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Labelled calculi for quantified
modal logics with definite
descriptions

Eugenio Orlandelli, Department of Philosophy and Communication
Studies, University of Bologna, via Zamboni 38, Bologna, Italy.
Email: eugenio.orlandelli@unibo.it

Abstract

We introduce labelled sequent calculi for quantified modal logics with definite descriptions. We prove
that these calculi have the good structural properties of G3-style calculi. In particular, all rules are
height-preserving invertible, weakening and contraction are height-preserving admissible and cut is
syntactically admissible. Finally, we show that each calculus gives a proof-theoretic characterization
of validity in the corresponding class of models.

1 Introduction

The proof-theoretic study of propositional modal logics is now a well-developed sub-
ject thanks to the introduction of generalizations of Gentzen-style sequent calculi. In
particular, we have internal calculi – e.g., hypersequents [6] and nested sequents [2] –
whose sequents are interpretable in the modal language, and we have external calculi –
e.g., display calculi [6], labelled sequent calculi [21, 28], and annotated tableaux [3, 7]
– whose sequents are not interpretable in the basic modal language. Nevertheless,
with the only exception of labelled calculi [8, 19, 21, 23, 22, 28], the proof-theoretic
study of quantified modal logics (QMLs) has remained rather underdeveloped, see
[24] for some considerations on hypersequents and display calculi for QMLs. One in-
teresting problem that is still open is that of presenting a satisfactory approach to the
structural proof theory for QMLs with definite descriptions: the only cut-free calculi
are the Gentzen-style calculi for QMLs with definite description à la Garson [13] that
have been presented in [14].
Starting from our work in [23], we introduce labelled calculi for the QMLs with

descriptions and �-abstraction that are studied by Fitting and Mendelsohn [11].
We show that these calculi have good structural properties – all rules are height-
preserving invertible, weakening and contraction are height-preserving admissible,
and cut is (syntactically) admissible – and characterize validity in the appropriate
semantic classes. In so doing we solve a problem left open in [14] where we read:

[Fitting and Mendelsohn’s one] is probably the most subtle theory of definite
descriptions [...] As such it certainly deserves attention but it is di�cult to
provide a suitable sequent formalization of it. [p. 388]
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2 Labelled calculi for quantified modal logics with definite descriptions

The rest of this introduction gives a quick survey of Fitting and Mendelsohn’s QMLs
with definite descriptions and explains why labelled calculi are the ideal formalism to
study their structural proof theory.
As it is convincingly argued in [11], the need for non-rigid and non-denoting terms

originates from problems already touched upon in the classical works of Frege [12]
and Russell [25]. First, as Frege noticed, even if both ‘the morning star’ and ‘the
evening star’ denote Venus and even if the ancient knew that objects are self-identical,
the Babylonians did not know that ‘the morning star is identical with the evening
star’. Despite this, if we treat definite descriptions as genuine terms, in standard
QMLs we can prove that the Babylonians knew it because terms are rigid designators.
Moreover, Russell showed that the sentence ‘The present king of France is not bald’
is semantically ambiguous. The expression ‘The present king of France’ does not
actually denote anyone. Hence, if we read ‘The present king of France is not bald’
as saying ‘the object denoted by the expression “The present king of France” is such
that he is bald’, we have a false sentence. If, instead, we read it as saying ‘it is
false that there is an object that is denoted by the expression “The present king of
France” and he is bald’, we have a true sentence. Nevertheless, in standard QMLs we
cannot express the second reading – i.e., the true one – where negation has wide scope
over the definite description (unless we explain away terms expressing descriptions,
as Russell did [25]).
As the two examples above show, if definite descriptions are taken as genuine terms,

we must extend the language of QMLs with non-rigid and non-denoting terms, but
this extension is not trivial, cf. [11]. The problem, roughly, is that if t is a non-rigid
or non-denoting term, the formula ○Pt (for ○ ∈ {�,¬}) becomes ambiguous. When it
is evaluated in a possible world w of some model, the formula �Pt might either mean
that there is a world u that is accessible from w and such that Pt is true therein,
or it might mean that the object denoted by t in w satisfies the unary predicate P

is some world v that is accessible from w. Analogously, ¬Pt might either mean that
it is false that (in w) there is one and only object that is denoted by t and that
satisfies P , or it might mean that the one and only object denoted by t (in w) does
not satisfy P . For rigid and always denoting terms the two readings are equivalent.
For non-rigid and non-denoting terms, instead, neither reading entails the other, and,
therefore, we need some scoping mechanism to disambiguate the formulas �Pt and¬Pt. The solution adopted in [11] is that of extending the language with the operator
of predicate abstraction �. The two readings of ○Pt (for ○ ∈ {�,¬}) can thus be
expressed, respectively, by the (semantically independent) formulas:

�x(○Px).t and ○ (�xPx.t)
All in all, Russell’s [25] (and Smullyan’s [26]) proposal of explaining away definite
descriptions by means of quantification and identity originates from the need to have
a scoping mechanism for the formal representation of non-rigid and non-denoting
terms. By using � to abstract predicates from formulas we have a scoping mechanism
for terms and, therefore, we don’t need to explain them away. One essential feature of
this approach is that non-rigid and non-denoting terms, such as definite descriptions,
can occur in formulas only when their predication is mediated by the operator � and
not as one of the relata of an atomic formula: if t is a (possibly) non-rigid or non-
denoting term, �xPx.t is a formula but Pt is not a formula. Otherwise, we would



Labelled calculi for quantified modal logics with definite descriptions 3

have a problem in interpreting �Pt (for t non-rigid) and ¬Pt (for t non-denoting).
It is well-known that labelled calculi allow to give well-behaved sequent calculi

for all first-order semantically definable propositional modal logic. The key idea is
that of extending the language of sequent calculus in order to internalize relational
semantics into the syntax: we add world labels (representing worlds) and relational
atoms (representing the accessibility relation), and we replace modal formulas with
labelled modal formulas (representing satisfaction at a world). This allows to give
well-behaved rules for the modalities (that are just like rules for restricted first-order
quantifiers). Moreover, thanks to the presence of relational atoms, it allows to use the
method of axioms as rules [18, 20] to transform the first-order semantic conditions that
define interesting modal logics into rules of the calculus. This can be done directly
for coherent (aka geometric) semantic conditions (i.e., formulas of shape ∀�x(A ⊃ B),
where neither A nor B contains ∀ and ⊃) and indirectly for non-coherent ones (via
the method of coherentisation of arbitrary first-order formulas [10]).
As we will show, the strategy of internalizing the semantics works equally well for

QMLs with definite descriptions. In particular, in order to internalize the semantics
presented in [11] we will need to add to the labelled language also denotation formulas
of the shape D(t, x,w) that, when t is a definite description, express the non-trivial
fact that t denotes one object in the world w. In this way we can easily define an
external calculus for the QMLs with definite descriptions presented in [11]. Even if
it is possible to define well-behaved internal calculi for some QMLs without definite
descriptions [24] (e.g., by applying the embeddings given in [4, 5]), we believe that
labelled calculi provides the best tool for the logics we are considering because it seems
hard to define a calculus for them without using denotation formulas or some other
extension of the language – e.g., annotated terms [3, 7] – that cannot be interpreted
in the language of modal logic. In a nutshell, the problem is that something like
denotation formulas are needed to cope with definite descriptions and the only way
to interpret a denotation formula D(t, x,w) in the object language (or to do without
something like denotation formulas as in [14, 15]) is via an identity atom of shape
t = x. But, if the modal language allows for formulas of the shape t = x with t a
definite description, then �-abstraction looses its role of scoping mechanism and we
run into problems with substitutivity of identicals, see [11, Chapter 10.1], and with
cut-elimination for identity atoms [14, Section 5].
The paper is organized as follows. Section 2 sketches the labelled calculi for QMLs

presented in [21]. In particular, the language and semantics of standard QMLs are in-
troduced in Section 2.1, and labelled calculi for these logics are outlined in Section 2.2.
In Section 3, QMLs with identity and definite descriptions are introduced. Di↵erent
approaches to descriptions are briefly compared (Section 3.1) and the syntax and the
semantics of the QMLs with definite descriptions presented in [11] are sketched (Sec-
tion 3.2). Then, in Section 4, labelled calculi for these logics are introduced. Section
5 shows that these calculi have the good structural properties that are distinctive of
G3-style calculi, and Section 6 shows that they are sound and complete with respect
to the appropriate classes of quantified modal frames. We conclude in Section 7 by
showing how the present approach can be extended to cover the quantified extensions
of all first-order definable propositional modal logics and how it can simulate some
other approaches to definite descriptions.



4 Labelled calculi for quantified modal logics with definite descriptions

2 Quantified Modal Logics

In this section, we present QMLs based on a varying domain semantics defined, for
simplicity and following [11, 21], over a signature not containing functions of any arity
nor the identity symbol, and we present labelled calculi for these logics. Functions of
any arity can be added without any problem (as long as they are interpreted rigidly).
Identity will be added in Section 3. Apart from some minor adjustment, the semantics
is as in [11, Chap. 4.7], and the calculi are as in [21, Chap. 12.1]. This section is needed
to make the paper self-contained and it might be skipped by readers already familiar
with QMLs and labelled calculi.

2.1 Syntax and Semantics

Let S be a signature containing, for every n ∈ N, an at most denumerable set REL
S
n

of n-ary predicate letters Pn
1 , P

n
2 , . . . , and let V AR be a denumerable set of variables

x1, x2, . . . . The language L is given by the grammar:

A ∶∶= Pn
x1, . . . , xn � � � A ∧A � A ∨A � A ⊃ A � ∀xA � ∃xA � �A � �A (L)

where Pn ∈ REL
S
n and x,x1, . . . , xn ∈ V AR. We use the following metavariables:

• P,Q,R for predicate letters;

• x, y, z for variables;

• p, q, r for atomic formulas;

• A,B,C for formulas.

We follow the standard conventions for parentheses. The formulas �, ¬A and A ⊃⊂ B
are defined as expected. The notions of free and bound occurrences of a variable in a
formula are the usual ones. Given a formula A, we use A[y�x] to denote the formula
obtained by replacing each free occurrence of x in A with an occurrence of y, provided
that y is free for x in A – i.e., no new occurrence of y is bound by a quantifier.
A model (over the signature S) is a tuple:

M = �W ,R,D,V�
where

• W ≠ � is a nonempty set of (possible) worlds (to be denoted by w, v, u . . . );

• R ⊆W ×W is a binary accessibility relation between worlds;

• D ∶W �→ 2D is a function mapping each world to a possibly empty set of objects
Dw (its domain), where DW = �w∈W Dw is nonempty and disjoint from W ;

• V ∶ S×W �→ 2(DW)n is a valuation function mapping, at each world w, each n-ary
predicate P (∈ S) to a subset of (DW)n.
A frame F is a triple �W ,R,D� (i.e. it is a model without valuation), and a model

M is based on a frame F if M = �F ,V�. We will say that a frame �W ,R,D� has:
• Increasing domain if ∀w, v ∈W , wRv implies Dw ⊆Dv;

• decreasing domain if ∀w, v ∈W , wRv implies Dw ⊇Dv;
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• Constant domain if ∀w, v ∈W , wRv implies Dw =Dv.

Given a model M = �W ,R,D,V�, an assignment (over M ) is a function
� ∶ V AR �→DW mapping each variable x to an element of the union of the domains
of the model. Moreover, for o ∈ DW , �x▷o denotes the assignment behaving like �

except for x that is mapped to the object o.

Definition 2.1 (Satisfaction) Given a model M , an assignment � over it, and a
world w of that model, we define the notion of satisfaction of an L -formula A as
follows:

� �M
w Px1, . . . xn i↵ ��(x1), . . . ,�(xn)� ∈ V(P,w)

� �M
w �

� �M
w B ∧C i↵ � �M

w B and � �M
w C

� �M
w B ∨C i↵ � �M

w B or � �M
w C

� �M
w B ⊃ C i↵ � �M

w B or � �M
w C

� �M
w ∀xB i↵ for all o ∈Dw, �

x▷o �M
w B

� �M
w ∃xB i↵ for some o ∈Dw, �

x▷o �M
w B

� �M
w �B i↵ for all v ∈W , wRv implies � �M

v B

� �M
w �B i↵ for some v ∈W , wRv and � �M

v B

The notions of truth at a world w of a model (�M
w A), truth in a model (�M

A),
and validity in a (class of) frames (F(∈ C) � A) are defined as usual.
As it is well known, some notable formulas are valid in classes of frames defined

by properties of the accessibility relation and/or of the domains. In particular, Ta-
ble 1 presents some well-known (coherent) propositional correspondence results, as
well as correspondence results for increasing, decreasing and constant domain frames.
By an L -logic Q.L we mean the set of all L -formulas that are valid in a class of
frames. We use standard names for L -logics – e.g., Q.K stands for the set of L -
formulas valid in the class of all frames, and Q.S4⊕CBF/BF/UI stands for the set
of L -formulas valid in the class of all reflexive and transitive frames with increas-
ing/decreasing/constant domain. We say that M is a model for Q.L whenever M is
based on a frame in the class that defines Q.L.

2.2 Labelled Sequent Calculi

Labelled sequent calculi for L -logics have been considered in [21, Chapter 12.1] (see
[28] for a related approach). These calculi are based on extending the modal language
in order to internalize the semantics of QMLs. First of all, we introduce a set LAB

of fresh variables, called labels. Labels will be denoted by w, v, u, . . . and will be
used to represent worlds. Then, we extend the set of formulas by adding atomic
formulas of shape x ∈ w – expressing that (the object assigned to) x is in the domain
of quantification of (the world represented by) w – and of shape wRv – expressing
that v is accessible from w. Lastly, we replace each L -formula A with the labelled
formula w ∶ A – expressing that A holds at w. A labelled sequent is an expression:

�⇒�
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Table 1: Modal axioms and corresponding semantic properties

T ∶= �A ⊃ A reflexivity:=∀w ∈W(wRw)
D ∶= �A ⊃�A seriality:=∀w ∈W∃u ∈W(wRu)
4 ∶= �A ⊃ � �A transitivity:=∀w, v, u ∈W(wRv ∧ vRu ⊃ wRu)
5 ∶=�A ⊃ ��A Euclideaness:=∀w, v, u ∈W(wRv ∧wRu ⊃ vRu)
B ∶= A ⊃ ��A symmetry:=∀w, v ∈W(wRv ⊃ vRw)
CBF ∶= �∀xA ⊃ ∀x �A increasing domain

BF ∶= ∀x �A ⊃ �∀xA decreasing domain

UI ∶= ∀xA ⊃ A[y�x] constant domain

where � is a multiset composed of labelled formulas and of atomic formulas of shape
x ∈ w or wRv, and where � is a multiset of labelled formulas. Given a formula
E of this extended language, E[w�v] is the formula obtained by substituting each
occurrence of v in E with an occurrence of w. Substitution of variables is extended
to formulas of the extended language as expected, and both kinds of substitution are
extended to sequents by applying them componentwise.
The rules of the calculus G3Q.K, for the minimal L -logic Q.K, are given in Table

2. For each logic Q.L extending Q.K, the calculus G3Q.L is obtained by extending
G3Q.K with the non-logical rules of Table 3 that express proof-theoretically the
coherent semantic properties which define Q.L (cf. Table 1). Whenever a calculus
contains rule Eucl, it contains also all its contracted instances Eucl

c (see [21, p. 100]).
Observe that CBF (BF ) is not derivable in calculi where rule Incr (Decr) is not
primitive nor admissible (given Proposition 2.2.8, this can be checked semantically).
A G3Q.L-derivation of a sequent � ⇒ � is a tree of sequents, whose leaves are

initial sequents, whose root is � ⇒ �, and which grows according to the rules of
G3Q.L. As usual, we consider only derivations of pure sequents – i.e., sequents where
no variable has both free and bound occurrences. The height of a G3Q.L-derivation
is the number of nodes of its longest branch. We say that �⇒� is G3Q.L-derivable
(with height n), and we write G3Q.L �(n) �⇒�, if there is a G3Q.L-derivation (of
height at most n) of � ⇒ � or of an alphabetic variant of � ⇒ �. A rule is said to
be (height-preserving) admissible in G3Q.L, if, whenever its premisses are G3Q.L-
derivable (with height at most n), also its conclusion is G3Q.L-derivable (with height
at most n). In each rule depicted in Tables 2 and 3, � and � are called contexts, the
formulas occurring in the conclusion are called principal, and the formulas occurring
in the premiss(es) only are called active.
The following proposition presents the main meta-theoretical properties of G3Q.L.

The proofs can be found in [21, Chap. 12.1].

Proposition 2.2 (Properties of G3Q.L)

1. Sequents of shape w ∶ A,�⇒�,w ∶ A (with A non-atomic) are G3Q.L-derivable.

2. ↵-conversion is height-preserving admissible: if G3Q.L �n �⇒ �, then G3Q.L�n �′ ⇒�′, where �′ (�′) is obtained from � (�) by renaming bound variables.
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Table 2: Rules of G3Q.K

initial sequents: w ∶ p,�⇒�,w ∶ p, with p atomic

logical rules:

w ∶ �,�⇒�
L�

w ∶ A,w ∶ B,�⇒�
w ∶ A ∧B,�⇒�

L∧ �⇒�,w ∶ A �⇒�,w ∶ B
�⇒�,w ∶ A ∧B R∧

w ∶ A,�⇒� w ∶ B,�⇒�
w ∶ A ∨B,�⇒�

L∨ �⇒�,w ∶ A,w ∶ B
�⇒�,w ∶ A ∨B R∨

�⇒�,w ∶ A w ∶ B,�⇒�
w ∶ A ⊃ B,�⇒�

L⊃ w ∶ A,�⇒�,w ∶ B
�⇒�,w ∶ A ⊃ B R⊃

w ∶ A[y�x], y ∈ w,w ∶ ∀xA,�⇒�

y ∈ w,w ∶ ∀xA,�⇒�
L∀ z ∈ w,�⇒�,w ∶ A[z�x]

�⇒�,w ∶ ∀xA R∀, z fresh

z ∈ w,w ∶ A[y�x],�⇒�

w ∶ ∃xA,�⇒�
L∃, z fresh

y ∈ w,�⇒�,w ∶ ∃xA,w ∶ A[y�x]
y ∈ w,�⇒�,w ∶ ∃xA R∃

v ∶ A,wRv,w ∶ �A,�⇒�

wRv,w ∶ �A,�⇒�
L� wRu,�⇒�, u ∶ A

�⇒�,w ∶ �A R�, u fresh

wRu,u ∶ A,�⇒�
w ∶ �A,�⇒�

L�, u fresh
wRv,�⇒�,w ∶ �A,v ∶ A

wRv,�⇒�,w ∶ �A R�

Table 3: Non-logical (aka coherent) rules

wRw,�⇒�
�⇒�

RefW
vRu,wRv,wRu,�⇒�

wRv,wRu,�⇒�,
Eucl

vRv,wRv,�⇒�

wRv,�⇒�,
Eucl

c

wRu,�⇒�
�⇒�,

Ser ,u fresh
wRu,wRv, vRu,�⇒�

wRv, vRu,�⇒�
Trans

vRw,wRv,�⇒�

wRv,�⇒�
Sym

x ∈ v, x ∈ w,wRv,�⇒�

x ∈ w,wRv,�⇒�
Incr

x ∈ w,x ∈ v,wRv,�⇒�

x ∈ v,wRv,�⇒�
Decr

x ∈ w,�⇒�
�⇒�

Cons

3. The following rules of substitution are height-preserving admissible in G3Q.L:

�⇒�
�[y�x]⇒�[y�x] [y�x] �⇒�

�[w�v]⇒�[w�v] [w�v]
where y is free for x in each formula occurring in �,� for rule [y�x].

4. The following rules of weakening are height-preserving admissible in G3Q.L:

�⇒�
�′,�⇒�

LW
�⇒�

�⇒�,�′ RW
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5. Each rule of G3Q.L is height-preserving invertible.

6. The following rules of contraction are height-preserving admissible in G3Q.L:

�′,�′,�⇒�

�′,�⇒�
LC

�⇒�,�′,�′
�⇒�,�′ RC

7. The following rule of Cut is admissible in G3Q.L:

�⇒�,w ∶ A w ∶ A,�′ ⇒�′
�′,�⇒�,�′ Cut

8. G3Q.L is sound and complete with respect to Q.L.

3 Quantified modal logics with definite descriptions

3.1 Preliminary discussion

Before introducing the formal machinery used by Fitting and Mendelshon [11] to deal
with definite descriptions, we take a minute to outline some of the main semantic
approaches to definite descriptions, see [14, 15] for more details. Given a formula
with one free variable A(x), let us consider the description:

the x such that A(x) (3.1)

First of all, we can simply deny that (3.1) has to be represented by a genuine term
of the formal language. In this case, following Russell [25], we can explain it away by
means of of quantification and identity as follows:

∃x(A(x) ∧ ∀y(A(y) ⊃ y = x))
This is a very simple solution in that we simply get rid of the problem of giving a
semantics for improper definite descriptions.
If, instead, following Frege [12] we maintain that (3.1) has to be represented by a

genuine term of the formal language, we extend the language with terms of shape:

◆

xA(x)
and we have to give a satisfactory semantics for descriptions. If a description is
proper, then it denotes the one and only existing object that satisfies it (in a given
world). The problem is what to do when a description is improper because either
it is true of no object –e.g., ◆

x(x ≠ x) – or it is true of more than one object –
e.g., ◆

x(x = x). If we don’t want to extend the language then we cannot allow for
non-denoting terms. Thus, we have to accept that improper descriptions denote
some object. In a constant domain setting – i.e., when we use the quantification
theory of classical logic – we can follow Montague and Kalish [17] and assume that
all improper descriptions denote a chosen object. If, instead, we are using a varying
domain semantics – i.e., the quantification theory of positive free logic – then we can
follow Garson [13] and assume that each improper description denotes a non-existing
object (without thereby assuming it is the same one for all improper descriptions).
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Nevertheless, these two solutions are not satisfactory in that it is more natural to
maintain that an improper description simply fail to denote. Moreover, like Russell’s
approach, these two approaches do not disentangle designation from existence.
The addition of �-abstraction to the language allows Fitting and Mendelsohn [11]

to avoid these shortcomings: proper descriptions denote the one and only object that
satisfies them (be it an existing object or not) and improper descriptions simply fail
to denote. Failure of denotation will not be a problem because definite descriptions
do not occur as relata of atomic formulas – i.e., P 1 ◆

xA is not a formula – but only as
terms applied via �. Hence we can simply impose that if t is an improper description
then �xA.t is false (for all A): this implies that ¬(�xA.t) is true – i.e., that the
sentence At is false – without thereby implying that �x¬A.t is true – i.e., that the
negation of A is true of the object denoted by t.

3.2 Syntax and semantics

Let us consider the same signature S of Section 2.1. Functions of any arity are omitted
for simplicity; they may be added with minor modifications (see footnote 1), but they
are already expressible via definite descriptions. The sets of terms and formulas of
the language L � are defined simultaneously as follows:

t ∶∶= x � ◆xA
A ∶∶= Pn

x1, . . . , xn � x1 = x2 � � � A ∧A � A ∨A � A ⊃ A � ∀xA � ∃xA � �A � �A � �xA.t

where Pn ∈ REL
S
n and x,x1, . . . , xn ∈ V AR. Observe that definite descriptions can

occur in a formula only as terms applied by the operator �. We continue to use the
conventions and notions introduced in Section 2.1 with the following additions:

• in �xA.t all occurrences of x (save for the displayed t in case t ≡ x) are bound by �x;

• t, r, s range over terms.

Frames (F), models (M), and assignments (�) are defined as in Section 2.1. Be-
cause of definite descriptions, we have to define the notions of denotation and satis-
faction together.

Definition 3.1 (Denotation and satisfaction) Given a modelM, an assignment
� over it, and a world w of that model, we simultaneously define the notions of
denotation of a term t and satisfaction of an L -formula A as follows:

• Denotation of a term t:V�
w(x) = �(x)V�
w( ◆xA) = o i↵ o is the one and only member of DW such that �x▷o �Mw A

• Satisfaction is defined by extending Definition 2.1 with the following clauses:

� �Mw x = y i↵ �(x) = �(y)
� �Mw �xA.t i↵ V�

w(t) is defined and �
x▷V�

w(t) �Mw A

Truth and validity are defined as in Section 2.1. All correspondence results of Section
2 carries over to QMLs with definite descriptions.
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Finally, we show the generality of this approach to definite descriptions by showing
how it can simulate the other (non-eliminative) approaches considered in Section 3
(see [15] for a presentation of Montague and Kalish-style descriptions and [14] for
Garson-style ones).

Proposition 3.2

1. A Montague and Kalish-style [17] description can be defined as:

◆

mxA ≡ ◆

x(∃!y(A[y�x]) ∨Ux)
where ∃! is the unique existential quantifier, ∨ is exclusive disjunction and U is a
constant monadic predicate axiomatized by the coherent axioms U(y) ⊃ ∃z(y = z)
and U(y) ∧U(z) ⊃ y = z (our language does not contain constants).

2. A Garson-style [13] description can be defined as:

◆

gxA ≡ ◆

x(∃!y(A[y�x]) ∨U ◆

xA(x))
where U ◆

xA is a constant predicate, that is parametric on ◆

xA (modulo alphabetic
variants), such that ∀y(U ◆

xA(y) ⊃ �) and U ◆

xA(y) ∧U ◆

xA(z) ⊃ y = z.
4 Labelled calculi

In order to introduce labelled sequent calculi for QMLs with definite descriptions, we
extend the language of labelled calculi with denotation formulas of shape D(t, x,w),
which will be used to express that the variable x denotes the object denoted in w by
the term t. From now on, a sequent � ⇒ � is an expression where � is a multiset
of labelled L�-formulas and of formulas of shape D(t, x,w), x ∈ w or wRv; and �
is a multiset of labelled L�-formulas and of denotation formulas only. The following
non-standard definition of weight will be essential in Sections 5 and 6.

Definition 4.1 (Weight of terms and formulas)

• The weight of a term t is 0 if t is a variable and, if t ≡ ◆

xA, it is equal to the weight
of w ∶ A;

• The weight of a labelled L�-formula w ∶ A is defined as the number of operators
that di↵ers from � (and =) occurring in A plus the weight of each occurrence of a
term in A;

• The weight of a formula D(t, x,w) is equal to the weight of the term t;

• the weight of formulas of shape x ∈ w and wRv is 0.

The rules of the calculus G3Q�.L are the rules of G3Q.L, see Tables 2 and 3, plus
the initial sequents and rules given in Table 4. Observe that the rules for identity
contain the labelled version of the non-logical rules first introduced in [20]. When
w ∶ y = x holds, by Repl we can replace x with y in any atomic formula that, so to
say, talks about w. Rule RigV ar implies that if x and y denote the same object in
some world, they do so in each world. Thus, variables behave as rigid designators and
labels could be omitted from identities. We choose to keep them in order to have a
more uniform notation.
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Table 4: Additional rules for G3�.L

Initial sequents: D(y, x,w),�⇒�,D(y, x,w)
Rules for identity:

w ∶ x = x,�⇒�
�⇒�

Ref=
v ∶ y = z,w ∶ y = z,�⇒�

w ∶ y = z,�⇒�
RigVar

E[z�x],E[y�x],w ∶ y = z,�⇒�

E[y�x],w ∶ y = z,�⇒�,
Repl

E is either D(xi, xj ,w) or xi ∈ w or w ∶ p
for p atomic

Rules for �:

D(t, z,w),w ∶ B[z�x],�⇒�

w ∶ �xB.t,�⇒�
L�, z fresh

�⇒�,w ∶ �xB.t,D(t, y,w) �⇒�,w ∶ �xB.t,w ∶ B[y�x]
�⇒�,w ∶ �xB.t

R�

Rules for D(. . . ):
w ∶ A[x2�x1],D( ◆x1A,x2,w),�⇒�

D( ◆x1A,x2,w),�⇒�
LD1

D( ◆x1A,x2,w),�⇒�,w ∶ A[y�x1] w ∶ x2 = y,D( ◆x1A,x2,w),�⇒�

D( ◆x1A,x2,w),�⇒�
LD2

�⇒�,w ∶ A[x2�x1] w ∶ A[z�x1],�⇒�,w ∶ x2 = z
�⇒�,D( ◆x1A,x2,w) RD, z fresh

D(x,x,w),�⇒�

�⇒�
DenVar

w ∶ y = x,D(y, x,w),�⇒�

D(y, x,w),�⇒�
DenId

The satisfaction clause for �xA.t in a world w is similar to that for ∃xA, the
only di↵erence being that A has to be satisfied not by some arbitrary object of Dw,
but by the one and only object of DW that is denoted by t in that world of that
model. Therefore the rules for � are like the ones for ∃ in intuitionistic logic with
existence predicate (ILE), see [1, 27], save that they are restricted by formulas of
shape D(t, x,w) instead of by atoms of shape Et as in ILE.
Next, we briefly explain the rules for D(t, x,w). The universal rule DenId ensures

that if (in w) y picks the object denoted by x, then x and y denote the same object;
and the universal rule DenV ar ensures that variables denote at every world. The
rules LDi and RD are obtained as meaning-explanation of the denotation clause for
definite descriptions. This is done by first rewriting the denotation clause for ◆

xA as:

V�
w( ◆xA) = o1 i↵ �

x▷o1 �Mw A and ∀o2 ∈DW (�x▷o2 �Mw A ⊃ o2 = o1)
Then, from the left-to-right (right-to-left) direction of this semantic clause we easily
obtain the rules LDi (RD).
As shown in [16], for ILE it is possible to obtain a simpler calculus by replacing the
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two premisses rule
�⇒ Et �⇒ A[t�x]

�⇒ ∃xA R∃∗

with the (equivalent) one premiss rule

Et,�⇒ A[t�x]Et,�⇒ ∃xA R∃

The same phenomenon holds for QMLs with varying domains where we can use either
two-premisses versions of rules R∃ and L∀ [14] or the simpler one-premiss versions
thereof [21]. In Table 2 we have used the one-premiss rules and the same has been done
for the rule R� in [23]. Here, instead, we are forced to adopt the two-premisses version
of the rules R� and LD2 because the presence of definite description would impair the
admissibility of cut with the one-premiss version of these rules. The problem, roughly,
is that D( ◆x1A,x2,w) (or w ∶ A[y�x1] for rule LD2) is not atomic and, therefore, it
cannot be a principal formula of the rule R� (LD2, respectively) if we want to prove
the cut-elimination theorem.

5 Structural properties

Lemma 5.1 (Initial sequents) Let A be an arbitrary L�-formula. Sequents of the
following shapes are G3Q�.L-derivable:

1. w ∶ A,�⇒�,w ∶ A
2. D( ◆xA, z,w),�⇒�,D( ◆xA, z,w)
Proof. The two cases are proved by simultaneous induction on the weight of the
principal formula. For the inductive steps it is enough to apply, root first, the rules
for the outermost operator (D(. . . ) included) of the principal formula and then the
inductive hypothesis (IH). To illustrate, for D( ◆xA, z,w),� ⇒ �,D( ◆xA, z,w) we
have:

w ∶ A[z�x], . . .⇒ w ∶ A[z�x] IH

D( ◆xA, z,w),�⇒�, w ∶ A[z�x] LD1

w ∶ A[y�x], . . .⇒ . . . ,w ∶ A[y�x] IH

w ∶ z = y, . . .⇒ w ∶ z = y
w ∶ A[y�x],D( ◆xA, z,w),�⇒�,w ∶ z = y LD2

D( ◆xA, z,w),�⇒�,D( ◆xA, z,w) RD

Lemma 5.2 (↵-conversion) G3Q�.L �n � ⇒ � entails G3Q�.L �n �′ ⇒ �′,
where �′ (�′) is obtained from � (�) by renaming some bound variable (without
capturing variables).

Proof. The proof is by induction on the height of the G3Q�.L-derivation D of
�⇒ �. To illustrate, suppose we know that G3Q�.L �n w ∶ �xA.t,�⇒ �, and we
want to show that G3Q�.L �n w ∶ �yA[y�x].t,�⇒ � (with y fresh). If w ∶ �xA.t is
not principal in the last step of D, the proof is straightforward. Else, we transform

D(t, z,w),w ∶ A[z�x],�⇒�

w ∶ �xA.t,�⇒�
L�

into

D(t, z,w),w ∶ A[z�x],�⇒�

D(t, z,w),w ∶ (A[y�x])[z�y],�⇒�
�

w ∶ �yA[y�x].t,�⇒�
L�
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where the step � is height-preserving admissible since, having assumed that y is fresh,
w ∶ (A[y�x])[z�y] is just a cumbersome notation for w ∶ A[z�x].
Lemma 5.3 (Substitutions) The following rules of substitution are height-preserving
admissible in G3Q�.L:

�⇒�
�[y�x]⇒�[y�x] [y�x] �⇒�

�[w�v]⇒�[w�v] [w�v]
where y is free for x in each formula occurring in �,� for rule [y�x].
Proof. Both proofs are by induction on the height of the derivation D of the premiss
�⇒�. The base cases and the inductive steps where the last rule is not a rule from
Table 4 are proved in [21, Lemma 12.4].
We consider explicitly only the case of rule [y�x] where the last step is by L� and

the substitution [y�x] clashes with its variable condition. E.g., the last step of D is

D(t, y,w),w ∶ A[y�z],�′ ⇒�

w ∶ �zA.t,�′ ⇒�
L�

with x occurring free in w ∶ A[y�z],�′,� and/or t ≡ x. We apply IH twice to the
premiss of the last step of D, the first time to replace y with y

′, for some fresh
variable y

′, and the second time to replace x with y. We finish by applying rule L�.
Thus, assuming z �≡ x, we have transformed D into D[y�x]:

D(t, y,w),w ∶ A[y�z],�′ ⇒�

D(t, y′,w),w ∶ A[y′�z],�′ ⇒�
IH

D(t[y�x], y′,w),w ∶ (A[y′�z])[y�x],�′[y�x]⇒�[y�x] IH

D(t[y�x], y′,w),w ∶ (A[x�y])[y′�z],�′[y�x]⇒�[y�x] �
w ∶ �z(A[y�x]).(t[y�x]),�′[y�x]⇒�[y�x] L�

which has the same height as D because the steps by IH are height-preserving admis-
sible and the step by � is an height-preserving admissible rewriting that is feasible
because z �≡ x and y

′ �∈ {y, x}.
Theorem 5.4 (Weakening) The following rules are height-preserving admissible in
G3Q�.L:

�⇒�
�′,�⇒�

LW
�⇒�

�⇒�,�′ RW

Proof. The proofs are by induction on the height of the derivation D of the premiss
� ⇒ �. The base cases and the inductive cases where the last step of D is not by
a rule from Table 4 are proved in [21, Thm. 12.5]. The proofs of the inductive cases
when the last step of D is by L� or by RD (R� or LDi) are analogous to the ones in
[21, Thm. 12.5] with last step of D by rule L∃ (R∃, respectively). The remaining cases
are similar to the other ones by non-logical (coherent) rules and can be omitted.

Lemma 5.5 The rules for � and for D(. . . ) are invertible.

Proof. Rules R�, LDi, DenVar, and DenId are ‘Kleene-invertible’ thanks to the
repetition of the principal formula in the premiss(es) and to the admissiblity of Weak-
ening.
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Let’s consider RD. Suppose we have a G3Q�.L-derivation D of height n of the
sequent �⇒ �,D( ◆xA, z,w). If n = 0 or if D( ◆xA, z,w) is principal in the last step
of D, the lemma holds trivially. Else we reason by cases on the last step R of D and
we transform the derivation(s) of its premiss(es) �i ⇒ �i,D( ◆xA, z,w) (i ∈ {1,2})
as follows: first, if R has a variable condition, we apply an hp-admissible instance
of substitution to ensure it di↵ers from y; then we apply the inductive hypothesis to
obtain either �′i ⇒ �′i,w ∶ A[z�x] or w ∶ A[y�x],�′i ⇒ �′i,w ∶ z = y; finally we apply
an instance of rule R.
Rule L� can be treated analogously.

Corollary 5.6 (Invertibility) Each rule of G3Q�.L is height-preserving invertible.

Theorem 5.7 (Contraction) The following rules are height-preserving admissible
in G3Q�.L:

�′,�′,�⇒�

�′,�⇒�
LC

�⇒�,�′,�′
�⇒�,�′ RC

Proof. The proof is handled by a simultaneous induction on the height of the deriva-
tions of the premisses of LC and RC. Without loss of generality, we assume the
multiset we are contracting is made of only one formula E.
The base cases obviously hold, and the proof of nductive cases depend on whether

zero, one, or two instances of E are principal in the last step R of the derivation D
of the premiss. If zero instances are principal in R, we apply IH to the premiss(es) of
R and then an instance of rule R, and we are done.
If one instance is principal and R is by a propositional rule or by one of

R∀, L∃,R�, L�, L� and RD, we proceed by first applying invertibility to that rule,
then we apply IH as many times as needed, and we conclude by applying an instance
of that rule. If, instead, one instance is principal and R is by a rule with repetition
of the principal formula(s) in the premiss, we use the hp-admissibility of the rules of
weakening, then IH and R.
If two instances are principal, R is a coherent rule (rule Repl included) and, if

needed, we make use of the fact that R satisfies the closure condition (see [21, p.
100]). To illustrate, the case of Euclid is taken care by the presence of its contracted
instances Euclid

c. For Trans, we have three occurences of wRw in the premiss of
this rule instances: two principal and one active. We apply IH twice and we are done.
For Repl, the active formula of the last rule instance must be of shape w ∶ x = x, and,
after having applied IH, we can get rid of it by applying Ref=.1
Theorem 5.8 (Cut) The following rules of Cut are admissible in G3Q.L:

�⇒�,w ∶ A w ∶ A,�′ ⇒�′
�′,�⇒�,�′ Cut

�⇒�,D(t, x,w) D(t, x,w),�′ ⇒�′
�′,�⇒�,�′ Cut

′

Proof. We prove the two cases simultaneously. The proof, which extends that of [21,
Thm. 12.9], considers an uppermost instance of either Cut or Cut

′ which is handled

1If the language contains functions, then we must add contracted instances of rule Repl to derive the (valid)

sequent w ∶ x = f(x)⇒ w ∶ x = f(f(x)) without applying contraction.
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by a principal induction on the weight of the cut-formula with a sub-induction on the
sum of the heights of the derivations D1 and D2 of the two premisses of cut (cut-height,
for shortness). The proof can be organized in four exhaustive cases: in case 1 one of
the two premisses is an initial sequent. In case 2 the cut formula is not principal in
the left premiss only and in case 3 it is not principal in the right premiss. Finally,
in case 4, the cut formula is principal in both premisses.
In case 1, the conclusion of Cut (Cut

′) is an initial sequent and, therefore, we can
dispense with that instance of Cut (Cut

′).
In case 2, we transform the derivation as follows. First, if the last rule applied inD1 has a variable condition, we apply an height-preserving admissible substitution to

rename its eigenvariable with a fresh one. Then, we apply one instance of Cut (Cut
′)

on each premiss of D1 with the conclusion of D2. These instances of Cut (Cut
′) are

admissible by IH because they have a lesser cut-height. We finish by applying an
instance of the last rule applied in D1.
Case 3 is similar to case 2 (swapping D1 and D2). To illustrate, suppose the last

step of D2 is by L� (with y eigenvariable), we transform

�⇒�,w ∶ A
D(t, y, v),w ∶ A,v ∶ B[y�x],�′ ⇒�′

w ∶ A,v ∶ �xB.t,�′ ⇒�′ L�

v ∶ �xB.t,�′,�⇒�,�′ Cut

into

�⇒�,w ∶ A
D(t, y, v),w ∶ A,v ∶ B[y�x],�′ ⇒�′
D(t, z, v),w ∶ A,v ∶ B[z�x],�′ ⇒�′ [z�y]

D(t, z, v), v ∶ B[z�x],�,�′ ⇒�,�′ Cut

v ∶ �xB.t,�′,�⇒�,�′ L�

In case 4, we have subcases according to the principal operator of the cut-formula.
We consider only the case where the cut-formula is of shape w ∶ �yB.t or D( ◆xA, z,w)
(see [21, Thm. 12.9] for the other cases).

• Cut formula is w ∶ �yB.t. We transform

⋮ D11

�′ ⇒�′,w ∶ �yB.t,D(t, x,w) ⋮ D12

�′ ⇒�′,w ∶ �yB.t,w ∶ B[x�y]
�′ ⇒�′,w ∶ �yB.t

R�

⋮ D21

D(t, z,w),w ∶ B[z�y],�⇒�

w ∶ �yB.t,�⇒�
L�

�′,�⇒�,�′ Cut

into:

⋮ D12

�′ ⇒�′,w ∶ B[x�y],w ∶ �yB.t

⋮D2
w ∶ �yB.t,�⇒�

�′,�⇒�,�′,w ∶ B[x�y] Cut1
⋮ D3

w ∶ B[x�y],�′,�,�⇒�,�,�′
�′,�′,�,�,�⇒�,�,�,�′,�′ Cut2

�′,�⇒�,�′ LC+RC

where D3 is the following derivation:

⋮ D11

�′ ⇒�′,D(t, x,w),w ∶ �yB.t

⋮D2
w ∶ �yB.t,�⇒�

�′,�⇒�,�′,D(t, x,w) Cut3

⋮ D21

D(t, z,w),w ∶ B[z�y],�⇒�

D(t, x,w),w ∶ B[x�y],�⇒�
[x�z]

w ∶ B[x�y],�′,�,�⇒�,�,�′ Cut
′
4
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Cut1 and Cut3 are admissible because they have has lesser cut-height; Cut2 and Cut ′4
because their cut-formula has lower weight.

• Cut formula is D( ◆xA, z,w). We have two subcases according to whether the right
premiss is by LD1 or LD2.

- If right premise is by LD1, we have:

⋮ D11

�′ ⇒�′,w ∶ A[z�x] ⋮ D12

w ∶ A[y�x],�′ ⇒�′,w ∶ z = y
�′ ⇒�′,D( ◆xA, z,w) RD

⋮ D21

w ∶ A[z�x],D( ◆xA, z,w),�⇒�

D( ◆xA, z,w),�⇒�
LD1

�′,�⇒�,�′ Cut
′

and we transform it into:

⋮ D11

�′ ⇒�′,w ∶ A[z�x]
⋮ D1

�′ ⇒�′,D( ◆xA, z,w) ⋮ D21

D( ◆xA, z,w),w ∶ A[z�x],�⇒�

w ∶ A[z�x],�′,�⇒�,�′ Cut
′
1

�′,�′,�⇒�,�′,�′ Cut2

�′,�⇒�,�′ LC+RC

where Cut
′
1 has lesser cut-height and Cut2 has a cut formula of lower weight.

- if the right premise by LD2, we have:

⋮ D11

�′ ⇒�′,w ∶ A[z1�x] ⋮ D12

w ∶ A[y�x],�′ ⇒�′,w ∶ z1 = y
�′ ⇒�′,D( ◆xA, z1,w) RD

⋮ D21

D( ◆xA, z1,w),�⇒�,w ∶ A[z2�x] ⋮ D22

w ∶ z1 = z2,D( ◆xA, z1,w),�⇒�

D( ◆xA, z1,w),�⇒�
LD2

�′,�⇒�,�′ Cut
′

we transform it into:

⋮ D1

�′ ⇒�′,D( ◆xA, z1, w) ⋮ D21

D( ◆xA, z1,w),�⇒�,w ∶ A[z2�x]
�′,�⇒�,�′,w ∶ A[z2�x] Cut

′
1

⋮ D3

w ∶ A[z2�x],�′,�′,�⇒�,�′,�′
�′,�′,�′,�,�⇒�,�,�′,�′,�′ Cut2

�′,�⇒�,�′ LC+RC

where D3 is the following derivation:

⋮ D12

w ∶ A[y�x],�′ ⇒�′,w ∶ z1 = y
w ∶ A[z2�x],�′ ⇒�′,w ∶ z1 = z2 [z2 �y]

⋮ D1

�′ ⇒�′,D( ◆xA, z1,w) ⋮ D22

D( ◆xA, z1,w),w ∶ z1 = z2,�⇒�

w ∶ z1 = z2,�′,�⇒�,�′ Cut
′
3

w ∶ A[z2�x],�′,�′,�⇒�,�′,�′ Cut4

Cut ′1 and Cut ′3 are admissible because they have lesser cut-height; Cut2 and Cut4
because their cut-formula has lower weight.

Lemma 5.9 (Properties of identity)
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1. Identity is an equivalence relation in G3Q�.L;

2. The following sequents are G3Q�.L-derivable:
(a) ⇒ w ∶ x = x
(b) w ∶ z = y,w ∶ A[z�x]⇒ w ∶ A[y�x]
(c) w ∶ z = y,D(t, x1,w)[z�x]⇒D(t, x1,w)[y�x]
3. The following rules of replacement are admissible in G3Q�.L:

w ∶ A[y�x],w ∶ z = y,w ∶ A[z�x],�⇒�

w ∶ z = y,w ∶ A[z�x],�⇒�
Repl1

D(t, x1,w)[y�x],w ∶ z = y,D(t, x1,w)[z�x],�⇒�

w ∶ z = y,D(t, x1,w)[z�x],�⇒�
Repl2

Proof. The proofs of items 1 and 2(a) are left to the reader.
We prove cases 2(b) and 2(c) by simultaneous induction on the weight of the ‘re-

placement formula’. All cases but that of 2(b) with A of shape �x1B.t and that of
2(c) with t of shape ◆

x2B are left to the reader.
In the first case, assuming, w.l.o.g., x1 �∈ {x, y, z}, we have:

D(t[z�x], x2,w),w ∶ z = y⇒D(t[y�x], x2,w) IH2(c)
w ∶ (B[x2�x1])[z�x],w ∶ z = y⇒ w ∶ (B[x2�x1])[y�x] IH2(b)

w ∶ (B[z�x])[x2�x1],w ∶ z = y⇒ w ∶ (B[y�x])[x2�x1] �
D(t[z�x], x2, w),w ∶ B([z�x])[x2�x1],w ∶ z = y⇒ w ∶ �x1B[y�x].t[y�x] R�

w ∶ z = y,w ∶ �x1B[z�x].t[z�x]⇒ w ∶ �x1B[y�x].t[y�x] L�

Where the step by � is a rewriting that is feasible because {x1, x2}∩{x, y, z} = �, and
the step by IH2(c)�(b) is by induction on case (c)/(b) of the lemma, respectively.
In the second case, assuming {x1, x2} ∩ {x, y, z} = �, we have:

w ∶ z = y,w ∶ (B[x1�x2])[z�x]⇒ w ∶ (B[x1�x2])[y�x] IH2(b)

w ∶ z = y,w ∶ (B[z�x])[x1[z�x]�x2]⇒ w ∶ (B[y�x])[x1[y�x]�x2] �
w ∶ z = y,D( ◆x2(B[z�x]), x1[z�x],w)⇒ w ∶ (B[y�x])[x1[y�x]�x2] LD1 ⋮ D2

w ∶ z = y,D( ◆x2(B[z�x]), x1[z�x],w)⇒D( ◆x2(B[y�x]), x1[y�x],w) RD

where the derivation D2 is as follows:

w ∶ (B[x3�x1])[y�x],w ∶ y = z⇒ w ∶ (B[x3�x1])[z�x] IH2(b)

w ∶ (B[x3�x1])[y�x],w ∶ z = y⇒ w ∶ (B[x3�x1])[z�x] Sym=

w ∶ B[x3�x1[y�x]],w ∶ z = y⇒ w ∶ B[x3�x1[z�x]] � w ∶ (x1 = x3)[z�x], w ∶ z = y⇒ w ∶ (x1 = x3)[y�x] IH2(b)

w ∶ x1[z�x] = x3, w ∶ z = y⇒ w ∶ x1[y�x] = x3

�
w ∶ B[x3�x1[y�x]],w ∶ z = y,D( ◆x2(B[z�x]), x1[z�x],w)⇒ w ∶ x1[y�x] = x3

LD2

Where all the steps marked with � are syntactic rewritings that are feasible because{x1, x2, x3} ∩ {x, z, y} = �, and the admissibility of Sym= follows from Lemma 5.9.1.
Finally, item (3) follows from item (2) thanks to the admissibility of Cut and

Contraction, as it is shown by the following derivation for Repl1 (the case of Repl2
uses Cut ′ and Lemma 5.9.2(c), and the proof proceeds in the same way):

w ∶ z = y,w ∶ A[z�x]⇒ w ∶ A[y�x] 5 .9 .2(b)
w ∶ A[y�x],w ∶ z = y,w ∶ A[z�x],�⇒�

w ∶ z = y,w ∶ z = y,w ∶ A[z�y],w ∶ A[z�x],�⇒�
Cut

w ∶ z = y,w ∶ A[z�x],�⇒�
LC
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Example 5.10 If y is new to z and to A, then the L�-formula:

�x1(x1 = z). ◆xA ⊃ (A[z�x] ∧ (A[y�x] ⊃ y = z )
is G3Q�.L-derivable (see [11, Section 12.5] for a discussion of this formula).

w ∶ A[z�x],w ∶ A[y�x],D( ◆xA, y,w),w ∶ y = z⇒ w ∶ A[z�x] Lemma 5 .1 .1

w ∶ A[y�x],D( ◆xA, y,w),w ∶ y = z⇒ w ∶ A[z�x] Repl1

D( ◆xA, y,w),w ∶ y = z⇒ w ∶ A[z�x] LD1

w ∶ �x1(x1 = z). ◆xA⇒ w ∶ A[z�x] L�

w ∶ A[y�x], . . .⇒ w ∶ y = z,w ∶ A[y�x] 5 .1 .1
w ∶ y = z,w ∶ A[y�x], . . .⇒ w ∶ y = z 5 .1 .1

w ∶ A[y�x],D( ◆xA,a,w),w ∶ a = z⇒ w ∶ y = z LD2

D( ◆xA,a,w),w ∶ a = z⇒ w ∶ A[y�x] ⊃ y = z R⊃
w ∶ �x1(x1 = z). ◆xA⇒ w ∶ A[y�x] ⊃ y = z L�

6 Soundness and completeness

6.1 Soundness

Definition 6.1 Given a modelM = �W ,R,D,V�, let f ∶ LAB∪V AR �→W ∪DW be
a function mapping labels to worlds of the model and mapping variables to objects
of the union of the domains of the model. We say that:

M satisfies w ∶ A under f i↵ f �Mf(w) AM satisfies x ∈ w under f i↵ f(x) ∈Df(w)M satisfies wRv under f i↵ f(w)Rf(v)
M sat. D(t, x,w) under f i↵ � ∀o ∈DW(fy▷o �Mf(w) A i↵ o = f(x)) if t ≡ ◆

yA;

f(t) = f(x) if t ≡ y;
Given a sequent �⇒� we say that it is Q�.L-valid i↵ for every pairM, f whereM
is a model for Q�.L, ifM satisfies under f all formulas in � thenM satisfies under
f some formula in �.

Theorem 6.2 (Soundness) If a sequent � ⇒ � is G3Q�.L-derivable, then it is
Q�.L-valid.

Proof. The proof is by induction on the height of the G3Q�.L-derivation of �⇒�.
The base case holds since � and � have one formula in common, and it is easy to see
that the propositional rules, the rules for ∀ and ∃, and the rules for � and � preserve
validity on every model, see [21, Thm. 12.13].
For rule L�, let the last step of D be:

D(t, y,w),w ∶ A[y�x],�⇒�

w ∶ �xA.t,�⇒�
L�

with y not free in w ∶ �xA.t,�,�. Suppose that M satisfies under f all formulas in
� and the formula w ∶ �xA.t. We have to prove that M satisfies under f also some
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formula in �. Since f �Mf(w) �xA.t, we know that, in f(w), the term t denotes some

object o ∈ DW and that f
y▷o �Mf(w) A[y�x], where y does not occur in �,A. This

implies that M satisfies under f
y▷o all formulas in D(t, y,w),w ∶ A[y�x],�. Thus,

by IH, M satisfies under f
y▷o some formula in �. Since y does not occur in �, we

conclude thatM satisfies under f some formula in �.
For rule R�, let the last step of D be:

�⇒�,w ∶ �xA.t,D(t, y,w) �⇒�,w ∶ �xA.t,w ∶ A[y�x]
�⇒�,w ∶ �xA.t

R�

We consider an arbitrary pairM, f satisfying all formulas in �. By IH we know that
ifM, f does not satisfy some formula in �,w ∶ �xA.t, it satisfies both D(t, y,w) and
w ∶ A[y�x]. If M, f satisfies some formula in �,w ∶ �xA.t there is nothing to prove.
Else, M satisfies under f the formulas w ∶ A[y�x] and D(t, y,w), in this case it is
easy to see thatM satisfies under f also �xA.t.
For rule LD1, let the last step of D be:

w ∶ A[x2�x1],D( ◆x1A,x2,w),�⇒�

D( ◆x1A,x2,w),�⇒�
LD1

Let us consider a pairM, f that satisfies all formulas in � and D( ◆x1A,x2,w). The
latter means that ∀o ∈DW(fx1▷o �Mf(w) A i↵ o = f(x2) ) (6.1)

Hence, we know that M, f satisfies w ∶ A[x2�x1] and, by IH, we conclude that it
satisfies also some formula in �.
For rule LD2, we proceed as for LD1. If the last step of D is:

D( ◆x1A,x2,w),�⇒�,w ∶ A[y�x1] w ∶ x2 = y,D( ◆x1A,x2,w),�⇒�

D( ◆x1A,x2,w),�⇒�
LD2

and if M, f is a pair that satisfies D( ◆x1A,x2,w), then we know that (6.1) holds.
Assume thatM, f satisfies also all formulas in �. By IH, the left premise entails that
if M, f does not satisfy some formula in � then it satisfies w ∶ A[y�x1] and, hence
f
x▷f(y) �Mf(w) A. But then (6.1) entails that f(y) = f(x2) – i.e., M, f satisfies also

w ∶ x2 = y. By induction on the right premiss we conclude that the pairM, f satisfies
some formula in �.
For rule RD, let the last step of D be:

�⇒�,w ∶ A[x2�x1] w ∶ A[z�x1],�⇒�,w ∶ x2 = z
�⇒�,D( ◆x1A,x2,w) RD, z fresh

Let M, f satisfy all formulas in �. If it also satisfies some formula in � we are
done. Else, by IH, we know it satisfies w ∶ A[x2�x1]. Let o be any object such that
f
x1▷o �Mf(w) A. We consider a pairM, f

′ whereM is as before and f
′ is like f save

that f ′(z) = o. Thanks to the variable condition on z, this implies thatM, f
′ satisfies

w ∶ x2 = z. Hence, M, f
′ satisfies D( ◆x1A,x2,w). We conclude the same holds forM, f .
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The rules for identity preserves validity on every model: the proof is standard for
rules Ref= and Repl. For rule RigV ar it depends on the fact that variables are rigid
designators. Also the rules DenV ar and DenId preserve validity on every model.
For DenV ar this depends on the fact that variables denote in every world. For
DenId, this holds because the fact that M satisfies D(x, y,w) under f means that
f(x) = f(y). Therefore,M must also satisfy under f the formula w ∶ x = y.
For the proof that each non-logical rule in Table 3 preserves validity over the ap-

propriate class of frames, we refer the reader to [21, Thm. 12.13].

6.2 Completeness

Theorem 6.3 (Completeness) If a sequent � ⇒ � is Q�.L-valid, it is G3Q�.L-
derivable.

Proof. The proof is organized in four main steps. First, in Def. 6.4, we sketch a
root-first G3Q�.L-proof-search procedure. Second, in Def. 6.5, we define the notion
of saturation for a branch of a G3Q�.L-proof-search tree and, in Proposition 6.6,
we show that, for every sequent, a G3Q�.L-proof-search either gives us a G3Q�.L-
derivation of that sequent, or it has a saturated branch. Third, in Def. 6.8, we define
a modelMB out of a saturated branch B. Finally, in Lemma 6.9, we prove thatMB
is a model for Q�.L that falsifies �⇒�.

Definition 6.4 AG3Q�.L-proof-search tree for a sequent �⇒� is a tree of sequents
generated according to the following inductive procedure. At step 0 we write the
one node tree �⇒ �. At step n + 1, if all leaves of the tree generated at step n are
initial sequents, the procedure ends. Else, we continue the bottom-up construction by
applying, to each leaf that is not an initial sequent, each applicable instance of a rule
of G3Q�.L (by invertibility of the rules, there is no prescribed order in which these
rules need to be applied) or, if no rule instance is applicable, we copy the leaf on top
of itself. For rules Ref=, RefW , Ser, Cons and DenVar, we consider applicable only
instances where, save for eigenvariables, all terms and labels occurring in the active
formula of that instance already occur in the leaf. See [21, Thm. 12.14] for the details
of the inductive procedure (the reader might easily fill the missing details).

Definition 6.5 (Saturation) A branch B of a G3Q�.L-proof-search tree for a se-
quent is Q�L-saturated if it satisfies the following conditions, where � (�) is the
union of the antecedents (succedents) occurring in that branch,

1. no w ∶ p occurs in � ∩�;

2. no D(y, x,w) occurs in � ∩�;

3. w ∶ � does not occur in �;

4. if w ∶ A ∧B is in �, then both w ∶ A and w ∶ B are in �;

5. if w ∶ A ∧B is in �, then at least one of w ∶ A and w ∶ B is in �;

6. if w ∶ A ∨B is in �, then at least one of w ∶ A and w ∶ B is in �;

7. if w ∶ A ∨B is in �, then both w ∶ A and w ∶ B are in �;

8. if w ∶ A ⊃ B is in �, then w ∶ A is in � or w ∶ B is in �;

9. if w ∶ A ⊃ B is in �, then w ∶ A is in � and w ∶ B is in �;
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10. if both w ∶ ∀xA and y ∈ w are in �, then w ∶ A[y�x] is in �;

11. if w ∶ ∀xA is in �, then, for some z, w ∶ A[z�x] is in � and z ∈ w is in �;

12. if w ∶ ∃xA is in �, then, for some z, both w ∶ A[z�x] and z ∈ w are in �;

13. if w ∶ ∃xA is in � and y ∈ w is in �, then w ∶ A[y�x] is in �;

14. if both w ∶ �A and wRv are in �, then v ∶ A is in �;

15. if w ∶ �A is in �, then, for some u, u ∶ A is in � and wRu is in �;

16. if w ∶ �A is in �, then, for some u, both u ∶ A and wRu are in �;

17. if w ∶ �A is in � and wRv is in �, then v ∶ A is in �;

18. if w ∶ �xA.t is in �, then, for some z, both D(t, z,w) and w ∶ A[z�x] are in �;

19. if w ∶ �xA.t is in �, then, for each y (∈ B), at least one of D(t, y,w) and w ∶ A[y�x]
is in �;

20. if D( ◆x1A,x2,w) is in �, then w ∶ A[x2�x1] is in � and, for each y (∈ B), either
w ∶ A[y�x1] is in � or w ∶ x2 = y is in �;

21. ifD( ◆x1A,x2,w) is in�, then w ∶ A[x2�x1] is in� or, for some z, both w ∶ A[z�x1]
is in � and w ∶ x2 = z is in �;

22. if the principal formulas of some instance of one of Ref=, Repl, RigV ar, DenV ar,
and DenId is in �, then also the corresponding active formulas are in �.

23R. if R is a non-logical rule of G3Q�.L, then for each set of principal formulas
of R that are in � also the corresponding active formulas are in � (for some
eigenvariable of that rule, if any).

Proposition 6.6 Let us consider a G3Q�.L-proof-search tree for a sequent S, two
cases are possible: either the tree is finite or not. If the tree is finite then all of its
leaves are initial sequents and it grows by applying rules of G3Q�.L. Hence, the tree
is a G3Q�.L-derivation of S and, by Theorem 6.2, S is Q�.L-vaild. Else, S is not
G3Q�.L-derivable and, by König’s Lemma, the tree has an infinite branch B that is
Q�.L-saturated since every applicable rule instance has been applied at some step of
the construction of the tree.

Proposition 6.7 Let � (�) be the union of the antecedents (succedents) of a Q�.L-
saturated branch. It is immediate to notice that, by saturation under rule Ref= and
Repl (cf. Def. 6.5.22), the set of variables x, y such that w ∶ x = y is in � is an
equivalence class [x]w. Moreover, by saturation under RigV ar, the same equivalence
class holds with respect to each label v occurring in �,� (hence we allow ourselves
to use [x] instead of [x]w).
Definition 6.8 Let B be a saturated branch of a G3Q�.L-proof-search tree for a
sequent, and let � be the union of its antecedents. The modelMB = �WB,RB,DB,VB�
is defined from B as follows (MB is well-defined thanks to Definition 6.5.1–3, Lemma
5.1.1–2, and Proposition 6.7):

• WB is the set of all labels occurring in B;
• RB is such that wRBv i↵ wRv occurs in B;
• DB is such that, for each w ∈ WB, Dw is the set containing, for each variable x

such that x ∈ w occurs in B, the equivalence class [x] of all x, y such that w ∶ x = y
occurs in B;
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• VB is such that, for every predicate P
n ∈ S�, V(Pn

,w) is the set of all n-tuples
of equivalence classes of variables �[x1], . . . , [xn]� such that w ∶ Px1, . . . , xn occurs
in �.

Lemma 6.9 If MB is the model defined from a saturated branch B of a G3Q�.L-
proof-search tree for a sequent �⇒� and � is the assignment defined by �(x) = [x],
then, for each labelled formula w ∶ A occurring in B and for each denotation formula
D(t, x,w) occurring in B,
1. � �MB

w A i↵ w ∶ A occurs in �

2. VB,�w (t) = [x] i↵ D(t, x,w) occurs in �

3.MB is a model for Q�.L.

Proof. The proof of claims 1 and 2 is by simultaneous induction on the weight of
w ∶ A and of D(t, x,w), respectively.
We start with claim 1. The base case holds thanks to the definition of VB, and

the inductive cases depends on the construction ofMB and on properties 4–19 of the
definition of saturated branches (Def. 6.5). To illustrate, suppose w ∶ A ≡ w ∶ �xB.t.
If w ∶ A occurs in �, then, by Def. 6.5.18, for some z, D(t, z,w) and w ∶ B[z�x] are

in �. By induction on claim 2, this implies that VB,�w (t) = [z] and, by induction on

claim 1, it also implies that �x▷[z] �MB
w B. Thus, � �MB

w �xB.t.
Suppose that w ∶ �xB.t is in �. If there is no variable y such that D(t, y,w) is in

�, then, by (the latter fact and by) induction on claim 2, we immediately have that

VB,sw (t) is undefined. Thus, � ��MB
w �xB.t. Else, given Def. 6.5.2 and Lemma 5.1.2,

Def. 6.5.19 entails that, for each y such that D(t, y,w) is in �, w ∶ B[y�x] is in �. By
induction on claim 2, we have that VB,�w (t) = [y] and, thanks to induction on claim 1

(and 5.1.1, 6.5.1), �x▷[y] ��MB
w B. We conclude that � ��MB

w �xB.t.
Next, we consider Case 2. In the base case t is a variable y and, by construction ofDB, we know that VB,�w (y) = [x] i↵ w ∶ x = y occurs in �. The right-to left implication

holds thanks to saturation under rule DenId, and the left-to-right one thanks to
saturation under rules DenVar and Repl (it is enough to consider an instance of Repl
with principal formulas w ∶ x = y and D(z, x,w)[x�z]).
If, instead, t ≡ ◆

yB, we make use of the properties 20 and 21 of the definition of
saturated branch to prove that, whenever D( ◆yB,x,w) is in �, [x] is the only member

of DWB such that �y▷[x] �MB
w B.

If D( ◆yB,x,w) occurs in �, then Def. 6.5.20 entails that (i) w ∶ B[x�y] is in �
and (ii) for each z ∈ B, if w ∶ B[z�y] occurs in � then also w ∶ x = z occurs in �. By
induction on claim 1 and by construction of DWB , fact (i) implies that [x] is such

that �y▷[x] �MB
w B. Moreover, fact (ii) implies that for each [z] ∈ DWB , �y▷[z] �MB

w

only if [z] = [x]. Thus, we conclude that VB,�w ( ◆yB) = [x].
If D( ◆yB,x,w) occurs in �, then either w ∶ B[x�y] is in � or, for some z ∈ B,

w ∶ A[z�y] is in � and w ∶ x = z is in�. In the first case [x] is such that �y▷[x] ��MB
w B;

in the second case there is [z] ∈DWB such that �y▷[z] �MB
w B and [z] ≠ [x]. In both

cases we can conclude that VB,�w ( ◆yB) ≠ [x].
Claim 3 holds thanks to property 23R of saturated branch: if a non-logical rule

R is in G3Q�.L, then we have to show that MB satisfies the semantic property
corresponding to R. This holds by construction of MB since B is saturated with
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respect to rule R. For example, for rule Decr, we have to prove that if wRBv then
Dv ⊆ Dw. By construction of RB, we know that wRBv implies that wRv occurs in
�. Let us now consider a generic [x] ∈ DB. If [x] ∈ Dv then x ∈ v occurs in �. By
saturation under rule Decr, we have that x ∈ w occurs in � and, hence, [x] ∈Dw. We
conclude thatMB is based on a frame with decreasing domain.

7 Conclusion

We have introduced labelled sequent calculi that characterize the QMLs with definite
descriptions introduced in [11], and we have studied their structural properties. To
the best of our knowledge, this is the first proof-theoretic study of these logics. In
[11] prefixed tableaux for these logics have been considered, but there is no study
of their structural properties. Notice that, even if we have considered only the Q�-
extensions of propositional modal logics L in the cube of normal modalities, the
present approach can be extended, in a modular way, to the Q�-extensions of any
propositional modal logic whose class of frames is first-order definable (by applying,
if needed, the coherentisation technique introduced in [10]). We can, e.g., introduce
a calculus characterizing validity in the class of all constant domain frames satisfying
confluence: ∀w, v, u ∈W(wRv ∧wRu ⊃ ∃w′ ∈W(vRw′ ∧ uRw′))
From [9], we know that confluence corresponds to Geach’s axiom 2 ∶=��A ⊃ ��A and
that the quantified modal axiomatic system Q.2⊕BF (see [9]) is incomplete with re-
spect to the class of all confluent constant domain frames (i.e., the logic Q�.K2⊕UI).
Nevertheless, confluence is a coherent property, and it can be expressed in labelled
calculi by the rule:

vRw
′
, uRw

′
,wRv,wRu,�⇒�

wRv,wRu,�⇒�
Conf ,w ′ fresh

It can be proved that the labelled calculus G3Q�.K+{Conf, Cons} is sound and
complete with respect to the class of confluent constant domain frames.
If, instead, we consider the logic Q�.S4.M⊕UI – i.e. the set of L�-formulas that

are valid in the class of constant domain frames that are reflexive, transitive, and
final : ∀w ∈W∃v ∈W(wRv ∧ ∀u ∈W(vRu ⊃ v = u)) (7.1)

then we have the problem that finality is not a coherent property because of the
universal quantifier in the scope of an existential one. Nevertheless, as it is shown in
[10], we can transform it into a set of coherent conditions by extending the language
with a fresh one-place predicate constant Fin that replaces ∀u ∈ W(vRu ⊃ v = u))
in (7.1) (thus making it coherent) and that is axiomatized by the following coherent
condition: ∀w ∈W∃v ∈W(wRv ∧ Fin(v))
We can now express finality in labelled calculi by means of the following two coherent
rules (where v = u is governed by the rules in [21, Table 11.7]):

wRv,F in(v),�⇒�

�⇒�
Fin1 , v fresh

v = u,F in(v), vRu,�⇒�

Fin(v), vRu,�⇒�
Fin2
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By applying this coherentisation strategy we can easily obtain a labelled calculus
(with good structural properties) for the Q�-extensions of any first-order definable
propositional modal logic. This is far more general than any other existing proof-
theoretic characterization result for QMLs (see [4, 5] for partial translations of these
results to internal calculi). Moreover, given Proposition 3.2, we can easily simulate
the QMLs with definite descriptions à la Montague and Kalish or à la Garson. All we
have to do is to add the following coherent rules for Montague and Kalish’s predicate
U (rule U1 is dispensable over constant domains):

x ∈ w,w ∶ U(x)�⇒�

w ∶ U(x),�⇒�
U1

w ∶ x = y,w ∶ U(x),w ∶ U(y),�⇒�

w ∶ U(x),w ∶ U(y),�⇒�
U2

and the following ones for Garson’s predicate U ◆

xA:

y ∈ w,w ∶ U ◆

xA(y),�⇒�
UAx,1

w ∶ z = y,w ∶ U ◆

xA(z),w ∶ U ◆

xA(y),�⇒�

w ∶ U ◆

xA(z),w ∶ U ◆

xA(y),�⇒�
UAx,2

Hence, we easily obtain a labelled version of the Gentzen-style calculi defined in [14]
for Garson’s descriptions and in [15] for Montague and Kalish’s ones. One advantage
of the labelled version over the existing Gentzen-style ones is that, whereas the rules
of the Getzen-style calculi are not apt for proof search, see [14, Section 4], the labelled
version allows for proof-search and for the construction of countermodels from a failed
proof search. In particular, we bypass the problems noted in [14, Section 4] for the
rules for identity because the language L� is such that descriptions cannot occur in
identity atoms.
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