
24 September 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Ryu, S., Lee, J., Baldi, M. (2020). Breaking the Dark Degeneracy with the Drifting Coefficient of the Field
Cluster Mass Function. THE ASTROPHYSICAL JOURNAL, 904(2), 1-15 [10.3847/1538-4357/abbda2].

Published Version:

Breaking the Dark Degeneracy with the Drifting Coefficient of the Field Cluster Mass Function

Published:
DOI: http://doi.org/10.3847/1538-4357/abbda2

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/804348 since: 2021-02-23

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.3847/1538-4357/abbda2
https://hdl.handle.net/11585/804348


 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Suho Ryu, Jounghun Lee, and Marco Baldi,  Breaking the Dark Degeneracy with the 
Drifting Coefficient of the Field Cluster Mass Function, Astrophysical Journal, 2020, 
Vol. 904, Article 93  

The final published version is available online at: https://doi.org/10.3847/1538-
4357/abbda2 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the  
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://doi.org/10.3847/1538-4357/abbda2
https://doi.org/10.3847/1538-4357/abbda2


Breaking the Dark Degeneracy with the Drifting Coefficient of

the Field Cluster Mass Function

Suho Ryu1, Jounghun Lee1, Marco Baldi2,3,4

ABSTRACT

We present a numerical analysis supporting the evidence that the redshift

evolution of the drifting coefficient of the field cluster mass function is capable

of breaking several cosmic degeneracies. This evidence is based on the data from

the CoDECS and DUSTGRAIN-pathfinder simulations performed separately for

various non-standard cosmologies including coupled dark energy, f(R) gravity

and combinations of f(R) gravity with massive neutrinos as well as for the stan-

dard ΛCDM cosmology. We first numerically determine the field cluster mass

functions at various redshifts in the range of 0 ≤ z ≤ 1 for each cosmology.

Then, we compare the analytic formula developed in previous works with the

numerically obtained field cluster mass functions by adjusting its drifting coeffi-

cient, β, at each redshift. It is found that the analytic formula with the best-fit

coefficient provides a good match to the numerical results at all redshifts for all

of the cosmologies. The empirically determined redshift evolution of the drifting

coefficient, β(z), turns out to significantly differ among different cosmologies. It

is also shown that even without using any prior information on the background

cosmology the drifting coefficient, β(z), can discriminate with high statistical

significance the degenerate non-standard cosmologies not only from the ΛCDM

but also from one another. It is concluded that the evolution of the departure

from the Einstein-de Sitter state and spherically symmetric collapse processes

quantified by β(z) is a powerful probe of gravity and dark sector physics.
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Subject headings: Unified Astronomy Thesaurus concepts: Large-scale structure

of the universe (902); Cosmological models (337)

1. Introduction

A cosmic degeneracy refers to the circumstance that a standard diagnostic fails to

distinguish between different cosmologies with high statistical significance. For example, the

cluster mass function, which is regarded as one of the most powerful probes of cosmology

based on the large scale structure, is unable to discriminate the effect of a low amplitude of

the linear density power spectrum from that of massive neutrinos (ν) (dubbed the σ8-
∑
mν

degeneracy) in a νΛCDM (massive neutrinos ν + cosmological constant Λ + Cold Dark

Matter) cosmology. Another example that the cluster mass function fails to discriminate

from the ΛCDM cosmology is a coupled dark energy (cDE) model in which a scalar field DE

coupled to DM particles follows a supergravity potential (?). Since the cosmic degeneracy

is caused by the limited sensitivity of a given standard diagnostic on which the degenerate

models have almost the same effects, what is required to break it is to overcome the limitation

by utilizing prior information from other independent diagnostics. In the aforementioned

example, the σ8-
∑
mν degeneracy can be broken by prior information on the large-scale

amplitude of the linear density power spectrum from the CMB observations.

There are, however, a few cosmic degeneracies which have been found more difficult to

break even by combining the priors from several independent diagnostics. A notorious exam-

ple is the cosmic degeneracy between the ΛCDM + GR and the νCDM + MG cosmologies,

where GR and MG stand for the general relativity and modified gravity, respectively (see

e.g. ??). All different versions of the MG theory adopt a common tenet that the apparent

acceleration of the present Universe is caused not by the dominance of the anti-gravitational

Λ at the present epoch but by the deviation of the gravitational law from the prediction of

GR on cosmological scales. The consequence of this tenet is the existence of a long-range

fifth force, which in turn has an effect of enhancing the density power spectrum on the scales

comparable to those affected by the suppression due to free streaming massive neutrinos (for

a review, see ?).

In the theory of f(R) gravity, the gravitational dynamics is defined by a modified

Einstein-Hilbert action functional to which an arbitrary function of the Ricci scalar, f(R),

is introduced as a substitution for the Ricci scalar R itself of the original action in GR

(see e.g., ???). Choosing as a viable MG the f(R) gravity in which the Ricci scalar term,
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R, in the Einstein-Hilbert action functional is replaced by an arbitrary function, f(R), ?

numerically investigated a possible cosmic degeneracy between the ΛCDM + GR and the

νCDM + f(R), and demonstrated that the two cosmologies cannot be discriminated from

each other by several standard diagnostics such as the nonlinear density power spectra, halo

bias and cluster mass functions (see also ??). The nonlinear growth rate functions, cluster

velocity dispersions, and tomographic higher-order weak lensing statistics were proposed in

subsequent works as candidate diagnostics that could be capable of breaking this cosmic

degeneracy (???), also employing Machine Learning techniques (??).

Very recently, ? have developed a new independent diagnostics based on the evolution

of the drifting coefficient of the field cluster abundance and shown that this new diagnostics

is capable of distinguishing between those dynamical DE cosmologies which are degenerate

with the ΛCDM case in their linear density power spectra and cluster mass functions. In the

follow-up work of ?, it was also found that the aforementioned σ8-
∑
mν degeneracy can be

in principle broken by this new diagnostics. Our goal here is to explore whether or not this

new diagnostics can break other cosmic degeneracies including that between the ΛCDM +

GR and the νCDM + MG models.

The key contents of the upcoming Sections are as follows. Section ?? will present a

succinct review of the analytic model for the field cluster abundance on which the new

diagnostics is based. Section ?? will present a numerical evidence that the new diagnostics

can distinguish between the standard ΛCDM and a cDE cosmology that produce very similar

cluster mass functions. Section ?? will present a proof for the validity of the analytic formulae

for the field mass function and drifting coefficient in a MG gravity cosmology. Section ??

will present a numerical evidence that the new diagnostics can break the degeneracy between

the standard ΛCDM+GR and the νCDM+MG cosmologies. Section ?? will be devoted to

summarizing the final results and discussing the follow-up works.

2. A Succinct Review of the Analytic Model

According to the generalized excursion set theory that incorporates the non-spherical

collapse conditions and non-Markovian random-walk process (??), the differential mass func-

tion of the cluster halos can be written as:

dN(M, z)

d lnM
=
ρ̄m
M

∣∣∣∣d lnσ−1

d lnM

∣∣∣∣f [σ(M, z)] , (1)

where ρ̄m is the mean mass density of the universe, σ(M) is the standard deviation of the

linear density contrast field smoothed on the mass scale M , and f(σ) is the multiplicity
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function characterized by two coefficients, β and DB:

f(σ;DB, β) ≈ f (0)(σ;DB, β) + f
(1)
β=0(σ;DB) + f

(1)
β (σ;DB, β) + f

(1)

β2 (σ;DB, β) , (2)

f (0)(σ;DB, β) =
δsc

σ
√

1 +DB

√
2

π
e
− (δsc+βσ

2)2

2σ2(1+DB) , (3)

f
(1)
β=0(σ;DB) = −κ̃δsc

σ

√
2a

π

[
e−

aδ2sc
2σ2 − 1

2
Γ

(
0,
aδ2

sc

2σ2

)]
, (4)

f
(1)
β (σ;DB, β) = −β a δsc

[
f

(1)
β=0(σ;DB) + κ̃ erfc

(
δsc
σ

√
a

2

)]
, (5)

f
(1)

β2 (σ;DB, β) = β2a2δ2
scκ̃
{

erfc

(
δsc
σ

√
a

2

)
+ (6)

σ

aδsc

√
a

2π

[
e−

aδ2sc
2σ2

(
1

2
− aδ2

sc

σ2

)
+

3

4

aδ2
sc

σ2
Γ

(
0,
aδ2

sc

2σ2

)]}
, (7)

with a ≡ 1/(1 + DB), κ̃ = κa, κ = 0.475, upper incomplete gamma function Γ(0, x),

complementary error function erfc(x), and critical density contrast for the spherical collapse

δsc. The diffusion coefficient, DB, is a measure of the stochasticity of δc caused by the

influence of the perturbing neighbors as well as by the uncertainty in the identification of a

cluster halo, while the drifting coefficient, β, quantifies the deviation of the critical density

contrast for the realistic non-spherical collapse, δc, from δsc at a given σ(M).

Suggesting that for the isolated field clusters, the degree of the stochasticity of δc should

be negligible, (i.e., DB = 0), ? modified the Corasaniti-Achitouv formalism to construct a

single parameter model for the field cluster mass function as

dNI(M, z)

d lnM
=

ρ̄

M

∣∣∣∣d lnσ−1

d lnM

∣∣∣∣f [σ(M, z);DB = 0, β] . (8)

In spite of having only single parameter, this analytic model has been shown to be very

successful in describing the field cluster mass functions in a wide redshift range not only

for the standard ΛCDM cosmology but also for several non-standard cosmologies including

dynamical dark energy or massive neutrinos (??).

Although the exact value of δsc has been known to weakly depend on the background

cosmology as well as on the redshift (??), ? regarded δsc as a constant, setting it at the

Einstein-de Sitter value of 1.686 (?), as done in the original formulation of the generalized

excursion set mass function theory (??). In reality, the gravitational collapse proceeds in

a non-spherical way, for which the actual critical density contrast, δc, departs from the

idealistic spherical threshold, δsc. The cosmology dependence of δc is expected to overwhelm

that of δsc, given that the degree of the non-sphericity of the collapse process is closely linked
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with the anisotropy of the cosmic web, which in turn possesses strong dependence on the

background cosmology (e.g., ??). Unlike δsc, however, the value of δc and its link to the

initial conditions cannot be analytically derived from first principles due to the complexity

associated with the non-spherical collapse process (?).

? imparted any redshift and cosmology dependences of the collapse threshold at a given

mass scale to the empirical parameter, β, and showed that the redshift evolution of the

empirically determined β(z) has a universal form of an inverse sine hyperbolic function of z,

regardless of the background cosmology:

β(z) = βA sinh−1

[
1

qz
(z − zc)

]
, (9)

where βA, qz and zc, represent three adjustable parameters, whose best-fit values depend on

the background cosmology. Especially, the critical redshift, zc, defined as β(zc) = 0 (i.e.,

δc(zc) = δsc = 1.686), has been found to depend most sensitively on the background cosmol-

ogy (??), as it reflects not only how severely the real gravitational collapse deviates from

the spherical symmetry but also how rapidly the universe evolves away from the Einstein-de

Sitter state.

3. Evolution of the Drifting Coefficient in Non-Standard Cosmologies

3.1. Effect of Coupled Dark Energy on β(z)

A cDE cosmology describes an alternative universe where the role of DE is played by

a dynamical scalar field, φ, coupled to DM particles through energy-momentum exchange.

The DE-DM coupling that causes the time-variation of DM particle mass (???) generates

a long-range fifth force via which the growth of structures can be enhanced (e.g., ??????,

and references therein). Categorized by the shape of DE self-interaction potential, V (φ), as

well as by the strength of the DE-DM coupling, s(φ) ≡ −d lnmDM/dφ, a cDE cosmology has

recently attained delving attentions since it has been found to provide a possible solution to

the Hubble tension (?).

To investigate the effect of cDE on the redshift evolution of β(z), we utilize the data

from the Large Coupled Dark Energy Cosmological Simulations (L-CoDECS) run by ? with

a modified version of the GADGET3 code, a non-public developers version of the widely-

used public code GADGET-2 (?). The L-CoDECS is a series of N -body cosmological runs

that simulate a standard ΛCDM and five different cDE cosmologies on a periodic box of

linear size 1h−1Gpc containing 10243 collisionless DM particles of individual mass mDM =

5.84 × 1010 h−1M� as well as an equal number of collisionless baryon particles of mbaryon =
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1.17× 1010 h−1M�. The initial conditions of the standard ΛCDM cosmology were chosen to

meet the constraints from the Seven-Year Wilkinson Microwave Anisotropy observations (?).

The five different cDE cosmologies are divided into three categories: the constant DM-DE

coupling and exponential potentials (EXP001, EXP002, EXP003), the exponential DM-DE

coupling and exponential potential (EXP008e3) and the constant coupling and supergravity

potential (SUGRA). All cDE cosmologies simulated by the L-CoDECS were ensured to have

a flat geometry, sharing the same values of the five key cosmological parameters, h = 0.703,

ΩCDM = 0.226, ΩDE = 0.729, Ωb = 0.0451, As = 2.42×10−9 and ns = 0.966. They differ from

one another only in the potential shape and DM-DE coupling as well as in the linear density

power spectrum amplitude, information on which are provided in the first four columns of

Table ??. For more detailed description of the cDE cosmologies and the L-CoDECS 1, we

refer the readers to ??.

The L-CoDECS simulations have been released with catalogs of gravitationally bound

halos identified for each cosmology through a two-step process starting with a Friends-of-

Friends (FoF) algorithm with linking length parameter of lc = 0.2 followed by a gravitational

unbinding procedure of each individual FoF halo using the SUBFIND algorithm (?) that

allows to associate spherical overdensity masses and radii to each gravitationally bound

main substructure. Selecting the cluster halos with virial masses M ≥ 3× 1013 h−1M� from

the halo catalog and applying again the FoF algorithm with linking length parameter of

lsc = 2× lc to such halo sample, we identify the clusters of cluster halos as marginally bound

superclusters. Here, the choice of lsc = 2× lc for the FoF finding of the superclusters is made

to guarantee DB = 0 for the field cluster halos, as explained in ?.

Sorting out the field cluster halos as the superclusters which have only one member

cluster halo, we create a sample of the field cluster halos at each redshift in the range of

0 ≤ z ≤ 1. The differential mass function of the field clusters halos is determined by

computing the number density of the field cluster halos, dNI/d lnM , whose masses fall in

the differential bin of the logarithmic mass, [lnM, lnM+d lnM ], at each redshift. As done in

?, we employ the Jackknife method to compute the errors in the determination of dNI/d lnM .

Splitting the sample of the field clusters into 8 Jackknife subsamples of equal size, we obtain

dNI/d lnM separately from each subsample and then calculate the one standard deviation

scatter of dNI/d lnM among the 8 subsamples as errors at each logarithmic mass bin.

Using the linear density power spectrum of each cDE cosmology provided within the

CoDECS public data release, we evaluate the linear density rms fluctuation, σ(M), and the

analytic mass function of the field cluster, Equation (??), as well. The best-fit value of the

1All data are available at the CoDECS website, http://www.marcobaldi.it/web/CoDECS.html
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drifting coefficient, β in Equation (??) is determined at each redshift by minimizing the

following χ2 under the assumption that there is no correlation in dNI/d lnM at different

mass bins:

χ2(β) =

Np∑
i=1

[nn(lnMi)− na(lnMi; β)]2

σ2
ni

, (10)

where nn(lnMi) and na(lnMi; β) are the numerically obtained and analytically evaluated

values of dNI/d lnM at the ith logarithmic mass bin, respectively, Np is the number of the

logarithmic mass bins and σni is the Jackknife error on nn(lnMi). The error on β is then

determined as the square root of the inverse of the second derivative of χ2 with respect to β

as σβ = (d2χ2/dβ2)−1/2 (?).

As done in ?, once the values of β(z) are determined at various redshifts, we fit them to

Equation (??) via a nonlinear least square regression procedure with the SciPy python code

(?) to find the best-fit values of the three parameters, βA, qz and zc and their associated

errors σβA , σqz and σzc , respectively (see Table ??). Then, we calculate the statistical

significance of the differences in the three parameters among the cosmologies as ∆βA/σ∆βA ,

∆qz/σ∆qz and ∆zc/σ∆zc where ∆βA, ∆qz and ∆zc are the differences in the three parameters

between two cosmologies, while σ∆βA , σ∆qz and σ∆zc correspond to the propagated errors in

the determination of the differences.

Figure ?? (Figure ??) plots the numerically determined mass functions of the field

cluster halos (filled black circles) as well as the analytic model (red solid line), Equation

(??), with the best-fit value of β for the six cosmologies at z = 0 (z = 1), respectively.

In each panel, the analytic model for the ΛCDM case (black dashed line) is also plotted

to clearly show the differences. Although the analytic model, Equation (??), succeeds in

matching the numerical results at both of the redshifts for all of the cDE cosmologies, the

field cluster mass functions are found to be incapable of telling apart with high statistical

significance the three cosmologies ΛCDM, EXP001 and SUGRA at both of the redshifts,

z = 0 and 1.

Figure ?? plots the redshift evolution of the empirically determined drifting coefficient,

β(z) (filled black circles) as well as the fitting formula (red solid lines) for the six cosmologies.

In each panel, the fitting formula for the ΛCDM case (black dashed line) are also plotted to

show the differences. As can be seen, the fitting formula expressed in terms of the inverse

sine hyperbolic function, Equation (??), with the best-fit values of qz, βA and zc indeed

describes quite well the behaviors β(z) for all of the six cosmologies. Note that the SUGRA

can be distinguished by β(z) from the ΛCDM with high statistical significance despite that

the two cosmologies are mutually degenerate in the cluster mass functions. The statistical

significance of the difference in the critical redshift parameter, zc, between the ΛCDM and
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the SUGRA cosmologies is found to be as high as 7.48σ. Although β(z) distinguishes with

high statistical significance the other cDE cosmologies except for the EXP001 from the

ΛCDM, it fails to break the degeneracy between the ΛCDM and the EXP001 cases, due to

the extremely weak DM-DE coupling of the latter cosmology.

We have so far used prior information on the background cosmology for the determi-

nation of dNI/d lnM and β(z). In other words, to examine if β(z) can break a cosmic

degeneracy between two different cosmologies, we assume that information on the shape of

the linear density power spectrum are available. In practice, however, this prior information

is not available for the determination of β(z). Especially, if a background cosmology is indis-

tinguishable from the ΛCDM case by the standard diagnostics, then it may not be justified

to make such a preemptive assumption about the shape of the linear density power spectrum.

The EXP001 corresponds to this case where no prior information on the background cosmol-

ogy should be assumed to be available in practice, since the standard diagnostics including

the linear density power spectrum, mass function, etc., are unable to distinguish it from the

ΛCDM case.

To deal with this degeneracy, we use the linear density power spectrum of the ΛCDM

case, P (k; ΛCDM), for the computation of σ(M) in dNI/d lnM for the EXP001 case and

compare the reevaluated analytic model with the numerical results to find the best-fit β(z).

That is, we redetermine β(z) for the EXP001 case without using prior information on

P (k; EXP001). Figure ?? plots the analytical mass function of the field clusters (red solid

lines) obtained by using P (k; ΛCDM) and compares it with the numerical results (black filled

circles) for the EXP001 case at z = 0 (top panel) and z = 1 (bottom panel). As can be seen,

in spite of no prior information on the background cosmology, the analytical mass function

of the field clusters still describes quite well the numerical results at both of the redshifts for

the EXP001 case.

Figure ?? plots the same as the top-right panel of Figure ?? but without using prior in-

formation on P (k; EXP001). As can be seen, the EXP001 turns out to yield larger differences

in β(z) from the ΛCDM. The best-fit values of βA, qz and zc for the EXP001 case listed in

Table ?? correspond to the ones obtained without using prior information on P (k; EXP001).

The statistical significance of the difference in zc between the ΛCDM and the EXP001 is

found to be as high as 2.53. Figure ?? summarizes the statistical significance of the differ-

ence in zc among the three cosmologies, ΛCDM, EXP001, and SUGRA, which are mutually

degenerate in the field cluster mass functions. Although the degeneracy between the ΛCDM

and the EXP001 can be broken by β(z) only with 2.53 significance, we speculate that a

larger data set would improve the significance.
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3.2. Effect of f(R) Gravity on β(z)

In the theory of f(R) gravity, the strength of a long range fifth force is quantified by

the absolute value of the derivative of f(R) with respect to the Ricci scalar R at the present

epoch, |fR0| ≡ |df/dR|0. A larger value of |fR0| corresponds to a stronger fifth force, which

would more severely enhance the small-scale density power (??). If neutrinos have a non-

zero mass in a f(R) gravity cosmology, however, the suppressing effect of the free streaming

neutrinos on the small-scale density power spectrum could compensate the enhancing effect

of the fifth force, resulting in a suppression of the deviations from the standard ΛCDM + GR

cosmology that each of these two scenarios would individually imprint on structure formation.

In other words, the linear density power spectra may not be capable of distinguishing a

certain combination of fR0 with
∑
mν from the standard ΛCDM + GR cosmology, since

they could have zero net effect on the amplitude of small-scale density perturbations (e.g.,

?).

To investigate if β(z) can also break the cosmic degeneracy between ΛCDM+GR and

νCDM+f(R), we use a subset of the data from the DUSTGRAIN-pathfinder N -body sim-

ulation suite that were conducted by ? on a box of volume 7503 h−3Mpc3 for various

νCDM+f(R) cosmologies as well as the ΛCDM+GR cosmology. The DUSTGRAIN-pathfinder

simulations were performed with the MG-GADGET code (?) – another modified version of

GADGET-3 implementing an adaptive mesh solver for the spatial fluctuations of the fR scalar

degree of freedom – to trace the evolution of 7683 DM particles of mass 8.1 × 1010 h−1M�.

To simulate the νCDM+f(R) cosmologies, the DUSTGRAIN-pathfinder adopted the widely-

used realisation of f(R) proposed by ? and a particle-based implementation of massive

neutrinos developed by ?. Collapsed structures were identified through a FoF finder with

a linking length parameter of lc = 0.16 followed by the unbinding procedure implemented

in the SUBFIND code to identify the halo center and its spherical overdensity mass and

radius for all gravitationally bound objects in each cosmology, similarly to what described

above for the CoDECS simulations. For a detailed description of the technical details of the

DUSTGRAIN-pathfinder simulations, see ?.

Among the various cosmologies simulated by the DUSTGRAIN-pathfinder, we consider

three different CDM+f(R) (namely, fR4, fR5 and fR6 corresponding to |fR0| = 10−4, 10−5

and 10−6, respectively) and three different νCDM+f(R) (namely fR4+0.3 eV, fR5+0.15 eV

and fR6+0.06 eV corresponding to
∑
mν = 0.3 eV, 0.15 and 0.06 eV, respectively) as well

as the standard ΛCDM + GR (from here on, GR) with initial conditions set at the Planck

values (?). These 7 different cosmologies were ensured to be flat, described by the common

key cosmological parameter values of h = 0.67, Ωm = 0.31, ΩDE = 0.67, Ωb = 0.0481,

As = 2.2 × 10−9 and ns = 0.97. The first four columns of Table ?? list the values of |fR0|,
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∑
mν , σ8 for each of the seven cosmologies considered in the present work.

We first examine whether or not the analytic model for the field cluster mass function,

Equation (??), is valid for the three CDM+f(R) cosmologies. Analyzing the FoF halo cata-

logs in the redshift range 0 ≤ z ≤ 1 and following the same procedure described in Section ??,

we numerically determine dNI/d lnM for the GR, fR4, fR5 and fR6 cases. To evaluate the

analytic model, Equation (??), and compare it with the numerically determined dNI/d lnM

to derive β(z) for each of the three f(R) gravity cosmologies, we use the MGCAMB code

(????).

Figure ?? (Figure ??) depicts the same as Figure ?? (Figure ??) but for the fR4, fR5 and

fR6 cases, revealing that the analytic model matches quite well the numerical results even for

the f(R) gravity models. As expected, the fR4 (fR6) yields the most (least) abundant field

clusters in the entire mass range. No statistically significant difference is found in dNI/d lnM

between the GR and the fR6 cases, indicating their mutual degeneracy in the field cluster

mass functions. Figure ?? plots the same as Figure ?? but for the fR4, fR5 and fR6 cases.

As can be seen, despite that the field cluster mass functions fail to distinguish between the

GR and the fR6 cases, the field cluster drifting coefficient, β(z), can break the degeneracy,

showing a substantial difference between the two cosmologies.

It is worth noting the distinct redshift dependence of the difference in β(z) between the

GR and each f(R) gravity cosmology. The fR4 case yields an almost redshift-independent

shift of β(z) from that of the GR case, while the other two cases show different redshift-

dependent shifts between each other. That is, for the fR5 (fR6) case, the largest deviation

of β(z) from that of the GR case occurs at the low (high) redshift ends. A qualitative

explanation for this trend is provided in the following. For the fR4 case, the fifth-force is

basically always unscreened at low redshifts, which implies that the haloes of all masses are

equally affected by the fifth force, and that there is no sharp transition between screened

and unscreened regions in the cosmic web.

Whereas, for the fR5 and fR6 cases, as the screening properties imply that the massive

halos are screened, while less massive halos are not. This introduces a mass dependence in

the deviation of the halo mass function from that of the GR case. In particular, for the fR6

case, the high-mass tail of the halo mass function should be almost unaffected and thus there

should be an enhancement in the number of smaller-mass halos. This may have a different

impact on the bias of halos at different masses, and consequently an impact on the definition

of the field clusters (i.e. isolated massive objects) which could induce a different evolution

of β(z). A more quantitative analysis is required to fully understand the distinct differences

in β(z) between the GR and each f(R) cosmology, which is, however, beyond the scope of

this paper.
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3.3. Combined Effect of f(R)+ν on β(z)

Now that the validity of the analytic model of the field cluster mass function for the

f(R) gravity cosmology is confirmed, we repeat the whole process but for the fR4+0.3 eV,

fR5+0.15 eV and fR6+0.06 eV cosmologies, which were shown to be degenerate with the

GR in the standard statistics including the nonlinear density power spectrum, cluster mass

functions and halo bias (??). Figure ?? (Figure ??) depicts the same as Figure ?? (Figure

??) but for the fR4+0.3 eV, fR5+0.15 eV and fR6+0.06 eV cosmologies. As can be seen, the

analytic model is still quite valid in matching the numerically obtained field cluster mass

functions even for the f(R)+ν cosmologies. At z = 0, the three f(R)+ν cosmologies show no

difference from the GR case in the field cluster mass functions. At z = 1, the differences in

dNI/d lnM between the f(R)+ν and the GR cases are slightly larger but still not statistically

significant. Figure ?? plots the same as Figure ?? but for the fR4+0.3 eV, fR5+0.15 eV and

fR6+0.06 eV cosmologies. As can be seen, the fR4+0.3 eV cosmology yields a substantial

difference in β(z) from the GR case, in spite of their mutual degeneracy in the standard

statistics. Yet, both of the fR5+0.15 eV and the fR6+0.06 eV cosmologies show almost no

difference in β(z) from the GR case.

As done in Section ??, we redetermine dNI/d lnM for both of the fR5+0.15 eV and

fR6+0.06 eV cases without using prior information on the shapes of their power spectra,

which are plotted in Figure ??. As can be seen, the analytic model, Equation (??), still

agrees quite well with the numerically obtained field cluster mass functions for both of the

cases at both of the redshifts, despite that P (k;GR) is substituted for P (k; fR5 + 0.15 eV)

and P (k; fR6 + 0.06 eV). The drifting coefficient, β(z), redetermined without using prior

information is plotted in Figure ??, which reveals that the three cosmologies yield much

larger differences in β(z).

For each cosmology, we determine the best-fit values of βA, qz and zc by fitting Equation

(??) to β(z) obtained without priors. Then, we calculate the statistical significance of the

differences in the three parameters among the three cosmologies, which are shown in Figure

??. As can be seen, without using prior information on the linear density power spectra of

the f(R)+ν cosmologies, the statistical significance of the differences in zc between the GR

and the fR5+0.15 eV and between the fR6+0.06 eV and the fR5+0.15 eV are as high as 3.48

and 3.22, respectively.

Meanwhile, for the fR6+0.06 eV case, it turns out to be not zc but βA that is able to

distinguish it from the GR case with ∆βA/σ∆βA = 2.03. The lower statistical significance of

the differences in β(z) between the GR and the fR6+0.06 eV is likely to be at least partially

due to the large errors caused by the relatively small box size of the DUSTGRAIN-pathfinder

simulations. Given the distinct behaviors of β(z) between the the GR and the fR6+0.06 eV
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shown in Figure ??, we suspect that if a halo sample from a larger simulations were used,

the statistical significance would increase. The best-fit values of βA, qz and zc for each of the

seven cosmologies simulated by the DUSTGRAIN-pathfinder are shown in Table ??. For

the fR6+0.06 eV and fR5+0.15 eV cosmologies that are degenerate with the GR case in the

standard statistics, what is listed in Table ?? is the best-fit values obtained without using

priors in the shapes of the linear density power spectra.

4. Summary and Discussions

The new diagnostic developed by ? traces the redshift evolution of the drifting coef-

ficient, β(z), which is a single parameter of the analytic model for the field cluster mass

function derived by ? in the frame of the generalized excursion set theory (????). Moti-

vated by the recent finding that this diagnostic can in principle break the σ8-
∑
mν degen-

eracy (?), we have studied whether or not the same diagnostic can break the degeneracy

between the non-standard and the standard ΛCDM+GR cosmologies by utilizing the data

from the CoDECS and DUSTGRAIN-pathfinder simulations. For this study, we have con-

sidered eleven different non-standard cosmologies which include 5 different cDE (EXP001,

EXP002, EXP003, EXP008e3 and SUGRA), 3 different f(R) gravity (fR4, fR5, fR6), and 3

different f(R) gravity+ν cosmologies (fR4+0.3eV, fR5+0.15eV, fR6+0.06eV).

Among the cDE and f(R) gravity cosmologies, the EXP001 and fR6 have been known

to be very similar to the ΛCDM+GR in the linear density power spectra and cluster mass

functions at z = 0, due to their extremely weak DM-DE coupling and fifth force, respectively.

The three f(R) gravity+ν cosmologies have been known to be degenerate not only with the

ΛCDM+GR but also among one another in the standard diagnostics that include the cluster

mass functions, halo bias, and nonlinear density power spectrum (??). Analyzing the catalogs

of the FoF bound objects for each cosmology, we have identified the field cluster halos and

determined their mass functions at each redshift in the range of 0 ≤ z ≤ 1. The best-fit

value of the drifting coefficient β has been found by adjusting the analytic model of ? to the

numerically determined field cluster mass functions. The fitting formula for β(z) proposed

by ? have been used to assess the statistical significance of the differences in β(z) among

the cosmologies. This analysis has lead us to find the following.

• The analytic model of ? for the field cluster mass functions with the best-fit values

of β agrees excellently well with the numerical results at all redshifts for all of the

non-standard cosmologies.

• The empirical formula of ? for β(z) works fairly well for all of the non-standard
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cosmologies.

• Despite that they produce very similar (field) cluster mass functions, the ΛCDM and

the SUGRA cosmologies substantially differ in β(z) from each other.

• The degeneracy between the ΛCDM and the EXP001 in the (field) cluster mass func-

tions can be broken by β(z) with 2.53σ significance without using any prior information

on the linear density power spectrum, P (k; EXP001).

• The degeneracy between the ΛCDM+GR and the fR4+0.3eV in the linear density

power spectra and (field) cluster mass functions can be broken by β(z) with high

statistical significance.

• The degeneracy among the ΛCDM+GR, fR5+0.15eV and fR6+0.05eV cosmologies

in the standard diagnostics can be broken by β(z) with minimum 2.01σ significance,

without using any prior information on the linear density power spectra.

To understand the advantage of using β(z) as a cosmology discriminator, it may be worth

comparing β(z) with the standard diagnostics such as the linear density power spectrum,

nonlinear density bi spectrum and cluster mass function. As for the linear density power

spectrum, it deals with isotropically averaged densities and thus fail to capture independent

information contained in the anisotropic nonlinear cosmic web about the background cos-

mology (?). As for the nonlinear density bi spectrum that treats the nonlinear anisotropic

density field, it is not readily observable, suffering from highly nonlinear halo bias and red-

shift space distortion effects. Regarding the cluster mass function, although it is free from

the halo bias and redshift space distortion effect, it varies most sensitively with the value of

σ8. If two different cosmologies share an identical value of σ8 (e.g., ΛCDM and SUGRA),

the cluster mass function is apt to fail in telling them apart.

Meanwhile, the field cluster drifting coefficient, β(z), deals with the non-spherical col-

lapse occurring in the anisotropic cosmic web that contains additional information on the

initial conditions. It is free from the halo bias and redshift space distortion effect, directly

quantifying how the background cosmology deviates from the Einstein-de Sitter state which

sensitively depends on the evolution of the energy contents of the universe. Notwithstanding,

we have yet to find a direct link of β(z) to the initial conditions, which weakens its power

as a probe of gravity and dark sector physics. The very fact that the inverse sine hyperbolic

function provides a fairly good approximation to the empirically determined β(z) for all of

the cosmologies hints that it should be beyond a mere fitting formula. Our future work

is in the direction of theoretically deriving β(z) from first principles, providing a physical
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explanation for why β(z) behaves as an inverse sine hyperbolic function of z and establishing

its direct link to the initial conditions.

Another advantage is high observational applicability of β(z). As shown in Figure

??, the fR5+0.15eV and fR6+0.06eV cases substantially differ from the GR case in the

low-z values of β(z) (z < 0.5). In other words, it does not require a large sample of the

high-z clusters with z > 0.5 to distinguish between the f(R)+ν and the GR cases with

β(z) in practice. Yet, to distinguish between the fR5+0.15eV and the fR6+0.06eV cases as

well as between the f(R) gravity and the cDE cosmologies with β(z), it indeed requires a

large cluster sample from a wide range of redshifts. The upcoming large-scale deep surveys

such as the LSST (Large Synoptic Survey Telescope) or EUCLID that is expected to cover

the redshift range up to z ∼ 2 (??) will improve prospects for β(z) as a cosmological

discriminator.
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Fig. 1.— Field cluster mass functions numerically obtained (black filled circles) from the

CoDECS and analytic model with the best-fit drifting coefficient (red solid lines) for a ΛCDM

and five different cDE cosmologies at z = 0.
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Fig. 2.— Same as Figure ?? but at z = 1.
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Fig. 3.— Empirically determined redshift evolution of the drifting coefficient of the field

clusters (black filled circles) and fitting formula (red solid lines) for six different cosmologies.
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Fig. 5.— Evolution of the drifting coefficient of the field clusters for the EXP001 case

determined without using prior information on P (k)
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Fig. 10.— Same as Figure ?? but for four different f(R) gravity+ν cosmologies.
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Fig. 12.— Same as Figure ?? but for the f(R) gravity + ν cosmologies.
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Fig. 13.— Field cluster mass functions for the fR5+0.1 eV and fR6+0.05 eV cases determined

without using prior information on P (k).
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fR5+0.1 eV and fR6+0.05 eV cases that are mutually degenerate in the standard diagnostics.
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Table 1. Best-fit Parameters of β(z) for the CoDECS cosmologies.

Model V (φ) s σ8 βA qz zc

ΛCDM - - 0.809 −0.16± 0.01 0.31± 0.04 1.10± 0.02

EXP001 e−0.08φ 0.05 0.825 −0.16± 0.01 0.31± 0.05 1.04± 0.02

EXP002 e−0.08φ 0.10 0.875 −0.17± 0.02 0.35± 0.08 1.32± 0.04

EXP003 e−0.08φ 0.15 0.967 −0.14± 0.01 0.19± 0.06 1.44± 0.05

EXP008e3 e−0.08φ 0.40 0.895 −0.16± 0.01 0.27± 0.04 1.19± 0.03

SUGRA003 φ−2.15eφ
2/2 -0.15 0.806 −0.16± 0.01 0.39± 0.07 1.35± 0.03
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Table 2. Best-fit Parameters of β(z) for the DUSTGRAIN-pathfinder cosmologies.

Model |fR0|
∑
mν [eV] σ8 βA qz zc

ΛCDM - 0.0 0.847 −0.11± 0.01 0.22± 0.06 1.24± 0.03

fR4 10−4 0.0 0.967 −0.10± 0.01 0.16± 0.04 1.39± 0.03

fR5 10−5 0.0 0.903 −0.16± 0.02 0.50± 0.11 1.40± 0.04

fR6 10−6 0.0 0.861 −0.08± 0.01 0.09± 0.04 1.24± 0.04

fR4+0.3eV 10−4 0.3 0.893 −0.09± 0.01 0.29± 0.09 1.52± 0.06

fR5+0.15eV 10−5 0.15 0.864 −0.15± 0.05 0.85± 0.45 1.73± 0.14

fR6+0.06eV 10−6 0.06 0.847 −0.08± 0.01 0.11± 0.04 1.27± 0.04


