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Abstract: In this study, an innovative technique to design an observer-based finite-time output feedback controller (FT-OFC) is
proposed for a class of non-linear systems. This controller aims to make the state variables converge to a small bound around
the origin in a finite time. The main innovation of this study is to transform the non-linear system into a new time-varying form to
achieve the finite-time boundedness criteria using the asymptotic stability methods. Moreover, without any prior knowledge of
the upper bounds of the system uncertainties and/or disturbances, and only based on the output measurements, a novel time-
varying extended state observer is designed to estimate the states of the non-linear system as well as the uncertainties and
disturbances in a finite time. In this way, the time-varying gains of the extended state observer are designed to converge the
observation error to a neighbourhood of zero while remaining uniformly bounded in finite time. Subsequently, an observer-based
time-varying control law is designed to make the system globally uniformly bounded in finite time. Finally, the efficiency of the
proposed FT-OFC for a disturbed double integrator system with unknown measurement noise is illustrated by numerical
simulations.

1 Introduction
The stabilisation problem is one of the main focuses in the control
theory. Many results have been reported in this regard over the last
decades [1, 2]. On the other hand, uncertainties exist in practical
systems; thus, robust stabilisation of uncertain systems is of both
theoretical and practical significance. Robust controllers are
designed to suppress uncertainties and the effect of external
disturbances. Moreover, there are many papers considering
asymptotic stability, i.e. stability over an infinite time. However, in
many applications, finite-time stability (FTS) is of particular
importance; since finite-time controllers as well as guaranteeing
the finite-time convergence of the state variables to the equilibrium
point, provide a faster transient response, a higher precision, and a
better disturbance rejection [3–7]. Moreover, in the presence of
uncertainties and external disturbances, achieving asymptotic
stability to the origin is impossible, and instead, the concept of
ultimate boundedness is considered [7, 8]. In this paper, the
definition of ultimate boundedness is used to describe the
behaviour of dynamical systems whose state variables approach a
small neighbourhood of zero in a finite time.

The concept of robust finite-time boundedness (FTB) has
received considerable attention in the control theory. Most of the
existing results on the robust FTB are based on the state feedback
approach. To stabilise uncertain non-linear systems via state
feedback in a finite time, several schemes have been proposed in
the literature [4–6, 9, 10]. However, for instance, the approach of
[10, 11] is applicable only for systems whose response is valid in a
finite time interval. However, in many applications, it is important
to have stability over a finite time as well as onwards. Another
drawback of [10] is that its technique is restricted to matched
uncertainties. These shortcomings will be overcome in this paper.

On the other hand, the main drawback of the state feedback
controllers is that the value of state variables should be available
online, which is not realistic in many practical situations. To
overcome this restriction, an observer-based control scheme, which
is a kind of output feedback controllers, has been proposed for a
finite-time stabilisation problem [12]. Indeed, in the context of

finite-time output feedback design, a rather direct approach is to
combine finite-time state feedback laws with finite-time observers.
On the other hand, to estimate the unmeasured states and the
uncertainties, including the disturbances and/or unmodelled
dynamics simultaneously, the extended state observer (ESO) has
been proposed in [7, 8, 12].

Although ESO-based finite-time controllers have been
extensively studied by many authors, ESO-based finite-time
controllers with a simple structure are relatively scarce [13–19].
The terminal sliding mode (TSM) method, as one of the most
powerful techniques in finite-time control problems, has been
studied in [13, 14]. However, the finite-time convergence has been
achieved at the expense of singularity in some points and a slower
convergence rate for the initial conditions far from the equilibrium
point. To resolve the singularity and the convergence rate, non-
singular fast TSM controllers have been designed in [15, 16].
Besides, some finite-time controllers have been suggested using the
adaptive control [17], and LMI-based methods [18]. In all of these
methods, in addition to structural limitations in each approach, the
design procedure is somewhat complicated. Therefore, the design
of ESO-based finite-time controllers with a straightforward design
procedure is still an open challenging problem. Also, the observer
introduced in [20] is applicable only in systems with no internal
dynamics.

Motivated by the above discussions, in this paper an alternative
finite-time output-feedback control (FT-OFC) approach in a simple
and straightforward manner is proposed. In this regard, the model
of the system in normal form is transformed into a novel time-
varying structure to make the FTB criteria possible using the
asymptotic stability methods. In this paper, first, considering a
known upper bound for uncertainties and/or disturbances, a non-
singular finite-time state feedback controller is designed to
guarantee robust finite-time ultimate boundedness of the system.
To make the controller independent from the value of the state
variables, an observer-based control scheme, which is a kind of
output feedback controller, is proposed. Then, to relax the design
procedure from any knowledge of the upper bound of uncertainties
and disturbances, a finite-time ESO is designed to estimate the
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state of the non-linear system as well as uncertainties. The time-
varying gains of the proposed ESO are designed to make the
observation error converge to a neighbourhood of zero in finite
time. Subsequently, a chattering-free ESO-based finite-time
controller is proposed to guarantee the finite-time ultimate
boundedness of the uncertain non-linear system. Finally, the
efficiency of the proposed method is compared with the existing
approaches through two numerical simulations.

Compared with previous researches in this line, the
contributions of this work are as follows:

(i) A novel time-varying conversion is introduced to guarantee the
finite-time boundedness of the state estimation in a simple and
straightforward manner.
(ii) To estimate the states of the nonlinear system as well as the
uncertainties and/or disturbances, a novel continuous and
chattering-free finite-time ESO is designed. In this regard, without
any knowledge about the upper bound of uncertainties and
disturbances, and only based on the output measurement, time-
varying gains of the ESO are designed to converge the observation
error to a neighbourhood of zero in finite time.
(iii) A novel singularity-free FT-OFC is proposed to guarantee
finite-time ultimate boundedness with a weak dependency on the
initial conditions.

The remainder of this paper is organised as follows. Section 2
introduces the class of uncertain non-linear systems and relevant
definitions. In Section 3, a finite-time state feedback controller is
proposed. Section 4 presents a finite-time ESO without any
knowledge about the upper bounds of the generalised disturbance.
In Section 5, an FT-OFC is designed. Simulation results are
presented in Section 6. Finally, conclusions are presented in
Section 7.

2 Problem formulation
Consider the following uncertain non-linear system:

ẋ = f n t, x + Δ f t, x + gn t, x + Δg t, x u + d t, x
y = h t, x

(1)

where x ∈ D ⊂ Rn, u ∈ R and y ∈ R are the state vector, input, and
output signals, respectively. Moreover, based on [2], d t, x  is a
bounded disturbance, Δ f t, x = f n t, x + Δ1 t, x , and
Δg t, x = gn t, x + Δ2 t, x  are the uncertain terms. Also,
f n t, x , gn t, x  and h t, x  are known non-linear smooth functions.

Now, the non-linear system (1) is transformed into the normal
form using a diffeomorphism map. For this purpose, consider the
relative degree ρ for the system (1). Moreover, for every
x0 ∈ D ∈ R, a neighbourhood Ω of x0 and the functions ϕi t, x  for
i = 1, …, n − ρ exist, such that the map
T x = ϕ t, x Ψ t, x T:Ω → Rn based on the Lie derivatives of
h t, x  with respect to f n t, x , is diffeomorphism on Ω [2], where
ϕ t, x = ϕ1 t, x ⋯ ϕn − ρ t, x  and
Ψ t, x = h t, x L f n t, x h t, x ⋯ L f n t, x

ρ − 1 h t, x . Then,
according to [2], the function g x = gn t, x + Δg t, x  will belong
to the null space of ∂ϕ/∂x and the transformation
η ⋮ ξ T = T x  satisfies the following conditions [2]:

∂T
∂x f n t, x = AT x − Bγ t, x α t, x

∂T
∂x gn t, x = Bγ t, x

(2)

where A =
0 Iρ − 1 × ρ − 1

0 0n − ρ + 1
∈ Rn × n, B = 0 … 0 1 T ∈ Rn,

γ t, x = LgnL f n
ρ − 1h t, x ≠ 0, and

α t, x = − L f n
ρ h t, x /LgnL f n

ρ − 1h t, x .

Therefore, based on T x , the transformed version of (1) can be
rewritten as

η̇ = f 0 η, ξ

ξ̇1 = ξ2

ξ̇2 = ξ3

⋮
ξ̇ρ − 1 = ξρ

ξ̇ρ = − γ x α x + γ x u + δ t, x, u

(3)

where the internal dynamic η̇ = f 0 η, ξ  and the new uncertain
term δ t, x, u  are defined as

f 0 η, ξ = ∂ϕ
∂x f n x + Δ f x

δ t, x, u = Δ1 x + Δ2 x u + d t, x + d t, x
(4)

Moreover, based on [2], the smooth uncertainty Δ f x  satisfies
(∂T /∂x)Δ f x = Bγ t, x Δ1 x .
 

Remark 1: The state variables η (internal states) and the input
variable u appear in the ξ −subsystem of (3). This assumption that
the variables η are not measurable has not been considered by the
existing observers [12]. In this paper, the variables of the internal
dynamics are considered as unknown perturbations in the dynamics
of the ξ −subsystem. Thus, we restrict our analysis to the case
where the internal dynamics of the system are input-to-state stable
(ISS) when ξ is considered as input [2]. According to [2], it is
supposed that there is a Lyapunov function V η  satisfying,
(∂V η /∂η)(∂ϕ/∂x) f n x + Δ f x ≤ − W η  for some positive
definite functions W η .

For simplicity and without loss of generality, let us define
γ x = γ x − 1. Thus

ξ̇ρ = − 1 + γ̄ x α x + 1 + γ̄ x u + δ t, x, u
= − 1 + γ̄ x α x + u + δ t, x, u + γ̄ x u + δ t, x, u
= u + Δeq

(5)

where Δeq = − 1 + γ̄ x δ t, x, u − α x + γ̄ x u is the
summation of uncertainties and disturbances (the generalised
disturbance). Assume that, with u = ψ t, ξ + ϑ the generalised
disturbance Δeq is a function of time, state variables, and the input
vector satisfying the inequality ∥ Δeq ∥ ≤ Υ t, ξ + kϑ [2]. Here,
ψ t, ξ  is the designed control law for the nominal system which is
uniformly finite-time stable, k ∈ 0, 1  and the non-negative
continuous function Υ t, ξ  is the only information that we need to
know about the generalised disturbance Δeq. In this way, the
function Υ t, ξ  is a measure of the size (i.e. an upper bound) of the
generalised disturbance Δeq. This function is not required to be
small and it just should be initially known. Later in the proposed
observer-based control scheme, this restriction will be overcome.

Throughout the paper, the following definitions will be used:
 

Definition 1: For a given positive-definite matrix function X, a
positive-definite matrix X0, and any positive constants a, b
(0 ≤ a ≤ b) and σ if xTXx < b, t ∈ 0, T  whenever x0

TX0x0 ≤ a and
∥ d ∥ ≤ σ, then, for a finite time T > 0, the system ẋ = f t, x, d  is
said to be finite-time bounded with respect to a, b, σ, T , X, X0
[19].
 

Definition 2: The system ẋ = f t, x, d  is said to be finite-time
input-to-state stable (FT-ISS) with respect to d in the finite time T,
if the following inequality for a KL −class function β and a K −
class function γ is guaranteed for any t ≥ t0 + T  [10]:

∥ x ∥ ≤ β ∥ x0 ∥, ϑ̄ + γ ∥ d ∥ (6)
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where ϑ̄ is a time-varying function tending to infinity as t → t0 + T .
Note that an FT-ISS system, in the absence of the disturbance d t ,
will be finite-time stable [18].
 

Remark 2: Consider the change of coordinates C1 → C2 as
C2 = ℵC1, where ℵ is a positive decreasing function, converging
asymptotically to a neighbourhood around zero and remaining
uniformly small after the fixed time t0 + T . Then, if the variable C1
remains stable (does not tend to infinity), the boundedness of C2 as
t → t0 + T  is guaranteed.

3 Finite-time state feedback control design
In this section, based on the upper bound of the generalised
disturbance Δeq, a finite-time state feedback controller will be
designed to stabilise the non-linear system (3). The design
procedure is composed of two steps: first, for finite-time
stabilisation, a time-varying transformation is proposed. Then,
based on the sliding mode method, a time-varying state feedback
controller is designed to stabilise this new system. The main results
of the proposed approach and some more details of the procedure
are stated as follows:
 

Theorem 1: The state variables of the closed-loop system
composed of (3) and the time-varying state feedback controller (7),
converge to a small neighbourhood of the origin in finite-time and
remain uniformly bounded if the sliding surface s is designed as
s = ϖρ + ∑i = 1

ρ − 1 aiϖi, where ϖi’s are defined as ϖi = μcξi.

Moreover, μc t, T
′

c = (1 + e−t /T
′

c)/2e−t /T
′

c is a positive time-varying

function (for simplicity shown as μc), T
c

′
 is a constant design

parameter, and the control command is given by

u = − k1sgn s − μc
−1 1 − μc

−1

2T
′

c

+ k2 s + ∑
i = 1

ρ − 1
aiϖi + 1 (7)

where for any k ∈ 0, 1 , the controller gains are tuned as
k1 ≥ Υ t, ξ /(1 − k), k2 ≥ 0. Furthermore, the positive constants ai
for i = 1, …, ρ − 1 are chosen to satisfy the differential Lyapunov
inequality Ṗ + Λc

TP + PΛc ≤ − αI for some α > 0 and the identity
matrix I, where P is a positive-definite bounded matrix and the
time-varying matrix Λc ∈ Rρ × ρ is defined as

Λc =

μ̇c
μc

1 0 0

0 ⋱ ⋱ 0

0 0 μ̇c
μc

1

−a1 … −aρ − 2
μ̇c
μc

− aρ − 1

(8)

 
Proof: Consider the time-varying transformation ξi → ϖi

defined as ϖi = μcξi, where i = 1, …, ρ. The derivative of ϖi along
with the non-linear system (3), (5), are

ϖ̇i = μ̇c
μc

ϖi + ϖi + 1, i = 1, …, ρ − 1

ϖ̇ρ = μ̇c
μc

ϖρ + μc u + Δeq

(9)

The candidate Lyapunov function is V = (1/2)s2. Thus, the time-
derivative of the Lyapunov function along (9) is

V̇ = sṡ = s
μ̇c
μc

ϖρ + μc u + Δeq

+s ∑
i = 1

ρ − 1
ai

μ̇c
μc

ϖi + ϖi + 1

(10)

Substituting the controller (7) into (10) leads to

V̇ = μc −k1 s + sΔeq − k2s2 (11)

Since ∥ Δeq ∥ ≤ Υ t, ξ + kϑ and k1 ≥ Υ t, ξ /(1 − k), k2 ≥ 0, the
upper bound of V̇  with k3 = k1 − kk1 − Υ t, ξ ≥ 0 and k ∈ 0, 1
can be written as

V̇ ≤ − k3μc s − k2s2 (12)

This inequality based on the Lyapunov function V, can be rewritten
as follows:

V̇ ≤ − k3μc s − k2s2 ≤ − k3μc 2V 0.5 − 2k2V (13)

According to (13), the system trajectory reaches the sliding surface
s = 0 in finite time and stays on it [2]. On this surface, the motion
is governed by the following reduced-order model:

ϖ̇i = μ̇c
μc

ϖi + ϖi + 1, i = 1, …, ρ − 2

ϖ̇ρ − 1 = μ̇c
μc

ϖρ − 1 − ∑
i = 1

ρ − 1
aiϖi

(14)

The stability of (14) can be guaranteed via choosing the positive
constants ai, a positive-definite bounded matrix P, and the matrix
Λc defined in (8) satisfying the differential Lyapunov inequality
Ṗ + Λc

TP + PΛc ≤ − αI. Consequently, the state variables tend to
zero as t tends to infinity along s = 0. Subsequently, the sliding
phase motion is ensured and the stability of the sliding surface s is
guaranteed [3]. Therefore, based on the stability of the reduced-
order model (14) and the structure of s, it can be concluded that
ϖi’s remain uniformly bounded. Finally, based on the inverse of the

transformation ϖi = μc t, T
′

c ξi and Remark 2, ξi tends to the

neighbourhood of zero and remains uniformly bounded in finite
time. Furthermore, based on the boundedness stability results (i.e.
V T ≠ 0), an upper bound of the finite convergence time T is
obtained as
T ≤ (1/k2) ln((k2V0.5 0 + k3μc)/k3μc) − ln((k2V0.5 T + k3μc)/k3μc)
[21]. Finally, according to Definitions 1 and 2, the FTB stability
and/or FT-ISS of the system (3) (and subsequently the FT-ISS of
the system (1)) is achieved. This completes the proof. £

As seen above, negative fractional powers do not occur in the
design procedure and thus the singularity problem will not appear.
Besides, since Λc is time-varying, evaluation of the matrixP may
be difficult. In this regard, the next corollary is proposed to derive a
sufficient condition to guarantee the stability of the system.
 

Corollary 1: Based on the definition of μc, one has

μ̇c/μc = (1/2T
c

′
) 1 − μc

−1 . Since 1 ≤ μc ≤ ∞, therefore

0 ≤ μ̇c/μc ≤ 1/2T
c

′
. On the other hand, since the time-varying

matrix Λc in (8) is continuous and bounded as limt → ∞ Λc = Λ̄c,
the stability of the sliding surface s is guaranteed if all the
eigenvalues of Λ̄c are located on the open left-hand half of the
complex plane [3], where Λ̄c is defined as
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Λ̄c =

1
2Tc′

1 0 0

0 ⋱ ⋱ 0

0 0 1
2Tc′

1

−a1 … −aρ − 2
1

2Tc′
− aρ − 1

(15)

The controller (7) needs the value of state variables online,
which is not realistic in many practical situations. Also, it is not
possible to determine the coefficient k1. To overcome these
restrictions, in the next section, a finite-time extended state
observer is designed to estimate the unmeasured states and the
uncertainties simultaneously.

4 FT-ESO design
Now, an FT-ESO is designed for the system (3). The estimations of
state variables should track them where only the first variable ξ1 as
the output of the system is measurable. To design the ESO, based
on (5), an auxiliary variable is introduced as ξρ + 1 = Δeq.
Therefore, the system can be augmented as

ξ̇1 = ξ2

ξ̇2 = ξ3

⋮
ξ̇ρ = ξρ + 1 + u

ξ̇ρ + 1 = Δ̇eq = S

(16)

where S is an unknown variable satisfying Remark 3.
 

Remark 3: Assume that the term S satisfies S ≤ σ. In this
inequality σ is a non-negative constant as an upper bound of the
amplitude of S. Note that the parameter σ may be unknown and it
should just be bounded.

The proposed FT-ESO to estimate the state variable of the non-
linear system (16) is described as

ξ
^̇
1 = ξ

^
2 + g1 t, T́o × ξ1 − ξ

^
1

ξ
^̇
2 = ξ

^
3 + g2 t, T́o × ξ1 − ξ

^
1

⋮

ξ
^̇
ρ = ξ

^
ρ + 1 + u + gρ t, T́o × ξ1 − ξ

^
1

ξ
^̇
ρ + 1 = gρ + 1 t, T́o × ξ1 − ξ

^
1

(17)

where the time-varying gains gi t, T
′

o
i = 1

ρ + 1

, depending on time and

the constant parameter T
o

′
, are designed later to achieve finite-time

convergence. Defining the observation error as e = ξ − ξ
^
, leads to

the following error dynamics:

ė1 = e2 − g1 t, T
′

o × e1

ė2 = e3 − g2 t, T
′

o × e1

⋮

ėρ = eρ + 1 − gρ t, T
′

o × e1

ėρ + 1 = S − gρ + 1 t, T
′

o × e1

(18)

Or in a more compact form

ėi = ei + 1 − gi t, T
′

o × e1 i = 1, …, ρ

ėρ + 1 = S − gρ + 1 t, T
′

o × e1

(19)

To investigate the FTS of (19), the time-varying gains are designed
such that the observation errors ei approach to a small
neighbourhood around zero in a finite time. Theorem 2 is presented
to guarantee uniformly boundedness of the observation errors
without any knowledge about the upper bound of Δeq.
 

Theorem 2: For the dynamical system (16), consider the
observer (17), which yields the error dynamics (18). The
observation error variables approach to a small neighbourhood
around zero as t tends to the finite time T if the observer gains

gi t, T
′

o  are designed as

gi = Li + ḡi, 1
ρ + m + i

2T
′ 1 − μ1

−1 μ1
i − 1

−ḡi + 1, 1μ1
i − ∑

j = 1

i − 1
ḡi, jμ1

i − jgj

(20)

for i = 1, …, ρ and,

gρ + 1 = Lρ + 1 + ḡρ + 1, 1
2ρ + m + 1

2T
′

o

1 − μ1
−1 μ1

ρ

− ∑
j = 1

ρ
ḡρ + 1, jμ1

ρ − j + 1gj

(21)

where ḡi, j  for i = 2, …, ρ and j = 2, …, ρ + 1 are given as

ḡi, j − 1 = ḡi, j
ρ + m + 1

2T
′

o

1 + μ1
−1 μ1

−1

+ḡi, j
i − j

2T
′

o

1 − μ1
−1 μ1

−1 + ḡi + 1, j

(22)

and for i = ρ + 1,

ḡρ + 1, j − 1 = ḡρ + 1, j
ρ + m + 1

2T
′

o

1 + μ1
−1 μ1

−1

+ḡρ + 1, j
ρ − j + 1

2T
′

o

1 − μ1
−1 μ1

−1
(23)

where ḡi, i = 1 and for i < j one has ḡi, j = 0. Also, the scalar
coefficients Li  for i = 1, …, ρ should be chosen such that the

ρ + 1) × (ρ + 1  matrix Λo =
−L1 Iρ

⋮
−Lρ + 1 0

 is Hurwitz. Then, there

exists a positive constant ε > 1, to make the error dynamic (18) FT-
ISS as

∥ e ∥ ≤ vm + 1Sup
t

∥ Γ v ∥ εeΛot∥ G 1 ∥∥ e 0 ∥

+ ∫
0

t
eΛo t − τ μo S dτ

(24)

where μ1 = (1 + e−t /T
′

o)/2e−t /T
′

o, μo = μ1
ρ + m + 1 and v = μ1

−1 are
positive time-varying functions. The integer m is a design
parameter and G μ1  is a lower triangular ρ + 1) × (ρ + 1  matrix
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in the form of (25). Indeed, the element i, j is given as ḡi, jμ1
ρ + i − j.

Also, Γ v  is defined as G μ1
−1, where G μ1 Γ v = I.

G μ1 =

μ1
ρ

ḡ2, 1μ1
ρ + 1

ḡ3, 1μ1
ρ + 2

⋮
ḡρ + 1, 1μ1

2ρ

0
μ1

ρ

ḡ3, 2μ1
ρ + 1

⋮
ḡρ + 1, 2μ1

2ρ − 1

0
0
⋱
⋮
…

⋯
⋯
0
⋱

ḡρ + 1, ρμ1
ρ + 1

0
⋮
⋮
0
μ1

ρ

(25)

 
Proof: : Consider the transformation ei → ωi defined as

ωi = μo t, T
′

o ei i = 1, …, ρ + 1 (26)

The derivatives of ωi’s along with the error dynamics (18) are as

ω̇i = μ̇o
μo

ωi + ωi + 1 − giω1, i = 1, …, ρ

ω̇ρ + 1 = μ̇o
μo

ωρ + 1 − gρ + 1ω1 + μoS
(27)

Besides, the transformation ωi → zi is defined as

zi = ∑
j = 1

i
ḡi, jμ1

i − jωj (28)

Therefore

żi = ∑
j = 1

i
ḡi, jμ1

i − jω̇ j + ∑
j = 1

i
ḡi, j i − j μ1

i − j − 1μ̇1ωj (29)

By substituting (26)–(28) into (29) it can be shown that for
i = 1, …, ρ (see (30)) 

and (see (31)) Then, by choosing the gains gi t, T
′

o
i = 1

ρ + 1

according to (20), (21), and the parameters ḡi, j  according to (22),
(23), it is obtained that

żi = − Liz1 + zi + 1

żρ + 1 = − Lρ + 1z1 + μoS
(32)

or in the compact form as

ż = Λoz + BμoS (33)

where B has been defined in Section 2. By choosing the constants
Li  to make the matrixΛo Hurwitz, there exists a positive constant

ε > 1, such that

∥ z ∥ ≤ ε∥ eΛot ∥∥ z 0 ∥ + ∫
0

t
eΛo t − τ μo S dτ (34)

Now, combining the transformations (26) and (28) leads to

z = μ1
m + 1G μ1 e (35)

Also, the inverse of the transformation (35) is as follows:

e = vm + 1Γ v z (36)

Accordingly,

∥ e ∥ ≤ vm + 1Sup
t

∥ Γ v ∥∥ z ∥ (37)

Moreover, based on the transformation (35), one has

∥ z 0 ∥ ≤ ∥ G 1 ∥∥ e 0 ∥ (38)

where G 1  is the matrixG μ1  at the time t = 0. Then, by
substituting (33) into (29) and subsequently substituting this result
into (32), one has

∥ e ∥ ≤ vm + 1Sup
t

∥ Γ v ∥ εeΛot∥ G 1 ∥∥ e 0 ∥

+ ∫
0

t
eΛo t − τ μo S dτ

(39)

As a result, since G μ1  is a positive definite matrix for any t ≥ 0,
the greatest lower bound of G μ1  (i.e. infi G μ1 ) exists, and
consequently Supt Γ v  is bounded. Therefore, according to
Remark 2, if the right-hand side of the inequality (39) (except
vm + 1) remains bounded, based on the time behaviour of vm + 1,
clearly, e will tend to the neighbourhood of zero and will remain
uniformly bounded in finite time. Therefore, according to
Definitions 1 and 2, the boundedness and/or FT-ISS of the error
variables e are achieved. This completes the proof. £
 

Remark 4: According to [3], if the eigenvalues of Λo are placed

on the left side of −(ρ + m + 1)/T
o

′
, the right-hand side of the

inequality (39) will remain bounded.

5 Finite-time output feedback synthesis
Now, we are in a position to design a global FT-OFC for the non-
linear system (16). Note that in Section 4, the FT-ESO was
designed without a priori knowledge of the upper-bound of the
generalised disturbance Δeq. However, in this section, more
information on this term can be considered. Indeed, based on
Remark 3, it is assumed that the generalised disturbance Δeq is

żi = ḡi, 1
ρ + m + 1

2T
′

o

1 − μ1
−1 μ1

i − 1 + ḡi, 1
i − 1
2T

′
o

1 − μ1
−1 μ1

i − 1 − gi − ḡi + 1, 1μ1
i − ∑

j = 1

i − 1
ḡi, jμ1

i − jgj z1 + zi + 1

+ ∑
j = 2

i
−ḡi, j

ρ + m + 1
2T

′
o

1 + μ1
−1 − ḡi + 1, jμ1 + ḡi, j − 1μ1 + ḡi, j

i − j

2T
′

o

1 − μ1
−1 μ1

i − jωj

(30)

żρ + 1 = ḡρ + 1, 1
ρ + m + 1

2T
′

o

1 − μ1
−1 μ1

ρ + ḡρ + 1, 1
ρ

2T
′

o

1 − μ1
−1 μ1

ρ − gρ + 1 − ∑
j = 1

ρ
ḡρ + 1, jμ1

ρ − j + 1gj z1

+ ∑
j = 2

ρ + 1
−ḡρ + 1, j

ρ + m + 1
2T

′
o

1 + μ1
−1 + ḡρ + 1, j − 1μ1 + ḡρ + 1, j

ρ − j + 1
2T

′
o

1 − μ1
−1 μ1

ρ − j + 1ωj + μoS

(31)
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uniformly bounded with an unknown upper bound, and also
Lipschitz continuous with a known Lipschitz constant Δ̇eq ≤ σ [7].

Subsequently, to design the global FT-OFC, in (7) substituting
ξi (i = 2, …, ρ) by its estimated values ξ

^
i from (17) leads to

u = − 1 − μc
−1

2T
′

c

+ k2 a1ξ1 + ∑
i = 2

ρ − 1
aiξ

^
i + ξ

^
ρ

− ∑
i = 1

ρ − 1
aiξ

^
i + 1 − Θ̄ − Δ^ eq

(40)

where only ξ1 is measurable, Δ^ eq = ξ
^
ρ + 1 is generated by the FT-

ESO (17), and all the design parameters are the same as those in
Theorems 1 and 2. Also, the auxiliary term Θ̄ will be designed to
suppress the effect of the estimation errors. In Theorem 3, based on
the known upper bound of the derivative of Δeq, the FTB property
of the perturbed system (16) is ensured.
 

Theorem 3: The perturbed closed-loop system (16), with the
FT-OFC law (40) and the variables ξ

^
i for i = 2, …, ρ generated by

the observer (17) will be robust FTB if the design parameters are
selected as in Theorems 1 and 2.
 

Proof: Based on Theorem 2, we only know so far that the
observation error converges to a finite ball around the origin, and
there exists a finite time, (for instance To) such that all the error
variables approach a small bound around the origin so that
ξ
^
i = ξi − ei for t > To. Thus, this ultimate boundedness should be

explicitly considered in the proof; since it acts as a (small)
uncertainty in the values of the state variables. As a result, the FT-
OFC law (40) for all t > To is as follows:

u = − 1 − μc
−1

2T
′

c

+ k2 a1ξ1 + ∑
i = 2

ρ − 1
ai ξi − ei + ξρ − eρ

− ∑
i = 1

ρ − 1
ai ξi + 1 − ei + 1 − Θ̄ − Δ^ eq

(41)

and it coincides with the continuous observer-based form of the
state feedback control law (7) with the additional terms of the
ultimate boundedness effect (the estimation errors) as follows:

u = − 1 − μc
−1

2T
′

c

+ k2 ξρ + ∑
i = 1

ρ − 1
aiξi − ∑

i = 1

ρ − 1
aiξi + 1

Nominal form of 7

− 1 − μc
−1

2T
′

c

+ k2 − ∑
i = 2

ρ − 1
aiei − eρ

+ ∑
i = 1

ρ − 1
aiei + 1 − Θ̄ − Δ^ eq

(42)

where the auxiliary term Θ̄ is designed to suppress the effect of the
estimation errors. In the following, we must show that assuming
these conditions, the closed-loop system remains ultimately
bounded as well. Furthermore, if the system trajectory under the
FT-OFC (40) does not escape during this time interval, according
to Theorem 1 there exists a finite time, (for instance Tc), to make
the system (16) FTB. Therefore, in the first step, it is enough to
show that the closed-loop system under the FT-OFC (40) has not
any finite escape time. In this regard, let us consider the following
derivative of the time-varying sliding surface s = ωρ + ∑i = 1

ρ − 1 aiωi
along with the trajectory (16) under the FT-OFC (40):

ṡ = μ̇c ξρ + ∑
i = 1

ρ − 1
aiξi + μc ξ̇ρ + ∑

i = 1

ρ − 1
aiξ̇i

= μ̇c ξρ + ∑
i = 1

ρ − 1
aiξi + μc − 1 − μc

−1

2T
′

c

+ k2 ξρ + ∑
i = 1

ρ − 1
aiξi

− ∑
i = 1

ρ − 1
aiξi + 1 − 1 − μc

−1

2T
′

c

+ k2 − ∑
i = 2

ρ − 1
aiei − eρ

+ ∑
i = 1

ρ − 1
aiei + 1 − Θ̄ − Δ^ eq + Δeq + ∑

i = 1

ρ − 1
aiξi + 1

(43)

It can be shown that

ṡ = − k2s + μc
1 − μc

−1

2T
′

c

+ k2 ∑
i = 2

ρ − 1
aiei + eρ

+μc ∑
i = 1

ρ − 1
aiei + 1 − μcΘ̄ + μceρ + 1

(44)

Since all observation errors are guaranteed to be FTB, and based
on the upper bound of the derivative of the generalised disturbance
as Δ̇eq ≤ σ, the additional term Θ̄ is designed such that

Θ̄ ≥ sup 1 − μc
−1

2T
′

c

+ k2 ∑
i = 2

ρ − 1
aiei + eρ + ∑

i = 1

ρ − 1
aiei + 1 + eρ + 1 (45)

where this upper bound can be calculated via the inequality (39)
using the upper bound S ≤ σ. Therefore, ṡ ≤ − k2s − μcΠ̄;  where

Π̄ = Θ̄ − 1 − μc
−1

2T
′

c

+ k2 ∑
i = 2

ρ − 1
aiei + eρ + ∑

i = 1

ρ − 1
aiei + 1 + eρ + 1

is positive. For the convenience of the proof, depending on the
variable s two different cases may occur:

Case 1 s ≥ 0 : In this case, ṡ satisfies the following inequality:

ṡ ≤ − μcΠ̄ (46)
Case 2 (s < 0): In this case, ṡ satisfies the following inequality:

ṡ > − μcΠ̄ (47)

It follows from (46) and (47) that, s as well as the state variables ξi
cannot escape in any finite time interval. From the above analysis,
it can be concluded that the system (16) with the FT-OFC (40) has
not any finite escape time. In the following, we must show that
with these conditions, the closed-loop system remains ultimately
bounded as well. In this regard, the inequality
ṡ ≤ − k2s − μcΠ̄ < − k2s based on the Lyapunov function V, can be
rewritten as V̇ ≤ − k2s2 = − 2k2V . Finally, based on the analysis at
the beginning of the proof, and based on the proof of Theorem 1, ξi
tends to the neighbourhood of zero and remains uniformly bounded
in finite-time, and the FTB of the closed-loop system (16) under
the FT-ESO (17) and FT-OFC (40) is guaranteed. This completes
the proof. £
 

Remark 5: One of the main concerns of the proposed scheme is
the definition of the time-varying transformations μc and μo. From
their definition, it can be concluded that they tend to infinity when
t → ∞. However, the designed observer provides accurate values
for the states and the control objective is achieved in finite time,
therefore without loss of generality, the transformation is only
needed during a first interval. Thus, the FTS is achieved before any
diverging effect could appear. However, to theoretically present a
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sound approach to these functions, they may be re-defined for
theoretical purposes as

μc =
1 + e−t /T

′
c

2e−t /T
′

c

t ≤ T
′

c

μcMax t > T
′

c

μo =
1 + e−t /T

′
o

2e−t /T
′

o

ρ + m + 1

t ≤ T
′

o

μoMax t > T
′

o

(48)

where for positive real constants w1 and w2, the constants μcMax and
μoMax are defined as w1((1 + e−1)/2e−1) and w2 (1 + e−1)/2e−1 ρ + m + 1,
respectively. The constants w1 and w2 will be designed based on a
trade-off between the finite-time performance and the observation
errors. Subsequently, to adapt the Lyapunov-based stability proofs

to this new definition, we consider two intervals t ≤ T
c

′
 and t > T

c

′

(and/or t ≤ T
o

′
 and t > T

o

′
) to perform the analysis. For the first one,

the previous proofs are valid. Then, for the second time intervals,
we have already proved that the system's states are in a ball around
the control objectives for the designed control law and observed
states and they remain within the ball onwards. It is also important
to notice that the control laws (7) and (40) remain bounded for all
time no matter which definition of μx is taken.

6 Simulation example
In this section, numerical simulations are carried out on two
examples to show the efficiency of the proposed FT-OFC
compared with the superior existing approaches [22, 23].
 

Example 1: Now, the proposed FT-ESO is compared to [23].
The idea of this reference as a superior method in the field of fixed-
time control has been used many times in recent years [7]. In the
following example, similar to [23], the simulation is carried out
using the Euler method with a fixed sampling time equal to 10−4 s.

ẋ1 = x2

ẋ2 = u + d t
y = x1

(49)

In this system, only the first state variable x1 is considered
measurable as the output. Thus, the relative degree of this system is

ρ = 2, and it is in standard normal form. Moreover, according to
Section 3, under d t = (1/2) sin t + cos t  defines x3 = d t  as
the generalised disturbance.

First, the FT-ESO performance is compared to the fixed-time
observer of [23] in the case of the open-loop double integrator
system (49). Simulation results are achieved under the design

parameters T
c

′
= T

o

′
= 5, L1 = 0.5, L2 = 2.5, L3 = 5, a1 = 1, k2 = 2,

and Θ̄ = 25. These parameters have been chosen to meet the
mentioned conditions in the proofs; so that, it has the following
steps:

(i) To achieve the finite-time convergence, first, the design

parameters T
c

′
 and T

o

′
 are chosen. Increasing the value of T

c

′
 reduces

the control effort considerably; however, it will increase the
convergence time significantly and vice versa. Also, increasing the

value of T
o

′
, increases the observer convergence time, and vice

versa.
(ii) To ensure the stability of the designed observer, the constant
gains L1, L2,  and L3  are designed to make the matrix Λo, Hurwitz.
(iii) Since the simulations are carried out for the double integrator
system, with the relative degree ρ = 2, the constants a1 and k2
should be positive only. Increasing the values of a1 and k2 increases
the control effort considerably, and vice versa.

Also, simulation results are provided to illustrate the effectiveness
of the proposed approach compared to prominent existing
references, which shows better performance compared to
previously published papers.

Fig. 1 shows the time evolution of the real states and their
estimations in the perturbed open-loop system (49) using the
continuous and chattering-free FT-ESO (17). It can be concluded
that despite the existing disturbance, the proposed FT-ESO has
achieved an appropriate estimation performance. Moreover, it has
less convergence time (<0.6 s) compared to the privileged source
[23] (almost equal with 2.2 s). On the other hand, Fig. 2 shows the
performance of the FT-ESO in the closed-loop system under the
FT-OFC (40). The appropriate performance of the proposed FT-
OFC as a finite-time controller compared to [23] is obvious.

Furthermore, it is worth noting that, it is impossible to achieve
the identity xi ≡ 0, due to the impacts of imperfections like the
generalised disturbance [8]. Therefore, regarding Definitions 1 and
2, the proposed FT-OFC can achieve satisfactory FTB
performances in the presence of disturbances.

Also, since observation errors e2 and e3 were guaranteed to be
FTB; therefore, the upper bound of Θ̄ exists. Its bound can be
confirmed based on the simulation results. Indeed, simulation

Fig. 1  Time evolutions of the state estimations in the open-loop system
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results show a weak dependence of the observation errors on the
initial conditions; therefore, the upper bound (45) can be evaluated
via offline and/or open-loop tests. In this regard, based on the
simulation results, sup e2 = sup e3 = 5; also, according to
Remark 5, sup μc = μcMax = (1 + e−1)/2e−1. Therefore,
Θ̄ ≥ 5 sup ((1 + e−1)/20e−1) + 4 = 20.9296.

Figs. 3 and 4 show the results of the proposed chattering-free
FT-OFC compared to [23] in terms of stability behaviour and
control efforts, respectively. In this regard, an acceptable
convergence in both methods has been achieved. However, by
defining Jx = ∥ ∫0

tsxTx dt ∥ over the time interval t ∈ 0, ts = 10 s ,
the comparative results are presented in Table 1. 

Fig. 2  Time evolutions of state estimations in the closed-loop system
 

Fig. 3  Time evolutions of state variables of the closed-loop system
 

Fig. 4  Time evolutions of control inputs
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According to Table 1, the proposed FT-OFC demonstrates
superior FTB performance compared to the fixed-time output
feedback controller of [23]. Two other performances indices as
Ju = ∥ ∫0

tsuTu dt ∥ and Je = ∥ ∫0
tseTe dt ∥ based on the input and the

observation error (u and e) are defined in Table 2 as energy indices
of control effort and error variables. 

A significant difference between the performance indices is
shown in Table 2. Although an acceptable FTB performance of
both controllers has been achieved, the controller of [23] has a poor
performance in the presence of disturbance; whereas the proposed
FT-OFC demonstrates the superior FTB performance.

Fig. 5 shows that the proposed FT-OFC leads to the
convergence of the state variables to a small neighbourhood of zero
regardless of the initial conditions. In this way, a weak dependence
of the convergence time on the initial value is achieved. In this
regard, Table 3 contains the performance indices of the proposed
FT-OFC compared to [23] under different initial conditions. 

According to Table 3, although there are significant differences
between the performance indices under different initial conditions,
the convergence time and the control effort have a weak

dependency on the initial conditions, compared to the controller of
[23] (Fig. 5).

To evaluate the effectiveness of the proposed FT-OFC scheme,
in the next subsection, simulation studies will be addressed for the
disturbed system (49) with unknown measurement noise.

6.1 Robustness to measurement noise

In this section, the strong robustness of the proposed FT-OFC
scheme to measurement noise is investigated. Assume that the
output is available as y = x1 + N t , where N t  is a band-limited
white noise. As shown in Figs. 6 and 7, the state variables x1  and x2
converge to a smaller neighbourhood of zero compared to [23]. As
shown in Fig. 6, despite the system is disturbed by a rather strong
measurement noise, the system is ultimately bounded.
 

Example 2: In this example, consider the following uncertain 1-
link robotic manipulator system [22]:

M α α̈ + F α, α̇ + G α = τ − τd + Ξ t − Tf λ t (50)

where α, α̇, α̈ ∈ R represent the position, velocity, and acceleration
of robotic joints, respectively. In this paper, x = α, α̇ T is
considered as the state vector and thus the robot dynamical system
(50) can be rewritten in state-space form as

ẋ1 = x2

ẋ2 = − M0 + ΔM −1 F + G0

+⋯ + ΔG + τd + Ξ t − Tf λ − τ
(51)

where the constants M = 32, F = 0.8 α̇ + 1.2cos 3α  and
G = ± ϱg denote the inertia, friction, and gravitational force terms,
respectively. Also, λ = 2cos 0.8t , τ and τd = 1.2sin 0.95α̇  denote
the unknown faults, the input torque, and a bounded external
disturbance, respectively. Moreover, ϱ ∈ 0, 1  and
g = 9.806 m/s2 are, respectively, a random variable presenting the
model uncertainties and the acceleration of gravity. In this paper, it
is assumed that the unknown fault term λ is the same as the
disturbance term τd; but the fault occurrence time Tf, may change
stochastically with the time profile Ξ t − Tf  that is defined as

Ξ t − 3 =
0 t ≤ 3

1 − e− t − 3 t ≥ 3
(52)

where the simulation results are given with Tf = 3. The goal is to
implement the proposed FT-OFC law for robot system (51); so
that, the position output y = x1 tracks the time-varying reference
signal yr = cos t  in finite time. The comparison results are shown
in Figs. 8 and 9. 

Table 1 Comparative results on the performance index Jx

Methods Performance index Jx

proposed FT-OFC 1.323 × 107

fixed-time output feedback control [23] 2.719 × 107

 

Table 2 Comparative results on the performance indices Ju
and Je

Methods Performance index
Ju

Performance index
Je

proposed FT-OFC 3.834 × 104 9.561 × 107

fixed-time output
feedback control
[23]

5.993 × 104 2.369 × 109

 

Fig. 5  Time evolutions of state variables of the closed-loop system for two values of the initial conditions
 

Table 3 Comparative results of the performance indices Ju
and Je under different initial conditions
Methods Performance index Ju Performance index Je

initial cond. x0 1
−1

10
−10

1
−1

10
−10

proposed FT-OFC 3.83 × 104 3.83 × 106 9.56 × 107 9.2 × 1011

controller of [23] 5.99 × 104 3.15 × 107 2.37 × 109 1.4 × 1012
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In Fig. 9, the proposed FT-OFC is compared to a third-order
sliding mode controller (TOSMC) [22] in terms of the tracking
error and control efforts.

7 Conclusion

The main purpose of this paper was to design an FT-OFC for a
class of uncertain non-linear systems. In the proposed approach,
novel conversions were used to make the finite-time objectives
possible. This enabled us to design the output feedback controller
straightforwardly with the FTB properties. In this design
procedure, the convergence of the state variables to a small

Fig. 6  Time evolutions of state variables of the closed-loop system under measurement noise
 

Fig. 7  Time evolutions of control inputs under measurement noise
 

Fig. 8  Time evolutions of the state estimations of the closed-loop system
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neighbourhood around zero was achieved in a finite time, without
any knowledge about the upper bounds of the generalised
disturbance. Moreover, it was shown that the state variables will
not escape to infinity in finite time before the convergence of the
observer error, and finally, the presented simulation results
demonstrated the effectiveness of the proposed methods. In future
work, it is suggested to use auxiliary terms to decrease the
produced oscillations.
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