
19 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

Composing Communicating Systems, Synchronously

Published:
DOI: http://doi.org/10.1007/978-3-030-61362-4_3

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/809155 since: 2021-02-28

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-030-61362-4_3
https://hdl.handle.net/11585/809155

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Barbanera F., Lanese I., Tuosto E. (2020) Composing Communicating Systems,
Synchronously. In: Margaria T., Steffen B. (eds) Leveraging Applications of Formal
Methods, Verification and Validation: Verification Principles. ISoLA 2020. Lecture
Notes in Computer Science, vol 12476. Springer, Cham.

The final published version is available online at: https://doi.org/10.1007/978-3-
030-61362-4_3

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-030-61362-4_3
https://doi.org/10.1007/978-3-030-61362-4_3

Composing Communicating Systems,
Synchronously?

Franco Barbanera1, Ivan Lanese2, Emilio Tuosto3

1 Dept. of Mathematics and Computer Science, University of Catania (Italy)
2 Focus Team, University of Bologna/INRIA (Italy)

3 Gran Sasso Science Institute (Italy) and University of Leicester (UK)

Abstract. Communicating systems are nowadays part of everyday life,
yet programming and analysing them is difficult. One of the many reasons
for this difficulty is their size, hence compositional approaches are a need.
We discuss how to ensure relevant communication properties such as
deadlock freedom in a compositional way. The idea is that communicating
systems can be composed by taking two of their participants and trans-
forming them into coupled forwarders connecting the two systems. It has
been shown that, for asynchronous communications, if the participants
are “compatible” then composition satisfies relevant communication prop-
erties provided that the single systems satisfy them. We show that such
a result changes considerably for synchronous communications. We also
discuss a different form of composition, where a unique forwarder is used.

1 Introduction

The behaviour of systems which communicate via point-to-point message passing
can be described in terms of systems of Communicating Finite State Machines
(CFSMs) [10], that is systems of finite state automata whose transitions are
labelled by sending and receiving actions. Such systems can be then analysed to
check whether they enjoy relevant communication properties such as deadlock
freedom, lock freedom, etc. (see, e.g., [16,24,7,20,6]).

Traditionally these systems are viewed as closed, thus one needs full knowledge
of the whole system in order to analyse it. In scenarios such as the Internet, the
Cloud or serverless computing, such assumption is less and less realistic.

Recently, an approach to the composition of systems of CFSMs has been
proposed [3,4]. The main idea of the approach is to take two systems, select two
of their participants (one per system) and transform them into coupled gateways

? Research partly supported by the EU H2020 RISE programme under the
Marie Sk lodowska-Curie grant agreement No 778233, by the MIUR project PRIN
2017FTXR7S “IT-MaTTerS” (Methods and Tools for Trustworthy Smart Systems)
and by the Project PTR - UNICT 2016-19. The first and second authors have also
been partially supported by INdAM as members of GNCS (Gruppo Nazionale per il
Calcolo Scientifico). The authors thanks the reviewers for their helpful comments
and also M. Dezani for her support.

2

connecting the two systems. More precisely, if a message is sent to one of the
gateways, it is forwarded to the other gateway, which sends it to the other system.

Of course, for such a composition to be well-behaved, the two gateways should
exhibit behaviours which are essentially dual of each other: when one wants to
send a message the other one needs to be willing to receive the same message.
Such an intuition has been formalised as a compatibility relation. It has also
been shown that compatibility, together with conditions of no mixed states and
?!-determinism on the selected participants, ensures that the composition is
well-behaved. For instance, if the components are deadlock-free then the system
resulting from the composition is deadlock-free too.

In this paper we first revise such results in a setting of synchronous CFSMs,
while [3,4] focus on the asynchronous FIFO case. Somehow surprisingly, stricter
conditions are required to ensure compositionality of deadlock freedom. We
then propose a new composition methodology which replaces the two selected
participants with a unique gateway. Beyond saving some communications and
simplifying the analysis, this second methodology is also more general since the
conditions needed for compositionality of deadlock freedom are slightly weaker.
We call this second composition semi-direct, to distinguish it also from direct
composition as proposed in [5] in a context of multiparty session types [17], which
avoids the need for gateways altogether. Notably, two-gateways composition is
completely transparent for the participants different from the interface ones,
semi-direct composition requires renaming some of their communications, while
direct composition may require a non-trivial restructuring of their behaviours.

Structure of the paper. Section 2 introduces systems of CFSMs and related
notions. Composition by gateways and semi-direct composition are discussed in
Section 3 and Section 4, respectively. Conclusions, related and future work are
discussed in Section 5.

2 Background

Communicating Finite State Machines (CFSMs) [10] are Finite State Automata
(FSAs) where transitions are labelled by communications.

Definition 2.1 (FSA). A Finite State Automaton (FSA) is a tuple A =
〈S, s0,L,→〉 where

– S is a finite set of states (ranged over by s, q, . . .);
– s0 ∈ S is the initial state;
– L is a finite set of labels (ranged over by l, λ, . . .);
– →⊆ S×L×S is a set of transitions.

We use the usual notation s1
λ−→ s2 for the transition (s1, λ, s2) ∈−→, and s1 −→ s2

when there exists λ such that s1
λ−→ s2, as well as −→∗ for the reflexive and transitive

closure of −→. The set of reachable states of A is R(A) = { s | s0 −→∗ s }.

3

Let s
λ−→ s′ ∈ A emphasise that the transition belongs to (the set of transitions

of) an FSA A; likewise, q ∈ A stands for “q belongs to the states of A”. A

transition s
λ−→ s′ (resp. s′

λ−→ s) is an outgoing (resp. incoming) transition of s.
We write f [x 7→ y] for the update of the function f in a point x of its domain
with the value y. Also, dom(f) denotes the domain of the function f .

We now define systems of CFSMs, by adapting the definitions in [10] to our
context. Let P be a set of participants (or roles, ranged over by A, B, etc.) and
M a set of messages (ranged over by m, n, etc.). We take P and M disjoint.

Definition 2.2 (Communicating system). A communicating finite-state ma-
chine (CFSM) is an FSA with labels in the set

Lact = {AB!m,AB?m | A 6= B ∈ P,m ∈M}

of actions. The subject of an output (resp. input) action AB!m (resp. AB?m) is
A (resp. B). A CFSM is A-local if all its transitions have subject A.

A (communicating) system is a map S = (MA)A∈P assigning an A-local CFSM
MA to each participant A ∈ P where P ⊆ P is finite and any participant occurring
in a transition of MA is in P.

Note that systems satisfying the above definition are closed: in fact any input or
output action does refer to participants belonging to the system itself.

We now define, following [7,6], the synchronous semantics of systems of
CFSMs, which is itself an FSA (differently from the asynchronous case, where
the set of states can be infinite).

Definition 2.3 (Synchronous semantics). Let S be a communicating system.
A synchronous configuration of S is a map s = (qA)A∈dom(S) assigning a local
state qA ∈ S(A) to each A ∈ dom(S).

The synchronous semantics of S is the FSA JSK = 〈S, s0,Lint,→〉 where

– S is the set of synchronous configurations of S, as defined above;
– s0 = (q0A)A∈dom(S) ∈ S is the initial configuration where, for each A ∈ dom(S),
q0A is the initial state of S(A);

– Lint = {A−→B : m | A 6= B ∈ P and m ∈M} is a set of interaction labels;

– s
A−→B : m−−−−−→ s[A 7→ q,B 7→ q′] ∈ JSK if s(A)

A B!m−−−→ q ∈ S(A) and s(B)
A B?m−−−→ q′ ∈

S(B).

We say that s enables q
A B!m−−−→ q′ ∈ S(A) (resp. q

B A?m−−−→ q′ ∈ S(A)) when s(A) = q.

As expected, an interaction A−→B : m occurs when A performs an output
AB!m and B the corresponding input AB?m.

As discussed in the Introduction, in this paper we will study preservation
of communication properties under composition. As sample property we choose
the well-known notion of deadlock freedom. The definition below adapts the one
in [13] to a synchronous setting (as done also in [20,27]).

Definition 2.4 (Deadlock freedom). Let S be a communicating system. A
configuration s ∈ R(JSK) is a deadlock if

4

– s has no outgoing transitions in JSK and
– there exists A ∈ P such that s(A) has an outgoing transition in S(A).

System S is deadlock-free if for each s ∈ R(JSK), s is not a deadlock.

3 Composition via Gateways

This section discusses composition of systems of CFSMs via gateways, as intro-
duced in [3,4], and studies its properties under the synchronous semantics. The
main idea is that two systems of CFSMs, say S1 and S2, can be composed by
transforming one participant in each of them into gateways connected to each
other. Let us call H the selected participant in S1 and K the one in S2. The
gateways for H and K are connected to each other and act as forwarders: each
message sent to the gateway for H by a participant from the original system
S1 is now forwarded to the gateway for K, that in turn forwards it to the same
participant to which K sent it in the original system S2. The dual will happen
to messages that the gateway for K receives from S2. A main advantage of this
approach is that no extension of the CFSM model is needed to transform systems
of CFSMs, which are normally closed systems, into open systems that can be
composed. Another advantage is that the composition is fully transparent to all
participants different from H and K.

We will now define composition via gateways on systems of CFSMs, following
the intuition above.

Definition 3.1 (Gateway). Given a H-local CFSM M and a participant K, the
gateway of M towards K is the CFSM gw(M,K) obtained by replacing:

– each transition q
HA!m−−−→ q′ ∈ M with q

KH?m−−−→ q′′
HA!m−−−→ q′ for some fresh

state q′′;

– each transition q
AH?m−−−→ q′ ∈ M with q

AH?m−−−→ q′′
HK!m−−−→ q′ for some fresh

state q′′.

We compose systems with disjoint participants through two of them, say H
and K, by taking all the participants of the original systems but H and K, whereas
H and K are replaced by their respective gateways.

Definition 3.2 (System composition). Let S1 and S2 be two systems with
disjoint domains. The composition of S1 and S2 via H ∈ dom(S1) and K ∈ dom(S2)
is defined as

S1
H↔KS2 = A 7→

Si(A), if A ∈ dom(Si) \ {H,K} with i ∈ {1, 2}
gw(S1(H),K), if A = H

gw(S2(K),H), if A = K

(Note that dom(S1
H↔KS2) = dom(S1) ∪ dom(S2).)

5

We remark again that, by the above approach for composition, we do not
actually need to formalise the notion of open system. In fact any closed system
can be looked at as open by choosing (according to the current necessities) two
suitable participants in the “to-be-connected” systems and transforming them
into two forwarders.

We also note that the notion of composition above is structural: a correspond-
ing notion of behavioural composition has been studied in [5] in a context of
multiparty session types [17].

Example 3.3. Take the systems S1 and S2 below

S1 =
0

A

AH!m

0

H

AH?m

S2 =

0

1

K
K
C
!m

K
D
!m

0

C

KC?m

0

D

KD?m

The system consisting of the following CFSMs

0

A

AH!m

0

0′

H

A
H
?
m

H
K
!m

0

0′

1

1′

K

H
K
?m

K
C!
m

H
K
?m

K
D
!m

0

C

KC?m

0

D

KD?m

is the composition S1
H↔KS2. �

Given a configuration of the composition of systems S1 and S2 we can retrieve
the configurations of the two subsystems by taking only the states of participants
in Si (for i ∈ {1, 2}) while avoiding, for the gateways, to take the fresh states
introduced by the gateway construction.

Definition 3.4 (Configuration projection). Let s be a configuration of a
composed system S1

H↔KS2. The projection of s on S1 is the map s|1 defined by

s|1 : A 7→

s(A), if s(A) is not fresh

q, if A = H, s(H) is fresh and q
KH?m−−−→ s(H) ∈M

q, if A = H, s(H) is fresh and s(H)
HK!m−−−→ q ∈M

where M = gw(S1(H),K). The definition for s|2 is analogous.

Intuitively, in the projection s|1, if H is in a fresh state after receiving from
K, then the other participants in S1 are still not aware of the message arrival,
hence to have a coherent configuration we take the state of H before the receive.
If instead H is in a fresh state before sending to K, then the other participants in
S1 know that the message has been sent, hence to have a coherent configuration
we take the state of H after the send. (A similar intuition applies to s|2.)

6

Example 3.5. Let us consider the system S = S1
H↔KS2 of Example 3.3. Take its

configuration s = (0A, 0H, 1
′
K, 0C, 0D). It is easy to check that s ∈ R(JSK). In fact

s0 = (0A, 0H, 0K, 0C, 0D)
A−→H : m−−−−−→ (0A, 0

′
H, 0K, 0C, 0D)

H−→K : m−−−−−→ (0A, 0H, 0
′
K, 0C, 0D)

K−→C : m−−−−−→ (0A, 0H, 1K, 0C, 0D)
A−→H : m−−−−−→ (0A, 0

′
H, 1K, 0C, 0D)

H−→K : m−−−−−→ (0A, 0H, 1
′
K, 0C, 0D)

The projections of s on, respectively, S1 and S2 are

s|1 = (0A, 0H) and s|2 = (1K, 0C, 0D)

Notice that (as we shall prove in Proposition 3.11), from s ∈ R(JSK) it is possible
to infer that s|1 ∈ R(JS1K) and s|2 ∈ R(JS2K). �

Being able to build the composition via gateways does not ensure that
the result is well-behaved or that its behaviour is related in any way to the
behaviour of the original systems. We provide below sufficient conditions for this
to happen. We focus in particular on whether deadlock freedom is preserved
under composition. Somehow surprisingly, in the synchronous case preservation
of deadlock freedom requires stricter conditions than in the asynchronous one.

Informally, two CFSMs M1 and M2 are compatible if M1 is bisimilar to the
dual of M2 provided that the communicating partners are abstracted away. In
order to define compatibility, a few simple definitions are handy.
Let Li/o = { ?m, !m | m ∈M} and define the functions

io : Lact → Li/o and (·) : Li/o → Li/o

by the following clauses

io(AB?m) = ?m io(AB!m) = !m and ?m = !m !m = ?m

which extend to CFSMs in the obvious way: given a CFSM M = 〈S, q0,Lact,→〉,
we define io(M) = 〈S, q0,Li/o,→′〉 where →′= { q io(l)−−→ q′

∣∣ q l−→ q′ ∈M }; and

likewise for M .

Definition 3.6 (Compatibility). Two CFSMs M1 and M2 are compatible
if io(M1) is bisimilar to io(M2). Given two communicating systems S1 and S2,
participants H ∈ dom(S1) and K ∈ dom(S2) are compatible roles if S1(H) and
S2(K) are compatible CFSMs.

We refer to the bisimilarity in Definition 3.6 as compatibility bisimilarity. Note
that the compatibility bisimilarity between M1 and M2 is a relation between
their states. It is easy to check that H and K of Example 3.3 are compatible roles.

Definition 3.7. An A-local CFSM M is:

i) ?-deterministic (resp. !-deterministic) if q
X A?m−−−→ q′ and q

Y A?m−−−→ q′′ ∈ M
(resp. q

A X!m−−−→ q′ and q
A Y!m−−−→ q′′ ∈M) implies q′ = q′′;

ii) ?!-deterministic if it is both ?-deterministic and !-deterministic;

iii) mixed-deterministic if m 6= n for all q
X A?m−−−→ q′ and q

A Y!n−−−→ q′′ ∈M .

7

A state q ∈M is a sending (resp. receiving) state if it has outgoing transitions,
all of which are labelled with sending (resp. receiving) actions; q is a mixed state
if it has outgoing transitions and q is neither sending nor receiving.

Definition 3.8 ((H,K)-composability). Two systems S1 and S2 with disjoint
domains are (H,K)-composable if H ∈ dom(S1) and K ∈ dom(S2) are two com-
patible roles whose machines have no mixed states and are ?!-deterministic.

Definition 3.9. Let gw(MH,K) be a gateway extracted from an H-local CFSM.
Function nofMH

(·) maps the states of gw(MH,K) to the states of MH as follows:

nofMH
(q) =

q if q is not fresh

q′ if q is fresh and q′
AH?m−−−→ q ∈ gw(MH,K) for some A,m

q′ if q is fresh and q
HA!m−−−→ q′ ∈ gw(MH,K) for some A,m

Lemma 3.10. Function nofMH
is well-defined.

Proof. The restriction of nofMH
to the states of MH is the identity. If q is not

a state of MH, then it is fresh by definition of gw(MH,K). By definition of

gw(MH,K) again, there is a unique q′ such that either q′
AH?m−−−→ q ∈ gw(MH,K)

or q
HA!m−−−→ q′ ∈ gw(MH,K).

In the system S = S1
H↔KS2 of Example 3.3 it is easy to check, for example,

that nofS(H)(0) = 0 and nofS(K)(1
′) = 0.

Function nofMH
is close to the definition of configuration projection (but for

considering a single state instead of a whole configuration) with a main change.
Indeed, when gw(MH,K) receives a message from its own system S1 going to
some fresh state q′′, configuration projection maps it to the next state, since the
rest of S1 is aware of the transition but gw(MH,K) will complete the transition
only in the next state. Instead, function nofMH

maps q′′ to the previous state
since S2, and K in particular, are not yet aware of the transition. Thus, function
nofMH

is designed to establish a correspondence with the other system as shown
by the next proposition.

Proposition 3.11. Let S = S1
H↔KS2 be the composition of two (H,K)-composable

systems S1 and S2. If s ∈ R(JSK) then exactly one of the following cases hold for
qH = s(H) and qK = s(K), the states in s of the gateway CFSMs:

1. both qH and qK are not fresh;

2. either qH is fresh, qK is not fresh, qH
HK!m−−−→ q ∈ S1(H), or, symmetrically, qK

is fresh, qH is not fresh, qK
KH!m−−−→ q ∈ S2(K);

3. either qH is fresh, qK is not fresh, and there is A ∈ dom(S1) such that

qH
HA!m−−−→ q ∈ S1(H), or, symmetrically, qK is fresh, qH is not fresh, and there

is B ∈ dom(S2) such that qK
KB!m−−−→ q ∈ S2(K);

4. both qH and qK are fresh and either qH
HK!m−−−→ q ∈ S1(H), and there is A ∈

dom(S2) such that qK
KB!n−−−→ q ∈ S2(K), or, symmetrically, qK

KH!m−−−→ q ∈
S2(K), and there is A ∈ dom(S1) such that qH

HA!n−−−→ q ∈ S1(H).

8

Also, s|1 is reachable in S1, s|2 is reachable in S2 and nofMH
(qH) ∼ nofMK

(qK).

Proof. The proof is by induction on the number n of transitions performed to
reach s. If n = 0 then by construction we are in case 1. The conditions on
configurations and on bisimulation hold by construction.

Let us assume that we are in one of the cases above and a further transition
is performed. Since composition is symmetric for each possibility we do not detail
the symmetric case. Also note that in each of the cases, if the transition does
not involve the gateways, then we are still in the same case. The condition on
configurations hold since the same step can be taken by the same participants
in one of the two systems, and the ones of the other system do not move. The
condition on bisimulation holds since the state of the gateways does not change.

If we were in case 1, a transition involving a gateway has necessarily the form

s
A−→H : m−−−−−→ s′ (or a similar one for the gateway for K) since an output from a

gateway would require a gateway to be in a fresh state. This leads us to case 2.
Indeed, the gateway for H goes to the fresh state s′(H) and is willing to execute

the gateway communication s′(H)
HK!m−−−→ q, while the state of the gateway for

K does not change. The condition on configurations hold by induction on s|2
and holds on s|1 since s′(H)|1 = q and by construction s|1

A−→H : m−−−−−→ s′|1. The
condition on bisimulation holds by inductive hypothesis since nofMH

(q) = s|1(H)
and the state of the gateway for K does not change.

In case 2 a transition involving the gateway necessarily is the gateway com-

munication s
H−→K : m−−−−−→ s′, leading us to case 3. Indeed, the gateway for H cannot

perform other transitions and thanks to the condition on compatibility and the
fact that gateway roles do not have mixed states K cannot perform any input
from its system. Thus, the gateway for H goes to a non-fresh state while the

gateway for K goes to a fresh state, willing to execute an output s′(K)
KB!m−−−→ q

towards its system. The condition on configurations holds by inductive hypothe-
sis since projection generates the same configurations as before. The condition
on bisimulation holds since the two participants take corresponding steps. The
resulting states are in a correspondence thanks to ?!-determinism.

In case 3 for a transition involving a gateway there are two possibilities,
according to whether the gateway taking a transition is in a fresh state or not.

– The gateway in a fresh state, say K, takes a transition. By construction it de-

livers a message m to a participant in its system via a transition s
K−→B : m−−−−−→ s′.

This leads us to case 1. Indeed, K goes to a non-fresh state, while H was
in a non-fresh state by hypothesis and does not move. The condition on
configurations holds by inductive hypothesis for s|1 and holds for s|2 since B
can do the same move as in s and the two moves of the gateway for K (the
gateway transition which was not taken into account yet and the delivery of
message m) correspond to the complementary move of K in s|2. The condition
on bisimulation holds by inductive hypothesis since nofMH

(·) projects on the
same states as before the transition.

9

– The gateway in a non-fresh state, say H, takes a transition. By construction it

takes a message from its own system via a transition s
A−→H : n−−−−−→ s′. This leads

us to case 4. Indeed, H goes to a fresh state while K was already in a fresh

state. Then s′(K)
KB!m−−−→ q by inductive hypothesis and s′(H)

HK!n−−−→ q′ by
construction. The reasoning on conditions of configurations and bisimulation
is similar to the one of a message taken by the gateway in case 1.

In case 4, when a transition involving a gateway, say K, is performed, it is

necessarily of the form s
K−→B : m−−−−−→ s′ since the gateway for K by construction

cannot take any other action. This leads to case 2. Indeed, H remains in a fresh

state and willing to execute a transition s′(H)
HK!m−−−→ q while K goes to a non-fresh

state. The reasoning for the conditions on configurations and bisimulation is
similar to the one for case 3 when K delivers a message to its system.

Now, one may think that analogously to what happens in [3,4], if two systems
are (H,K)-composable and deadlock-free then their composition is deadlock-free
too. Unfortunately, this is not the case, as shown by the examples below. The
first example is based on an example in [4], that shows that mixed states have to
be forbidden and that holds for the synchronous case as well. In the synchronous
case, however, we can also exchange some inputs with outputs and obtain the
same behaviour without mixed states.

Example 3.12. Take the following CFSMs

0 1

A

AH!m

0

1

H

A
H
?
m

A
H
?
x

0

1

K

K
B
!m

K
B
!x

0 1

B

KB?x

and consider the composition of the system with participants A and H with the
one with participants K and B. Clearly, the two systems are (H,K)-composable
and deadlock-free, yet their composition has a deadlock; in fact, when the gateway
for K receives m, participant B is waiting only for x. By considering the second
system alone, this is not a deadlock, since B forces K to select the right branch.

Note that the situation would be different in an asynchronous setting. Indeed,
the second system could deadlock. This is due to the fact that K could send m
without synchronising with B. �
Example 3.13. Take the CFSMs below

0 1

A

AH!m

0

B

0

1

H

A
H
?
m

B
H
?
x

0

1

K

K
C
!m

K
D
!x

0 1

D

KD?x

0

C

10

The same reasoning of Example 3.12 can be applied here, to systems with
participants A,B,H and C,D,K. Hence, choices made by different participants
are problematic as well. �
Example 3.14. Take the CFSMs below

0 1

2

A

AH!m

A
B
!g
o

0 1

2

B

AB?go

B
H
!x

0

12

3

H

A
H
?m

B
H
?x

A
H
?m

B
H
?x

0

1 2

3

K

K
D
!x K

C!m

K
D
!xK

C!m

0 1

2

D

KD?x

D
C
!g
o

0 1

2

C

DC?go

K
C
?
m

The reasoning is again similar, and shows that the composition of systems A,B,H
and K,C,D deadlocks while the two systems in isolation do not. Hence also
concurrency diamonds are problematic. �

Given the examples above, it is clear that, differently from the asynchronous
case, deadlock freedom can be preserved only under very strict conditions on
interface participants. Indeed we show below that it can be preserved if interface
participants do not contain choices.

Definition 3.15 (Sequential CFSM). A CFSM is sequential if each of its
states has at most one outgoing transition.

It is immediate to check that gw(M,H) is sequential if M is so. Moreover,
trivially, a sequential M is also ?!-deterministic and with no mixed state (and
hence mixed-deterministic).

Theorem 3.16 (Deadlock freedom for sequential interfaces). Let S1 and
S2 be two (H,K)-composable and deadlock-free systems, such that S1(H) and S2(K)
are sequential. Then the composed system S1

H↔KS2 is deadlock-free.

Proof. We show that if the composed system S1
H↔K S2 reaches a deadlock con-

figuration s then at least one of s|1 and s|2 is a deadlock. First, we show that
if a participant A (say from S1) is willing to take an action in a configuration
s of the composed system then some participant is willing to take an action
in s|1 or in s|2 (and the same for participants in S2). Note that s|1 and s|2 are
reachable in, respectively, S1 and S2 thanks to the condition on configurations in
Proposition 3.11.

If A 6= H then A wants to take the same action by definition of s|1.
If A = H and it is willing to receive from K then, by the definition of s|1 and

of gateway, H in s|1 is willing to send a message to some participant in S1.
If A = H and it is willing to send to K then nofMH

(s(H)) ∼ nofMK
(s(K)) by

the condition on bisimulation of Proposition 3.11. By definition of nofMH
(·) and

11

of gateway, nofMH
(s(H)) is willing to take a message from its own system, hence

nofMK
(s(K)) is willing to send such a message to its own system thanks to the

definition of bisimulation. By definition of configuration projection nofMK
(s(K))

is also a state in s|2, hence there is a participant willing to take a transition.

Now we show that if no transition is enabled in a configuration s of the
composed system then no transition is enabled in s|1 and s|2. We prove the
contrapositive, showing that if there is an enabled transition in s|1 or in s|2 then
there is a transition enabled in s as well. There are a few cases to consider.

Transition not involving the interface roles: this case follows immediately
from the definition of system transition and of configuration projection.

Communication towards an interface role: let A be the sender and H the

interface role. The transition is of the form s|1
A−→H : m−−−−−→ s1. There are two

possibilities. If the gateway for H is not in a fresh state in s then the same
transition can trigger in the composed system thanks to the definition of
system transition and of configuration projection.

If it is in a fresh state then thanks to the definition of gateway and of configu-
ration projection it still needs to complete a previous gateway communication.
The other gateway, K, may be in a fresh state or not. If it is not, thanks to the
definition of nofMH

(·) and to the condition on bisimulation of Proposition 3.11
it is willing to accept the gateway communication which can thus trigger as
desired. If K is in a fresh state then thanks to the definition of configuration
projection and of gateway it is willing to deliver a message to S2. Since S2

is not a deadlock and a participant is willing to take a transition then a
transition can trigger in S2 too. Thus, we can apply the other cases to find
a witness transition in the composed system. Note that the transition in S2

cannot be towards an interface role thanks to the condition on bisimulation
of Proposition 3.11 and since there are no mixed states, hence this reasoning
does not cycle.

Communication from an interface role: let K be the interface role and B

the target participant. Hence, the transition is of the form s|2
K−→B : m−−−−−→ s2.

Thanks to the definition of gateway and of system projection the gateway
for K in s is either willing to deliver a message to some participant in S2

or to receive from the gateway for H. In the first case, since the gateway is
sequential then the participant is B and the message m, hence the transition
can trigger.

If K is willing to receive from H then thanks to the definition of nofMH
(·)

and the condition on bisimulation of Proposition 3.11 then the gateway for
H is willing to receive a message from its system or has just received it
and is willing to send it through the gateway. In the last case the gateway
communication can occur.

If H is willing to receive a message from some participant in S1 since S1 is
not a deadlock then there is an enabled transition in S1 as well. Thus, we can
apply the other cases to find a witness transition in the composed system.
Note that the transition in S1 cannot be from an interface role thanks to the

12

condition on bisimulation of Proposition 3.11 and since there are no mixed
states, hence this reasoning does not cycle.

Thus, if there is a deadlock configuration s in the composed system then
either s|1 or s|2 are deadlocks against the hypothesis. The thesis follows.

We can infer deadlock-freedom of the system S = S1
H↔KS2 of Example 3.3 by

the result above, since S1 and S1 are (H,K)-composable and deadlock-free, and
S1(H) and S2(K) are sequential.

The result above, however, is not fully satisfying since the sequentiality
condition is very strict, but, as shown by Examples 3.12, 3.13, and 3.14, any form
of choice is problematic.

However, we can complement the result above with an additional one pin-
pointing where deadlocks can happen when gateways with choices are allowed:
deadlocks can only occur in communications from the gateway to its own system.

Equivalently, we can drop the sequentiality condition if the systems are such
that, whenever their interface role is willing to send a message, the system is
ready to receive it. We formalise this condition by the notion of !live participant.

Definition 3.17 (!live participant). Let S be a system and let A ∈ dom(S).
We say that S(A) is !live in S if, for any s ∈ R(JSK),

s(A)
A B!m−−−→ implies s −→∗ s′ A−→B : m−−−−−→ for some s′

We remark that !liveness is not a property of the gateway but a property of
the system to which it belongs.

It is immediate to check that K is not !live in system S2 of Example 3.12,
whereas K is !live in the following system.

0 1

K
KB!m

KB!x

0 1

B
KB?m

KB!x

Theorem 3.18 (Deadlock freedom for !live interfaces). Let S1 and S2 be
(H,K)-composable and deadlock-free systems. If S1(H) and S2(K) are !live in,
respectively, S1 and S2 then the composed system S1

H↔KS2 is deadlock-free.

Proof. The proof has the same structure of the one for Theorem 3.16. The only
difference is when showing that if there is an enabled transition in s|1 or in s|2
then there is a transition enabled in s as well. Just the case of communication
from an interface node changes, in particular when the gateway is willing to
deliver some message to some participant in its system. There, !liveness can be
used instead of sequentiality to show that indeed some transition can happen.
Hence, the thesis follows.

13

4 Semi-direct Composition

One may notice that in the form of composition discussed in the previous
section the two gateways simply forward messages, and wonder whether they
are strictly needed. Indeed, a form of direct composition, where gateways are
completely avoided, has been studied in [5] in a multiparty session type [17]
setting. It has also been shown that applying this technique has a non trivial
impact on the participants in the connected systems. We discuss here a different
form of composition where a unique gateway is used, and we call it semi-
direct composition. This has the advantage of saving one gateway and some
communications, and also of simplifying some proofs. Moreover, the conditions
for deadlock preservation are weaker when non-sequential interfaces are considered
(see Theorem 4.10). On the other end, participants in the composed systems are
affected, but just by a renaming.

Definition 4.1 (Semi-direct gateway).
Let M1 and M2 be, respectively, an H- and a K-local CFSM such that

– M1 and M2 are compatible

– for all q1
l1−→ q′1 ∈ M1 and q2

l2−→ q′2 ∈ M2 the participants occurring in l1
are disjoint from those occurring in l2

If W is a fresh role then the semi-direct gateway sgw(M1,W,M2) is the CFSM
〈S, q0,L,→〉 such that

– q0 = (q01 , q
0
2) with q01 initial state of M1 and q02 initial state of M2;

– S includes all pairs (q1, q2) and all triples (q1,m, q2) such that q1 is a state
of M1, q2 of M2 and m a message which are reachable from the initial state
(q01 , q

0
2) via the transitions in →;

– → includes, for each q1 ∈ M1 and q2 ∈ M2 related by the compatibility
bisimilarity:

• (q1, q2)
AW?m−−−→ (q′1,m, q2)

WB!m−−−→ (q′1, q
′
2) where q1

AH?m−−−→ q′1 ∈ M1,

q2
KB!m−−−→ q′2 ∈M2,

• (q1, q2)
BW?m−−−→ (q1,m, q

′
2)

WA!m−−−→ (q′1, q
′
2) where q2

BK?m−−−→ q′2 ∈ M2,

q1
HA!m−−−→ q′1 ∈M1.

The semi-direct composition of two systems takes all the machines of the par-
ticipants in each system (with some channel renaming so to turn communications
with H or K into communications with W) but the interface participants, which
are replaced by the semi-direct gateway construction of their CFSMs.

Definition 4.2 (Semi-direct system composition). Given two systems S1

and S2 with disjoint domain, two compatible roles H ∈ dom(S1) and K ∈ dom(S2),
and a fresh role W 6∈ dom(S1) ∪ dom(S2), the system

S1
H
K

W S2 : A 7→

{
Si(A)[W/H][W/K], if A ∈ dom(Si) \ {H,K } for i ∈ {1, 2}
sgw(S1(H),W,S2(K)), if A = W

14

is the W-composition of S1 and S2 with respect to H and K. In the definition,
the notation M [B/A] denotes the machine obtained by replacing role A with B in
all the labels of transitions in M .

Note that since the gateway construction exploits the compatibility bisimilarity
relation then the interface participants need to be compatible for the composition
to make sense. This was not the case in the gateway construction in Section 3.

In the following simple example we show how the compatibility bisimilarity
is exploited in the construction of a semi-direct composition.

Example 4.3. Let us take system S1 with participants A and H and system S2

with participants K, C and D as defined in Example 3.3. Participants H and K
are trivially compatible. Then the following system

0

A

AW!m

0, 0

0,m, 0

0, 1

0,m, 1

W

A
W
?m

W
C!
m

A
W
?m

W
D
!m

0

C

WC?m

0

D

WD?m

is the semi-direct composition S1
H
K

W S2. �
We now study systems obtained by semi-direct composition. As in the previous

section, we will focus on preservation of deadlock-freedom.
Configurations of a composed system are projected on the two subsystems by

taking only the states of their participants and the respective component of the
states of the interfaces.

Definition 4.4 (Projection of configurations). Given a configuration s ∈
R(JS1

H
K
W S2K), the map s||i, for i ∈ { 1, 2 }, defined as

s||i : A 7→

s(A), if A ∈ dom(Si) \ {H,K }
q1, if A = H and either s(W) = (q1,m, q2) or s(W) = (q1, q2)

q2, if A = K and either s(W) = (q1,m, q2) or s(W) = (q1, q2)

is the projection of s on Si.

As for the composition via gateways we define a notion of state projection to
relate the states of the two systems.

Definition 4.5. Let M = sgw(MH,W,MK) be a semi-direct gateway. The func-
tions nofdi(·), where i ∈ { 1, 2 }, on the states of M are defined as follows

nofdi(q) = qi if either q = (q1, q2) or (q1, q2)
AW?m−−−→ (q′1,m, q

′
2) = q for some m,A

We can now discuss the properties of composed systems.

15

Proposition 4.6. Let S1 and S2 be two systems with disjoint domains and
let H ∈ dom(S1) and K ∈ dom(S2) be two compatible roles. Then for each

s ∈ R(JS1
H
K

W S2K) we have that

i) s||1 ∈ R(JS1K), s||2 ∈ R(JS2K) and nofd1(s(W)) ∼ nofd2(s(W));

ii) s(A)
l−→ q iff one of the following holds

(a) A ∈ dom(Si) \ {H,K } and s||i(A)
l−→ q and W 6∈ l, for i ∈ { 1, 2 };

(b) A ∈ dom(S1) \ {H } and l = AW!m and s||1(A)
AH!m−−−→ q;

(c) A ∈ dom(S1) \ {H } and l = WA?m and s||1(A)
HA?m−−−→ q;

(d) A ∈ dom(S2) \ {K } and l = AW!m and s||2(A)
AK!m−−−→ q;

(e) A ∈ dom(S2) \ {K } and l = WA?m and s||2(A)
KA?m−−−→ q;

(f) A = W and s||1(H)
HB!m−−−→ q1 and s||2(K) = q2 and q = (q1, q2) and

l = WB!m;

(g) A = W and s||1(H)
BH?m−−−→ q1 and s||2(K) = q2 and q = (q1,m, q2) and

l = BW?m;

(h) A = W and s||2(K)
KB!m−−−→ q2 and s||1(H) = q1 and q = (q1, q2) and

l = WB!m;

(i) A = W and s||2(K)
BK?m−−−→ q2 and s||1(K) = q1 and q = (q1,m, q2) and

l = BW?m;

Proof. The proof of (i) and (ii) is by simultaneous induction on the number of
steps from the initial state. In the initial state (i) and (ii) hold by construction.

Let us consider the inductive case. We consider the following possible cases
for the last transition.

s′
A−→B : m−−−−−→ s with A,B ∈ dom(S1) (the case A,B ∈ dom(S2) can be treated

similarly).

By definition of configuration transition, we have that s′(A)
A B!m−−−→ s(A) and

s′(B)
A B?m−−−→ s(B) and s′(C) = s(C) for each C ∈ dom(S1) \ {A,B }. Now,

by the induction hypothesis (ii), we have that s′||1(A)
A B!m−−−→ s(A) = s||1(A)

and s′||1(B)
A B?m−−−→ s(B) = s||1(B) (where the two equalities can be inferred

by definition of configuration projection, since A,B 6= W). Hence we have

that s′||1
A−→B : m−−−−−→ s||1. Now, since by the induction hypothesis we have

that s′||1 ∈ R(JS1K), we can infer that s||1 ∈ R(JS1K). We obtain, instead,
s||2 ∈ R(JS2K) immediately by the induction hypothesis since, from A,B ∈
dom(S1) and definition of configuration projection we have that s||2 = s′||2.
Also nofd1(s(W)) ∼ nofd2(s(W)) immediately follows from the induction
hypothesis since A,B 6= W implies s(W) = s′(W). Regarding (ii), if A 6= W
then the same participant wants to take the same action thanks to (i), as
desired. If A = W is willing to communicate with some participant in S1 then
thanks to (i) and definition of semi-direct gateway, H is willing to do the
same in s||1. Symmetrically, if A = W is willing to communicate with some
participant in S2 then K is willing to do the same in s||2.

16

s′
A−→W : m−−−−−→ s with A ∈ dom(S1) (the case A∈dom(S2) can be treated similarly).

By definition of system transition, we have that s′(A)
AW!m−−−→ s(A) and

s′(W)
AW?m−−−→ s(W) and s′(C) = s(C) for each C ∈ dom(S1) \ {A }. Moreover,

by the induction hypothesis, s′||1 ∈ R(JS1K), s′||2 ∈ R(JS2K) and s′||1(H) ∼
s′||2(K). By definition of configuration projection and of semi-direct gateway
construction we have that s||2 = s′||2, and hence we can immediately infer
that s||2 ∈ R(JS2K).
Now, by the induction hypothesis (ii), we have that s′||1(A)

AH!m−−−→ s(A) and

s′||1(H)
AH?m−−−→ q1 and s′||2(K) = q2 where s(W) = (q1,m, q2). Now, by def-

inition of configuration projection, from s(W) = (q1,m, q2) we obtain that
q1 = s||1(W). So, by definition of configuration transition, we have that

s′||1
A−→W : m−−−−−→ s||1, and then s||1 ∈ R(JS1K). For what concerns nofd1(s(W)) ∼

nofd2(s(W)), this is obtained by the induction hypothesis and by definition
of nofd (·) and of semi-direct gateway. Also, (ii) holds, as in the previous case,
by (i) and definition of semi-direct gateway and of configuration projection.

s′
W−→A : m−−−−−→ s with A ∈ dom(S1) or A ∈ dom(S2).
Similar to the previous case.

We now give a definition of composability for semi-direct composition.

Definition 4.7 (Semi-direct (H,K)-composability). Two systems S1 and S2

with disjoint domains are semi-directly (H,K)-composable if H ∈ dom(S1) and
K ∈ dom(S2) are two compatible roles whose machines are ?!-deterministic and
mixed-deterministic.

Notice that semi-direct (H,K)-composability is strictly weaker than (H,K)-
composability. In fact, whereas both require ?!-determinism, the former enables
some mixed states whereas the latter completely forbids them.

It is easy to check that the counterexamples for deadlock-freedom preservation
of Section 3 do hold also in case semi-directed gateways are used on (H,K)-
composable systems. As before, this forces us to select interface roles which are
sequential or which are in systems always willing to receive the messages they
send. Before presenting the results we give an auxiliary lemma.

Lemma 4.8. Let S1 and S2 be two semi-directly (H,K)-composable systems.

Then for each configuration s of the composed system S1
H
K

W S2 we have that:

– if s(W) = (q1, q2) then q1, q2 are in the compatibility bisimilarity;
– if s(W) = (q1,m, q2) then s(W) has a unique transition to and from a state

of the form in the item above.

Proof. By construction. Uniqueness relies on ?!- and mixed-determinism.

Theorem 4.9 (Deadlock freedom for sequential interfaces). Let S1 and
S2 be two semi-directly (H,K)-composable and deadlock-free systems. If S1(H)

and S2(K) are sequential, then the composed system S1
H
K

W S2 is deadlock-free.

17

Proof. We will show that if S1
H
K

W S2 has a deadlock then at least one of S1 and
S2 has a deadlock as well.

First, Proposition 4.6(ii) immediately yields that for each configuration s of

S1
H
K

W S2 if there is some participant A such that s(A) has an outgoing transition,
then for some participant B either s||1(B) or s||2(B) has an outgoing transition.

Now we show that if no transition is enabled in a configuration s of S1
H
K

W S2

then no transition is enabled in s||1 and s||2. We prove the contrapositive, showing
that if there is an enabled transition in s||1 or in s||2 then there is a transition
enabled in s as well. If the transition does not involve H,K this follows from
Proposition 4.6. Let us now consider a transition involving H (the case of K is

symmetric). If the transition is of the form s||1
A−→H : m−−−−−→ ŝ and the state of W in

s is a pair, by construction s can perform a transition s
A−→W : m−−−−−→ s′ as desired.

If the state of W in s is a triple then thanks to Lemma 4.8 and definition of
semi-direct gateway, the previous state was in the compatibility bisimilarity with
a state of K, which has not changed. Hence K is willing to take a transition and
thanks to deadlock-freedom of S2 we can infer that there is a transition enabled
in s||2. From this we can deduce that there is a transition enabled in s too as
shown above, but for the case in which the enabled transition is from K. In this
last case thanks to sequentiality the transition towards H and the one from K are
complementary, thus S2 is ready to take the message from the gateway, hence
the communication can trigger.

A similar reasoning applies in case the transition is of the form s||1
H−→A : m−−−−−→ ŝ.

Thus, if there is a deadlock configuration s in the composed system then
either s||1 or s||2 are deadlocks against the hypothesis.

Notice that S1 and S2 of Example 4.3 are deadlock-free and (H,K)-composable.

Besides, both H and K are sequential. Deadlock-freedom of S1
H
K

W S2 can hence be
inferred by the above result.

As done for the composition via gateways, we can extend the above result by
dropping the sequentiality condition in presence of !live interfaces.

Theorem 4.10 (Deadlock freedom for !live interfaces). Let S1 and S2

be two semi-directly (H,K)-composable and deadlock-free systems. Moreover, let
S1(H) and S2(K) be !live, respectively, in S1 and S2. Then the composed system

S1
H
K

W S2 is deadlock-free.

Proof. The proof is similar to the one of Theorem 4.9. The only difference is that
!liveness is used instead of sequentiality when showing that if there is an enabled
transition in s||1 or in s||2 then there is a transition enabled in s as well.

5 Related and Future Work

We have considered the synchronous composition of systems of CFSMs following
the approach proposed in [3,4] for asynchronous composition. Quite surprisingly,
enforcing that composition preserves deadlock freedom requires very strong

18

conditions on the interface roles, as shown by means of some examples. Indeed,
we proved compositionality of deadlock freedom for sequential interface roles
only. We hence complemented this result by showing that, if a deadlock occurs,
it needs to be when the gateway tries to deliver a message to the other system.

We also discussed semi-direct composition, based on a unique gateway. Beyond
sparing some communications, the conditions required to ensure compositionality
of deadlock freedom using this second approach are slightly weaker.

While we only discussed deadlock freedom, the same reasonings can be applied
to other behavioural properties such as lock freedom [19,18,6] and liveness [23,6].

The above approach to composition has also been discussed in [5], in the set-
ting of systems of processes obtained by projecting well-formed global types [17].
This setting is far less wild than ours, since global types ensure that each send is
matched by a receive. Thus, all the counterexamples we showed cannot happen
and deadlock freedom is ensured in all typable systems. Thanks to these restric-
tions they were able to develop a more comprehensive theory, including direct
composition, a notion of structural decomposition and notions of behavioural
composition and decomposition. Also, they could use as compatibility a relation
weaker than bisimilarity. Understanding whether such a theory can be amended
to fit in our more general setting is an interesting item for future work.

Compositionality in the setting of global types has been also studied in [22].
There the compositionality mechanism is different since it relies on partial systems,
while the approach we use allows one to compose systems which are designed
as closed, by transforming some participants into gateways. On the other hand
they are able to model ways of interaction more structured than having a single
communication channel as in our case. Extending our approach to cope with the
composition via multiple interfaces at the same time can be an interesting aim
for future work and can contribute to match their expressive power.

A compositional approach for reactive components has been proposed in [12,25].
Composition is attained by means of a specified protocol regulating the commu-
nications between components that are supposed to produce results as soon as
they get their inputs. Roughly speaking, this protocol represents the composition
interface that rules out, among the communications of components, those not
allowed in the composition. In this way, a component may be used in compositions
under different protocols if its communications are compliant with (part of) the
protocols. A difference with our approach is that the framework in [12,25], as
common in session type approaches, requires the specification of a global type
from which to derive local types to type check components in order to compose
them.

Among the automata-based models in the literature, I/O automata [21], team
automata [26], interface automata [15], and BIP [9] are perhaps the closest to
communicating systems. In these models composition strategies based on some
notion of compatibility have been proposed. However, these approaches differ
from ours on a number of aspects.

First, the result of such a composition is a new automaton, not a system as
in our case. Correspondingly, our notion of “interface” is more elaborated than

19

in the other models. Indeed, for us an interface is a pair of automata rather than
sets of actions of a single automaton.

Second, such automata have a fixed interface, since they distinguish internal
from external actions. Instead, we do not fix an explicit interface: the interface is
decided in a relative fashion. This gives a high degree of flexibility; e.g., we could
use as interface a CFSM H′ when composing a system S with a system, say S′,
and a different CFSM H′′ in S when composing it with another system S′′.

As previously pointed out, and related to the previous observations, we
could think of our approach as not been based on a notion of “open” systems.
We compose closed systems by “opening them up” depending on their relative
structures, namely on the fact that they possess compatible components.

Extensive studies about compositionality of interacting systems have been
conducted in the context of the BIP model [9]. Composition in BIP happens
through operators meant to mediate the behaviour of the connected components.
The composition can alter the non-deterministic behaviour by suitable priority
models. In [2,1] it is shown that, under mild hypothesis, priority models do not
spoil deadlock freedom. This requires to compromise on expressiveness. Whether
our conditions are expressible in some priority model is open and left for future
work. BIP features multi-point synchronisations while CFSMs interactions are
point-to-point. Very likely CFSMs can be encoded in BIP without priorities and
one could use D-Finder [8] to detect deadlock of composed systems. However,
our conditions on interfaces allows us to avoid such analysis.

In the present approach, the transformations generating the gateway(s) from
the interface roles do not depend on the rest of the systems to be composed.
Besides investigating relaxed notions of compatibility (in the style of [5]), it
would also be worth considering the possibility of dropping the compatibility
requirement altogether and developing methods to generate ad-hoc gateways
(i.e., taking into account the other CFSMs of the two systems to be composed)
that preserve deadlock freedom and communication properties in general by
construction. In would also be worth investigating whether our approach can
be extended to cope with types of message passing communications other than
point-to-point, such as multicast [14], broadcast or many-to-many [11].

References

1. E. Baranov and S. Bliudze. Offer semantics: Achieving compositionality, flattening
and full expressiveness for the glue operators in BIP. Sci. Comput. Program.,
109:2–35, 2015.

2. E. Baranov and S. Bliudze. Expressiveness of component-based frameworks: A
study of the expressiveness of BIP. Acta Informatica, pages 1––40, 2019.

3. F. Barbanera, U. de’Liguoro, and R. Hennicker. Global types for open systems. In
M. Bartoletti and S. Knight, editors, ICE, volume 279 of EPTCS, pages 4–20, 2018.

4. F. Barbanera, U. de’Liguoro, and R. Hennicker. Connecting open systems of
communicating finite state machines. JLAMP, 109, 2019.

5. F. Barbanera, M. Dezani-Ciancaglini, I. Lanese, and E. Tuosto. Composition and
decomposition of multiparty sessions. JLAMP, 2020. Submitted.

20

6. F. Barbanera, I. Lanese, and E. Tuosto. Choreography automata. In COORDINA-
TION, volume 12134 of LNCS, pages 86–106. Springer, 2020.

7. S. Basu, T. Bultan, and M. Ouederni. Deciding choreography realizability. In
POPL, pages 191–202, 2012.

8. S. Bensalem, A. Griesmayer, A. Legay, T. Nguyen, J. Sifakis, and R. Yan. D-finder
2: Towards efficient correctness of incremental design. In M. Bobaru, K. Havelund,
G. J. Holzmann, and R. Joshi, editors, NASA Formal Methods, pages 453–458.
Springer, 2011.

9. S. Bliudze and J. Sifakis. The algebra of connectors: structuring interaction in BIP.
In International conference on Embedded software. ACM, Sept. 2020.

10. D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983.

11. R. Bruni, A. Corradini, F. Gadducci, H. C. Melgratti, U. Montanari, and E. Tuosto.
Data-driven choreographies à la Klaim. In Models, Languages, and Tools for
Concurrent and Distributed Programming, volume 11665 of LNCS, pages 170–190.
Springer, 2019.

12. M. Carbone, F. Montesi, and H. T. Vieira. Choreographies for reactive programming.
CoRR, abs/1801.08107, 2018. Available at http://arxiv.org/abs/1801.08107.

13. G. Cécé and A. Finkel. Verification of programs with half-duplex communication.
I&C, 202(2):166–190, 2005.

14. M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, and L. Padovani. Global progress for
dynamically interleaved multiparty sessions. Mathematical Structures in Computer
Science, 26(2):238–302, 2016.

15. L. De Alfaro and T. Henzinger. Interface automata. In ACM SIGSOFT Software
Engineering Notes, volume 26(5), pages 109–120. ACM, 2001.

16. M. G. Gouda and C. Chang. Proving liveness for networks of communicating finite
state machines. ACM Trans. Program. Lang. Syst., 8(1):154–182, 1986.

17. H. Hüttel et al. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1–3:36, 2016.

18. N. Kobayashi. A partially deadlock-free typed process calculus. ACM TOPLAS,
20(2):436–482, 1998.

19. N. Kobayashi. Type-based information flow analysis for the pi-calculus. Acta
Informatica, 42(4–5):291–347, 2005.

20. J. Lange, E. Tuosto, and N. Yoshida. From communicating machines to graphical
choreographies. In POPL, pages 221–232. ACM, 2015.

21. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In ACM Symp. Principles of Distributed Computing, pages 137–151. ACM, 1987.

22. F. Montesi and N. Yoshida. Compositional choreographies. In CONCUR, volume
8052 of LNCS, pages 425–439. Springer, 2013.

23. L. Padovani, V. T. Vasconcelos, and H. T. Vieira. Typing liveness in multiparty
communicating systems. In COORDINATION, volume 8459 of LNCS, pages
147–162. Springer, 2014.

24. W. Peng and S. Purushothaman. Analysis of a class of communicating finite state
machines. Acta Inf., 29(6/7):499–522, 1992.

25. Z. Savanović, H. Vieira, and L. Galletta. A type language for message passing
component-based systems. In ICE, EPTCS, 2020. To appear.

26. M. ter Beek and J. Kleijn. Team automata satisfying compositionality. In FME
2003: Formal Methods, pages 381–400. Springer, 2003.

27. E. Tuosto and R. Guanciale. Semantics of global view of choreographies. JLAMP,
95:17–40, 2018.

http://arxiv.org/abs/1801.08107

	 Composing Communicating Systems, Synchronously

