
04 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

di Serafino, D., Landi, G., Viola, M. (2020). ACQUIRE: an inexact iteratively reweighted norm approach for
TV-based Poisson image restoration. APPLIED MATHEMATICS AND COMPUTATION, 364, 1-23
[10.1016/j.amc.2019.124678].

Published Version:

ACQUIRE: an inexact iteratively reweighted norm approach for TV-based Poisson image restoration

Published:
DOI: http://doi.org/10.1016/j.amc.2019.124678

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/698078 since: 2020-01-08

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.amc.2019.124678
https://hdl.handle.net/11585/698078


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Daniela di Serafino, Germana Landi, Marco Viola, ACQUIRE: an inexact iteratively 
reweighted norm approach for TV-based Poisson image restoration, Applied 
Mathematics and Computation, Volume 364, 2020, 124678, ISSN 0096-3003. 

The final published version is available online at: 
https://doi.org/10.1016/j.amc.2019.124678 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
https://doi.org/10.1016/j.amc.2019.124678


ACQUIRE: an inexact iteratively reweighted norm

approach for TV-based Poisson image restoration⋆

Daniela di Serafinoa,, Germana Landib, Marco Violac

aDipartimento di Matematica e Fisica, Università degli Studi della Campania
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Abstract

We propose a method, called ACQUIRE, for the solution of constrained op-
timization problems modeling the restoration of images corrupted by Poisson
noise. The objective function is the sum of a generalized Kullback-Leibler diver-
gence term and a TV regularizer, subject to nonnegativity and possibly other
constraints, such as flux conservation. ACQUIRE is a line-search method that
considers a smoothed version of TV, based on a Huber-like function, and com-
putes the search directions by minimizing quadratic approximations of the prob-
lem, built by exploiting some second-order information. A classical second-order
Taylor approximation is used for the Kullback-Leibler term and an iteratively
reweighted norm approach for the smoothed TV term. We prove that the se-
quence generated by the method has a subsequence converging to a minimizer of
the smoothed problem and any limit point is a minimizer. Furthermore, if the
problem is strictly convex, the whole sequence is convergent. We note that con-
vergence is achieved without requiring the exact minimization of the quadratic
subproblems; low accuracy in this minimization can be used in practice, as
shown by numerical results. Experiments on reference test problems show that
our method is competitive with well-established methods for TV-based Poisson
image restoration, in terms of both computational efficiency and image quality.

Keywords: image restoration, Poisson noise, TV regularization, iteratively
reweighted norm approach, quadratic approximation.
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1. Introduction

Restoring images corrupted by Poisson noise is required in many applica-
tions, such as fluorescence microscopy [47], X-ray computed tomography (CT)
[33], positron emission tomography (PET) [51], confocal microscopy [44] and
astronomical imaging [52, 4]. Thus, this is a very active research area in image
processing. We consider a discrete formulation of the problem, where the object
to be restored is represented by a vector x ∈ R

n and the measured data are as-
sumed to be a vector y ∈ N

m
0 , whose entries yj are samples from m independent

Poisson random variables Yj with probability

P (Yj = yj) =
e−(Ax+b)j(Ax+ b)

yj

j

yj!
,

where the matrix A = (aij) ∈ R
m×n models the observation mechanism of the

imaging system and b ∈ R
m, b > 0, models the background radiation detected

by the sensors. Standard assumptions on A are

aij ≥ 0 for all i, j,

m∑

i=1

aij = 1 for all j. (1)

By applying a maximum-likelihood approach [4, 51], we can estimate x by min-
imizing the Kullback-Leibler (KL) divergence of Ax+ b from y:

DKL(Ax+ b,y) =

m∑

j=1

(
yj ln

yj
(Ax + b)j

+ (Ax + b)j − yj

)
, (2)

where we set yj ln(yj/(Ax+b)j) = 0 if yj = 0. A regularization term is usually
added to (2) to deal with the inherent ill-conditioning of the estimation prob-
lem. We focus on edge-preserving regularization by Total Variation (TV) [46],
which has received considerable attention because of its ability of preserving
edges and smoothing flat areas of the images. We note that, although TV
regularization is known to suffer from undesirable staircase artifacts, it is still
widely used in many medical and biological applications (see, e.g., [1, 40, 60],
http://ranger.uta.edu/~huang/R_CSMRI.htm). Furthermore, by focusing on
TV-regularized problems, we introduce and test a novel solution method that
allows for extensions to other models, such as high-order TV [36, 43] and Total
Generalized Variation [12, 13], proposed to reduce the staircase effect.

Assuming, for simplicity, that x is obtained by stacking the columns of a 2D
image X = (Xk,l) ∈ R

r×s, i.e., xi = Xk,l with i = (l − 1)r + k and n = rs, the
following discrete version of the TV functional can be defined [16]:

TV (X) =

r∑

k=1

s∑

l=1

√
(Xk+1,l −Xk,l)2 + (Xk,l+1 −Xk,l)2,

where X is supposed to satisfy some boundary conditions, e.g., periodic. This
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can be also written as

TV (x) =
n∑

i=1

‖Dix‖, (3)

where

Di =

(
eT(l−1)r+k+1 − eT(l−1)r+k

eTlr+k − eT(l−1)r+k

)
, i = (l − 1)r + k,

eq ∈ R
n is the qth standard basis vector, and ‖ · ‖ is the 2-norm

Thus, we are interested in solving the following problem:

minimize DKL(x) + λTV (x),
s.t. x ∈ S, (4)

where DKL(x) is a shorthand for DKL(Ax + b,y), λ > 0 is a regularization
parameter, and x ∈ S corresponds to some physical constraints. The nonneg-
ativity of the image intensity naturally leads to the constraint x ≥ 0. When
the matrix A comes from the discretization of a convolution operator and it is
normalized as in (1), the constraint

∑n
i=1 xi =

∑m
j=1(yi−bi) can be added, since

the convolution performs a modification of the intensity distribution, while the
total intensity remains constants [6].1 In other words, common choices of S are

S = S1 := {x ∈ R
n : x ≥ 0} (5)

or
S = S2 := {x ∈ R

n : x ≥ 0, eTx = eT (y − b)}, (6)

where e and e denote the vectors of all 1’s of sizes n and m, respectively.
Various approaches have been proposed to solve problem (4), mostly with

S = S1; a key issue in all cases is to deal with the nondifferentiability of the
TV functional. Some representative methods are listed next. A classical ap-
proach consists in approximating the TV functional with a smooth version of it
and using well-established techniques such as expectation-maximization meth-
ods [34, 42], gradient-projection methods with suitable scaling techniques aimed
at accelerating convergence [11, 37, 58], and alternating linearized minimization
methods [35].

The approximation of TV can be avoided, e.g., by using forward-backward
splitting techniques; this is the case of the proximal-gradient methods proposed
in [9, 32] and the forward-backward EM method discussed in [48]. On the
other hand, the previous methods require, at each step, the solution of a Rudin-
Osher-Fatemi (ROF) denoising subproblem [46], which can be computed only
approximately, using, e.g., the algorithms proposed in [3, 16]. Methods based
on ADMM and SPLIT BREGMAN techniques, such as those presented in [26,
29, 49], do not exploit smooth TV approximations too. They generally use

1We have implicitly assumed that y has been converted into a real vector with entries
ranging in the same interval as the entries of x.
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more memory because of auxiliary variables of the same size as x or y, and
require the solution of linear systems involving ATA and, possibly, the solution
of ROF subproblems. Finally, a different approach to avoid the difficulties
associated with the nondifferentiability of the TV functional is based on the
idea of reformulating (4) as a saddle-point problem and solving it by a primal-
dual algorithm. In this context, an alternating extragradient scheme has been
presented in [10], and a procedure exploiting the Chambolle-Pock algorithm [17]
has been described in [56].

In this paper we take a different approach, aimed at exploiting some second-
order information not considered by the aforementioned methods. We consider
a smoothed version of TV, based on a Huber-like function, and propose a line-
search method, called ACQUIRE (Algorithm based on Consecutive QUadratic
and Iteratively REweighted norm approximations), which minimizes a sequence
of quadratic models obtained by a second-order Taylor approximation of the
KL divergence and an iteratively reweighted norm (IRN) approximation of the
smoothed TV. We prove the convergence of ACQUIRE with inexact solution of
the inner quadratic problems. We show by numerical experiments that exploit-
ing some second-order information can lead to fast image restorations even with
low accuracy requirements on the solution of the inner problems, without affect-
ing the quality of the reconstructed images. In particular, ACQUIRE generally
produces a strong reduction of the reconstruction error in the first iterations,
thus achieving a good tradeoff between accuracy and efficiency, and resulting
competitive with state-of-the-art methods.

The remainder of this paper is organized as follows. In Section 2 we recall
some preliminary concepts that will be exploited later. In Section 3 we describe
our method and in Section 4 we prove that it is well posed and convergent. We
provide implementation details and discuss the results obtained by applying the
proposed method to several test problems in Section 5. Some conclusions are
reported in Section 6.

2. Preliminaries

We first provide some useful details about the KL divergence and introduce
a smooth version of the TV functional. Then we recall the concept of projected
gradient and its basic properties, exploited later in this work.

Assumptions (1) and b > 0 ensure that, for any given y ≥ 0, DKL is a
nonnegative, convex, coercive, twice continuosly differentiable function in R

n
+

(see, e.g., [5, 26]). Its gradient and Hessian are given by

∇DKL(x) = AT

(
e− y

Ax+ b

)

and

∇2DKL(x) = ATU(x)2A, U(x) = diag

( √
y

Ax+ b

)
, (7)
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where the square root and the ratios are intended componentwise, and diag(v)
denotes the diagonal matrix with diagonal entries equal to the entries of v. It
can be proved that ∇DKL is Lipschitz continuous [32]; furthermore, it follows
from (7) that ∇2DKL is positive definite, i.e., DKL is strictly convex, whenever
y > 0 and A has nullspace N (A) = {0}. In this case, if x is constrained to
be in a bounded subset of the nonnegative orthant, e.g., the set S2 in (6), the
minimum eigenvalue of ∇2DKL(x) is bounded below independently of x, and
DKL is strongly convex.

From a practical point of view, it is interesting to note that A is usually the
representation of a convolution operator, and hence the computation of ∇DKL

or of matrix-vector products involving ∇2DKL can be performed efficiently via
fast algorithms for discrete Fourier, cosine or sine transforms.

The TV functional is nonnegative, convex and continuous. Thus problem (4)
admits a solution, which is unique if y > 0 and N (A) = {0}. Since TV is not
differentiable, we use a regularized version of it, TVµ. Taking into account the
discussion in [55] about smoothed versions of TV, we consider

TVµ(x) =

n∑

i=1

φµ (‖Dix‖) ,

where φµ is the Huber-like function

φµ(z) =

{
|z| if |z| > µ,
1
2 (

z2

µ
+ µ) otherwise,

and µ > 0 is small. It is easy to verify that TVµ is Lipschitz continuously
differentiable and its gradient reads as follows:

∇TVµ(x) =

n∑

i=1

∇φµ (‖Dix‖) , ∇φµ (‖Dix‖) =





DT
i Dix

‖Dix‖
if ‖Dix‖ > µ,

DT
i Dix

µ
otherwise.

We also observe that TVµ is not twice continuously differentiable, but has con-
tinuous Hessian for all x such that ‖Dix‖ 6= µ:

∇2TVµ(x) =

n∑

i=1

∇2φµ (‖Dix‖) ,

∇2φµ (‖Dix‖) =





DT
i Di

‖Dix‖
− (DT

i Dix)(D
T
i Dix)

T

‖Dix‖3
if ‖Dix‖ > µ,

DT
i Di

µ
if ‖Dix‖ < µ.

(8)

Now we recall basic notions about the projected gradient. Let S be a
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nonempty, closed and convex set. For any continuously differentiable function
f : D ⊆ R

n → R, with D open set containing S, the projected gradient of f at
x ∈ S is defined as the orthogonal projection of −∇f onto the tangent cone to
S at x, denoted by TS(x):

∇Sf(x) = argmin {‖v +∇f(x)‖ s.t. v ∈ TS(x)} ,

When S is the set S1 defined in (5), the tangent cone takes the form

TS(x) = {v ∈ R
n : vi ≥ 0 if xi = 0}

and the computation of ∇Sf(x) is straightforward; when S is the set S2 in (6),

TS(x) =
{
v ∈ R

n : eTv = 0 and vi ≥ 0 if xi = 0
}
,

and ∇Sf(x) can be efficiently determined too, thanks to the availability of low-
cost algorithms for computing the projection in this case (see, e.g., [15, 18, 19]).

Since the projection onto S is nonexpansive, for all x,x ∈ S it is

‖∇Sf(x)−∇Sf(x̄)‖ ≤ ‖x− x‖;

furthermore,
−∇f(x) = ∇Sf(x) + PNS(x)(−∇f(x)), (9)

where PNS(x) denotes the orthogonal projection operator onto the normal cone
to S at x,

NS(x) =
{
v ∈ R

n : vTu ≤ 0 for all u ∈ S(x)
}
,

which is the polar cone of TS(x) (see, e.g., [59, Lemma 2.2]).
Finally, it is well known that any constrained stationary point x∗ of f in S

is characterized by ∇Sf(x
∗) = 0 and that ‖∇Sf‖ is lower semicontinuous on S

(see, e.g., [14]).

3. IRN-based inexact minimization method

We propose an iterative method for solving the problem

minimize DKL(x) + λTVµ(x),
s.t. x ∈ S, (10)

where S can be any nonempty, closed and convex subset of Rn
+, although our

practical interest is for the feasible sets in (5)-(6). This method is based on two
main steps: the inexact solution of a quadratic model of (4) and a line-search
procedure.

Given an iterate x(k) ∈ S, we consider the following quadratic approximation
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of DKL:

DKL(x) ≈ D
(k)
KL(x) = DKL(x

(k)) + (x− x(k))T∇DKL(x
(k))

+
1

2
(x− x(k))T (∇2DKL(x

(k)) + γI)(x− x(k)),
(11)

where I is the identity matrix and γ > 0. Note that γI has been introduced

to ensure that D
(k)
KL is strongly convex; obviously, we can set γ = 0 if y > 0,

N (A) = {0} and S is bounded.
In order to build a quadratic model of TVµ, we use the IRN approach de-

scribed in [45], i.e., we approximate TVµ(x) as follows:

TVµ(x) ≈ TV (k)
µ (x) =

1

2

n∑

i=1

w
(k)
i ‖Dix‖2 +

1

2
TVµ(x

(k)),

where

w
(k)
i =

{
‖Dix

(k)‖−1 if ‖Dix
(k)‖ > µ,

µ−1 otherwise.

Trivially,

TV (k)
µ (x(k)) = TVµ(x

(k)), ∇TV (k)
µ (x(k)) = ∇TVµ(x

(k));

furthermore,

∇2TV (k)
µ (x(k)) =

n∑

i=1

w
(k)
i DT

i Di,

and hence, for any x such that ‖Dix
(k)‖ 6= µ, the Hessian ∇2TV

(k)
µ (x(k)) can

be regarded as an approximation of ∇2TVµ(x
(k)), obtained by neglecting the

higher order term in the right-hand side of (8), which generally increases the

ill-conditioning of the Hessian matrix. Thus, we can say that TV
(k)
µ contains

some second-order information about TVµ. It is worth noting that the higher
order term of the Hessian of a smoothed TV function is also neglected in the
lagged diffusivity method by Vogel and Oman [53].

In the following, to simplify the notation we set

F (x) = DKL(x) + λTVµ(x),

Fk(x) = D
(k)
KL(x) + λTV (k)

µ (x).

At iteration k, our method computes a feasible approximation x̂(k) to the solu-
tion x(k) of the quadratic problem

minimize Fk(x),
s.t. x ∈ S, (12)
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and performs a line search along the direction

d(k) = x̂(k) − x(k),

until an Armijo condition is satisfied, to obtain an approximation x(k+1) to the
solution of problem (10). This procedure is sketched in Algorithm 1 and is called
ACQUIRE, which comes from “Algorithm based on Consecutive QUadratic and
Iteratively REweighted norm approximations”.

Algorithm 1 – ACQUIRE

1: choose x0 ∈ S, η ∈ (0, 1), δ ∈ (0, 1), {εk} such that εk > 0 and limk→∞ εk =

0

2: for k = 1, 2, . . . do

3: compute an approximate solution x̂(k) ∈ S to the quadratic problem (12),

such that

‖x̂(k) − x(k)‖ ≤ εk and Fk(x̂
(k)) ≤ Fk(x

(k)) (13)
4: αk := 1

5: d(k) := x̂(k) − x(k)

6: x
(k)
α := x(k) + αkd

(k)

7: while F (x
(k)
α ) > F (x(k)) + ηαk∇F (x(k))Td(k) do

8: αk := δαk

9: x
(k)
α := x(k) + αkd

(k)

10: end while

11: x(k+1) = x
(k)
α

12: end for

ACQUIRE is well posed (i.e., a steplength αk satisfying the Armijo condition
can be found in a finite number of iterations) and is convergent; this is proved
in Section 4. Step 3 does not require the exact solution of problem (12), but
only the computation of an approximate solution such that condition (13) at
line 3 of the algorithm holds, with limk→∞ εk = 0.

In Section 4 we also show that the first condition in (13) is satisfied if

‖∇SFk(x̂
(k))‖ ≤ θk‖∇SFk(x

(0))‖, (14)

and θ ∈ (0, 1). Therefore, the first condition in (13) can be replaced by an-
other one which is simple to verify when the projected gradient can be easily
computed, e.g., in the practical cases where S is one of the sets in (5)-(6).

The second condition in (13) can be achieved by using any constrained min-
imization algorithm. We note that, for the restoration problems considered in
this work, gradient-projection methods, such as those in [11, 24, 39], are suited
to the solution of the inner problems (12). Indeed, numerical experiments have
shown that very low accuracy is required in practice in the solution of the inner
problems; furthermore, the computational cost per iteration of gradient pro-
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jection methods is modest when low-cost algorithms for the projection onto
the feasible set are available. More details on the inner method used in our
experiments are given in Section 5.

4. Well-posedness and convergence

In order to prove that ACQUIRE is well posed, we need the following lemma
[7, Lemma A24].

Lemma 1 (Descent lemma). Let f : Rn → R be continuously differentiable

and let x,y ∈ R
n. If there exists L > 0 such that

‖∇f(x+ ty) −∇f(x)‖ ≤ Lt‖y‖ for all t ∈ [0, 1],

then

f(x+ y) ≤ f(x) +∇f(x)Ty +
L

2
‖y‖2.

We also observe that, at step 3 of Algorithm 1, we can find x̂(k) 6= x(k)

unless x(k) is the solution x(k) of problem (12). However, in this case x(k) is the
solution of problem (10), since the gradients, and hence the projected gradients,
of the objective functions of the two problems coincide at x(k). Therefore, in
the following we can assume that x̂(k) 6= x(k).

The next theorem shows that the steplength αk required to obtain the iterate
x(k+1) can be found after a finite number of steps and that it is bounded away
from zero.

Theorem 2. Let δ ∈ (0, 1). There exist α > 0 independent of k and an integer

jk ≥ 0 such that for αk = δ jk

F (x(k)
α ) ≤ F (x(k)) + ηαk∇F (x(k))T (x̂(k) − x(k)), (15)

αk ≥ α. (16)

Proof . For F has Lipschitz continuous gradient, by applying Lemma 1 we get

F (x(k)
α ) ≤ F (x(k)) + αk∇F (x(k))T (x̂(k) − x(k)) + α2

k

L

2
‖x̂(k) − x(k)‖2,

where L is the Lipschitz constant of ∇F . Then, (15) holds if we find αk such
that

∇F (x(k))T (x̂(k) − x(k)) + αk

L

2
‖x̂(k) − x(k)‖2 ≤ η∇F (x(k))T (x̂(k) − x(k)),

or, equivalently,

(1− η)∇F (x(k))T (x̂(k) − x(k)) + αk

L

2
‖x̂(k) − x(k)‖2 ≤ 0. (17)
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From ∇Fk(x
(k)) = ∇F (x(k)), the strong convexity of Fk and step 3 of Algo-

rithm 1, it follows that

∇F (x(k))T (x̂(k) − x(k)) = ∇Fk(x
(k))T (x̂(k) − x(k))

≤ Fk(x̂
(k))− Fk(x

(k))− γ

2
‖x̂(k) − x(k)‖2 (18)

≤ −γ

2
‖x̂(k) − x(k)‖2,

where γ is the strong convexity parameter of Fk. Thus, (17) holds for any αk

such that
γ

2
(η − 1)‖x̂(k) − x(k)‖2 + αk

L

2
‖x̂(k) − x(k)‖2 ≤ 0.

By choosing the first nonnegative integer jk such that

δ jk ≤ min

{
1,

γ (1− η)

L

}

and setting

α = min

{
1,

δ γ (1− η)

L

}

we get the thesis. �

Now we prove that the sequence generated by ACQUIRE has a subsequence
converging to a solution of problem (10). Because of the convexity of F , it is
sufficient to prove that the subsequence converges to a constrained stationary
point of F .

Theorem 3. Let {x(k)} be the sequence generated by Algorithm 1. Then there

exists a subsequence {x(kj)} such that

lim
kj→∞

x(kj) = x,

where x ∈ S is such that ∇SF (x) = 0. Furthermore, any limit point x̃ of {x(k)}
is such that ∇SF (x̃) = 0.

Proof . Let αk = δ jk , where jk is given in Theorem 2. By (15) and (18) we
have

F (x(k+1))− F (x(k)) ≤ −αkη
γ

2
‖x̂(k) − x(k)‖2 ≤ 0;

then {F (x(k))} is convergent, and the coercivity of F implies that {x(k)} is
bounded. Since αk ≥ α > 0, we have that

lim
k→∞

‖x̂(k) − x(k)‖ = 0 (19)
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and {x̂(k)} is bounded. This, together with ‖x(k) − x(k)‖ ≤ ‖x(k) − x̂(k)‖ +
‖x̂(k) − x(k)‖ and the first inequality in (13), implies that

lim
k→∞

‖x(k) − x(k)‖ = 0 (20)

and hence {x(k)} is bounded. Passing to subsequences, we have

lim
kj→∞

x(kj) = lim
kj→∞

x(kj) = x ∈ S. (21)

Since the projection onto a nonempty closed convex set is nonexpansive, we get

‖∇SF (x(kj))‖ = ‖∇SF (x(kj))−∇SFkj
(x(kj))‖ ≤ ‖∇F (x(kj))−∇Fkj

(x(kj))‖,

and, by using (21),

lim
kj→∞

‖∇SF (x(kj))‖ = lim
kj→∞

‖∇F (x(kj))−∇Fkj
(x(kj))‖ = 0.

Then, for the lower semicontinuity of ‖∇SF‖, we have

∇SF (x) = 0.

If x̃ is any limit point of {x(k)}, then x̃ ∈ S and, by exploiting (20) and passing
to subsequences, we have

lim
kr→∞

x(kr) = lim
kr→∞

x(kr) = x̃ ∈ S. (22)

By reasoning as above we get

∇SF (x̃) = 0,

which concludes the proof. �

We note that ACQUIRE fits into the very general algorithmic framework
presented in [25] and hence Theorem 3 could be derived by specializing and
adapting the convergence theory of that framework, taking into account the
specific properties of the functions DKL(x) and TVµ(x) and their quadratic

approximations D
(k)
KL(x) and TV

(k)
µ (x), and the line search used. However, for

the sake of clarity and self-consistency, we decided to prove the convergence
of Algorithm 1 from scratch.

Now we show that if the objective function is strictly convex, the whole
sequence {x(k)} converges to the minimizer of problem (10).

Theorem 4. Assume that the function F is strictly convex. Then the sequence

{x(k)} generated by Algorithm 1 converges to a point x ∈ S such that ∇SF (x) =
0.

Proof . We follow the line of the proof of Lemma 2 in [8]. By Theorem 3 we
know that there exists a limit point x of {x(k)} such that ∇SF (x) = 0. Since

11



F is strictly convex, x is the optimal solution of problem (10). We must prove
that {x(k)} converges to x.

From αk ≤ 1 it follows that ‖x(k+1) − x(k)‖ ≤ ‖x̂(k) − x(k)‖ and, by (19),

lim
k→∞

‖x(k+1) − x(k)‖ = 0.

Since x is a strict minimizer, there exists δ > 0 such that F (x) < F (x) for all
x ∈ S such that 0 < ‖x− x‖ ≤ δ. For all ε ∈ (0, δ), it follows from Theorem 3
that the set B = {x ∈ S : δ ≤ ‖x− x‖ ≤ ε} does not contain any limit point of
{x(k)}; thus, there exists k0 such that x(k) 6∈ B for all k > k0 . Let k1 ≥ k0
such that, for all k > k1,

‖x(k+1) − x(k)‖ < δ − ε.

Let K be the set of indices defining a subsequence of {x(k)} converging to x.
There exists k ∈ K, k > k1, such that

‖x(k) − x‖ < ε,

and hence

‖x(k+1) − x‖ ≤ ‖x(k+1) − x(k)‖+ ‖x(k) − x‖ < δ − ε+ ε = δ.

Since x(k+1) 6∈ B, we get
‖x(k+1) − x‖ < ε.

By the same argument we can prove that ‖x(k+j) − x‖ < ε implies ‖x(k+j+1) −
x‖ < ε, and hence, by induction, we have

‖x(k+j) − x‖ < ε for all j.

Since ε is arbitrary, the thesis holds. �

We conclude this section by showing that the stopping criterion (14) can be
used to determine x̂(k) at step 3 of ACQUIRE.

Theorem 5. Assume that (14) holds for some θ ∈ (0, 1). Then, there exists

{εk}, with εk > 0 and limk→∞ εk = 0, such that (13) holds.

Proof . First we recall that −∇Fk(x) = ∇SFk(x)+PNS(x)(−∇Fk(x)) (see (9)).

Since Fk is strongly convex with parameter γ and x(k) is the solution of prob-
lem (12), we have

γ

2
‖x̂(k) − x(k)‖2 ≤ (∇Fk(x̂

(k))−∇Fk(x
(k)))T (x̂(k) − x(k))

= (∇SFk(x̂
(k)))T (x(k) − x̂(k)) + PNS(x̂(k))(−∇Fk(x̂

(k)))T (x(k) − x̂(k))

+ PNS(x(k))(−∇Fk(x
(k)))T (x̂(k) − x(k)).
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Since x(k) − x̂(k) belongs to the tangent cone at x̂(k) and x̂(k) − x(k) belongs to
the tangent cone at x(k), we get

γ

2
‖x̂(k) − x(k)‖2 ≤ (∇SFk(x̂

(k)))T (x(k) − x̂(k)) ≤ ‖∇SFk(x̂
(k))‖‖x(k) − x̂(k)‖.

It follows that

‖x̂(k) − x(k)‖ ≤ 2

γ
‖∇SFk(x̂

(k))‖;

thus, by requiring that

‖∇SFk(x̂
(k))‖ ≤ θk‖∇SFk(x

(0))‖

and setting εk = θk(2/γ)‖∇SFk(x
(0))‖, we get

‖x̂(k) − x(k)‖ ≤ εk. �

5. Numerical experiments

ACQUIRE was implemented in MATLAB, using as inner solver the scaled
gradient projection (SGP) method proposed in [11], widely applied in the solu-
tion of image restoration problems. In particular, the implementation of SGP
provided by the SPG-decMATLAB code, available from http://www.unife.it/prin/software,
was exploited.

The SGP iteration applied to problem (12) reads:

z(j+1) = z(j) + ρj

(
P
S, C

−1
j

(
z(j) − νjCj∇Fk(z

(j))
)
− z(j)

)
,

where z(0) = x(k), ρj is a line-search parameter ensuring that z(j+1) satisfies
a sufficient decrease condition, νj is a suitably chosen steplength, Cj is a di-
agonal positive definite matrix with diagonal entries bounded independently
of j, and P

S, C
−1
j

is the projection operator onto S with respect to the norm

induced by the matrix C−1
j (the dependence on k has been neglected for sim-

plicity). Several efficient rules can be exploited to define the steplength νj
for the quadratic problem (12) (see, e.g., [2, 20, 21, 22, 27, 28] and the refer-
ences therein). In particular, SGP uses a modification of the ABBmin adaptive
Barzilai-Borwein steplength defined in [28], which takes into account the scaling
matrix Cj (see [11] for details); according to the analysis in [23], this steplength
appears very effective. Since the steplength is computed by taking into account
a certain number, say q, of suitable previous steplengths, we modified SPG-dec

to avoid resetting the steplength each time the code was called, and to compute
it by using q steplengths from the previous call. The diagonal scaling matrix
Cj was set as in [58, section 3.3] and q was chosen equal to its defaul value in
SPG-dec, i.e., q = 3. The SGP iterations were stopped according to (14). For
all the tests considered here, we found experimentally that θ = 0.1 worked well
in the first iterations of ACQUIRE; on the other hand, criterion (14) with this
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value of θ soon becomes demanding, and fixing also a maximum number inner
iterations was a natural choice. Setting this number to 10 was effective in our
experiments. Defaults were used for the remaining features of SPG-dec.

The parameter γ in (11) was set equal to 10−5. The nonmonotone line search
proposed in [31] was implemented at line 7 of Algorithm 1, with memory length
equal to 5, η = 10−5, and δ = 0.5. ACQUIRE was stopped using the following
criterion

‖x(k+1) − x(k)‖ ≤ Tol ‖x(k)‖, (23)

i.e., when the relative change in the restored image went below a certain thresh-
old.

ACQUIRE was compared with five state-of-the-art methods: PDAL, SGP,
SPIRAL-TV, SPLIT BREGMAN and VMILA. By PDAL we denote our MAT-
LAB implementation of the primal-dual algorithm proposed in [56, Algorithm 2],
where we replaced the Chambolle-Pock algorithm [17] by the more efficient Pri-
mal Dual Algorithm with Linesearch introduced in [38]. Concerning the param-
eters of PDAL, following [38, Section 6] we set µ = 0.7, δ = 0.99 and β = 25.
The initial steplength was chosen as τ =

√
2/ω, where ω is an underestimate

of ‖MTM‖ and M =
[
AT DT

1 . . . DT
n

]T
is the matrix linking the primal and

dual variables. SPIRAL-TV is the proximal-gradient method presented in [32];
a MATLAB implementation of it is available from http://drz.ac/code/. By
SPLIT BREGMAN we denote a version of the method proposed in [30], which
was specialized for problem (4) [29] and implemented in the MATLAB code
tvdeconv available from http://dev.ipol.im/~getreuer/code/. Finally, VMILA
is the variable-metric inexact line-search proximal-gradient method described
in [9], whose MATLAB implementation can be found at http://www.oasis.unimore.it/site/home/software.html.
In all the methods, the stopping criterion (23) was applied. SGP was run with
the same setting of parameters used to solve the subproblems in ACQUIRE.
For SPIRAL-TV, SPLIT BREGMAN and VMILA, the default values of the
parameters were used.

PDAL, SPIRAL-TV, SPLIT BREGMAN and VMILA do not require any
smooth approximation of TV and were run directly on problem (4). Therefore,
our comparison also provides some insight into the effects of using a smoothed
version of TV. ACQUIRE was run with and without the flux constraint, i.e.,
using both feasible sets S1 and S2 – see (5) and (6). However, since the use of the
flux constraint did not lead to any significant difference in the restored images,
and this constraint was not available in the implementations of SPIRAL-TV,
SPLIT BREGMAN and VMILA, we report only the results for S = S1.

As already noted, when the matrix A represents a convolution, the matrix-
vector products involving the matrices A and AT can be performed by using
fast algorithms. This is the case for all the experiments considered in this work.
Since periodic boundary conditions were considered for all the images used as
test problems, the matrix-vector products were performed by exploiting the
MATLAB FFT functions fft2 and ifft2.

In order to build the test problems used in the experiments, four reference
images were chosen: cameraman, micro, phantom and satellite, shown in Fig-
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ure 1. The cameraman image, available in the MATLAB Image Processing
Toolbox, is widely used in the literature since it contains both sharp edges
and flat regions and presents a nice mixture of smooth and nonsmooth regions;
micro is the confocal microscopy phantom described in [57]; phantom is the fa-
mous Shepp-Logan brain phantom described in [50]; finally, the satellite image
comes from the RestoreTools package [41]. The size of cameraman, phantom
and satellite is 256× 256, while the size of micro is 128× 128.

A first set of test problems, T1, was obtained by convolving each reference
image with a Gaussian PSF and corrupting the resulting image with Poisson
noise. A further set of test problems, T2, was built by convolving some of the
images with a motion blur PSF and an out-of-focus PSF, and then introducing
Poisson noise. Details about the PSFs and the Poisson noise are given in Sub-
sections 5.1 and 5.2, where the results of numerical experiments performed by
using the corrupted images are also reported.

All the experiments were carried out on a 2.5 GHz Intel Core i7 processors
with 16 GB of RAM, 4 MB of L3 cache and the macOS 10.13.6 operating system,
using MATLAB R2018b.

5.1. Results on images with Gaussian blur

The Gaussian blur PSF for constructing the test set T1 was computed by
using the function psfGauss from [41], choosing the variance σ as specified
in Table 1. In order to take into account the existence of some background
emission, 10−10 was added to all the pixels of the blurred image; obviously, the
vector b in DKL(x) was set as b = 10−10e. The Poisson noise was introduced
with the function imnoise from the MATLAB Image Processing Toolbox. Note
that for this type of noise, which affects the photon counting process, the Signal-
to-Noise Ratio (SNR) is usually estimated by

SNR = 10 log10

(
Nexact√

Nexact +Nbackground

)
,

where Nexact and Nbackground are the total number of photons in the exact image
to be recovered and in the background term, respectively. Therefore, in order to
obtain noisy and blurred images with SNR equal to 35 and 40, the intensities of
the reference images were suitably pre-scaled. The resulting images are shown
in Figures 2-5 (left columns).

The regularization parameter λ was set by trial and error, as described
next. The search for a suitable value of λ was carried out separately for the
minimization problem (4), which uses the original TV, and the minimization
problem (10), which uses the smoothed TV. In the latter case, ACQUIRE was
run several times on each test image, for 25 seconds and with Tol = 0 (see (23)),
slowly varying the value of λ at each execution. The value of λ corresponding
to the smallest relative error at the last iteration, was chosen to perform the
experiments with ACQUIRE and SGP. Note that, by running SGP for more
than 25 seconds, we also verified that the selected value of λ was suited to SGP
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too. The relative error was computed as ‖x(k) − x∗‖/‖x∗‖, where x∗ denotes
the original image. The values of λ for problem (4) were set using the same
strategy applied to (10). In this case, instead of ACQUIRE, for each image
we used the method that appeared more efficient among PDAL, SPIRAL-TV,
SPLIT-BREGMAN and VMILA, on the basis of preliminary experiments. All
the values of λ are reported in Table 1. The same value of the regularization
parameter was determined for both the original and the smoothed TV, except
for the satellite image; however, very close values of λ were obtained in this
case.

The parameter µ in the smoothed version of TV was set as µ = 10−2,
which, by numerical experiments, appeared to achieve a good tradeoff between
approximation accuracy and computational effort, for all the test problems.
Indeed, as the value of µ decreases, TVµ becomes a more accurate approximation
of TV , but the condition number of its Hessian increases. For both versions of
TV, each corrupted image was scaled by division by its largest intensity value
before applying any method; the scaled image was also used as starting guess,
i.e., we set x(0) = y. We also performed experiments by setting x(0) as the
vector with entries equal to the flux of the scaled image divided by the number
of pixels of the image, but we could not see any significant difference in the
results.

ACQUIRE was compared with all the other methods on the test problems
previously described, in terms of accuracy and execution time. Six values of
Tol were considered, Tol = 10−2, 10−3, . . . , 10−7, with the aim of assessing the
behavior of ACQUIRE with different accuracy requirements and getting useful
information for the effective use of an automatic stopping rule. A maximum
execution time of 25 seconds was also set for all the methods.

Figures 6 and 7 show the relative errors and the execution times of each
method, in seconds, versus the stopping tolerances, for the problems with SNR
= 35 and SNR = 40, respectively. The images obtained with ACQUIRE and
corresponding to the smallest errors are shown in Figures 2-5 (right columns).
Further details concerning all the methods are given in Tables 3 and 4, where
we report the smallest errors, the iterations performed to achieve them, the
corresponding execution times and tolerances, and the values of MSSIM for the
restored images corresponding to the smallest errors. MSSIM is a structural
similarity measure index [54] which is related to the perceived visual quality of
the image; the higher its value, the better the perceived similarity between the
restored and original images.

We see that ACQUIRE generally does not need small tolerances to achieve
small errors, because of its fast progress in the first iterations, which produces
large changes in the iterate. We note that in four test cases it reaches its
minimum error with Tol = 10−3; this is consistent with the exploitation of
second-order information to build the quadratic model at each iteration. SGP
generally achieves errors comparable with those of ACQUIRE, but its progress
at each iteration is slower, and hence it often requires smaller tolerances to
avoid stopping prematurely. On the other hand, a single iteration of ACQUIRE
requires more time than an iteration of SGP, and the former method may be
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either faster or slower than the latter in obtaining small errors. PDAL is able
to achieve errors comparable with those of ACQUIRE, but it generally requires
smaller tolerances and larger times. VMILA is very efficient on both instances of
the cameraman problem and on the phantom problem with SNR = 35, where it
is faster than ACQUIRE or comparable with it. However, there are some prob-
lems where VMILA makes very little progress in the first iterations, leading to
very premature stops, as shown by the almost constant execution times in the
pictures. The remaining methods are generally less efficient than the previous
ones, because of their very slow progress in reducing the error. We note that
the errors of ACQUIRE and SGP show a light semiconvergence for some prob-
lems. We were not able to completely remove this behavior by increasing the
regularization parameter without significantly deteriorating the visual quality
of the image and decided to keep the value of λ determined by the procedure
previously described. Finally, we note that the values of MSSIM corresponding
to ACQUIRE confirm that in most cases this method is able to provide better
or similar quality images in comparison with the other methods.

5.2. Results on images with moving and out-of-focus blurs

In order to understand if the previous behavior of ACQUIRE also holds for
blurs different from the Gaussian one, and to further compare ACQUIRE with
the other methods, we built the test set T2. We introduced in two reference
images, cameraman and satellite, the motion blur and and the out-of-focus
blur, which simulate the linear motion of a camera and the out-of-focus effect,
respectively. Both blurs were computed by using the Matlab function fspecial.
Poisson noise with SNR equal to 35 and 40 was introduced in the blurred images,
as in the case of Gaussian blur. The length and the angle (in degrees) of the
motion, len and ϕ, and the radius of the disk kernel for the out-of-focus effect,
rad, are specified in Table 2. The values of λ, obtained with the procedure
described in Subsection 5.1, are reported in the same table. In this case, small
differences can be observed between the values of the regularization parameter
corresponding to the original and the smoothed TV. The parameter µ in the
smoothed version of TV was set again as µ = 10−2, on the basis of numerical
experiments. Each noisy and blurred image was scaled as in the case of Gaussian
blur. The vector with entries equal to the flux of the scaled image divided by
the number of pixels of the image was used as starting guess, because, with
the motion and out-of-focus blurs, this choice generally appeared more effective
than the choice of the scaled image.

The error and time histories shown in Figures 12 and 13 confirm the behav-
ior of ACQUIRE: it is able to strongly reduce the error in the first iterations
and hence, although its single iteration is usually more expensive than a single
iterations of the other methods, it is competitive with those methods. Further-
more, ACQUIRE allows an effective use of an automatic stopping rule, avoiding
premature stopping, which may happen with other methods. This is confirmed
by the data in Tables 5 and 6, which report, for all the methods, the smallest
errors and the corresponding MSSIM values, number of iterations, execution
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times and tolerances. The images restored by ACQUIRE and corresponding to
the smallest errors are shown in the right columns of Figures 8-11).

6. Conclusions

We proposed ACQUIRE, a method for TV-based restoration of images cor-
rupted by Poisson noise, modeled by (4). ACQUIRE is a line-search method
which considers a smoothed version of TV and computes the search directions
by minimizing quadratic models built by exploiting second-order information
about the objective function, which is usually not taken into account in meth-
ods for problem (4). We proved that the sequence generated by our method
has a subsequence converging to a minimizer of the smoothed problem (10) and
that any limit point is a minimizer; furthermore, if the problem is strictly con-
vex, the whole sequence is convergent. We note that convergence holds without
requiring the exact minimization of the quadratic models; low accuracy in this
minimization can be used in practice, as shown by the numerical results.

Computational experiments on reference test cases showed that the exploita-
tion of second-order information is beneficial, since it generally leads to a signif-
icant reduction of the reconstruction error in the first iterations, Furthermore,
the capability of achieving a tradeoff between accuracy and efficiency makes AC-
QUIRE competitive with well-established methods for TV-based Poisson image
restoration.

Finally, we observe that our approach can be extended to other regulariza-
tion models, such as high-order Total Variation [36, 43] and Total Generalized
Variation [12, 13], which have been proposed to reduce the staircase effect of
TV and retain the fine details of the image.

Acknowledgments

We wish to thank the anonymous reviewers for their insightful comments
and useful suggestions, which helped us improve the quality of our work.

References

[1] R.-C. Barnard, H. Bilheux, and T. e. a. Toops, Total variation-

based neutron computed tomography, Review of Scientific Instruments, 89
(2018), 053704.

[2] J. Barzilai and J. M. Borwein, Two-point step size gradient methods,
IMA Journal of Numerical Analysis, 8 (1988), pp. 141–148.

[3] A. Beck and M. Teboulle, Fast gradient-based algorithms for con-

strained total variation image denoising and deblurring problems, IEEE
Transactions on Image Processing, 18 (2009), pp. 2419–2434.

18



[4] M. Bertero, P. Boccacci, G. Desiderà, and G. Vicidomini, Image
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CAMERAMAN MICRO

PHANTOM SATELLITE

Figure 1: Reference images: cameraman, micro, phantom and satellite.
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GAUSSIAN BLUR - SNR = 35 GAUSSIAN BLUR - SNR = 35 - RESTORED

GAUSSIAN BLUR - SNR = 40 GAUSSIAN BLUR - SNR = 40 - RESTORED

Figure 2: Cameraman: images corrupted by Gaussian blur and Poisson noise (left) and images
restored by ACQUIRE (right).

GAUSSIAN BLUR - SNR = 35 GAUSSIAN BLUR - SNR = 35 - RESTORED

GAUSSIAN BLUR - SNR = 40 GAUSSIAN BLUR - SNR = 40 - RESTORED

Figure 3: Micro: images corrupted by Gaussian blur and Poisson noise (left) and images
restored by ACQUIRE (right).
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GAUSSIAN BLUR - SNR = 35 GAUSSIAN BLUR - SNR = 35 - RESTORED

GAUSSIAN BLUR - SNR = 40 GAUSSIAN BLUR - SNR = 40 - RESTORED

Figure 4: Phantom: images corrupted by Gaussian blur and Poisson noise (left) and images
restored by ACQUIRE (right).

GAUSSIAN BLUR - SNR = 35 GAUSSIAN BLUR - SNR = 35 - RESTORED

GAUSSIAN BLUR - SNR = 40 GAUSSIAN BLUR - SNR = 40 - RESTORED

Figure 5: Satellite: images corrupted by Gaussian blur and Poisson noise (left) and images
restored by ACQUIRE (right).
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Figure 6: Test set T1, SNR = 35: relative error (left) and execution time (right) versus
tolerance, for all the methods.
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Figure 7: Test set T1, SNR = 40: relative error (left) and execution time (right) versus
tolerance, for all the methods.
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MOTION BLUR - SNR = 35 MOTION BLUR - SNR = 35

MOTION BLUR - SNR = 40 MOTION BLUR - SNR = 40

Figure 8: Cameraman: images corrupted by motion blur and Poisson noise (left) and images
restored by ACQUIRE (right).

MOTION BLUR - SNR = 35 MOTION BLUR - SNR = 35

MOTION BLUR - SNR = 40 MOTION BLUR - SNR = 40

Figure 9: Satellite: images corrupted by motion blur and Poisson noise (left) and images
restored by ACQUIRE (right).
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OUT-OF-FOCUS BLUR - SNR = 35 OUT-OF-FOCUS BLUR - SNR = 35

OUT-OF-FOCUS BLUR - SNR = 40 OUT-OF-FOCUS BLUR - SNR = 40

Figure 10: Cameraman: images corrupted by out-of-focus blur and Poisson noise (left) and
images restored by ACQUIRE (right).

OUT-OF-FOCUS BLUR - SNR = 35 OUT-OF-FOCUS BLUR - SNR = 35

OUT-OF-FOCUS BLUR - SNR = 40 OUT-OF-FOCUS BLUR - SNR = 40

Figure 11: Satellite: images corrupted by out-of-focus blur and Poisson noise (left) and images
restored by ACQUIRE (right).
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Figure 12: Test set T2, motion blur, SNR = 35, 40: relative error (left) and execution time
(right) versus tolerance, for all the methods.
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Figure 13: Test set T2, out-of-focus blur, SNR = 35, 40: relative error (left) and execution
time (right) versus tolerance, for all the methods.
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Problem σ SNR λ

TV TVµ

cameraman 1.4 35 1.55e−2 1.55e−2
40 5.00e−3 5.00e−3

micro 2.0 35 4.50e−3 4.50e−3
40 1.00e−3 1.00e−3

phantom 2.0 35 6.00e−3 6.00e−3
40 4.00e−3 4.00e−3

satellite 2.0 35 7.00e−4 9.00e−4
40 1.50e−4 9.00e−5

Table 1: Details of test set T1.

motion blur

Problem (len, ϕ) SNR λ

TV TVµ

cameraman (11,45) 35 1.50e−2 0.75e−2
40 2.50e−3 1.75e−3

satellite (11,45) 35 2.00e−3 1.50e−3
40 3.50e−4 2.25e−4

out-of-focus blur

Problem rad SNR λ

TV TVµ

cameraman 4 35 1.50e−2 1.00e−2
40 1.40e−3 1.20e−3

satellite 4 35 1.75e−3 0.50e−3
40 2.75e−4 1.90e−4

Table 2: Details of test set T2.
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Test set T1, SNR = 35

Method Min rel err MSSIM Iters Time Tol

cameraman

ACQUIRE 9.88e−2 8.01e−1 11 1.12e+0 1.00e−3
PDAL 9.95e−2 8.03e−1 2743 2.50e+1 1.00e−5
SGP 9.86e−2 8.01e−1 67 1.10e+0 1.00e−4
SPIRAL-TV 1.01e−1 7.99e−1 62 4.92e+0 1.00e−4
SPLIT-BREGMAN 1.02e−1 8.04e−1 116 1.55e+0 1.00e−4
VMILA 9.83e−2 8.00e−1 18 2.69e−1 1.00e−3

micro

ACQUIRE 5.33e−2 9.72e−1 50 1.47e+0 1.00e−4
PDAL 5.40e−2 9.72e−1 9974 2.50e+1 1.00e−5
SGP 5.37e−2 9.72e−1 361 2.83e+0 1.00e−6
SPIRAL-TV 6.20e−2 9.72e−1 1081 2.50e+1 1.00e−7
SPLIT-BREGMAN 5.89e−2 9.77e−1 1107 3.29e+0 1.00e−5
VMILA 5.43e−2 9.76e−1 501 4.61e+0 1.00e−6

phantom

ACQUIRE 1.41e−1 9.75e−1 220 2.50e+1 1.00e−6
PDAL 1.40e−1 9.73e−1 2754 2.50e+1 1.00e−6
SGP 1.41e−1 9.75e−1 769 1.68e+1 1.00e−7
SPIRAL-TV 2.82e−1 9.22e−1 106 2.54e+0 1.00e−7
SPLIT-BREGMAN 1.67e−1 9.73e−1 2006 2.50e+1 1.00e−6
VMILA 1.39e−1 9.80e−1 483 8.20e+0 1.00e−7

satellite

ACQUIRE 1.63e−1 9.62e−1 20 1.89e+0 1.00e−3
PDAL 1.68e−1 9.61e−1 275 2.52e+0 1.00e−4
SGP 1.65e−1 9.61e−1 84 1.36e+0 1.00e−4
SPIRAL-TV 2.46e−1 9.11e−1 51 8.49e−1 1.00e−2
SPLIT-BREGMAN 1.86e−1 9.45e−1 1985 2.50e+1 1.00e−5
VMILA 2.04e−1 9.40e−1 9 7.73e−2 1.00e−2

Table 3: Test set T1, SNR = 35: minimum relative error achieved by each method and
corresponding MSSIM value, number of iterations, execution time and tolerance.

34



Test set T1, SNR = 40

Method Min rel err MSSIM Iters Time Tol

cameraman

ACQUIRE 8.73e−2 8.42e−1 8 8.23e−1 1.00e−3
PDAL 8.88e−2 8.22e−1 2733 2.50e+1 1.00e−5
SGP 8.70e−2 8.42e−1 53 9.10e−1 1.00e−4
SPIRAL-TV 8.97e−2 8.36e−1 280 2.50e+1 1.00e−6
SPLIT-BREGMAN 9.38e−2 8.41e−1 1962 2.50e+1 1.00e−7
VMILA 8.72e−2 8.42e−1 58 9.39e−1 1.00e−4

micro

ACQUIRE 4.31e−2 9.82e−1 218 6.46e+0 1.00e−5
PDAL 4.62e−2 9.64e−1 9543 2.50e+1 1.00e−7
SGP 4.31e−2 9.81e−1 700 3.55e+0 1.00e−7
SPIRAL-TV 5.02e−2 9.83e−1 1480 2.50e+1 1.00e−6
SPLIT-BREGMAN 5.26e−2 9.85e−1 7766 2.50e+1 1.00e−7
VMILA 4.32e−2 9.85e−1 1223 1.04e+1 1.00e−7

phantom

ACQUIRE 1.29e−1 9.85e−1 217 2.50e+1 1.00e−6
PDAL 1.28e−1 9.79e−1 2650 2.50e+1 1.00e−5
SGP 1.29e−1 9.85e−1 369 7.54e+0 1.00e−6
SPIRAL-TV 2.97e−1 9.10e−1 51 1.21e+0 1.00e−2
SPLIT-BREGMAN 1.50e−1 9.83e−1 1936 2.50e+1 1.00e−7
VMILA 2.28e−1 9.51e−1 16 2.18e−1 1.00e−3

satellite

ACQUIRE 1.48e−1 9.70e−1 28 2.74e+0 1.00e−3
PDAL 1.50e−1 9.69e−1 2417 2.26e+1 1.00e−5
SGP 1.48e−1 9.70e−1 216 3.73e+0 1.00e−5
SPIRAL-TV 2.47e−1 9.11e−1 85 1.45e+0 1.00e−7
SPLIT-BREGMAN 1.72e−1 9.53e−1 1935 2.50e+1 1.00e−5
VMILA 2.08e−1 9.37e−1 10 1.35e−1 1.00e−3

Table 4: Test set T1, SNR = 40: minimum relative error achieved by each method and
corresponding MSSIM value, number of iterations, execution time and tolerance.
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Test set T2, motion blur

Method Min rel err MSSIM Iters Time Tol

cameraman, SNR = 35

ACQUIRE 1.12e−1 6.85e−1 12 1.21e+0 1.00e−3
PDAL 1.13e−1 7.51e−1 2656 2.50e+1 1.00e−6
SGP 1.13e−1 6.77e−1 110 2.22e+0 1.00e−5
SPIRAL-TV 1.14e−1 7.54e−1 242 2.51e+1 1.00e−5
SPLIT-BREGMAN 1.19e−1 7.50e−1 164 2.15e+0 1.00e−4
VMILA 1.12e−1 7.51e−1 73 1.27e+0 1.00e−4

cameraman, SNR = 40

ACQUIRE 8.13e−2 8.09e−1 31 3.21e+0 1.00e−4
PDAL 8.42e−2 8.04e−1 2698 2.50e+1 1.00e−5
SGP 8.14e−2 8.09e−1 219 3.83e+0 1.00e−6
SPIRAL-TV 8.56e−2 8.25e−1 377 2.52e+1 1.00e−7
SPLIT-BREGMAN 9.85e−2 8.06e−1 880 1.16e+1 1.00e−5
VMILA 8.28e−2 8.27e−1 139 2.14e+0 1.00e−5

satellite, SNR = 35

ACQUIRE 1.12e−1 9.81e−1 9 8.76e−1 1.00e−2
PDAL 1.14e−1 9.81e−1 2680 2.50e+1 1.00e−5
SGP 1.12e−1 9.81e−1 64 1.06e+0 1.00e−4
SPIRAL-TV 7.92e−1 8.78e−1 51 9.09e−1 1.00e−2
SPLIT-BREGMAN 1.20e−1 9.77e−1 2099 2.50e+1 1.00e−7
VMILA 1.69e−1 9.60e−1 23 2.52e−1 1.00e−6

satellite, SNR = 40

ACQUIRE 7.01e−2 9.93e−1 114 1.09e+1 1.00e−5
PDAL 7.52e−2 9.91e−1 2680 2.50e+1 1.00e−7
SGP 7.00e−2 9.93e−1 356 5.72e+0 1.00e−6
SPIRAL-TV 6.62e−1 8.89e−1 61 1.03e+0 1.00e−7
SPLIT-BREGMAN 7.94e−2 9.90e−1 2114 2.50e+1 1.00e−6
VMILA 1.74e−1 9.59e−1 22 2.46e−1 1.00e−6

Table 5: Test set T2, motion blur: minimum relative error achieved by each method and
corresponding MSSIM value, number of iterations, execution time and tolerance.
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Test set T2, out-of-focus blur

Method Min rel err MSSIM Iters Time Tol

cameraman, SNR = 35

ACQUIRE 1.18e−1 7.41e−1 12 1.11e+0 1.00e−3
PDAL 1.20e−1 7.50e−1 2624 2.50e+1 1.00e−5
SGP 1.18e−1 7.39e−1 122 1.96e+0 1.00e−5
SPIRAL-TV 1.22e−1 7.44e−1 237 2.51e+1 1.00e−5
SPLIT-BREGMAN 1.25e−1 7.49e−1 144 1.72e+0 1.00e−4
VMILA 1.19e−1 7.50e−1 89 1.36e+0 1.00e−4

cameraman, SNR = 40

ACQUIRE 9.20e−2 7.86e−1 14 1.33e+0 1.00e−3
PDAL 9.66e−2 7.12e−1 2658 2.50e+1 1.00e−5
SGP 9.22e−2 7.81e−1 160 2.64e+0 1.00e−5
SPIRAL-TV 9.54e−2 7.92e−1 386 2.50e+1 1.00e−6
SPLIT-BREGMAN 1.10e−1 7.73e−1 1284 1.52e+1 1.00e−5
VMILA 9.20e−2 7.93e−1 148 2.33e+0 1.00e−5

satellite, SNR = 35

ACQUIRE 1.42e−1 9.72e−1 11 1.13e+0 1.00e−2
PDAL 1.43e−1 9.70e−1 2700 2.50e+1 1.00e−5
SGP 1.43e−1 9.72e−1 70 1.07e+0 1.00e−4
SPIRAL-TV 4.39e−1 8.95e−1 63 1.07e+0 1.00e−6
SPLIT-BREGMAN 1.49e−1 9.64e−1 2101 2.50e+1 1.00e−5
VMILA 2.01e−1 9.42e−1 20 2.42e−1 1.00e−6

satellite, SNR = 40

ACQUIRE 9.30e−2 9.87e−1 116 1.11e+1 1.00e−5
PDAL 9.91e−2 9.85e−1 2707 2.50e+1 1.00e−5
SGP 9.30e−2 9.87e−1 541 8.25e+0 1.00e−6
SPIRAL-TV 5.08e−1 8.87e−1 57 9.61e−1 1.00e−7
SPLIT-BREGMAN 1.12e−1 9.79e−1 2096 2.50e+1 1.00e−6
VMILA 2.02e−1 9.42e−1 20 2.32e−1 1.00e−6

Table 6: Test set T2, out-of-focus blur: minimum relative error achieved by each method and
corresponding MSSIM value, number of iterations, execution time and tolerance.
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