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Introduction

In Part 1 of this paper, issues related to the production, 
microstructures, chemical nature, engineering properties, 

and durability of mixtures based on binders that are an 
alternative to Portland cement were presented. This second 
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part of the paper concerns the use of traditional and inno-
vative Portland-free lime-based mortars in the conserva-
tion of cultural heritage and recycling, and the management 
of wastes to reduce consumption of natural resources in 
the production of construction materials. The latter is one 
of the main concerns in terms of sustainability since nowa-
days more than 75% of wastes are disposed of in 
landfills.

Traditional and innovative Portland-
free lime-based mortar for 
conservation of historical heritage

Traditional historic mortars

The addition of natural or artificial pozzolans to lime mor-
tars was practiced since the dawn of civilization. Volcanic 
eruptions occurred worldwide, and provided ancient popu-
lations with natural pozzolanic materials.1 In the absence 
of volcanic materials, man learned to use crushed bricks or 
pottery fragments (cocciopesto when mixed with lime). 
Earlier use of pozzolans has been proven for Galilean 
archaeological sites dating back to the Neolithic period.2 
Further evidence has been found in Crete and Greece.2–5 
Nevertheless, it is only in Ancient Rome that pozzolanic 
materials have undergone systematic exploitation. It is 
probably during the century II BC that the Romans discov-
ered the hydraulic properties of the volcanic ash in the area 
near Puteoli.6 Hence, the name pulvis puteolanus was 
given to the material, from which the modern term poz-
zolan is derived. Natural aggregate was used as a pozzo-
lanic agent during the Roman Empire.7–12 The number of 
ancient buildings surviving time and natural injury testi-
fies well to the extraordinary properties of such Roman 
mortars.13 Since ancient times, knowledge and expertise 
have been summarized by various authors. Vitruvius points 
out the ability of harena fossicia14,15 to impart solidity to 

structures even in water.16,17 Pliny the Elder (Naturalis 
Historia) confirms the extraordinary property of pozzo-
lanic materials in consolidating marine structures.18

Natural pozzolans were also a main component of opus 
caementicium, regarded as the precursor of modern con-
crete.7,10,19–24 The opus caementicium was used both to fill 
the void between outer brick or stone wall edges and for 
hydraulic structures.7,19,21,25–27 During the Imperial Age, it 
became the construction material for most public 
works.28–32

Starting from E. B. van Deman’s33 pioneering work 
published in 1912, ancient Roman mortars have been 
attracting increasing interest from the scientific commu-
nity. Despite this, the complex physical and chemical 
transformations involved in mortars’ hardening have not 
yet been fully understood. Significant progress, based on 
microscopic analysis, has recently been made.34–40 
Specifically, studies demonstrate that the monuments 
built in Rome throughout the first four centuries AD29 
contain Pozzolane Rosse, scoriae erupted by the Alban 
Hills volcano during the mid-Pleistocene pyroclastic 
flow.30 Studies carried out on mortars manufactured 
using the same materials as in the Trajan Markets in 
Rome have shown34 a crystalline phase, strätlingite, 
growing at interfacial regions as a consequence of the 
pozzolanic reaction, thus providing significant mechani-
cal improvement.34 The capability of strätlingite for the 
distribution of force at interfaces positively influences 
the mechanical properties of mortar, contributing to 
blocking the propagation of cracks and microfrac-
tures.34,41 The observed behavior opens up new perspec-
tives not only for a deeper understanding of the 
relationship between structure and properties in ancient 
Roman mortars, but also for designing new materials 
solutions for the restoration and formulation of novel 
Portland-free sustainable mortars with superior perfor-
mance in terms of durability and toughness.42
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Nanolime in conservation of cultural heritage

European cultural heritage (ECH) is of paramount impor-
tance. For this reason, ECH has to be protected following 
the main “Restoration Principles” outlined in international 
charts (compatibility, recognition, and little invasive). 
Materials’ deterioration can be prevented or slowed down 
by conservative repairs, consisting of restoration and pre-
ventive treatments.43 So far, conservation science has 
focused on polymer-based conservation materials. Organic 
protectives are, however, generally physically/chemically 
incompatible with an inorganic substrate.44 For this reason, 
nowadays, the application of inorganic nanomaterials such 
as calcium hydroxide nanoparticles in hydro-alcoholic dis-
persion (nanolime) has been successfully introduced in CH 
for the consolidation of calcareous substrates, in order to 
reach a compromise between compatibility and efficacy of 
the intervention.45 Actually, nanolime presents the ability to 
penetrate deep into damaged zones, high reactivity, and fast 
reactions in the carbonation process.

The procedure adopted to prepare nanolime particles 
mainly consists of chemical methods, carried out at high 
temperature and/or high pressure, in aqueous, alcoholic, or 
organic solvents.45–49 An recent innovative single-step pro-
cess, based on an anion-exchange process, to produce 
nanolime in water at room temperature, has been pat-
ented.50 The nanolime, dispersed in ethanol, iso-propanol, 
or water–alcohol mixtures, is composed of pure, crystal-
line, and thin hexagonal lamellas (Figure 1). Recent stud-
ies reveal that the lamellas can be composed of 
nanoparticles <10 nm in length and 6 nm in thickness.51,52 
Nanolime dispersions are successfully employed on wall 
paintings, stuccoes, and frescoes, and in the refurbishment 
of architectonic surfaces.53–62 In particular, both in wall 
paintings and in frescoes, the nanolime guarantees a re-
adhesion of detached paint layers on the wall sub-
strate.45,53,54 Promising results are also obtained on stones 
and mortars, in terms of superficial consolidation as well 
as reduction of water absorbed by capillarity (up to 
70%).56–62 Nanolime is able to penetrate up to some mil-
limeters from the stone surface, filling the pores without 
occluding them. Moreover, when applied in diluted disper-
sions (<5 g/l), nanolime does not produce any relevant 
chromatic alteration on the stone surface.

From the results obtained in the different cases, nanolime 
can represent a promising material for the restoration and 
preservation of historic works of art, perfectly combining 
consolidation efficacy with its physico-chemical compati-
bility with the original historic lime-based material.

Waste management and recycling

Recycled glass

According to the United Nations, glass waste represents 
about 7% of the total solid waste available. Moreover, 

glass waste occupies extensive volumes of landfill due to 
its non-biodegradable nature.63,64 In addition, the glass 
industry uses a large amount of natural resources and 
energy, and it produces high CO2 emissions. Theoretically, 
glass can be recycled many times. Mixing different colored 
glass waste, however, makes the recycling process unfea-
sible and highly expensive. Thus, the concrete industry can 
represent a possible solution for an environmentally 
friendly management of glass waste. Furthermore, the use 
of glass waste in construction appears among the most sus-
tainable options, since its use could reduce the environ-
mental costs of concrete production.

Firstly, subject to its chemical composition, glass waste 
should be suitable as a raw material for cement produc-
tion.65 Moreover, being amorphous66 and containing large 
quantities of silicon and calcium, glass is, in theory, poz-
zolanic if finely ground.66–71 Many studies72–75 have con-
firmed that ground-glass powder exhibits a good 
pozzolanic reactivity.72,73 An increase of finely ground-
glass content, however, reduces the strength of concrete 
during the early stages due to a slower pozzolanic reaction 
compared to cement hydration and a lower cement con-
tent.75,76 Thus, different studies have investigated the opti-
mum percentage of glass powder (5–30%) to replace 
cement, as well as the optimum particle size (0.1–100 μm). 
Based on the studies by Shi et al.72 and Shao et al.,73 con-
crete with glass particles passing a 38 µm sieve replacing 

Figure 1.  Transmission electron microscopy image of 
commercial nanolime.
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30% of the cement exhibited a higher strength than a mix-
ture with fly ash. Mechanical properties are more related 
to the physical characteristics of glass than to differences 
in terms of color or chemical composition.77 Glass powder 
can contribute, after proper curing, to a beneficial refine-
ment of the pores,66,76 and delays the penetration of ionic 
species.78–80 The only concern regarding the use of glass 
powder in cementitious materials is the potential alkali–
silica reaction (ASR). Most of the expansion tests that 
have been carried out in studies72–79 have shown that ASR 
expansion decreased with an increase in the percentage of 
glass powder due to its pozzolanic behavior.

Glass waste81 is of interest for replacing natural aggre-
gates in concrete. Due to its low absorption capacity, recy-
cled glass aggregate is able to improve freeze–thaw 
resistance, drying shrinkage, and abrasion.82 Topçu and 
Canbaz,82 Idir et al.,83 Corinaldesi et al.,84 Jin et al.,85 
Poutos et al.86 and Mladenovič et al.87 found that a particle 
size less than 0.9–1 mm did not induce any harmful effects 
of ASR with 20% partial replacement of glass aggregate; 
with a lower particle size a higher percentage could be 
used safely.76 To avoid an ASR reaction in concrete with 
glass aggregates, is necessary to reduce the size of glass 
particles and the glass content, and use porous lightweight 
aggregate87–92 or supplementary cementitious materials, 
including finely ground glass.83

Several authors74,93 studied the combined use of waste 
glass as a partial replacement for cement and aggregate in 
the same mixture. Shayan and Xu74 demonstrated that after 
increasing the amount of glass powder (up to 30%) no 
ASR effects were evident in a mixture with 50% replace-
ment of natural aggregate with waste glass. Recently, pro-
cesses for the production of expanded glass particles have 
been developed, and the use of this lightweight aggregate 
for concrete has been proposed by several authors.88–92 
Carsana and Bertolini.88 demonstrated that the combina-
tion of expanded glass and silica fume led to a structural 
lightweight concrete showing a high resistance to the pen-
etration of aggressive agents. Based on the results obtained 
by Ducman et al.,89 in a recent study Bertolini et al.,94 have 
also verified the possibility of manufacturing lightweight 
mortars with expanded glass aggregates and glass powder 
replacing 30% of the cement. Preliminary results con-
firmed the beneficial effects of glass waste in terms of 
decreasing ASR expansion with respect to standard mor-
tars (Figure 2).

Aggregates from automotive shredder residues

Every year in the world more than 50 Mt of end-of-life 
vehicles (ELV) are produced;95 as a consequence yielding 
about 9 Mt of wastes. According to European Directive 
(2000/53/EC) more than 95% (by mass) of ELV produced 
after 1979 shall be reused and recovered and more than 
85% must be recycled. Nowadays, about 80–95% of ELV 

are subjected to the disassembling of glasses, transmission 
components, tires, seats, and liquids drainage. At the 
shredding plant, an heterogeneous mix – “automotive 
shredder residue” (ASHR) – is produced,96 made up of 
75% fine combustible materials with a calorific value >13 
MJ/kg.97 (Table 1) This waste is highly contaminated with 
heavy metals,98,99 however, and it often contains mineral 
oils and fluids.100–105 In Europe, ASHR is classified as haz-
ardous waste (Decision 2000-532-EC).

Regarding the inorganic fraction, excellent results have 
been obtained transforming the finest particles of ASHR 
(<4 mm) into aggregates after chemical treatment with cal-
cium sulfoaluminate or Portland cement.106–108 
Rossetti106,107 pointed out an efficient process for aggre-
gate production from ASHR, consisting of a preliminary 
separation step, where a fraction containing mainly inert 
and nonmetallic materials was sieved to obtain the required 
grading, followed by the mixing of this fraction with bind-
ing materials and a superplasticizer agent, to produce gran-
ules of up to 2000 kg/m3 specific weight. These aggregates 
were employed to manufacture concrete with a 28-day 
compressive strength in the range 25–32 MPa106,107,109 and 
noticeable freeze–thaw resistance.109

Recycled aggregates in concrete

Concrete is one of the most widely used construction 
material in the world. In most cases, concrete elements are 
demolished at the end of their life, generating construc-
tion and demolition waste (CDW). Pure concrete waste 
can be obtained if all non-mineral dry building materials 
(plasterboards, wood, metals, plastics, glass) are removed 
before the demolition. All these extra materials can be 
recycled to produce eco-friendly plaster and mortars using 
wood chips,110 waste glass,84,111 waste plastics parti-
cles,112,113 and bricks.114

Figure 2.  Expansion in time of mortar specimens with 
different combination of expanded glass (EG), ordinary sand 
(OS), glass powder (GP), and ordinary cement (CE).
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Concerning structural concrete, several papers showed the 
suitability of reusing up to 30% coarse recycled aggregate 
particles for concrete strength classes up to 40 MPa.115–120 
Moreover, a correlation between the elastic modulus and 
compressive strength of recycled-aggregate concrete 
(RAC) was found by Corinaldesi,116 showing that 15% 
lower elastic modulus is achieved by using 30% recycled 
aggregates, while tensile strength is reduced by 10% if the 
same concrete strength class is achieved by replacing 30% 
virgin aggregates with recycled concrete particles.115–119,120

In terms of drying shrinkage, lower strains are detected, 
especially for earlier curing times.115,116,121 Concerning 
time-dependent characteristics, creep behavior is more 
influenced by the presence of recycled aggregates than 
shrinkage.118,123

Even if 100% replacement of virgin aggregate is carried 
out using particles coming from the treatment of CDW, 
structural concrete can be prepared due to the positive 
effect on compressive strength achieved by adding fly ash/
silica fume and an acrylic-based superplasticizer.115 
Moreover, if fly ash is added to RAC, the volume of macro 
pores is reduced, causing benefits in terms of mechanical 
performance such as compressive, tensile, and bond 
strengths.115,119 In addition, fly ash proved to be very effec-
tive in reducing carbonation and chloride ion penetration 
depths in concrete, even in RAC.115

Finally, on the basis of the results obtained through 
cyclic loading tests of beam–column joints, those made of 

RAC showed adequate structural behavior.124,125 Pprevious 
encouraging results were obtained by using only coarse 
recycled aggregate, while many authors found that with 
RAC the fine fraction is particularly detrimental to both 
the mechanical performance and durability of concrete. 
For these reasons a more recent approach is to recycle for 
concrete production only the coarse recycled fraction. In 
several works114,126–131 the possibility of reusing the fine 
fraction waste as aggregate for bedding mortars was evalu-
ated.127,128 Mortars containing recycled fine aggregates 
develop lower mechanical strength with respect to the ref-
erence mixture, particularly when recycled bricks are used. 
Nevertheless, the bond strength128–131 at the interface 
between the mortar and the brick turns out to be higher for 
mortars prepared with recycled aggregates.

A further opportunity can be the reuse of the very fine 
fraction (Figure 3) coming from the recycling of CDW as 
a filler for concrete, especially self-compacting concrete 
(SCC) mixtures.132–134 In particular, the rubble powder 
proved to be more promising with respect to limestone 
powder and fly ash as a mineral addition for SCC. In con-
clusion, an optimization of the self-compacting concrete 
mixture seems to be achievable by the simultaneous use of 
rubble powder and coarse recycled aggregate.

Artificial aggregates in concrete

Industrial solid wastes (ISW) represent a widespread threat 
around the world due to the effects of pollution to human 
health and the environment. The specific treatment of ISW 
plays an important role in maximizing the efficiency of 
recycling processes.135,136 Among the different techniques, 
cold-bonding pelletization is often proposed in low-cost 
building materials production.95 In particular, one of the 
most interesting solutions for waste recovery is the manu-
facture of recycled artificial aggregates.137–143,144 The 
cement-based cold-bonding pelletization process has 
recently gained attention.107–109,144–148 The stabilization/

Table 1.  Composition of automotive shredder residue 
(ASHR).

Component % (wt) PPM

Polypropylene (PP) 25  
Polyethylene (PE) 5  
Polyvinyl chloride (PVC) 10  
Acrylonitrile butadiene styrene (ABS) 8  
Polyurethane (PU) 8  
Polyamide (PA) 6  
Rubbers 9  
Cables/wires 2  
Metals 2  
Glass 24  
Other 1  
Element  
  C  
  H  
  Cl  
  N  
  S  
Heavy metal  
  Cd 69
  Cr 826
  Cu 4800
  Pb 2740
  Zn 6900

Figure 3.  Scanning electron microscopy (SEM) image of 
construction and demolition waste powder at a magnification 
of about ×800.
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solidification process uses a rotary plate pelletization pilot-
scale apparatus with binding mixes. A double-step pelletiza-
tion is performed in order to obtain a final product with 
improved properties.149 Such a process has been employed 
incorporating the waste content in the binding matrix from a 
minimum of 50% (wt.%) up to a maximum of 70%.

After this step, a second one is carried out with pure 
binder to encapsulate the aggregates (Figure 4) coming 
from the one step within an outer shell. This further step 
has proved to be very effective to improve the technologi-
cal and leaching properties.

Such an approach has economic and environmental 
advantages due to the reduced energy requirement (the 
process carried out at room temperature) with respect to 
the industrial alternatives such as sintering,150,151 which is 
an energy-intensive process. More recently, alternative 
cement-free binding matrices with reduced embedded CO2 
have been proposed for stabilization/solidification152,153 
such as geopolymer- and alkali-activated materials. These 
systems have gained an increasing interest from research-
ers thanks to promising results in terms of their mechani-
cal, physical, and durability properties, and the possibility 
of synthesis starting from natural/industrial wastes130,154 
for a wide range of applications.155–159 A further reason for 
interest in cold-bonding pelletization is a significant reduc-
tion of quarrying activities.160–165

Colangelo et al.166 and Shi et al.167 used municipal solid 
waste incinerator (MSWI) fly ash as a raw material with 
cement, lime, and coal fly as binders. According to 
Colangelo et al.166 and Shi et al.,167 a pre-washing treat-
ment is been carried out to reduce the chloride and sulfate 
content in MSWI fly ash since the cementitious matrix has 
a reduced capability for immobilizing chlorides and other 
soluble salts. The MSWI fly ash examined has been sub-
mitted to a two-step washing pre-treatment with a liquid/

solid ratio equal to 2:1166 in order to reduce the soluble 
salts content and the production of liquid waste. To obtain 
the granules the MSWI fly ash samples, after washing pre-
treatments, are introduced in a pilot-scale granulator appa-
ratus having a rotating and tilting plate with a diameter of 
80 cm. The granules are cured in a climatic chamber for 12 
h at 50° C and a relative humidity of 95%. This phase gives 
the granules the necessary hardening for the handling 
phase, so it is very effective. The granules are then cured 
for 14 days at room temperature and humidity. The aggre-
gates produced satisfied all of the tests used in the concrete 
industry.

Recycled tires in concrete production

The increasing number of vehicles on the roads generates 
about 1.4 billion end-of-life tires (ELT) worldwide every 
year. The inadequate disposal of tires may in some cases 
be a potential threat to human health (fire risk, haven for 
rodents or other pests) and a cause of environmental risks. 
The limited space available and their potential for reuse 
has led many countries to impose a ban on the practice of 
landfilling. The estimated EU annual cost for the manage-
ment of ELTs is €600 million.168,169

The tire is a complex and high-technology product rep-
resenting a century of innovation, which is still on-going. 
Tires are made up of: (i) an elastomeric compound; (ii) 
fabric; and (iii) steel. The fabric and steel form the struc-
tural skeleton of the tire with the elastomer forming the 
“flesh” of the tire in the tread, side wall, apexes, liner, and 
shoulder wedge. The elastomer is vulcanized and com-
bined to chemicals and reinforcing fillers (e.g. carbon 
black) to further increase hardness.170

Tire rubber is resistant to mould, heat, humidity, bacte-
rial development, ultraviolet rays, some oils, and chemi-
cals. Moreover, these materials are not toxic for humans 
and are very elastic. Many of these characteristics, how-
ever, which are advantageous qualities during on-road life, 
are disadvantageous in post-consumer life and become a 
problem during the transformation phase.

Recovery includes different options: i) “energy recov-
ery,” where ELTs, having a calorific value equivalent to 
that of good-quality coal, are used as an alternative to fos-
sil fuels; ii) “chemical processing,” such as pyrolysis, ther-
molysis, and gasification; and iii) “mass recovery.” The 
latter, when not applied in the form of whole tires (such as 
for crash barriers) consists of a “granulate recovery,” 
which involves tire shredding and chipping, by which tires 
are cut into small pieces of different sizes (shreds: 25–460 
mm; chips: 13–76 mm; crumb rubber: 0.1–5 mm).168 After 
the removal of the steel and fabric, the recycled tire rubber 
(RTR) can be used for a variety of civil engineering pro-
jects such as soft flooring for playgrounds and sports stadi-
ums, modifiers in asphalt paving mixtures, or additive/
aggregate to Portland cement concrete. Among these, the 

Figure 4.  Artificial aggregate obtained by double-step 
pelletization.
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addition (as crumb rubber) to asphalt mixtures is highly 
diffused due to the good chemical interaction, even lead-
ing to a partial dissolution.171 The recovery of RTR as an 
aggregate in cement concrete has been discouraged so far 
by the unfavorable interactions with the matrix and the 
loss of compression strength. These composites present 
many advantages and there is much for future research to 
address, however, as discussed below.

RTR used in cement concrete ranges from crumb rub-
ber powders to rubber chips, and is added to the cement 
paste by partial (or eventually total) replacement of the 
coarse or fine aggregates.171 The cement paste is mainly 
characterized by hydrated metal/semi-metal oxides, which 
explains the hydrophilic nature (high surface energy). 
Rubber, instead, is made of organic polymers, which is 
characterized by a low surface energy, and therefore a 
hydrophobic character. The hydrophilic–hydrophobic 
interaction is very unfavorable, resulting in a poor adhe-
sion between the rubber particles and the cement matrix. 
Figure 5(a) shows scanning electron microscopy (SEM) 
images of a typical sand-based cement mortar and of a 
mortar with RTR added (Figure 5(b)): while a perfect 
adhesion can be appreciated between the sand grains and 
the cement paste, a significant separation exists between 
the paste and the rubbery sites.172 For this reason, various 
rubber chemical treatments have recently been tested with 
the purpose of improving adhesion. Treatments with 
NaOH,173–175 HNO3 and cellulosic derivatives,176 and 
silane coupling agents177 have been reported.

The significant loss of strength (reduction of 45% upon 
addition of 15% RTR178,179) is mainly due to the fact that 
rubber sites are significantly softer than their surrounding 
media, acting like “holes” inside the concrete. This critical 
property has so far limited the use of cement concrete with 
RTR added to non-structural applications such as exterior 
wall materials, pedestrian blocks, lightweight aggregate in 
flowable fill for cement concrete, highway sound walls, 
residential drive ways, and garage floors.171

An enhancement of toughness and the ability to absorb 
impact energy has been observed with respect to conven-
tional cement concrete (explained and modeled else-
where), in addition to an increased flexural strength.171,179

The lightweight character of the rubberized concrete 
(due to the low specific weight of rubber), should be con-
sidered an advantage for its use as a construction material 
since structural efficiency is currently more important than 
the absolute level of strength. Specifically, a decreased 
density for the same strength reduces the dead load, foun-
dation size, and construction costs. Furthermore, the low 
density enhances sound and thermal insulation, further 
properties that are relevant to construction applications.112

The hydrophobic character of the rubber particles, 
although responsible for difficult adhesion with the cement 
paste, has recently been proved (Figure 6) to strongly 
inhibit the absorption of water in rubberized mortars, 
which is instantaneous in normal (i.e., sand containing) 

Figure 5.  Cement matrices with: (a) sand grains; and (b) 
rubber particles.

Figure 6.  Water drops (a) absorbed in a normal mortar; and (b) standing on a recycled tire rubber mortar.
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mortars.172 This fact, which means higher freeze and thaw 
resistance, represents a further important feature for future 
developments.

Recycled polymers in cementitious mixtures

Plastics products are used in almost every field, particu-
larly in packaging, building and construction, automotives 
and electronics. The massive use of polymer products, 
however, involves several environmental issues related to 
plastics waste management and the possibility of reusing 
them. In recent decades, several studies investigated the 
use of plastics waste in the field of construction.180 The use 
of recycled polymers in cementitious mixtures can be sum-
marised in three different applications: i) polymeric fibers; 
ii) plastics aggregates; and iii) polymer-modified 
concrete.181

The use of polymeric fibers in cementitious materials is 
able to overcome their brittle nature and cracking resist-
ance. The properties of fiber-reinforced cementitious com-
posites (FRCC) depend on several fiber parameters such 
as: the amount of fiber (volume fraction); geometry (aspect 
ratio, surface texture, etc.); and mechanical properties 
(depending on their nature). Moreover, the fibers’ durabil-
ity in the alkaline environment and fiber/matrix bond also 
play an important role in the fiber-reinforced composite’s 
behavior. A large number of studies have focused their 
attention on the use of fibers derived from recycled poly-
ethylene terephthalate (PET), polyvinyl chloride (PVC), 
nylon, and polyolefin.181–191 PET fibers present some dura-
bility issues in an alkaline environment182,187 while the 
other common polymeric fibers (polypropylene (PP), pol-
yethylene (PE), PVC, etc.) are not chemically degraded in 
such an environment. Considering the compressive 
strength of FRCC, some authors reported a slight 
increase183,189 while in other cases a decrease184,186 of this 
property in comparison to unreinforced cementitious com-
posites. The different results are explained by considering 
the ability of fibers to, in the former cases, exert a confine-
ment action; or, in the latter cases, the weak bond between 
fibers and the cementitious matrix. On the other hand, the 
splitting tensile strength and flexural strength of FRCC 
increases with the fibers’ volume fraction.183,184,186,192 
FRCC properties are greatly affected by the addition of 
fiber, depending on the fibers’ volume fraction and geom-
etry. Generally, an increase in the quantity of fiber gives a 
decrease in workability.184,189,192 Several studies focused 
their attention on the investigation of the interfacial transi-
tion zone (ITZ) between fibers and the cementitious matrix 
because synthetic fibers, have, in general, no chemical 
interactions with the cementitious matrix. Moreover, due 
to the smooth surface of traditional polymeric fibers, very 
poor adhesion exists between the reinforcing phase and the 
matrix. To improve adhesion and/or interactions between 
fibers and the cementitious matrix, two main approaches 

have been investigated: fiber mechanical deformation or 
surface chemical treatments, and ITZ densification. In the 
first case the aim is to increase surface contact area using 
crimped, twisted, fibrillated, or embossed fibers.185,186 
Mechanical deformation of fiber increases friction during 
pull-out, delaying fiber/matrix debonding under load. ITZ 
densification provides a more uniform and continuous 
interphase between the two components while fibers 
chemical treatments, like graft copolymerization of acrylic 
acid, alkaline hydrolysis, nano-silica deposition, and oxy-
gen plasma allow chemical interactions between the fiber 
surface and cement paste.193–194 Finally, many authors 
investigated the use of recycled polymeric fibers to con-
trast shrinkage cracking phenomena in cementitious mate-
rials. Crack number and area decrease with an increase of 
the fiber volume fraction, also depending on the fibers’ 
geometry and morphology.185,186,188

Another viable strategy for polymeric waste recycling 
is their use as aggregates in mortars or concrete. For this 
purpose, aggregates of different sizes (coarse and fine), 
geometry (pellets, flakes, etc.) and polymeric nature (PET, 
PP, polystyrene (PS), high-density polyethylene (HDPE), 
PVC, etc.) have been investigated.112,113,160,196–204 On one 
side, using plastics aggregates it is possible to obtain light-
weight materials with a lower thermal conductivity, com-
pared to traditional cementitious materials.112,113,196–198,203,205 
Moreover, several authors have reported an improvement 
of acoustic isolation and impact resistance.181,196,197 The 
addition of plastics aggregates also leads to a compressive 
strength decrease.112,113,160,196–203 In this case, however, the 
aggregate/matrix affinity plays a fundamental role and dif-
ferent strategies have been proposed in the literature: the 
improvement of aggregates’ surface roughness, the densi-
fication of the ITZ, or using expanded aggre-
gates.112,160,197,199,200 In this particular case, aggregates’ 
open porosity is able to offer interlocking positions for the 
cementitious paste, thus enhancing the adhesion and the 
homogeneity of the ITZ.112,160 Several studies, however, 
report a reduction of workability of such composites, 
resulting in poor compaction and thus an increase in poros-
ity.160,195 Durability problems are strictly related to com-
posites’ porosity and for this reason several authors 
describe an increase in water absorption, a decrease of 
freeze–thaw resistance, and permeability to detrimental 
substances (CO2, chlorides ions, salts, etc.).113,197,200 Some 
authors, however, obtained good results in terms of abra-
sion and shrinkage resistance.197,201,202 Finally, attention 
must also be paid to compaction and segregation of plas-
tics aggregates due to their low specific weight.204 As 
reported in the literature, a viable strategy to avoid these 
phenomena is the use of fly ash or silica fume,205,206 but 
also using some admixtures208–211,212 (superplasticizers, air 
entraining agents, etc.).

In addition to polymeric fibers and aggregates,  
recycled polymers are also used as a binder to produce 
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polymer-modified concrete (PMC). The combination of 
conventional concrete and polymeric resins is able to over-
come traditional drawbacks of cementitious materials like 
durability-related issues, weak adhesion to substrates, and 
low tensile strength.213,214 Several authors investigated the 
possibility of recycling PET by a glycolysis process to pro-
duce an unsaturated polyester resin to be used as a binder 
in concrete or mortar preparation.215–217 Some interesting 
and promising results were obtained, such as a sharp 
decrease in water absorption with increasing PET content, 
but also an increase in compressive strength with increas-
ing resin content.216 Good effects were also reported in 
terms of porosity reduction, correlating such results to the 
porosity to water and porosity by N2 absorption.217 More 
recently, a cement-less polymer concrete was investigated, 
using only recycled PP and recycled HDPE as binders.220
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