to take advantage of dif-
ferentiated forwarding mechanisms together with an overlay-
network control plane to enable and setup different forwarding
mechanisms in a unified and coordinated manner. Moreover,
it is strongly original in presenting a working prototype to
the community of researchers in the field, to be exploited
and extended to foster SDN-based MLR solutions in Fog
environments.

VI. CONCLUSIONS

The paper presents a novel model and architecture allowing
to selectively adopt the proper forwarding mechanism in
Fog environments, by considering application requirements as
well as the current state of the network. In particular, the
adoption of the SDN approach allows to support multiple
packet dispatching solutions with differentiated tradeoffs in
terms of flexibility/expressiveness of forwarding mechanisms
and imposed overhead for both control messages and data
dispatching. The encouraging results achieved so far based on
the Multi-LANE working prototype are stimulating additional
research work. We are mainly working on the development
of a large scale Fog environment to finely assess the perfor-
mance of our solution. We are also developing a companion
SDK to make easier the dynamic development and run-time
deployment/activation of novel traffic engineering and routing
policies.

REFERENCES

[1] S.M.A. Oteafy, H.S. Hassanein, ”IoT in the Fog: A Roadmap for Data-
Centric IoT Development”, IEEE Comm. Mag, vol. 56, no. 3, 2018.

[2] M. Yannuzzi, F. van Lingen, Anuj Jain, O.L. Parellada, M.M. Flores, D.
Carrera, J. Luis Prez, D. Montero, P. Chacin, A. Corsaro, A. Olive, ”A
New Era for Cities with Fog Computing”, IEEE Internet Computing,
vol. 21, no. 2, 2017.

[3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, D. Sabella, ”On
Multi-Access Edge Computing: A Survey of the Emerging 5G Network
Edge Cloud Architecture and Orchestration”, IEEE Comm. Surveys &
Tutorials, vol. 19, no. 3, 2017.

[4] C. Giannelli, P. Bellavista, D. Scotece, ”Software Defined Networking
for Quality-aware Management of Multi-hop Spontaneous Networks”,
Int. Conf. on Computing, Networking and Communications (ICNC
2018), Maui, Hawaii, USA, March 5-8, 2018.

[5] P. Bellavista, A. Dolci, C. Giannelli, ”MANET-oriented SDN: Moti-
vations, Challenges, and a Solution Prototype”, 19th IEEE Int. Symp
on a World of Wireless, Mobile and Multimedia Networks (WoWMoM
2018), Chania, Greece, June 12-15, 2018.

[6] Open Networking Foundation, ”OpenFlow”, available online at
https://www.opennetworking.org/sdn-resources/openflow (last accessed
on April 30th, 2019).

[7] P. Bellavista, A. Corradi, C. Giannelli, ”Middleware for Differentiated
Quality in Spontaneous Networks”, IEEE Pervasive Computing, vol. 11,
no. 3, March 2012.

[8] P. Bellavista, A. Corradi, C. Giannelli, ”Differentiated Management
Strategies for Multi-hop Multi-Path Heterogeneous Connectivity in Mo-
bile Environments”, IEEE Trans. on Network and Service Management,
vol. 8, no. 3, 2011.

[9] C. Fang, H. Yao, Z. Wang, W. Wu, X. Jin, F.R. Yu, ”A Survey of Mo-
bile Information-Centric Networking: Research Issues and Challenges”,
IEEE Comm. Sutveys & Tutorials, vol. 20, no. 3, 2018.

[10] Z. Qin, L. Iannario, C. Giannelli, P. Bellavista, N. Venkatasubramanian,
”Smart communications via a tree-based overlay over multiple and
heterogeneous (TOMH) spontaneous networks”, 2013 Int. Conf. on
Smart Communications in Network Technologies (SaCoNeT), 2013.

[11] P. Bellavista, P. Gallo, C. Giannelli, G. Toniolo, A. Zoccola, ”Discov-
ering and Accessing Peer-to-peer Services in UPnP-based Federated
Domotic Islands”, IEEE Transactions on Consumer Electronics, vol. 58,
no. 3, August 2012.

[12] J. Pan, J. McElhannon, ”Future Edge Cloud and Edge Computing for
Internet of Things Applications”, IEEE Internet of Things Journal, vol.
5, no. 1, 2018.

[13] K. Kaur, S. Garg, G.S. Aujla, N. Kumar, J.J P.C. Rodrigues, M. Guizani,
”Edge Computing in the Industrial Internet of Things Environment:
Software-Defined-Networks-Based Edge-Cloud Interplay”, IEEE Com-
munications Magazine, vol. 56, no. 2, 2018.

[14] P.K. Sharma, M. Chen, J.H. Park, ”A Software Defined Fog Node Based
Distributed Blockchain Cloud Architecture for IoT”, IEEE Access, vol.
6, 2018.

[15] X. He, Z. Ren, C. Shi, J. Fang, ”A novel load balancing strategy
of software-defined cloud/fog networking in the Internet of Vehicles”,
China Communications, vol. 13, 2016.

[16] S. Misra, N. Saha, ”Detour: Dynamic Task Offloading in Software-
Defined Fog for IoT Applications”, IEEE Journal on Selected Areas
in Communications, vol. 37, no. 5, 2019.

[17] A.C. Baktir, A. Ozgovde, C. Ersoy, ”How Can Edge Computing Benefit
From Software-Defined Networking: A Survey, Use Cases, and Future
Directions”, IEEE Communications Surveys & Tutorials, vol. 19, no. 4,
2017.

[18] F.Y. Okay, S. Ozdemir, ”Routing in Fog-Enabled IoT Platforms: A
Survey and an SDN-Based Solution”, IEEE Internet of Things Journal,
vol. 5, no. 6, 2018.

[19] A. Corsaro, G. Baldoni, ”fog05: Unifying the computing, networking
and storage fabrics end-to-end”, 3rd Cloudification of the Internet of
Things (CIoT), July 2018.

[20] J. Zhou et al., SDN-Based Application Framework for Wireless Sensor
and Actor Networks, IEEE Access, vol. 4, 2016.

[21] G. Li et al., ”Traffic Load Minimization in Software Defined Wireless
Sensor Networks”, IEEE Internet of Things Journal, vol. 5, no. 3, 2018.

[22] T. Luo, H.P. Tan, T.Q.S. Quek, ”Sensor OpenFlow: Enabling Software-
Defined Wireless Sensor Networks”, IEEE Communications Letters, vo.
16, no. 11, Nov. 2012.

[23] L. Galluccio et al., SDN-WISE: Design, prototyping and experimenta-
tion of a stateful SDN solution for WIreless SEnsor networks, IEEE
Conf. on Computer Communications (INFOCOM), pp. 513-521, 2015.

[24] H.C. Yu, G. Quer, R.R. Rao, ”Wireless SDN mobile ad hoc network:
From theory to practice”, 2017 IEEE International Conference on
Communications (ICC), 2017.

[25] V. Balasubramanian, A. Karmouch, ”Managing the mobile Ad-hoc
cloud ecosystem using software defined networking principles”, 2017
International Symposium on Networks, Computers and Communications
(ISNCC), 2017.

[26] I. Ku, Y. Lu, M. Gerla, ”Software-Defined Mobile Cloud: Architecture,
services and use cases”, 2014 International Wireless Communications
and Mobile Computing Conference (IWCMC), 2014.

[27] A. Awang, K. Husain, N. Kamel, S. Aissa, ”Routing in Vehicular Ad-
hoc Networks: A Survey on Single- and Cross-Layer Design Techniques,
and Perspectives”, IEEE Access, vol. 5, 2017.

[28] B. Shin, J. Choe, B. Kang, D. Hong, Y. Park, ”Cross-layer resource
allocation with multipath routing in wireless multihop and multichannel
systems”, Journal of Communications and Networks, vol. 13, no. 3,
2011.

Paolo Bellavista received the Ph.D. degree in com-
puter engineering from the University of Bologna,
Italy, in 2001. He is a Full Professor of distributed
and mobile systems at the CSE department of the
University of Bologna, Italy. His primary research
activities span from mobile middleware to wireless
sensor and actuator networks, from pervasive mobile
computing infrastructures to industrial Internet of
Things, from edge cloud computing to online stream
processing in manufacturing industry applications.

Carlo Giannelli received the Ph.D. degree in com-
puter engineering from the University of Bologna,
Italy, in 2008. He is currently an Associate Professor
in computer science with the University of Ferrara,
Italy. His primary research activities focus on Indus-
trial Internet of Things, Software Defined Network-
ing, Blockchain technologies, location/based ser-
vices, heterogeneous wireless interface integration,
and hybrid infrastructure/ad hoc and spontaneous
multi-hop networking environments based on social
relationships.

Dmitrij David Padalino Montenero is an industrial
research fellow at the Interdepartmental Centres for
Industrial Research of the University of Bologna,
Italy, where he received a Master’s Degree in Com-
puter Engineering in 2019. His primary research
activities focus on Cloud Computing, Containeriza-
tion, Industrial Internet of Things, Software Defined
Networking, and hybrid infrastructure/ad hoc and
spontaneous multi-hop networking environments.

