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On constructing RAGS via homogeneous splines

Carolina Vittoria Beccaria,⇤, Marian Neamtub

aDepartment Mathematics, University of Bologna, P.zza di Porta San Donato 5, 40126 Bologna, Italy
bCenter for Constructive Approximation, Department of Mathematics, Vanderbilt University, 1326 Stevenson Center,

Nashville, TN 37240, U.S.A.

Abstract

Recently, a construction of spline spaces suitable for representing smooth parametric surfaces of arbitrary
topological genus and arbitrary order of continuity has been proposed. These splines, called RAGS (rational
geometric splines), are a direct generalization of bivariate polynomial splines on planar triangulations. In
this paper we discuss how to construct parametric splines associated with the three homogeneous geometries
(spherical, a�ne, and hyperbolic) and we also consider a number of related computational issues. We then
show how homogeneous splines can be used to obtain RAGS. As examples of RAGS surfaces we consider
direct analogs of the Powell-Sabin macro-elements and also spline surfaces of higher degrees and higher
orders of continuity obtained by minimizing an energy functional.

Keywords: Splines on triangulations, Piecewise rational function, Unstructured mesh, Arbitrary
topological genus, Homogeneous geometry, Homogeneous spline
2010 MSC: 65D07, 65D17

1. Introduction

In a recent paper [1], we have proposed a general method of defining rational splines, so-called RAGS
(or rational geometric splines), capable of representing surfaces of general topological genus. The main
advantage of RAGS surfaces in comparison to alternative representations, for example those based on so-
called manifold splines [2, 3, 4, 5, 6], subdivision methods [7, 8, 9, 10], and T-splines [11, 12, 13], is that they
mimic the standard bivariate splines on planar domains and their constructive aspects, and as such, they are
closer in spirit to the traditional NURBS representation. The point of departure for constructing RAGS is
a given mesh, which is a triangulation in R3 and an appropriate collection of so-called transition maps that
are linear rational transformations. Such transformations allow one to “glue” together neighboring triangles
of the mesh and have also been recently considered in [14, 15]. As was pointed out in our mentioned paper,
a possible way of finding such transition maps is by means of a homogeneous geometry. Our purpose in the
current paper is to give more details on this approach and also to report on our initial numerical experience
with RAGS.

Before we delve into details, we point out that the idea of using homogeneous geometry in connection
with defining splines is not new. One attempt in this direction is reported in [16, 17, 18], where the authors
consider the so-called spherical splines, which are in essence piecewise spherical harmonic functions. In [19],
such spherical splines are also used to define a class of C1 and C

2 interpolating splines on the sphere that
are piecewise rational functions and, as it turns out, they represent special instances of RAGS. Another kind
of homogeneous geometry, namely the hyperbolic geometry, can be used to model surfaces of genus larger
than one. This was initially noticed in [20] and later also considered in [21, 22]. It was also pointed out in
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these last two references that such surfaces can be parameterized as piecewise rational surfaces. For a more
detailed historical perspective on these topics, we refer to the discussion in [1].

The paper is organized as follows. The first part is concerned with the construction of parametric
homogeneous splines and a number of algorithmic issues. Then we describe several specific interpolation
and approximation methods for constructing smooth splines, including analogs of the Powell-Sabin method
and a global energy-minimization method. Finally, we show how homogeneous splines can be used to obtain
RAGS and present a few numerical examples.

2. Definition of splines via homogeneous geometry

The starting point for the construction of splines in this paper is a mesh �. We assume that � is a
triangulation of a finite set of points in R3. Thus, � will be thought of as a surface or, more precisely, a
closed 2-manifold (orientable or non-orientable) embedded in R3. The assumption that � has no boundary
is not essential, it merely serves here to simplify the exposition. Depending on its genus, this surface can
be equipped with one of the standard homogeneous geometries, spherical, a�ne, or hyperbolic. This means
that one can find a triangulation, denoted by �H , which is combinatorially equivalent to �, corresponding
to one of these homogeneous geometries (hence the subscript “H” in the notation). In particular, �H will be
a collection of triangles that are either spherical (if the genus g is 0), planar (or a�ne, g = 1), or hyperbolic
(g > 1.) More precisely, “triangles” in �H will be equivalence classes of congruent triangles. To work with
such triangles, we will either select a specific representative, i.e. a triple of vertices in one of the three
homogeneous planes (denoted by the generic symbol P, so that P will either be the sphere, the a�ne plane,
or the hyperbolic plane), or we will represent such a triangle as a triple of its interior angles.

In order for �H to be a well-defined triangulation, triangles in �H must be compatible in the following
sense. Let v be a vertex of� and let C(v) be the set of all triangles T1, . . . , T⌫ 2 � containing v. We call C(v)
the cell corresponding to vertex v. Here ⌫ denotes the valence of v, i.e., the cardinality of C(v). Without
loss of generality, we will assume that the triangles of C(v) are ordered such that T1 = hv, v1, v2i, . . . , T⌫�1 =
hv, v⌫�1, v⌫i, T⌫ = hv, v⌫ , v1i, where v1, . . . , v⌫ are the vertices of � that are connected to v by an edge of
�. Next, let C(v) = {T1, . . . , T⌫} be the set of triangles in �H corresponding to C(v). The mentioned
compatibility condition on �H is that there must exist a set of points u, u1, . . . , u⌫ 2 P, such that triangles
hu, u1, u2i, . . . , hu, u⌫ , u1i have disjoint interiors (i.e. are non-overlapping) and are congruent to T1, . . . , T⌫ ,
respectively. Thus, we can think of C(v) as a set of physical triangles in P, sharing a common vertex u.

The above compatibility condition implies the following fact, to be used later. Let T, T
0 be adjacent

triangles of �, i.e. such that they share a common edge, and let T , T
0 be their corresponding counterparts

in �H (we also call such T , T
0
adjacent.) Then one can find four points u1, u2, u3, u

0
3 such that the triangles

hu1, u2, u3i, hu1, u2, u
0
3i do not overlap and that they are congruent with T , T

0, respectively.
To explain the construction of a spline space corresponding to � (or, equivalently, to �H), we first

consider a single triangle T in �H and define appropriate spaces of “polynomials” that will be used as
building blocks for the desired splines.

2.1. Homogeneous barycentric coordinates

Given three linearly independent vectors u1, u2, u3 2 R3, any vector u 2 R3 can be expressed in a unique
way as a linear combination u = b1(u)u1+ b2(u)u2+ b3(u)u3. The numbers b1, b2, b3 are linear homogeneous
functions of u and are called the trihedral or homogeneous barycentric coordinates of u with respect to
u1, u2, u3 [17]. Recall that a function f defined on R3 is said to be homogeneous of degree n provided
f(↵v) = ↵

n
f(v), ↵ 2 R, v 2 R3. Thus, the coordinates b1, b2, b3 are trivariate homogeneous polynomials of

degree one.
In this paper we will be interested in the cases where the points u1, u2, u3 are vertices of a triangle in

one of the three homogeneous planes P. In particular, we assume that P is one of the standard surfaces,
i.e. either the sphere, S = {(x, y, z) 2 R3

|x
2 + y

2 + z
2 = 1}, the a�ne plane, A = {(x, y, z) 2 R3

|z = 1}, or
the hyperbolic plane, H = {(x, y, z) 2 R3

|�x
2
� y

2+ z
2 = 1, z > 0}, and we will consider the restrictions of

b1, b2, b3 to P. In the first case, these restrictions have been termed spherical barycentric coordinates [16], in
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the second case, one obtains the standard planar or a�ne coordinates (since (b1+b2+b3)|A = 1), and, lastly,
if P = H, the restrictions could be dubbed hyperbolic barycentric coordinates. However, for simplicity, we
will use the generic term barycentric coordinates, or b.c.s, for short.

Barycentric coordinates share many properties with their planar counterparts. Let u1, u2, u3 2 P be
linearly independent and let V (u1, u2, u3) := {u 2 R3 : b1(u), b2(u), b3(u) > 0} be the corresponding
trihedron. By T = hu1, u2, u3i ⇢ P , we denote the triangle obtained as the intersection of V (u1, u2, u3) with
P. We list the following facts without proof. For i = 1, 2, 3, one has

(P1) bi(uj) = �ij , j = 1, 2, 3, where �ij is the Kronecker delta;

(P2) bi(u) > 0, u 2 T ;

(P3) bi(u) = 0, for u 2 P , if and only if u is on the geodesic containing edge "i of T opposite to ui. In the
canonical setting, where P is one of the three standard surfaces considered above, a geodesic is the
intersection of P with a plane in R3 passing through the origin;

(P4) for u 2 T \{u1, u2, u3}, one has b1(u) + b2(u) + b3(u)

8
><

>:

> 1, P = S,

= 1, P = A,

< 1, P = H.

Property (P3) implies that a point u on an edge of T can be expressed by means of its b.c.s with respect
to the endpoints of that edge, or u = b1u1 + b2u2, u 2 [u1u2, where [u1u2 denotes the edge (or geodesic arc)
of T with endpoints u1, u2. The next three propositions provide means for the evaluation of b.c.s. The
following result is stated without proof (but see [16] for the spherical case).

u3 u1

u2

u

u3 u1

u2

s3
r3

u3 u1

u2

u3 u1

u2

u

uu3

↵3 ↵1

↵2

�3

�3

�3

d1

d2

d3

t3

s3
r3

Figure 1: Notation used in Propositions 1 and 2, depicting the case of hyperbolic triangles.

Proposition 1. Let T = hu1, u2, u3i ⇢ P be a non-degenerate triangle, i.e. such that u1, u2, u3 are inde-

pendent, and let u 2 P. Then

bi(u) =
⇢(ri)

⇢(si)
, i = 1, 2, 3, (1)

where ri, si are the respective signed distances of u, ui from the geodesic containing edge "i (Fig. 1(left)) and

⇢(t) :=

8
><

>:

sin(t), P = S,

t, P = A,

sinh(t), P = H.

We use the convention that si > 0 and that ri < 0, if u, ui are on the opposite sides of the plane passing

through "i and the origin, and ri > 0 otherwise.

Another useful property of b.c.s is that they are invariant under congruence transformations. This can
be seen as a direct consequence of the following formulas for b.c.s., showing that the b.c.s depend only on
internal angles of associated triangles.
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Proposition 2. Let T = hu1, u2, u3i ⇢ P be non-degenerate and u 2 P. Then

bi(u) =
sin↵i sin�i sin �i

sin �i sin↵i�1 sin↵i+1
, i = 1, 2, 3, (2)

where the expression on the right is defined as 0 if �i = ⇡, and where we assume that the indices i�1, i, i+1 are

a cyclic permutation of 1, 2, 3. Here we denoted by �i, �i, �i the interior angles of the triangle hui+1, ui�1, ui,

see Fig. 1(right).

Proof. We adopt the convention that �i, �i 2 [0,⇡], �i 2 (0,⇡] if u and ui are on the same side of edge
\ui�1ui+1, whereas �i, �i 2 [⇡, 2⇡], �i 2 [⇡, 2⇡) otherwise. We will prove the statement for the case i = 3, the

other cases being similar. If u is on the geodesic containing edge "3 = [u1u2, or �3 = ⇡, then by property (P3),
b3(u) = 0. Otherwise, identity (2) can be proved by a repeated application of the law of sines. In particular,
for triangle hu1, u2, ui and one of its subtriangles, we get

⇢(t3)

⇢(d3)
=

sin �3
sin �3

,
⇢(r3)

⇢(t3)
=

sin�3

sin(⇡/2)
,

whereas for triangle hu1, u2, u3i and one of its subtriangles, one has

⇢(d2)

⇢(d3)
=

sin↵2

sin↵3
,

⇢(s3)

⇢(d2)
=

sin↵1

sin(⇡/2)
.

Formula (1), together with the above identities, yields the desired equality

b3(u) =
⇢(r3)

⇢(s3)
=

sin↵3 sin�3 sin �3
sin �3 sin↵1 sin↵2

,

which completes the proof.

The result above allows us to prove the following important formulas for b.c.s. associated with adjacent
triangles.

u3

u1

u2

u
0
3u3

u1

u2

u
0
3

uu3

↵3

↵1

↵2

↵
0
3

↵
0
1

↵
0
2

�1�1

Figure 2: Notation used in Proposition 3.

Proposition 3. Consider two adjacent triangles T = hu1, u2, u3i and T
0 = hu1, u2, u

0
3i in P, with angles

h↵1,↵2,↵3i and h↵
0
1,↵

0
2,↵

0
3i. Let �1,�2,�3 be the b.c.s of u

0
3 w.r.t. T . Then

�1 =
sin(↵2 + ↵

0
2) sin↵1 sin↵0

1

sin↵0
3 sin↵1 sin↵2

, �2 =
sin(↵1 + ↵

0
1) sin↵2 sin↵0

2

sin↵0
3 sin↵1 sin↵2

, �3 = �
sin↵3 sin↵0

1 sin↵
0
2

sin↵0
3 sin↵1 sin↵2

. (3)

Proof. We follow the notation in Fig. 2, where angles �1, �1 are the interior angles of triangle hu2, u3, u
0
3i

corresponding to vertices u3, u
0
3, respectively. The expression for �3 is an immediate consequence of Propo-

sition 2, with i = 3, u = u
0
3, �3 = 2⇡ � ↵

0
3,�3 = 2⇡ � ↵

0
1, �3 = 2⇡ � ↵

0
2. As for �1, suppose first that �1 = 0.
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Then the three points u2, u3, u
0
3 lie on a single geodesic and hence, by property (P3), �1 = 0. On account of

↵2 + ↵
0
2 = ⇡, this is consistent with the first identity in (3). Next, we proceed under the assumption that

�1 6= 0. Then formula (2), with i = 1,�1 = ↵2 + ↵
0
2, gives

�1 =
sin↵1 sin(↵2 + ↵

0
2) sin �1

sin �1 sin↵2 sin↵3
.

Therefore, to prove the assertion of the proposition, it remains to show that

sin↵1 sin �1 sin↵0
3

sin �1 sin↵3 sin↵0
1

= 1.

However, this can be easily verified by applying the law of sines to triangles hu3, u
0
3, u2i, hu1, u2, u3i, and

hu1, u2, u
0
3i. The proof for �2 is analogous.

The above proposition states that the interior angles associated with triangles T , T
0 readily determine

the b.c.s �1,�2,�3. This is not surprising, given the mentioned fact that the b.c.s are invariant under
congruence transformations. Curiously, the formula is formally the same in all three cases (spherical, a�ne,
hyperbolic.) Moreover, the expressions for �1,�2,�3 are always well defined as long as the two triangles are
non-degenerate, i.e., all associated angles are in (0,⇡). Lastly, in the a�ne case one has ↵1 + ↵2 + ↵3 =
↵
0
1 + ↵

0
2 + ↵

0
3 = ⇡ and it is easy to see that then �1 + �2 + �3 = 1, as expected.

2.2. Homogeneous Bernstein-Bézier polynomials

We recall some elementary facts concerning homogeneous polynomials [16]. Let T = hu1, u2, u3i be
a nondegenerate triangle in P and let b1, b2, b3 denote the associated b.c.s. Homogeneous Bernstein basis

polynomials of degree n are defined as

B
n

ijk
(u) :=

n!

i!j!k!
b
i

1(u)b
j

2(u)b
k

3(u), i+ j + k = n, u 2 P.

It can be easily proved that such functions are linearly independent and hence every p in ⇡n, the space
of homogeneous parametric polynomials of degree n, has a unique expansion of the form

p(u) =
X

i+j+k=n

cijkB
n

ijk
(u), u 2 P, (4)

where the cijk 2 R3 are the so-called Bézier - or control points of p. This equation is customarily referred to
as the Bernstein-Bézier representation, or simply the B-form, of p.

Due to their formal analogy with ordinary bivariate polynomials, homogeneous polynomials in the B-
form inherit many of the properties of their planar counterparts. In particular, they can be evaluated by
means of the well-known de Casteljau algorithm and conditions for two polynomials on adjacent triangles
joining smoothly across their common edge are formally the same as those for ordinary polynomials, as can
be seen below. We will omit the proof of the next result since it follows along standard lines (see e.g. [16]).

Proposition 4. Let T = hu1, u2, u3i and T
0 = hu1, u2, u

0
3i be two adjacent triangles in P and let

p =
X

i+j+k=n

cijkB
n

ijk
and p

0 =
X

i+j+k=n

c
0
ijk

B
0n
ijk

be polynomials defined on T and T
0
, respectively. Then p and p

0
join with C

m
continuity, m = 0, . . . , n,

along the common edge du1u2 if and only if

c
0
ijk

=
X

⌫+µ+=k

ci+⌫,j+µ,kB
k

⌫µ
(u0

3), k = 0, . . . ,m, i+ j + k = n.
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Thus, in particular, C0-continuity conditions for p, p0 read:

c
0
ij0 = cij0, i+ j = n, (5)

whereas C1-continuity conditions take the familiar form:

c
0
ij1 = �1ci+1,j,0 + �2ci,j+1,0 + �3cij1, i+ j = n� 1,

where �1,�2,�3 are the b.c.s of u0
3 w.r.t. u1, u2, u3, which can be obtained by formulas in Proposition 3.

2.3. Homogeneous splines

Homogeneous polynomials defined in the previous section can be used to construct spline spaces cor-
responding to a given mesh � by means of the combinatorially equivalent triangulation �H . A spline
s in such a space will simply be a piecewise-defined function composed of individual polynomial pieces
s
T := s|T 2 ⇡n|T , where T will vary over the triangles of �H . Note that by definition (4), for given
fixed Bézier coe�cients cijk of sT , this function will not depend on which particular representative of the
equivalence class of congruent triangles with T is considered, given that b.c.s are invariant under congruence
transformations. We will use the notation s : �H ! R3 for composite parametric functions s such that, for
any T 2 �H , the restriction s

T satisfies s
T (u) = ŝ(b(u)), u 2 T , for some function ŝ independent of the

particular representative chosen for T , where b(u) is the vector of b.c.s of u w.r.t. T .
In addition to being piecewise (homogeneous) polynomials, our splines will be required to be globally

C
m continuous, for some m � 0, i.e. they will belong to the class C

m(�H). This will be the space of all
functions f : �H ! R3 that are C

m continuous in the following sense. Let v be a vertex of � and let
C(v) be the cell of �H corresponding to cell C(v) of �, whose existence was postulated at the beginning of
Section 2. Also, let U(v) ⇢ P be the union of all triangles of C(v). We say that a function f : �H ! R3 is
C

m continuous if f is Cm continuous in the interior of U(v), for all vertices v of �. We note that f is well
defined in all of U(v) since it is defined for all T 2 C(v) and values of f |T do not depend on the particular
representative for T that we choose (since f |T is a function of b.c.s).

We are now ready to define a spline space of piecewise homogeneous polynomial functions associated
with �. Let m,n be nonnegative integers. We call

S
m

n
(�) := {s 2 C

m(�H) : s|T 2 ⇡n|T , T 2 �H}

the space of homogeneous splines of degree n and smoothness m. We will refer to these spaces as spherical,
a�ne, and hyperbolic splines in the cases P = S,A,H, respectively.

To construct a spline for a given triangulation �, we will first need to find an appropriate triangu-
lation �H . This will be discussed in the next section. After that continuity conditions will be imposed
between neighboring Bézier patches (i.e. polynomials associated with adjacent triangles T , T

0), specified in
Proposition 4, which will give rise to a linear system of equations for the Bézier points of the individual
patches.

Of immediate interest is the problem of the dimension of the space Sm

n
(�). This is known to be a di�cult

question even in the a�ne case and, in fact, the exact dimension is known only when n is su�ciently large
relative to m, see the extensive discussion in [23]. In the non-a�ne case, the situation is similar. For
example, the spherical case has been dealt with in detail in [17] and we expect that in the hyperbolic case
the results will be similar, especially in the tractable case n � 3m + 2, since, as was pointed out earlier,
smoothness conditions between neighboring polynomial pieces are formally the same for all three types of
geometries. However, the dimension question and the construction of bases for Sm

n
(�) will not be dealt with

in this paper.
Here we will content ourselves with stating the dimension in the special case of C0 splines. To this end

we let nV , nE , nT denote the respective numbers of vertices, edges, and triangles of �. Then

dimS
0
n
(�) = nV + (n� 1)nE +

1

2
(n� 1)(n� 2)nT , (6)

6



which is a direct consequence of the C
0-continuity conditions (5) and the fact that the Bernstein basis

polynomials in (4) are independent and in one-to-one correspondence with control points cijk. We also note
in passing the following well-known formulas for the numbers nV , nE , nT , and the genus g of �:

nT = 2nV + 4(g � 1), nE = 3nV + 6(g � 1).

3. Computing triangulation �H

Given the initial triangulation �, the definition of the spline space in previous section requires the
knowledge of a triangulation �H . In particular, there is a one-to-one correspondence between triangles in
� and �H . We will use the notation � = {Ti}

nT

i=1 and �H = {Ti}
nT

i=1.
In this section we will introduce a possible way to obtain�H . Since elements of�H are equivalence classes

of congruent triangles in P, we will assume that triangles in �H are represented as triples of angles rather
than triples of points in P. We will henceforth use the notation Ti = h↵

i

1,↵
i

2,↵
i

3i, where ↵
i

1,↵
i

3,↵
i

3 2 (0,⇡).
The lengths of the edges opposite to these angles will be denoted by d

i

1, d
i

2, d
i

3. It is well known that in the
spherical case one has

cos di3 =
cos↵i

1 cos↵
i

2 + cos↵i

3

sin↵i

1 sin↵
i

2

, (7)

whereas in the hyperbolic case the same formula holds, with cos di3 replaced with cosh di3 [24]. Formulas for
d
i

1, d
i

2 are analogous.
We also recall that any triple ↵

i

1,↵
i

2,↵
i

3 2 (0,⇡) gives rise to a unique triangle (up to congruence) in
one of the three homogeneous geometries, namely to a hyperbolic triangle, if ↵i

1 + ↵
i

2 + ↵
i

3 < ⇡, or a�ne, if
↵
i

1 + ↵
i

2 + ↵
i

3 = ⇡, or spherical, if ↵i

1 + ↵
i

2 + ↵
i

3 > ⇡.
The following are necessary and su�cient conditions on angles ↵i

1,↵
i

2,↵
i

3, for the existence of a consistent
triangulation �H :

(T1) the sum of angles around each vertex is 2⇡;

(T2) common sides of adjacent triangles have equal lengths.

These conditions guarantee that all triangles are properly “glued together” and with no “holes”. It is well
known that such a triangulation �H always exists [24]. Moreover, a consequence of the Gauss-Bonnet

Theorem is the following identity involving the genus g of �:

nTX

i=1

�
⇡ � (↵i

1 + ↵
i

2 + ↵
i

3)
�
= 4⇡(g � 1).

The problem of finding a suitable triangulation �H can be thought of as a parametrization problem and
it has received considerable attention in the planar case, see for example [25]. In the following we describe
the algorithm we have used in our examples, although alternative approaches are possible.

We use the convention that all angles surrounding vertex j of valence ⌫j are labeled as �
ik

j
, where ik

is the index of the k-th triangle containing vertex j, and where k = 1, ..., ⌫j (Fig. 3(left)). We will seek a
set of appropriate angles defining �H as a solution of a constrained minimization problem with a suitable
objective function and with nonlinear constraints represented by conditions (T1) and (T2). A possibility is
to minimize the quadratic function

nTX

i=1

(↵i

1 � ↵
i

2)
2 + (↵i

2 � ↵
i

3)
2 + (↵i

3 � ↵
i

1)
2
, (8)

so as to obtain a triangulation which is as close as possible to being “uniform”. Moreover, by (7), condition
(T2) gives rise to a set of distance constraints:

dij :=
cos↵i

1 cos↵
i

2 + cos↵i

3

sin↵i

1 sin↵
i

2

�
cos↵j

1 cos↵
j

2 + cos↵j

3

sin↵j

1 sin↵
j

2

= 0, (9)
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for all pairs of adjacent triangles Ti = h↵
i

1,↵
i

2,↵
i

3i, Tj = h↵
j

1,↵
j

2,↵
j

3i, where angles ↵
i

3 and ↵
j

3 are assumed
to be opposite the common edge (cf. Fig. 3(right)), whereas condition (T1) can be expressed as

⌫jX

k=1

�
ik

j
= 2⇡, j = 1, ..., nV . (10)

uj

�
i1
j

�
i2
j

�
i⌫j

j

. . .

. . .

↵
i

3

↵
i

1

↵
i

2

↵
j

3

↵
j

1

↵
j

2

Ti Tj

Figure 3: Configuration of angles around a vertex (left); Discrepancy in edge lengths along the common edge of two adjacent

triangles Ti and Tj (right).

Equations (9) and (10) are constraints associated with vertices and edges of �H , and hence their total
number is nV +nE . For meshes of moderate size, such as the one depicted later in Fig. 6, we have successfully
solved the above optimization problem by the MATLAB routine FSOLVE, using the Levenberg-Marquard
algorithm, with the tolerance set to the machine precision, and with initial values

�
ik

j
=

2⇡

⌫j
, k = 1, . . . , ⌫j , j = 1, ..., nV .

It should be pointed out that the expression on the right-hand side of (7) is not related to the length of
an edge in the a�ne case, i.e. when ↵

i

1 + ↵
i

2 + ↵
i

3 = ⇡. In that case the expression equals 1 and hence
condition (9) is automatically satisfied. We further note that the formulation of the optimization problem
does not require the genus g as input and nor is it necessary to specify which of the three homogeneous
geometries is to be used. Lastly, instead of (8), it would make sense to devise more sophisticated objective
functions, for example ones that take into account the geometry of the mesh �, so as to minimize distortions
in the parametrization. We view this as a separate problem of finding an optimal parametrization. Although
not studied in the current paper, we think this problem deserves a thorough investigation.

4. Surface fitting using homogeneous splines

A distinct advantage of homogeneous splines is that standard bivariate spline methods — which are well
suited for modeling (scalar and vector) functions over planar triangulations — can be adapted to surfaces
of general topology without the need to invent entirely new approaches. To illustrate this point, we present
in this section a few examples of local and global surface fitting methods.

Local techniques are traditionally based on the use of so-called macro-elements. As a prototype of such
splines, we have chosen the classical Powell-Sabin method, although other well-known types of elements can
be obtained as a direct generalization of the a�ne case, such as the Clough-Tocher cubic element and many
others (described for example in the recent monograph [26].)

As for global methods, we describe here how to construct interpolating spline surfaces of arbitrary degrees
and orders of continuity by minimizing a suitable energy functional.

8



4.1. Interpolation by Powell-Sabin macro-elements

The Powell-Sabin scheme consists in subdividing each triangle T 2 �H , called in this context a macro-
triangle, into six subtriangles. A quadratic polynomial is then defined on each subtriangle in such a way
that the resulting composite surface is globally C

1 continuous (for more details on this construction in the
planar case, see [23, 26].) To explain this further, let T = hu1, u2, u3i, where u1, u2, u3 2 P. The splitting
of the triangle can be done by considering the incenter ⇠ of T , i.e., the intersection of the angle bisectors
of T . One way to compute the incenter is to radially project the incenter of the flat triangle with vertices
u1, u2, u3 onto P. The next step in the subdivision is to split each of the three edges of T . Let T

0 be an
adjacent triangle to T , with common edge [u1u2, say, and let ⇠

0 be the incenter of T 0. We define ⇠3 to be
the intersection of [u1u2 with the geodesic line passing through the two incenters ⇠ and ⇠

0. The reason for
choosing incenters of T and T

0 is that this guarantees that ⇠3 is strictly inside the edge [u1u2. This follows
by a similar argument as in the plane (see Lemma 4.19 in [23]). Points ⇠1, ⇠2 are defined analogously.

The four points ⇠, ⇠1, ⇠2, ⇠3 give rise to a subdivision of T into six subtriangles, as shown in Fig. 4(left). To
associate a quadratic Bézier polynomial with each subtriangle, it will be necessary to determine appropriate
Bézier points, which will be labeled as in Fig. 4(right). These will be defined such that the resulting spline
surface interpolates the vertices of � and is globally C

1 smooth. The standard way to achieve the latter is
to also interpolate directional derivatives at the vertices of each of the macro-elements. If these derivatives
are not given, which is often the case, they can be estimated.

u3 u1

u2

u3 u1

u2

⇠

⇠3⇠1

⇠2 t13

t12

t23 t21

t31

t32

c1

c2

c3 c1

c2

c3

c5c8

c11

c19
c4

c6c7

c9

c10 c12

c13

c14

c15

c16

c17 c18

Figure 4: Powell-Sabin split of a triangle in �H (left); Labeling of control points of a macro-element (right).

A reasonable way of estimating the directional derivatives is to require that the resulting interpolating
spline has the so-called quadratic reproduction property. This means that if the vertices of the mesh �
are incident on a quadratic homogeneous polynomial surface, then locally the spline must be identical to
this surface. Such reproduction property is usually necessary for the interpolation scheme to have optimal
approximation order. More precisely, suppose that we desire to estimate directional derivatives at a vertex
u1 of �H and that T = hu1, u2, u3i 2 �H is a triangle containing this vertex. To this end, we first find
a best quadratic fit of the mesh points of � in the vicinity of v1, the mesh point of � corresponding to
vertex u1. In particular, our objective is to find a quadratic parametric polynomial q 2 ⇡2, parameterized
by b = (b1, b2, b3)t, the barycentric coordinates w.r.t. the reference triangle T , such that

q(b(u1)) = q((1, 0, 0)t) = v1

and that
X

u2U1

kq(b(u))� v(u)k22 =
X

u2U1

����
X

i+j+k=2

cijkB
2
ijk

(u)� v(u)

����
2

2

is minimized, where k · k2 denotes the Euclidean norm, and where v(u) denotes the mesh point of �
corresponding to vertex u. The sum above is taken over all vertices U1 of �H that are in the vicinity of
u1. In our implementation, we considered the set U1 of all mesh points of �H that either belong to a
triangle of �H containing u1, or to a triangle sharing an edge with a triangle containing u1. This guarantees
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that the size of U1 is at least 6, the dimension of ⇡2, and that the above problem has a unique solution.
Note that the minimization problem gives rise to three separate linear systems for the x, y, z-coordinates
of the Bézier points cijk 2 R3. Moreover, the resulting quadratic fit will not depend on which reference
triangle T containing vertex u1 we select or which particular representative hu1, u2, u3i in the equivalence
class of congruent triangles we consider for T .

Once a local quadratic fit q is found for vertex u1, we can compute the sought-for directional derivatives
in the direction of edges emanating from u1 as follows. Let du1u` ⇢ P, ` 6= 1, be one such edge and suppose
that t1` is the unit tangent vector to the arc du1u` at u1, see Fig. 4 (left). The directional derivative �1` of q
at u1 in the direction t1` is given as

�1` := Dt1`q(b(u1)) :=
dq(b(u(h)))

dh

����
h=0

,

where u(h) is any smooth parametrization of the arc du1u`, such that u(0) = u1 and u
0(0) = t1`. Using the

chain rule, one obtains the following formula:

�1` = b
t(t1`)rbq(b(u1)),

where rb = (@b1 , @b2 , @b3)
t and b(t1`) is the column vector of b.c.s of t1` w.r.t. the reference triangle

T = hu1, u2, u3i. We note that since q is quadratic, all three components of rbq(b) are linear. As a result,
one has rbq(b(u1)) = 2(c200, c110, c101)t, which are coe�cients of the obtained quadratic fit q.

From now on, the construction of the Powell-Sabin macro-elements can proceed in a fully local way,
as is standard in the classical setting [26]. First, Bézier coe�cients associated with the edges of �H are
determined. For example, referring to Fig. 4 (right), for edge [u1u2, these are coe�cients c1, c2, c4, c5, c6. The
first two of these are readily determined by the interpolation conditions, c1 = v1, c2 = v2. The coe�cients
c4, c6 are obtained by the requirement that the directional derivatives in the direction of the edge are equal
to �12, �21, respectively. For example, for the macro-element to interpolate the directional derivative �12 at
u1, coe�cient c4 can be obtained as the solution of

�12 = Dt12p(b(u1)) = 2(b1c1 + b2c4),

where b1, b2 are the b.c.s of t12 w.r.t. points u1, ⇠3, i.e. t12 = b1u1 + b2⇠3, and where p is the quadratic
polynomial associated with edge du1⇠3 (i.e. with coe�cients c1, c4, c5). Coe�cient c5 can now be determined
by the C

1 conditions from c4, c6, namely

c5 = b
0
1c4 + b

0
2c6,

where now b
0
1, b

0
2 are the b.c.s of ⇠3 w.r.t. u1, u2, or ⇠3 = b

0
1u1 + b

0
2u2. All remaining Bézier coe�cients,

that are “interior” to a given triangle, say triangle hu1, u2, u3i (i.e. coe�cients c13, . . . , c19 in Fig. 4 (right)),
can be obtained from C

1-continuity conditions corresponding to adjacent subtriangles of the macro-element.
For example, one has

c13 = b
00
1c1 + b

00
2c4 + b

00
3c12, c14 = b

0
1c13 + b

0
2c15, c19 = b

000
1 c13 + b

000
2 c15 + b

000
3 c17,

where b
00
1 , b

00
2 , b

00
3 are the b.c.s of ⇠ w.r.t. u1, ⇠3, ⇠2 and b

000
1 , b

000
2 , b

000
3 are the b.c.s of ⇠ w.r.t. u1, u2, u3.

The above construction guarantees that adjacent macro-elements are C
1 continuous and thus so is the

resulting composite spline surface. In particular, the C
1 continuity across the macro-edges (edges of �H) is

due to the fact that the directional derivatives �``0 are, by construction, compatible with a uniquely defined
tangent plane at each vertex of �.

4.2. Interpolation by global energy minimization

In the previous section we considered a local construction of a C
1 surface, composed of macro-elements.

An alternative to the above approach is not to subdivide individual triangles of the mesh � and instead use
the spline space S

m

n
(�) directly, as defined in Section 2.3. Such an approach is quite robust in that it can
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be in principle applied for any parameters m,n and can be used for a variety of data-fitting methods. In
particular, if one wants to interpolate the vertices of the mesh � by a smooth spline, a standard possibility
is to seek a solution of the following minimization problem: For given m < n, find a spline s 2 S

m

n
(�), such

that s(ui) = vi, i = 1, ..., nV , and such that an energy– or “fairness” functional, E(s), is minimized. In the
context of CAGD, this minimization is done to uniquely determine available degrees of freedom (i.e. any
spline control points that are not readily set by the interpolation and smoothness conditions) and in such a
way as to obtain a visually pleasing surface, free of artificial undulations not suggested by the geometry of
the mesh �.

The above interpolation problem can be formulated explicitly in terms of the Bézier coe�cients of the
sought-for spline. Let us suppose that these coe�cients are collected in a vector c = (c1, ..., cM )t, where
M = dimS

0
n
(�) is as in (6). For convenience, we will assume that the coe�cients are ordered such that

the first nV entries, c1, ..., cnV
, of c correspond to the Bézier points associated with vertices vi, i = 1, ..., nV ,

of �. Moreover, we assume that when two polynomial pieces join along an edge, the Bézier points along that
edge are included in vector c just once. With this convention, the interpolating spline s can be determined
as the minimizer of the energy functional E(s), subject to the constraints

ci = vi, i = 1, ..., nV , (11)

and
Cc = 0. (12)

Here, C is a K ⇥ M matrix that encodes the set of Cm-continuity conditions for s across all edges of �,
specified in Proposition 4. These are linear homogeneous equations for the coe�cients c.

Frequently, the energy functional can be expressed as a quadratic form:

E(c) = c
t
Qc, (13)

where Q is an M ⇥M symmetric positive definite matrix. In that case, the interpolation problem reduces
to finding a solution to the linear system:

0

@
Q E

t
C

t

E 0 0
C 0 0

1

A

0

@
c

µ

⌫

1

A =

0

@
0
v

0

1

A , (14)

where E is the nV ⇥M matrix of the form E = (InV
0) (InV

is the nV ⇥nV identity matrix), v = (v1, ..., vnV
)t,

and µ = (µ1, ..., µnV
)t, ⌫ = (⌫1, ..., ⌫K)t are vectors of Lagrange multipliers associated with (11) and (12),

respectively.
Some remarks on the above system are in order. If the full set of continuity conditions is considered, then

the number of rows of C isK = (n+n�1+· · ·+n�m+1)nE = (mn�
�
m

2

�
)nE since there are n C

1-continuity
conditions per edge, n� 1 equations for C2 continuity, etc. It turns out that such matrix C is rank deficient
and therefore the system matrix in (14) is singular. This has been well known already in the context of
ordinary splines [23] and even spherical splines [17]. However, the rank-deficiency of C does not a↵ect the
consistency of the linear system. There are two basic approaches to attempt to solve such a system. Either
one employs a system solver that can handle consistent singular linear systems or, alternatively, instead of
C one can consider a matrix with a reduced number of rows by eliminating dependent rows of C. The latter
approach is tractable if m is small compared to n (in particular, if n � 4m+ 1 or even n � 3m+ 2), for in
that case one can identify explicitly and in a local way redundant continuity conditions.

It is clear that the above-described approach is global, since all coe�cients are the solution of a single
linear system, which might be in fact quite large. However, the system is typically very sparse and hence
system solvers taking advantage of the sparsity should be used. In particular, matrix Q is sparse for a
variety of energy functionals, including the one considered below, and so is the matrix C. For example, for
C

1 continuity (m = 1) there are at most 4 nonzero entries in each row of C and at most 7 such entries for
C

2-continuous splines.
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Concerning the solvability of the system, because of the close resemblance of the splines considered here
with the classical splines, we have reasons to believe that the system is uniquely solvable for any degree
n and smoothness m, as long as n is su�ciently large relative to m. We plan to address this issue more
rigorously elsewhere and, instead, we will content ourselves with pointing out that this claim is supported
by our numerical experiments.

In the remainder of this subsection, we will discuss a suitable choice of energy for (13) that we have
implemented and used in our experiments. Our starting point is the operator

LP = @
2
x
+ @

2
y
+ �P@

2
z
, (15)

where

�P :=

8
><

>:

1, if P = S,

0, if P = A,

�1, if P = H.

Thus, in the first two cases, LP is the standard Laplacian operator. We can now define the Laplace-Beltrami
operator, L⇤

P , by
L
⇤
Pf

:= LPf
�
·/ k·kP

� ��
P , (16)

which should hold for all su�ciently di↵erentiable functions f on P. Thus, L⇤
Pf is defined as the restriction

to P of LP applied to the homogeneous extension of f of degree 0. Here k(x, y, z)kP
:=

p
�P(x2 + y2) + z2,

so that (x, y, z)/ k(x, y, z)kP2 P, for all (x, y, z) 2 R3 for which �P(x2 + y
2) + z

2
> 0.

We now define the energy functional E(s) of a spline s 2 S
m

n
(�) as

E(s) =
X

T 2�H

Z

T
(L⇤

P s)
2
d⌧,

where d⌧ is the Lebesgue measure on P corresponding to the standard metric on P. We can now work out
the entries of matrix Q in (13). Clearly, if s is a spline with coe�cient vector c, the above functional has
the form (13), with matrix entries

Q`,`0 =
X

T 2�H

Z

T
(L⇤

PB
n,T
`

)(L⇤
PB

n,T
`0 )d⌧, `, `

0 = 1, . . . ,M. (17)

Here, the function B
n,T
`

denotes the Bernstein basis polynomial corresponding to Bézier point c`. If c` is

not associated with T , then B
n,T
`

is understood to be zero. Thus, it is not di�cult to see that Q is sparse.
Indeed, let `, `

0 be such that the Bézier points c` and c`0 correspond to interior Bézier points (i.e., points
not associated with vertices or edges of �) of two separate triangles T and T

0. Then Q`,`0 = 0, since all
summands in (17) are trivially zero.

To compute the non-zero entries of Q, we can use numerical quadrature. In our implementation, this has
been done as follows. Consider a triangle T = hu1, u2, u3i 2 �H . Then the value of

R
T (L

⇤
PB

n,T
`

)(L⇤
PB

n,T
`0 )d⌧

can be computed by parameterizing T by the planar triangle T with the same vertices as T [18]. In particular,
a point ū 2 T can be mapped to u 2 T by the transformation

u =
Aū

kAūkP

,

where A is the matrix whose columns are vectors u1, u2, u3. One can show that the surface integral of an
integrable function f on T can be evaluated as

Z

T
f(u)d⌧ =

Z

T

f

✓
Aū

kAūkP

◆
kN(ū)kP dū,
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where N(ū) is a normal vector of P at u = Aū/ kAūkP , such that kN(ū)kP= | detA|/ kAūk
3
P . Thus,

defining

h(ū) := L
⇤
PB

n,T
`

✓
Aū

kAūkP

◆
L
⇤
PB

n,T
`0

✓
Aū

kAūkP

◆
,

we obtain Z

T
(L⇤

PB
n,T
`

)(L⇤
PB

n,T
`0 )d⌧ = | detA|

Z

T

h(ū)

kAūk3P

dū.

The value of this integral can be computed by any standard numerical quadrature. We used a Gauss
quadrature formula in our implementation.

The final issue that needs to be addressed is the evaluation of L⇤
Pp, where p is a homogeneous polynomial

of degree n, required in the computation of function h above. Similarly to the spherical case [18], one can
accomplish this by using the identity

L
⇤
Pp = LPp� �Pn(n+ 1)p,

which holds for any homogeneous trivariate polynomial p of degree n. This is a direct consequence of
definitions (15) and (16). To evaluate the expression LPp, we can view p as a homogeneous trivariate
function of the barycentric coordinates b1, b2, b3 w.r.t. T . By di↵erentiating w.r.t. b1, b2, b3 instead of
x, y, z, we obtain

LPp = b
t(e1)Hb(p)b(e1) + b

t(e2)Hb(p)b(e2) + �Pb
t(e3)Hb(p)b(e3),

where ei, i = 1, 2, 3 are the unit coordinate vectors and Hb(p) is the Hessian matrix

Hb(p) :=

✓
@
2
p

@bi@bj

◆3

i,j=1

.

5. RAGS obtained from homogeneous splines

Having discussed homogeneous splines in previous sections, it is natural to also consider rational versions
of such functions. These turn out to be special cases of the rational geometric splines (or RAGS) introduced
recently in [1], capable of representing smooth surfaces of arbitrary topological genus. To obtain RAGS from
homogeneous splines, let s : �H ! R3 be a spline in S

m

n
(�) and let w : �H ! R be a scalar homogeneous

spline of degree n and smoothness C
m (i.e., an element of the scalar counterpart of S

m

n
(�).) We now

consider a rational spline of the form rH = s/w. In particular, for any triangle T 2 �H , denoting by b(u)
the b.c.s of u 2 T w.r.t. T , one can write for the restriction r

T
H

of rH to T :

r
T
H
(b(u)) =

P
c
T

ijk
B

n,T
ijk

(u)
P

w
T

ijk
B

n,T
ijk

(u)
, u 2 T ,

where c
T

ijk
2 R3

, w
T

ijk
2 R are the respective Bézier coe�cients of s|T and w|T , indexed by T 2 �, the

triangle associated with T 2 �H , and where the summation is over all i, j, k such that i + j + k = n (see
Fig. 5.) For the above rational function to be well-defined, we will assume that all coe�cients wT

ijk
, which

will be referred to as the weights, are positive. This is a su�cient condition for the spline w to be positive.
Clearly, since both splines s, w are C

m continuous, so is rH . Moreover, rT
H

can be parameterized by the
(flat) triangle T and, consequently, it can be viewed as an ordinary rational function (i.e. the quotient
of two algebraic bivariate polynomials). This can be seen by invoking the homogeneity of the Bernstein
polynomials Bn,T

ijk
as follows (cf. [1]):

r
T
H
(b(u)) =

P
c
T

ijk
(b1 + b2 + b3)nB

n,T

ijk
(v)

P
w

T

ijk
(b1 + b2 + b3)nB

n,T

ijk
(v)

=

P
c
T

ijk
B

n,T

ijk
(v)

P
w

T

ijk
B

n,T

ijk
(v)

=: rT (b̄(v)), (18)
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Figure 5: Labeling of Bézier coe�cients in the case n = 2.

where b̄(v) := (b1, b2, b3)t/(b1 + b2 + b3) are the a�ne b.c.s of v := b̄1v1 + b̄2v2 + b̄3v3 2 T , v1, v2, v3 are the
vertices of T , and where Bn,T

ijk
are ordinary Bernstein polynomials (i.e. functions of a�ne b.c.s b̄.) Note that

b̄(v) is well defined for all v 2 T since by our definition of b.c.s, b1+b2+b3 = b1(u)+b2(u)+b3(u) > 0, u 2 T . A
consequence of the previous discussion is that rH can be viewed as a rational (algebraic) spline parameterized
by the mesh �, namely the rational spline r : � ! R3 such that r|T = r

T
, T 2 �. Moreover, this spline,

viewed as the image of the mapping r : � ! R3, is a C
m surface. It follows that r is a RAGS spline

in the sense of [1]. However, it should be pointed out that while homogeneous geometry and the resulting
homogeneous splines make it possible to construct RAGS, this is by no means the only way. We are currently
exploring alternative methods of obtaining such splines.

O↵hand, it is not clear whether a smooth positive spline w needed for the above construction even exists.
The answer is a�rmative, at least in the case where n is even, for then we can set w to be identically equal
to the constant function 1. This is because it is well known that the space of homogeneous polynomials of
an even degree, restricted to P, contains constants. As a consequence, in the even-degree case, constants
are also elements of Sm

n
(�), for all m. Note that this is not true for odd-degree polynomials, unless P = A.

The existence of a smooth positive spline w (with positive weights) for odd-degree splines is not guaranteed
in general. However, we expect that such w will typically exist if n is “large enough” relative to m.

Next, we restrict ourselves to the even-degree case and derive a formula for the weights corresponding
to the constant spline w. It will be su�cient to consider the case n = 2 since for larger even values of
n the weights can be determined by degree elevation. More precisely, if wijk are such that the quadratic
polynomial w =

P
i+j+k=2 wijkB

2
ijk

is identically equal to 1, we can obtain the weights corresponding to

any other (even) degree n by expanding out the right-hand side of identity 1 = w
n/2.

Proposition 5. Let w =
P

i+j+k=2 wijkB
2
ijk

be a quadratic polynomial associated with a triangle T ⇢ P

with interior angles h↵1,↵2,↵3i, and suppose that w is identically equal to one. Then

w200 = w020 = w002 = 1

and

w011 =
cos↵2 cos↵3 + cos↵1

sin↵2 sin↵3
, w101 =

cos↵1 cos↵3 + cos↵2

sin↵1 sin↵3
, w110 =

cos↵1 cos↵2 + cos↵3

sin↵1 sin↵2
.

Proof. The first set of identities follows from the interpolation property of the Bézier coe�cients at the
vertices of T . As for the second set, we only prove the formula for w110, i.e. the Bézier coe�cient associated
with the edge of T opposite to the third vertex of T . Let us assume that a triangle with vertices u1, u2, u3 2 P

is a representative of the equivalence class of triangles congruent to T . To obtain w110, the following must
hold:

w200B
2
200(u) + w110B

2
110(u) + w020B

2
020(u) = b

2
1 + 2w110b1b2 + b

2
2 = 1, (19)

for all u 2 [u1u2, where b1, b2 are the b.c.s of u w.r.t. u1, u2. It will be su�cient to select any point u in the
interior of edge [u1u2 (so that b1b2 6= 0) and solve for w110. This will guarantee that equation (19) holds for
three distinct values of u, and therefore it must be true for all u, given that constants are in the linear span
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of B2
200, B

2
110, B

2
020. For simplicity, we set u = u1+u2

ku1+u2kP
2 [u1u2, which gives b1 = b2 = 1/k u1 + u2 kP , or,

by (19),

w110 =
k u1 + u2 k

2
P

2
� 1.

By an elementary calculation in the three separate cases, P = S,A,H, the previous expression simplifies to

w110 =

8
><

>:

cos(d3), P = S,

1, P = A,

cosh(d3), P = H,

where d3 is the length of edge [u1u2. The assertion of the proposition is now a consequence of formula (7)
and the analogous formula in the hyperbolic case.

In the context of rational splines it is customary to express individual patches of r, defined in (18), in
the form

r
T =

P
d
T

ijk
w

T

ijk
B

n,T

ijkP
w

T

ijk
B

n,T

ijk

, (20)

where the d
T

ijk
:= c

T

ijk
/w

T

ijk
2 R3 are called the control points of the rational spline. On account of the

positivity of the weights, the control points are well defined. These control points are more convenient to
work with since by (20), values of rT are obtained as convex combinations of such control points and hence
they are geometrically more meaningful than the c

T

ijk
’s. In the usual way, the control points give rise to

the so-called control net of r. By virtue of the convex hull property and the property that the control net
is tangent to the corresponding surface at the vertices of the mesh, the control net mimics the behavior of
the corresponding spline surface. In many other ways, working with RAGS is analogous to working with
classical bivariate polynomial splines.

The set of rational splines r considered here, corresponding to given fixed m,n, and �, is not a linear
space. However, one can obtain a linear space by fixing the weights wT

ijk
, T 2 �, i.e. by fixing the denomina-

tor of each rational patch r
T . In the setting considered here, in which RAGS are obtained from homogeneous

splines, we propose to fix these weights, in the even-degree case, in accordance with Proposition 5 and the
degree-elevation idea for degrees larger than two. Thus, one can think of the weights as being determined
mainly by the combinatorial structure of the triangulation �, i.e. by its topology, whereas the control points
d
T

ijk
can be selected independently of the weights, with the aim to control the geometry of the resulting

RAGS surface. Thinking of RAGS as linear spaces is of interest in connection with using such splines as
finite elements for purposes of isogeometric analysis, i.e. for approximation as opposed to merely geometric
modeling.

6. Numerical experiments

The following numerical examples illustrate RAGS surfaces obtained by methods described in previous
sections. The surfaces displayed in Figs. 7 and 8 are examples of local and global interpolation by C

1 Powell-
Sabin macro-elements for the mesh in Fig. 6 (left). In the former case, the required directional derivatives
are estimated by the local approach presented in Section 4.1, which guarantees that the RAGS spline has
the quadratic reproduction property. For the surface in Fig. 8, the derivatives are computed by requiring
that the surface minimize the energy functional (13). As a consequence, the latter approach is global in
nature and, as can be reasonably expected, it results in better aesthetic quality. Finally, the example in
Fig. 9 is generated by the global interpolation method described in Section 4.2, employing degree-6 patches
and C

2-continuity conditions. It turns out that each surface is tangent to its respective control net at the
vertices of �, in the same way as in the case of standard splines.

The illustrations in Figs. 7, 8, and 9 depict, from left to right, collections of individual surface patches,
the final surface plots, the Gaussian curvature, and the zebra-line plots.
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Figure 6: Initial triangulation (768 triangles) and details of control nets for the surfaces in Figs. 7, 8, and 9.

Figure 7: C1
RAGS surface obtained by local interpolation with Powell-Sabin macro-elements.

Figure 8: C1
RAGS surface obtained by Powell-Sabin macro-elements and Laplacian energy minimization.
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