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ABSTRACT Ubiquity of mobile devices with rich sensory capabilities has given rise to the mobile crowd-

sensing (MCS) concept, in which a central authority (the platform) and its participants (mobile users) work

collaboratively to acquire sensory data over a wide geographic area. Recent research in MCS highlights the

following facts: 1) a utility metric can be defined for both the platform and the users, quantifying the value

received by either side; 2) incentivizing the users to participate is a non-trivial challenge; 3) correctness and

truthfulness of the acquired data must be verified, because the users might provide incorrect or inaccurate

data, whether due to malicious intent or malfunctioning devices; and 4) an intricate relationship exists among

platform utility, user utility, user reputation, and data trustworthiness, suggesting a co-quantification of

these inter-related metrics. In this paper, we study two existing approaches that quantify crowd-sensed data

trustworthiness, based on statistical and vote-based user reputation scores. We introduce a new metric—

collaborative reputation scores—to expand this definition. Our simulation results show that collaborative

reputation scores can provide an effective alternative to the previously proposed metrics and are able to

extend crowd sensing to applications that are driven by a centralized as well as decentralized control.

INDEX TERMS Mobile crowd-sensing (MCS), smart city, reputation systems, collaborative sensing, user

incentives, reputation score, data trustworthiness, auction theory, social network theory, statistical methods.

I. INTRODUCTION

Mobile Crowd-Sensing (MCS) is an exciting new concept

born out of the quest to invent —yet another—transformative

Mobile-Cloud application platform, which takes advantage

of the exponential global growth in the quantity and pop-

ularity of mobile devices [1]. The progress made in the

sensory capabilities of today’s mobile devices —including

cameras, microphones, GPS capabilities, ambient light sen-

sors, accelerometers, digital compasses, and gyroscopes—is

staggering [2], enabling a vast variety of MCS applications;

one such application, urban sensing [3]–[5], prescribes a

platform in which volunteering mobile users collect ambient

environmental information by downloading an application

into their mobile devices and ‘‘opting in.’’ The ultimate

societal impact of these new crowd-sensing applications—in

the areas of public safety, disaster management, and health

care—are profound; for example, CreekWatch [6] is an

iPhone application developed by the IBM Almaden research

center to monitor the conditions of local watershed with the

help of crowdsourced data about the amount of water, rate

of flow, amount of trash, and a picture of the waterway.

Every individual user plays an important role in improving

the quality of water resources by sharing captured data with

water control boards via the CreekWatch application.

The building blocks of an MCS are the central authority

that provides the application (the platform) and the partici-

pants (the users) that contribute their collected data. While

some of the users might simply be contributing their data out
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of the goodness of their heart [3]–[7], some are driven by

monetary compensation as in the case of Sensing as a Service

(S2aaS) applications [8]. Alternatively, the platform can be

a government, non-profit, or a corporate entity providing a

free service —by sharing the raw or analyzed data acquired

from diverse phenomena [9]—or a commercial entity that is

driven by profits [8]. In either case, a utility metric can be

defined for both the platform and the users, which is not nec-

essarily based on monetary compensation [10]; for example,

in [11], an urban resolution metric is introduced to rate the

quality of urban sensing services, and in [12], diversity-based

quality metric is used to assess the quality of visual crowd-

sensed data, i.e., to quantify platform utility. Alternatively,

the user utility has been studied within the context of both

monetary compensation [8] and non-monetary awards such

as badges [10].

When compensating the participants, the platform makes

payments to reputable users contributing useful data; because

these payments are made for useful data, we define them

as true payments. Unfortunately, an unavoidable artifact of

an MCS system is the existence of rewards to malicious

users who provide bad data; we define these payments as

false payments. The goal of a successful MCS system is

to maximize the true payments and platform utility while

keeping user utility at a satisfactory level to encourage healthy

participation. Due to the intricate relationship among false

payments, true payments, user utility and platform utility,

no individual metric can be arbitrarily changed; the goal of

this paper is to identify the trade-offs that relate them to one

another quantitatively.

Despite its unprecedented ability to help the society, MCS

introduces multiple challenges due to its reliance on many

‘‘soft’’ factors, such as the willingness of the users to do

good for their community. Among such difficulties is the

incentivization of the users to participate, which is hindered

by the heavy computational and communications demand

imposed upon bymanyMCS applications—translating to sig-

nificantly higher battery power consumption than most of the

other smartphone applications; so, unless there are extrinsic

motivations for being a member of the MCS platform, most

MCS applications are a major turn-off for users due to their

battery-unfriendly nature. Since the quality of the collected

data depends totally on user participation [11], incentiviz-

ing users to participate is a crucial ingredient of a success-

ful MCS system [10], [13]. To increase user participation,

various incentive mechanisms have been proposed; auction-

based method (reverse auction) [14], [15], game theoretic

approaches [10], [16], monetary [15], and non-monetary [17]

incentives are among these.

MCS introduces another important challenge: the need

to understand user intentions and to quantify their reputa-

tion. A user might simply think that an MCS application is

not good for the community and protest it by contributing

incorrect data intentionally or might have a faulty mobile

device that takes imprecise or wrong measurements.

Trustworthiness of the collected data is a primary concern

for both the platform and the end users who request sensed

data as a service [18]. Kantarci et al. [19] study data trustwor-

thiness assurance in user incentivization using statistical- and

recommendation-based user reputation-awareness methods,

while Social Network-Assisted Trustworthiness Assur-

ance (SONATA) [20] is a recommendation-based approach to

identify malicious users who manipulate sensor readings to

spread dis-information. SONATA adopts a vote-based trust-

worthiness analysis and Sybil detection techniques to mini-

mize themanipulation probability in anMCS framework. The

study in [21] introduces anchor nodes, which are deployed

as trusted entities in an MCS system in order to improve the

platform and user utility by eliminating adversaries at the end

of a recommendation-based user recruitment process.

Despite the availability of these studies, there is no thor-

ough research stating the specifications for maximum data

trustworthiness, high platform utility, and high user utility.

In this paper, we formulate data trustworthiness as a function

of soft reputation and hard reputation of the participants.

We quantify hard reputation as the accuracy of the sen-

sor readings (e.g., 97%); although this metric is associated

with a mobile ‘‘user,’’ it is actually based on the sensory

accuracy—and functionality—of themobile ‘‘hardware’’ that

the associated user employs for participating in the MCS

application. Alternatively, we define soft reputation to quan-

tify the malicious behavior of the participants —either by

their own bad intent or their participation in amalicious group

activity [20]. Malicious behavior denotes the manipulation of

sensor readings at the mobile application level. We study the

viability of statistical, recommendation-based, and anchor-

based approaches under collaborative reputation scores in a

crowd-sensing system as shown in Fig. 1, which is composed

of the platform (the crowd-sourcer) and the users (the sensing

data providers).

Using these three metrics as a guide for quantifica-

tion, we evaluate the performance of three crowd-sensing

approaches via simulations: i) vote-based, ii) anchor-assisted

and vote-based, and iii) collaborative reputation scores-based

(i.e. hybrid statistical and vote-based). Our simulation

results show that applying collaborative reputation scores

in user recruitment eliminates the need for trusted entities

(i.e. anchors) in the decentralized component of an MCS sys-

tem without compromising user utility. We also show that the

user incentives that employ collaborative reputation scores in

user recruitment introduce an additional 5% improvement in

the MCS platform utility, while reducing the payments to the

malicious users by 10% in comparison to the incentives with

decentralized vote-based and anchor-assisted scheme [21].

The rest of the paper is organized as follows. In Section II,

we provide background information and related work on

MCS research; we particularly focus on theMCS components

that directly or indirectly affect crowd-sensed data trustwor-

thiness and user reputation. In Section III, we present differ-

ent data trustworthiness assurance methods such as statistical

reputation-based, vote-based, and anchor-based methods in

MCS and highlight their characteristics. Section IV presents
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FIGURE 1. Proposed system model. The crowdsourcer (platform) adapts reputation-aware recruitment methods and assigns its participants (users) their
sensing tasks. Users collaborate in the trust score phase to ensure data trustworthiness to increase the reliability of submitted data. The quantitative
metric, ‘‘reputation’’ of a user, can be calculated solely by the platform (statistical), or by the entire community (vote-based).

collaborative methods to assess user reputation in trustworthy

mobile crowd-sensing. In Section V, we present numerical

simulation results along with detailed discussions, and finally

conclude our paper in Section VI by elaborating on our results

and providing directions for future research.

II. BACKGROUND AND RELATED WORK

Gartner estimates that some 3.3 billion of connected mobile

devices —with various built-in sensors including GPS, cam-

era, accelerometer, gyroscope, and microphone—will be in

operation globally in 2018 [22]. These uniquely identifiable

devices [23] are expected to usher in the new era of Internet-

of-Things (IoT) and give birth to a new breed of ‘‘mobile’’

applications, be it medical cyber physical systems [24]–[29],

smart city [21], or real-time mobile-cloud applica-

tions [30]–[32]. One such application is crowd-sensing, in

which a central authority—acting as the platform—employs

a group of mobile users —acting as participants or users—

to collect, process, store, and share a large amount of sen-

sory data, thereby forming a Mobile Crowd-Sensing (MCS)

system. We must note that the concept of Crowdsourcing

existed for decades, as evidenced by programs such as

SETI @Home [33], in which volunteering participants use

their computer time to process extra-terrestrial data in an

attempt to find life outside earth. However, crowd-sensing

expands this concept to beyond what was unimaginable in the

SETI @Home days; using mobile devices —rather than

computers that sit at home—changes the coverage area of

the underlying application from a few fixed points to a

smooth and wide geographic coverage, rivaling a coverage

percentage that can only be achieved via commercial deploy-

ments. This means that commercial-grade sensory data can

be collected using everyday mobile users.

A. MCS APPLICATIONS

More than 1.4 B smart phones and 232Mwearable appliances

were sold in 2015, while the sales of wearable devices is

projected to reach 322M in 2017 [34]. Various phenom-

ena such as air pollution, water quality, road conditions

for smart transportation, public safety, and emergency

preparedness can be collaboratively sensed through these

devices [9], [35], or environmental monitoring can be

performed through autonomous field systems [36]–[38].

MCS has attracted the IT industry for various applications.

A research consortium among IBM, University of Illinois,

and University of Minnesota has developed a middleware

MCS platform, which is called Citizen Sense [39]. Google

has developed an MCS application called Science Journal,

which is available via Play Store [40]. Science Journal uti-

lizes various built-in sensors in smart-phones to acquire data

regarding users’ interests and apply real-time analytics.

Zhang et al. [41] formulate the life cycle of MCS applica-

tions as a four-stage series events with the following stages:

i) task creation, ii) task assignment, iii) individual task execu-

tion, and iv) crowd-data integration. In each stage, the follow-

ing 4W1H framework is taken into account:What phenomena

should be sensed, when and where the assigned task should

be sensed, who is responsible for collecting data, how the

sensing task is divided between users, and how collected data

is communicated to the recruiter.

Benazzouz et al. [42] introduce the term IoT-centric social

networks, defining a set of connected smart mobile devices

that form a social network community by sharing resources

and information. In [8], it is stated that the integration of

social networks into mobile phone sensing is beneficial for

both users requesting MCS services and mobile social net-

work users. In the near future, social networks are expected

to connect services and applications over the cloud [43].

As an example of the integration of mobile computing and

social networks, MobiGroup [44] is a smart phone sens-

ing system to recommend ongoing activities based on user-

activity distance and interaction dynamics in a community.

In [45],MCS is used to analyze audio events in social settings.

MCS can also be used to minimize wait time for public

services using real-time MCS sensory data. Bulut et al. [46]

present a crowdsourced wait-time estimation system called

LineKing for monitoring and estimating the waiting time to

enter a coffee shop. LineKing uses continuous streams of
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accelerometer data provided by MCS participants to detect

waiting times of users. Another application that applies

crowd-powered sensing system to gather and share public

information is FlierMeet [47], in which public fliers are col-

lected and shared using the built-in sensors of smart mobile

phones. The study in [48] presents a landmark modeling

and reconstruction system, which combines user mobility

traces, location of captured images, accelerometer, and gyro-

scope data by the mobile users to build accurate indoor

floor plans that improve indoor localization performance.

Zhang et al. [49] present a self-contained indoor navigation

system (GROPING) by using MCS to generate floor maps

via three different functions (map building, localization, and

navigation). GROPING gathers individual smartphone data

via magnetic fingerprints and semantic labels instead of using

digitized maps provided by individual venues.

TreSight [50] is an example smart city big data application

that uses data analytics and Internet of Things (IoT) to form

a recommendation system that aims to improve the smart

tourism in the city of Trento, Italy. The output of data ana-

lytics can assist decision making processes.

B. COMPONENTS OF MOBILE CROWD-SENSING (MCS)

1) USER RECRUITMENT

Performance of an MCS platform depends on the number

of participants contributing to complete sensing tasks. User

recruitment—by providing incentives [8], [51]—is a key

challenge in anMCS system, permitting the selection of users

that are able to fulfill sensing tasks with high accuracy tomin-

imize system costs. Based on how the users are involved in

sensing tasks, two main approaches exist: i) in participatory

sensing, users make the decisions to sense and share data ,

while ii) in opportunistic sensing, mobile devices are involved

in the decision making process instead of the users.

2) PLATFORM UTILITY AND USER UTILITY

In an MCS system, the platform generates and assigns tasks,

thus incurring a monetary cost to recruit and reward the users

for their contribution. On the other hand, users incur costs

for their contributions in terms of energy consumed for sens-

ing and data subscription plan use for reporting. Therefore,

a ‘‘utility’’ metric can be defined both from the perspective

of the platform (platform utility) and the users (user utility)

to quantify the cost vs. reward balance for both sides. Several

incentive strategies have been proposed in the literature to

address the trade-off between platform and user utility [13].

Amobile agent based approachwas proposed in [52] to detect

cross-layer anomalies in the received data traffic by using

fuzzy logic and rule-based techniques. In [53], new metrics

for analyzingMCS datasets were proposed to provide a socio-

technical management aspect.

3) TRUE PAYMENTS AND FALSE PAYMENTS

The primary task of the platform is to compensate the users

for the data provided by them and compensate them for

their participation. Unfortunately because the participants

are composed of a mixture of regular and malicious users,

making payments to malicious users is an unavoidable conse-

quence of anMCS system, which reduces the platform utility.

By using reputation scores, the platform strives to minimize

these payments (termed false payments) while, at the same

time, maximize the payments to regular users (termed true

payments).

C. FACTORS COMPROMISING USER

PARTICIPATION IN MCS

Despite the rapid growth in the popularity of mobile devices,

user participation in MCS is still lackluster due to the exten-

sive consumption of time, energy, and bandwidth resources

that a typical MCS application requires. Unlike the passive

RF devices with µW power power consumption levels [54],

crowd-sensing implies power usage in the single-digit Watt

range (e.g., 1–10W), whether implemented with a smart-

phone or a tablet [38], [55], [56]. Observing that reducing the

power consumption of MCS applications will be the primary

reason for their wider adoption [9], many studies focused

on reducing the mobile power draw during the i) sensing,

ii) computing, and iii) data transmission phases of an

MCS application.

Energy savings in these individual phases is considered

individual energy conservation methods, while the aggregate

energy savings in an MCS application is possible by decreas-

ing the number of recruited nodes. For instance, coverage-

based technique is adopted in participatory sensing to find

the minimum number of participants in order to optimize

area coverage [57]. Similarly, the study in [58] minimizes

the energy consumption by managing the sensing sched-

ule of each node by duty-cycling the sensing tasks among

the participants. Hierarchical sensing is a common duty-

cycling-based method that transfers data collection from low-

level sensors (e.g. accelerometer, WiFi) to high-level sensors

(e.g. GPS, Camera) upon failure of the first category to

provide accurate sensing information [59]. Chon et al. [59]

report that hierarchical sensing is not energy efficient because

even low-level sensors waste limited battery or save energy

just in path tracking. In [60], a parallel transfer and delay

tolerant mechanism is used to assign sensed tasks and send

back the captured data while users are placing their phone

calls to save energy in the data transmission phase.

D. PARTICIPANT SELECTION IN MCS

From the platform’s standpoint, a key consideration is the

selection of the participants to maximize platform utility.

A limited number of studies investigate different approaches

to address user involvement in MCS to maximize plat-

form utility. The study in [61] presents a participant selec-

tion method to choose well-suited users for assigning tasks

as well as to consider a reputation management scheme

to evaluate the trustworthiness of the contributed data.

An experimentalMCS study involving 170 participants over a

year—named ParticipAct—is introduced in [18] to increase
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the effectiveness of data collection by selecting users that

are more likely to accept and finalize sensing tasks, based

on their historical mobility patterns. ParticipAct compares

four different task assignment policies, i) random, ii) recency,

iii) frequency, and iv) DBSCAN, to investigate the direct

impact of task scheduling on the percentage of success for an

MCS system; gamification approaches are utilized involving

reputation, ranking, and badges to increase user engagement.

The study in [9] categorizes MCS applications as per-

sonal and community applications based on the participants.

Personal sensing refers to the acquisition of data related to

an individual’s daily activities; an analysis of this data can

reveal a person’s unhealthy habits or health status [62]. Com-

munity sensing denotes the acquisition of data about popular

phenomena involving smart urban services [63], [64], smart

transportation [65], or smart cities [66]–[68]. Khan et al. [35]

present a comprehensive overview on urban sensing. In [69],

sensed data is used to design a navigation system (GreenGPS)

that recommends the most fuel-efficient route by addressing

the sparsity of collected data using a generalized model of

complex nonlinear phenomena.

III. REPUTATION AND TRUSTWORTHINESS IN MCS

Verification of the trustworthiness of the data collected

by an MCS system is a crucial component of its design,

because the collected data can be used to make decisions

that affect the quality of life of its participants [27], [71].

Huang et al. [72] present a reputation-based system that

employs the Gompertz function to determine a ‘‘reputation

score’’ for the volunteers that monitor urban noise pollution.

Reputation scores are computed in a participatory manner by

the participants according to the trustworthiness of the sensed

data. The study in [73] proposes a robust trajectory based

estimation method within an MCS to handle outliers in the

crowdsourced data. The fact that reputation scores cannot be

addressed independently from user incentives compounds the

difficulties associated with their computation. In this section,

we study reputation scores in two categories: i) statistical

reputation scores that are solely computed by the platform

and ii) vote-based reputation scores that are computed by the

participants of the MCS. Table 1 tabulates the notation used

throughout the rest of the paper, along with the equation and

section numbers in which these notations are used.

A. DEFINITIONS FOR REPUTATION VS.

TRUSTWORTHINESS

In this subsection, we provide a high level definition of the

two key terms of our study, namely user reputation and

data trustworthiness. We associate the reputation attribute

with a mobile user, while the trustworthiness is an attribute

that is associated with the data a given user collects; hence,

based on these definitions, the data trustworthiness is a direct

consequence of user reputation. We further expand on this

definition to include two primary factors that contribute to

user reputation: i) to capture the sensory accuracy or the

possibility of an outright device malfunction, we define the

metric hard reputation (Rhard ), which quantifies the accuracy

and functionality that is expected from a mobile device asso-

ciated with a specific participating MCS user (or more gener-

ally a sensing node) and ii) to capture the average probability

of inaccurate—or outright wrong—readings that stem from

malicious intelligence (either malicious users manipulating

readings or a virus causing incorrect reporting), we define the

metric soft reputation (Rsoft ). What follows from these two

definitions is that the data trustworthiness of user i (Ti) is a

function of the hard (Rhardi ) and soft (R
soft
i ) reputation of that

user as formulated in Eq. 1:

Ti = f (Rhardi ,R
soft
i ) (1)

By definition, Rhardi captures inaccuracies that stem from

hardware based errors that are predictable. Therefore, they

can be quickly detected by using statistical methods. On the

other hand, inaccuracies that arise from R
soft
i involve some

sort of a malicious intelligence, thereby making them unpre-

dictable. To phrase alternatively, R
soft
i involves the trustwor-

thiness of the data, while Rhardi represents its correctness.

Although it is possible to study the effects of these two

factors on trustworthiness separately, we focus our attention

on R
soft
i and view Rhardi as a limiting condition; as long as

the accuracy of the hardware sensors of user i’s device (̺i)

is above a certain threshold (̺TH ), the trustworthiness of the

data acquired by user i (Ti) can be assumed to be dictated

solely by the soft reputation of user i as formulated in Eq. 2:

Ti =

{
f (Rhardi ,R

soft
i ), ̺i < ̺TH

R
soft
i = Ri, ̺i ≥ ̺TH

(2)

In this paper, given that the accuracy ofmodern smartphone

sensor readings is at the level of 97–98% [70], we assume

that the condition, ̺i ≥ ̺TH is met in real systems, which

enables us to assume that the trustworthiness of a user’s data

is directly proportional to the reputation of that user. In other

words, we assume that the quantities Ti, Ri, and R
soft
i are

statistically equivalent.

B. STATISTICAL (CENTRALIZED) REPUTATION-BASED MCS

In [74], Trustworthy Sensing for Crowd Manage-

ment (TSCM) is proposed for the recruitment of smartphone

users based on a reverse auction procedure executed in the

cloud. TSCM introduces reputation-awareness and trust-

worthiness into MSensing auction-based incentives [75] by

considering both past and recent sensor readings. According

to TSCM, inaccurate or manipulated information readings

lead to reputation reduction for a given user i, consequently

reducing the trustworthiness of the data provided by user i.

An ‘‘auction’’ is a two-step procedure to select reputable

users among all participating users, which seeks to meet

the utility requirements of the selected users and the

platform.

Each sensing task has a value for the crowdsourcer plat-

form. Recruitment of a set of smartphone users in a crowd-

sensing campaign corresponds to a value which is the total
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TABLE 1. Notation used throughout the paper including references to which equation – and section – they appear in.

value of the tasks that are sensed by the recruited users in

a participatory manner. we define a sensing campaign as a

consecutive set of sensing tasks that are executed sequen-

tially. TSCM uses the reputable marginal value (vRi (W )) of

user i on set W as formulated in Eq. 3. Reputable marginal

value denotes the additional value introduced by user i to the

reputable value of set W ; it is calculated by summing the

values of the tasks forming the sensing set as shown in Eq. 4.
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Additionally, the value of a task is defined by its actual value

scaled by the average reputation of the users as formulated

in Eq. 5.

v(W ) =
∑

T∈Tw

vT (3)

vRi (W ) = vR(W ∪ {i}) − vR(W ) (4)

vR(W ) =
∑

T∈TW

∑

k∈ŴT

(
vT .Rk/|ŴT|

)
(5)

Statistical reputation of user i (Rstati ), computed from Eq. 6,

correlates positive readings (p(t)) to total readings (p(t)+n(t))

as follows:

Rstati (t) =
pi(t) + ǫ

ni(t) + 2ǫ
(6)

where ǫ comes from Bayesian estimation of a binary random

variable. Thus, eventually the probability of having a true

reading is expected to be equal to Eq. 6. TSCM continuously

assesses the instantaneous reputation of a user i at time t

(Ri(t)) by using a running average sum of their current—or

instantaneous—(Rinsti (t)) and past reputation scores (Ri(t
−))

as formulated in Eq. 7:

Ri(t) = δ.Rinsti (t) + (1 − δ).Ri(t
−) (7)

where the δ parameter is introduced to model the transition

probability of user reputations (see Table 1). TSCM, much

like its predecessorMSensing, ensures that all participants are

compensated with amounts that are no less than their sensing

costs. While recruiting users, the platform aims to recruit

users whose reputable marginal values are greater than their

modified bid as formulated in Eq. 8:

(
vRwv − bwv

Rwv
) >

vRwv+1 − bwv+1

Rwv+1
(8)

While the schemes that are explained in this section adopt

MSensing to incentivize users, participant recruitment phase

is based on a reverse auction procedure [75]. User recruit-

ment phase consists of two steps: 1) winner selection and

2) payment determination. In step (1), the platform selects

the winner set of users based on their marginal contribution

as formulated in Eq. 9. The aggregate reputation of the set of

selected users is the summation of their reputation over the

average reputation of the winner set, where bi represents the

bid (sensing cost of the user) divided by the user’s reputa-

tion Ri.

vRi (W ) −
bi

Ri
(9)

The frameworks presented in this section adopt the pay-

ment determination phases in [74] and [75]. Once the win-

ners are selected, step (2) is the payment determination

(i.e., compensation) for the winners. To this end, for each

selected mobile device, w, the platform first constructs a

temporary set of non-winner mobile devices/users where

each mobile device has a positive reputation-based contri-

bution to the value of the set of recruited users. Next, the

set of recruited users is gradually re-built by search-

ing for the maximum possible sensing cost for a mobile

device that will still make it preferable over any other

mobile device in the set of non-winners. The correspond-

ing value is assigned as the payment to the mobile device

user.

C. VOTED (DECENTRALIZED) REPUTATION

A mobile social network is formed by its participants to

perform common sensing tasks and share the crowd-sensed

data. In such a platform, user reputations can be calculated

by the participating users in a decentralized fashion —rather

than the platform itself—by means of a voting procedure.

Kantarci et al. [19] propose Social Network-Assisted Trust-

worthiness Assurance (SONATA) to incentivize and recruit

trustworthy users through a fully decentralized reputation-

aware method, which consists of four components: i)

the cloud computing platform, ii) mobile social networks

(i.e., communities), and mobile device users that are consid-

ered either iii) sensing providers, or iv) service requesters for

different tasks.

SONATA integrates mobile user reputation awareness into

MSensing [75], which is a reverse auction-based approach

as mentioned earlier; although SONATA allows every user

to vote for the reputation of their neighbors, it detects Sybil

attacks by using methods that are proposed for online social

networks [77]. Malicious users that aim to join the network

with the intention to spread dis-information are considered to

be analogous to the Sybil users in online social networks. The

vote of a mobile user for any neighbor is either 1 or−1, where

1 denotes positive reputation indicator (i.e. non-malicious

user) or vice versa. SONATA builds a set of winners based on

maximizing the marginal contribution to the platform utility.

Marginal contribution is calculated according to difference

between two different values of the winning set before and

after joining the newcomer users to the winner set (W ) as

explained earlier.

As mentioned earlier, in the decentralized reputation

model, users with common sensing tasks form a social net-

work where each node in the network is eligible to vote

for the other nodes to build their reputation by the end of

the recruitment period. Alternatively, in the decentralized

reputation model, each user i has a vote capacity (wi) and

it is a weighted sum of the current vote capacity (ω−
i ) and

the sum of the gained vote capacities from its neighbor nodes

normalized by the number of connected users in the social

network as formulated in Eq. 10:

ωi = γ.ω−
i + (1 − γ ).

∑

k|Ti∩Tj 6=0

(
ωk/|Ŵi|

)
(10)

where γ denotes the vote capacity transition constant.

We define the instantaneous voted (decentralized) reputation

of a user (Rvotedi ) as the ratio of the weighted sum of the

votes cast by the voting neighbors to the weighted sum of

the reputations of the voting users. As formulated in Eq. 11,

weight of each vote cast by a voting neighbor is equal to the
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FIGURE 2. An example scenario for anchor-assisted vote-based reputation scores. U2 and U4 are the trusted entities (anchor nodes [21], [76], denoted by
an anchor symbol) in the crowd-sensing terrain. At times t1 and t2, all nodes vote for the reputation of U0, regardless of whether they are an anchor or a
regular node. The decentralized reputation score of U0 is calculated based on a weighted sum of its previous and current reputation scores. Current
reputation is calculated on the basis of the vote capacities and votes cast by the nodes in the same community at t2, i.e., {U1, U2, U3, U4}.

product of the vote capacity of the corresponding neighbor

and its reputation.

Rvotedi =

∑

k|(Cik )=1

(
ωk .X

k
i .Rk

)

∑

k|Ti∩TK 6=0

(
ωk .Rk

) (11)

D. ANCHOR-ASSISTED DECENTRALIZED REPUTATION

To improve data trustworthiness assessment in the decen-

tralized vote-based approach, Pouryazdan et al. [21] pro-

posed to assign the anchor role to a small set of nodes.

Anchor nodes have 100% vote capacity, 100% reputation,

and are considered to be 100% trustworthy in an MCS plat-

form. They are recruited exactly the same as the non-anchor

nodes and their reputation-based contributions and/or bids are

identical to their reputation-unaware ones as they are pre-

sumed to be 100% trustworthy until the end of a monitoring

period.

As the communities vary dynamically, reputation of user

i (Ri(t)) is characterized by the instantaneous reputation at

time t (Rinsti (t)) and overall reputation at time t− (Ri(t
−)).

Rinsti (t) is computed as the weighted sum of the votes

of all nodes in the community scaled by the sum of the

vote capacity of the users that cast votes as formulated

in Eq. 12, where δ denotes the transition coefficient for

reputation to capture the rate of change in Ri(t) between

t and t−; 100% trustworthiness is assumed for all anchor

nodes.

Ri(t) =

{
δ.Rinsti (t) + (1 − δ).Ri(t

−), i ∈ U users

Rinsti (t) = Ri(t
−) = 1, i ∈ A anchors

(12)

Besides their reputation, each user also has a vote capacity,

which is updated dynamically based on the votes distributed

by the neighbors in the same community. By joining a new

community, instantaneous vote capacity of a new user is

calculated in Eq. 13 as the average vote capacity of its

connections, i.e., the nodes that have already cast votes

for the newly joining node. We note here that the vote

capacity of anchor nodes is always 1 and is independent of

the votes.

ωinst
i =





∑

k|Ti
⋂
Tk 6=0

(
ωk/|Ŵi|

)
, i ∈ U users

1, i ∈ A anchors

(13)

On the other hand, the actual vote capacity of a node

is the weighted sum of its instantaneous vote capacity and

prior total vote capacity, based on the transition coefficient

of reputation γ as formulated in Eq. 14. In the equation,

the instantaneous vote capacity (ωinst
i ) is formulated by the

second summation component of Eq. 10.

ωi = γ · ω−
i + (1 − γ ) · ωinst

i (14)

Figure 2 is an illustrative MCS example, in which

user 2 (U2) and user 4 (U4) are considered to be anchor nodes.

At t = t1,U0, with an initial reputation value R0(t0), joins the

community with four nodes:
{
U4, U5, U6, U7

}
. At the end

of t1, the reputation of U0 is a weighted sum of its initial rep-

utation and a function of its newly voted reputation. The vote

reputation of U0 is contributed by the votes of U4, U5, U6,

and U7. At t1, upon reporting their sensing tasks, U5, U6, and

U7 leave the community, i.e., quit participating in the sensing

campaign. At t = t2, a new sensing task is scheduled within

a sensing range covering
{
U0, U1, U2, U3, U4

}
. Given that

U0 does not have any common tasks with the nodes in this

new community,
{
U1, U2, U3

}
vote for the trustworthiness

of U0. Since U4 is an anchor node, it also votes for the

reputation of U0 Finally, a weighted sum of U0’s reputation

at t1 and its voted reputation at t2 are stored as its overall

reputation score at t2.

IV. COLLABORATIVE REPUTATION SCORES

Previous user recruitment schemes rely on either central-

ized (statistical) or decentralized (vote-based) trustworthiness
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assurance in MCS systems. Each approach has its own pros

and cons; decentralized trustworthiness assurance delegates

the storage and computational load on the central platform to

the mobile devices, while centralized trustworthiness assur-

ance keeps track of the historical behavior patterns, which—

in the long run—can significantly improve platform utility

by eliminating the users that provide wrong sensor read-

ings. The decentralized approach can converge to provid-

ing a stable platform utility under medium loads (i.e. task

arrival rates), owing to its delegation of the user reputation

assessment to the community. Combining decentralized and

centralized methods for reputation-aware user recruitment

in MCS can consolidate the benefits of both approaches.

In this section, we present an approach to obtain collabora-

tive reputation scores, which are a weighted function of the

decentralized and centralized reputation components in user

recruitment.

The instantaneous reputation of a user i is a compound

function of its statistical reputation (Rstati , as defined in

Eq. 6 as the ratio of positive readings to the total read-

ings) and its social reputation (Rvotedi (t)) as formulated

in Eq. 15.

R
collinst
i =

[
(1 − δ) ·

(
pi(t) + ǫ

pi(t) + ni(t) + 2ǫ

)

+ δ ·

∑

k|T{i}∩T{k} 6=φ

(
ωk · χ i

k · Rk

)

∑

k|T{i}∩T{k} 6=φ

(
ωk · Rk

)
]

(15)

Kantarci et al. [19] propose a social network theory-

based collaborative trustworthiness approach, which lever-

ages the naive centralized reputation value by incorporat-

ing statistical reputation scores and vote-based reputation

scores. We refer this method as the collaborative reputation

scores approach. This approach is similar to SONATA [20],

in which users with common sensing tasks are eligible to

cast votes for other nodes in the same social community

while, at the same time, the MCS platform considers all

statistical information about both past and recent sensor read-

ings of users. Note that in the statistical reputation, posi-

tive and negative readings are identified after running an

outlier detection procedure [78], by marking the outliers as

negative readings. The formula for the collaborative rep-

utation of user i (Rcolli (t)) is obtained from the weighted

sum of the previous and current reputation as formulated

in Eq. 16.

Collaborative reputation scores-based user recruitment

also adopts TSCM steps for winner selection and user reward-

ing. However, in such a system, as opposed to the previous

systems that are based on either centralized or decentralized

reputation assessment, the method to assess the value of the

crowd-sensed data is not straightforward as the decentralized

component can be biased while the centralized component is

mostly unbiased.

Rcolli (t)

= σRi(t
−) + (1 − σ ) · R

collinst
i

= σ · Ri(t
−) + (1 − σ ) ·

[
(1 − δ) · Rstati (t) + δ · Rvotedi (t)

]

= σ · Ri(t
−) + (1 − σ ) ·

[
(1 − δ) ·

(
pi(t) + ǫ

pi(t) + ni(t) + 2ǫ

)

+ δ ·

∑

k|T{i}∩T{k} 6=φ

(
ωk · χ i

k · Rk

)

∑

k|T{i}∩T{k} 6=φ

(
ωk · Rk

)
]

(16)

In this paper, we present two different modes to assess

the value of a recruited crowd when collaborative reputation

scores are applied. Equation 17 formulates the value of a

recruited crowd in two different modes at the τ th recruitment.

In the first mode (M1), the value of the recruited crowd is

calculated based on the collaborative user reputation values.

Thus, the value of a crowd-sensed task is scaled by the

average collaborative reputation of the users who have sensed

the task in a participatory manner. In other words, the value

function has both unbiased and possibly biased components.

In the second mode (M2), the value of the crowd-sensed

data is calculated by scaling the total value by the average

statistical reputation of the users who have sensed the task in a

participatory manner. Thus, the second mode aims to remove

possible community bias from the value calculation.

vR(W τ ) =





∑

T∈TW τ

∑

k∈Ŵτ

(
vT .Rcollk /|Ŵτ |

)
, modeM1

∑

T∈TW τ

∑

k∈Ŵτ

(
vT .Rstatk /|Ŵτ |

)
, modeM2

(17)

The aim of this paper is to study the impact of decentralized

and centralized components in trustworthiness assurance in

mobile crowd-sensing and provide design specifications to

meet the platform utility, user utility, and data trustworthiness

goals in these applications. To this end, the next section

provides a thorough performance study of the presented

schemes.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-

posed user recruitment schemes in MCS systems via sim-

ulations. We aim to quantify the user reputation and data

trustworthiness under statistical and collaborative methods

for user recruitment in MCS. Furthermore, we investigate

the impact of deploying anchor nodes as the trusted entities

to improve the reputation of the recruited user sets. In our

simulated scenarios, users are recruited based on collabora-

tive reputation scores with/without anchor nodes (i.e., trusted

entities) [19], [21] and TSCM [74].
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TSCM, which employs statistical reputation maintenance,

is a reputation-aware version of MSensing [79] whereas

SONATA uses a fully decentralized approach to obtain user

reputation and assess the reputation-based value of the crowd-

sensed data. Social Network-Assisted Trustworthiness Assur-

ance (SONATA) has a decentralized nature such that users

cast votes for their neighbors in same community [20].

As shown in [19], introduction of collaborative reputation

scores improves the performance of TSCM and SONATA in

terms of platform utility and data trustworthiness by reducing

the payments to malicious users. In this evaluation, we com-

pare the performance of TSCM and collaborative reputation

scores. In the performance comparison, we consider two

operationmodes for collaborative methods—M1 andM2—as

formulated in Eq. 17. TheM1 mode uses collaborative reputa-

tion scores of the users to assess the reputation of a recruited

crowd whereas the M2 mode keeps track of the statistical

reputation of each user in the crowd for the same purpose.

In all test scenarios, we use TSCM as the benchmark scheme,

which is based entirely statistical reputations of users.

A. SIMULATION SETUP

For simulations, we use the same simulation settings in [21]

on a Java-based discrete event simulator that we developed.

All simulations run at a terrain that covers a 1000m×1000m

geographic area with 1000 smartphone participants. Each

sensing event lasts for 30 minutes and the arrival rate of

sensing tasks takes its value from the set {20, 40, 60,

80, 100} tasks/min following a Poisson distribution.

The value of a sensed task varies between 1 to 5 and

the sensing cost of a mobile user is distributed uniformly

in [1, 10]. We set the ratio of malicious smart-phone users

(i.e., probability of malicious nodes) to 3% and 5% of the

entire crowd population. Furthermore, in the case of anchor-

assisted and vote-based trustworthiness assurance, we set the

anchor percentage in the crowd (i.e., anchor nodes) to 3% and

5% of the entire crowd population. Table 2 summarizes the

simulation settings that have been applied in the evaluation

of the proposed methods in detail. Each scenario has been

run with five different seeds, and the result charts present the

average of five runs in the simulation results section. Using

this setup, we now report our evaluation results for the three

metrics introduced in Section V-B.

B. EVALUATION METRICS

We aim to find the design specifications and conditions for

user recruitment that would result in high utility for the

platform and the users, as well as high trustworthiness of

the crowd-sensed data. We base our simulations on three

inter-related metrics: i) platform utility, ii) average user util-

ity, and iii) the total payment to malicious users. While

the design goal of an MCS is to maximize (i) and (ii),

a side-effect of most of the previously described algo-

rithms is the unavoidable introduction of (iii), i.e., payments

made to users that provide biased, incorrect, or misleading

data.

TABLE 2. Simulation setup.

Platform utility (Uplatform) denotes the total received value

from the participants deducted by the total payments awarded

to the users. Here, it is worthwhile noting that in the case

of trustworthiness assurance through collaborative reputation

scores, the value of the recruited crowd at time τ (vR(Wτ ))

may denote either the value calculated through collabora-

tive reputation scores (i.e., M1 mode) or the usefulness of

data which is totally based on a centralized outlier detection

procedure (i.e., M2 mode). Platform utility is formulated

in Eq. 18. We provide our evaluation results for this metric

in Section V-C.

Uplatform =
∑

τ

(
vR(W τ ) −

∑

k

Pk
τ
)
, (18)

Average user utility (Uuser ) denotes the difference between

the payment received from the platform and the sensing

cost per user per sensing campaign as formulated in Eq. 19.

We provide our evaluation results for this metric

in Section V-D.

Uuser =

∑

τ

(( ∑

k

Pk
τ −

∑

k

bk
τ
)
/|W τ |

)

τtotal
. (19)

In both Eq. 18 and Eq. 19, Pk
τ is the total payment to user

k whereas bk
τ (in Eq. 19) is sensing cost (bid) of user k dur-

ing τ . The parameterWτ represents the set of winners during

the auction period τtotal , which denotes the total number of

sensing campaigns.

False Payments (Total amount of payment to malicious

users) denotes the rewards given to malicious users. The plat-

form aims at minimizing this parameter in order to improve

the trustworthiness of the collected data. We provide our

evaluation results for this metric in Section V-E.
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FIGURE 3. Platform Utility vs Sensing Task Arrival Rate. The sub-figures in (a)–(c) depict a deployment without anchors with the following initial
reputation scores for the newly joining participants: a) Ri (0) = 0.3, b) Ri (0) = 0.5, c) Ri (0) = 0.7. Because no anchor nodes are deployed as trusted
entities in (a)–(c), ω

inst
i

≤ 1 (per Eq. 14). The sub-figures in (d)–(f) depict a deployment with anchor nodes with the initial reputation scores d)
Ri (0) = 0.3, e) Ri (0) = 0.5, f) Ri (0) = 0.7. The impact of the initial reputation—Ri (0)—is more significant when the users are recruited on the basis of
collaborative reputation scores (per Eq. 16), and while the value of the recruited crowd (vR (W τ )) is obtained via collaborative reputation scores (M1 in
Eq. 17). In the M2 mode, nodes build reputation slower as their sensed tasks are valued only based on statistical reputation (M2 in Eq. 17). Regardless of
the mode (M1 or M2), Ri (0) = 0.7 with collaborative reputation scores leads to the highest improvement in platform utility. The deployment of anchor
nodes in (d)–(f) does not introduce significant improvement to platform utility when compared to the scenarios in (a)–(c).

Before we proceed with the simulation results, we present

a brief discussion on the theory of crowd-sensing. As seen

in Eq. 18, the platform aims to recruit users that intro-

duce higher marginal contribution and lesser sensing costs.

As seen in Eq. 9, marginal contribution of a user is not only

a function of the value of the sensed data and its cost but

also a function of the user’s reputation score, which can be

obtained via statistical, collaborative or hybrid methods. The

higher the user reputation is, the lesser the modified bid of the

user. Consequently, the lesser the modified bid of the user,

the higher the marginal contribution of the corresponding

user, as well as the higher the platform utility. Thus, a higher

user reputation score is expected to lead to a higher platform

utility. On the other hand, Eq. 19 states that user utility

increases with payments received from the platform and with

lower sensing costs (i.e., bids). Thus, there exists a trade-off

between platform utility and user utility. This is whywe apply

a reverse auction between the platform and the users. It is

worth noting that low reputation scores also lead to lower

payments and consequently lower user utilities.

C. EVALUATION: PLATFORM UTILITY

In Fig. 3, the impact of using collaborative reputation scores

under the two value assessment modes—M1 and M2—

is presented when user i is assigned an initial reputation

Ri(0) = 0.3 when participating in the first crowd-

sensing campaign. In Fig. 3, the term collaborative denotes

that the reputation assessment under SONATA is consol-

idated with the statistical reputation; using collaborative

reputation scores (Rcolli ) in the M1 mode leads to the

highest platform utility under all initial reputation values,

Ri(0) ∈ {0.3, 0.5, 0.7}. The scenarios in Fig. 3 a–c do not

deploy anchor nodes to obtain collaborative reputation scores.

Thus, in the decentralized component of reputation calcula-

tion, the instantaneous vote capacity of each node may vary

(i.e., ωinst
i ≤ 1 per Eq. 14). Furthermore, the impact of

Ri(0) (initial reputation) of the newly joining users is more

significant when the users are recruited on the basis of the

collaborative reputation scores (see Eq. 16) while the value

of the recruited crowd (vR(W τ )) in the sensing campaign τ is

obtained via collaborative reputation scores (M1 in Eq. 17).

In the M1 mode, the value of the recruited crowd is cal-

culated based on the users’ collaborative reputation scores

(Rcolli in Eq. 16) and in the winner selection state, sensing

costs, as well as the reputation-based task values are adjusted

based on the collaborative reputation scores. Thus, marginal

contribution in Eq. 9 becomes the following:

vRi (W ) −
bi

Rcolli

(20)

On the other hand, under theM2 mode, while the malicious

nodes can be identified using the combined the statistical

and vote-based information, collaborative reputation scores

affect the bids (costs) of the participants. Furthermore, the

centralized component (i.e. statistical reputation) affects the

value of the crowd-sensed tasks as formulated in Eq. 17.

Consequently this causes the nodes to build reputation slower

than the case when the platform calculates the reputation-

based values under theM2 mode. Nevertheless, when Ri(0) is

set to 0.7 for each newly joining participant, employment of

collaborative reputation scores improves the platform utility
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FIGURE 4. User Utility vs. Sensing Task Arrival Rate. The sub-figures in (a)–(c) depict a deployment without anchors with the following initial reputation
scores for the newly joining participants: a) Ri (0) = 0.3, b) Ri (0) = 0.5, c) Ri (0) = 0.7. The sub-figures in (d)–(f) depict a deployment with anchor nodes

with the initial reputation scores d) Ri (0) = 0.3, e) Ri (0) = 0.5, f) Ri (0) = 0.7. Collaborative reputation scores in Eq. 16 lead to significant cuts to user
utility in both non-anchored and anchored scenarios. These cuts can be limited when the value of the recruited crowd—vR (W τ )—is calculated based on
the statistical reputation (per Eq. 17, M2 mode). Because mode M1 in Eq. 17 uses vote-based and statistical reputation components to obtain the value of
the recruited crowd, the votes for the neighbors (χ i

j
in Eq. 17) can be biased, which may result in reduced Rvoted

i
(t) (reputation component) of Rcoll

i
(t)

and consequently reduced payments to the users.

of TSCM by up to 66% and 34% under M1 and M2 modes,

respectively.

In Fig. 3 d–f, utility of the crowd-sensing platform is

illustrated in the presence of anchor nodes in calculation

of user reputation scores, i.e. i ∈ A in Eqs. 12-13. When

compared to Fig. 3 a–c, the deployment of anchor roles in

the decentralized component of the collaborative reputation

score assessment does not introduce a significant improve-

ment to platform utility. In [21], it was reported that the

deployment of anchor nodes would improve platform utility

if the anchor population is not less than the malicious user

population. However, the reference study employs totally

distributed reputation assessment for the participants, which

is a vote-based Sybil-detection system. In this paper, based

on the results in Fig. 3 a–c and Fig. 3 d–f, we show that the

inclusion of a centralized reputation component (Rstati (t) in

Eq. 16, which keeps track of the usefulness of the data through

statistical reputation calculation) can provide the same level

of platform utility and saves the investment for the anchor

nodes. The improvement depends on the operation mode

(M1 orM2), which affects the calculation of the crowd-sensed

task values as well as the value of the recruited crowd as

formulated in Eq. 17. As seen in Fig. 3 d–f, when Ri(0) = 0.7,

under a moderate sensing task arrival rate (i.e. 60 sensing

tasks per min), using collaborative reputation scores with

anchor nodes improves TSCM by 38% and 24% under the

M1 and M2 modes, respectively.

D. EVALUATION: USER UTILITY

In Fig. 4 a–c, the average user utility per sensing campaign

is illustrated under three different initial reputation values,

Ri(0) ∈ {0.3, 0.5, 0.7}, for the newly joining participants

without deploying anchor nodes to obtain the collaborative

reputation scores.

As observed in Fig. 4, when collaborative reputation

scores are employed instead of TSCM, the user util-

ity is significantly reduced if the value of the recruited

crowd (vR(W τ )) is calculated through collaborative reputa-

tion scores (M1 mode in Eq. 17). For example, this reduc-

tion is between 20%–32% under varying task arrival rates

when Ri(0) = 0.7. The reduction in user utility is 10%–15%

under the same settings in M2 mode. On the other hand,

as shown in Fig. 4 d–f, in the presence of deployed anchors

as the trusted entities in the decentralized component, the

reduction in user utility varies between 10%–28% under

the M1 mode. Furthermore, under the M2 mode and lightly

arriving sensing tasks (i.e. 20 tasks/min), the user util-

ity can be improved by 1.2% and the reduction after that

point is 3.8%–11.6%. Based on these facts, we reach two

conclusions
• Using collaborative reputation scores (Rcolli (t) in Eq. 16

in user recruitment reduces user utility when compared

to the purely statistical reputation-based user recruit-

ment (Rstati (t) in Eq. 6). The reason behind this behavior

is that the votes for the neighbors (χ i
j ) can be biased,

which may result in reduced reputation (Rvotedi (t) com-

ponent of Rcolli (t) in Eq. 16) and consequently reduced

payments to users.

• The bias by the decentralized component of the collab-

orative reputation assessment can be rectified by using

collaborative reputation scores only in the winner selec-

tion step of the user recruitment and using statistical rep-

utation values while calculating the value of a recruited

crowd (vR(W τ )) (M2 mode in Eq. 17).
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FIGURE 5. False payments (rewards made to malicious users) vs. Sensing Task Arrival Rate. Sub-figures in (a)–(c) depict a deployment without anchors

with the following initial reputation scores for the newly joining participants: a) Ri (0) = 0.3, b) Ri (0) = 0.5, c) Ri (0) = 0.7. The sub-figures in (d)–(f) depict
a deployment with anchor nodes with the initial reputation scores d) Ri (0) = 0.3, e) Ri (0) = 0.5, f) Ri (0) = 0.7. Possible user bias in the M1 mode of the
collaborative reputation scores (Eq. 17) works in favor of the MCS platform. When users are recruited based on the collaborative reputation scores
(Rcoll

i
(t) in Eq. 16)) and when the value of a recruited crowd is assessed by using those scores (M1 mode in Eq. 17), the rewards made to the malicious

users can be reduced by >90%. In the presence of anchors, using collaborative reputation scores in both modes (M1 and M2) can improve the total
rewards made to the malicious users until the task arrival rates increase to >100 tasks/min.

E. EVALUATION: TOTAL REWARDS TO MALICIOUS USERS

Total rewards made to malicious users—alternatively defined

as false payments—is also crucial for platform utility and data

trustworthiness. Figure 5 illustrates the results concerning

total rewards to malicious users at the end of the crowd-

sensing event under different initial reputation values (Ri(0))

for the newly joining users.

Here, user bias in the M1 mode of the collaborative

reputation scores (Eq. 17) during the voting phase works

in favor of the crowd-sensing platform; when the users

are recruited based on the collaborative reputation scores

(Rcolli (t) in Eq. 16) and when the value of a recruited crowd

is assessed by using those scores (M1 mode in Eq. 17),

the rewards made to the malicious users can be reduced

by >90% whereas any compromise from the collabora-

tive reputation (such as in the M2 mode) may increase

the payments made to the malicious users. Furthermore,

when anchors are deployed—as shown in Fig. 5 d–f—to

assist in the voting phase, using collaborative reputation

scores in both modes can improve the total rewards made

to the malicious users up to heavy sensing task arrival rates

(100 tasks/min).

An overall evaluation of the performance results illustrated

and discussed above is presented in Section VI.

VI. CONCLUSIONS

The emergence of cloud computing and Internet of

Things (IoT) enables Mobile Crowd-Sensing (MCS) plat-

forms to be formed, in which a community of mobile users

use the built-in sensors in their mobile devices—such as

gyroscopes, accelerometers, barometers, microphones, cam-

eras, and temperature sensors—to sense several phenom-

ena. One for-profit MCS application, Sensing-as-a-Service

(S2aaS), is a promising recipe for the commercialization

of the MCS-acquired data by compensating the participants

of the MCS community monetarily and selling the data to

interested parties. Alternatively, many not-for-profit appli-

cations exist that formulate the usage of the MCS-acquired

data for environmental monitoring and other community-

enhancement initiatives.

Whether for commercial use or not, two inter-correlated

problems—which are generally studied in conjunction with

one another—exist in MCS applications: i) incentivizing the

users to participate and ii) ensuring the trustworthiness of

the acquired data. While the first challenge can be addressed

with proper recruitment schemes, the second one requires

the association of a reputation score to each mobile user

to quantify the trustworthiness of their acquired data. Data

trustworthiness is a non-trivial challenge in MCS systems,

because adversaries may lead to disinformation at the service

requester site through the manipulation of sensor readings;

worse yet, a payment is made to them for the incorrect infor-

mation they provide. In this paper, we use three metrics, plat-

form utility, user utility, and false payments (the payments to

malicious users), that quantify the inter-play between issues

(i) and (ii). The goal of a successful MCS system is to maxi-

mize platform utility by compensating the users sufficiently,

which will keep the user utility at an acceptable minimum.

The third metric—false payments—must be minimized to

avoid paying for bad information.
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In this paper, we present a detailed MCS performance

study, centered around these three metrics under multi-

ple user recruitment policies. All of the schemes adopt a

reverse auction-based user recruitment procedure but differ

in their trustworthiness assurance methods. Among these,

TSCM runs a statistical reputation-based method, which

keeps track of true and false readings through outlier detec-

tion techniques. A decentralized solution, Social Network-

Assisted Trustworthiness Assurance (SONATA), uses both

statistical and vote-based reputation scores. The third scheme

uses collaborative reputation score-based trustworthiness.

The study has also been extended to the case where anchor

nodes, which are known to be the trusted entities, are

used in the decentralized component of collaborative repu-

tation scores. Our simulation results highlight the following

results:

• Using collaborative reputation scores in user recruitment

improves platform utility and data trustworthiness by

reducing false payments (rewards to malicious users).

• Deployment of anchor nodes to assist in the decen-

tralized (i.e., vote-based) component of collaborative

reputation scores helps in reducing the false payments,

however there is no clearly-evident advantage to use

anchor nodes when user reputation scores are collabo-

ratively calculated. Previous studies show an improved

platform utility under certain circumstances when the

user reputation scores are calculated in a fully decen-

tralized fashion.

• When collaborative methods are employed, using sta-

tistical reputation in the assessment of the value of a

recruited crowd can reduce the user bias in the decen-

tralized vote-based component of the reputation score;

consequently, it can help reduce the negative impact on

user utility.

• Our evaluation of the initial reputation of the newly-

joining users shows that setting the initial reputation to a

value of ≈0.3 leads to the most feasible results in terms

of platform utility, user utility and data trustworthiness.

We are currently working on incorporating mobility mod-

els as well as inter-participant interaction in an MCS plat-

form. As the aim of this paper is laying the foundations of

quantifying user reputation in crowdsensing systems, perfor-

mance study has been limited to simulation results. However,

we are currently working on integrating the methods that are

presented here with a small-scale crowdsensing testbed to run

tests with real multi-dimensional data.
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