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Abstract

Risk assessment is an important decision support task in many domains, in-
cluding health, engineering, process management, and economy. There is a
growing interest in automated methods for risk assessment. These methods
should be able to process information efficiently and with little user involve-
ment. Currently, from the scientific literature in the health domain, there is
availability of evidence-based knowledge about specific risk factors. On the
other hand, there is no automatic procedure to exploit this available knowl-
edge in order to create a general risk assessment tool which can combine the
available quantitative data about risk factors and their impact on the corre-
sponding risk. We present a Framework for the Assessment of Risk of adverse
Events (FARE) and its first concrete applications FRAT-up and DRAT-up,
which were used for fall and depression risk assessment in older persons and
validated on four and three European epidemiological datasets, respectively.
FARE consists of i) a novel formal ontology called On2Risk; and ii) a logical
and probabilistic rule-based model. The ontology was designed to represent
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qualitative and quantitative data about risks in a general, structured and
machine-readable manner so that this data may be concretely exploited by
risk assessment algorithms. We describe the structure of the FARE model
in the form of logic and probabilistic rules. We show how when starting
from machine-readable data about risk factors, like the data contained in
On2Risk, an instance of the algorithm can be automatically constructed and
used to estimate the risk of an adverse event.

Keywords: depression, falls, formal ontology, logical rule-based system,
missing data, risk assessment

1. Introduction

Risk assessment methodologies aim to estimate the risk that a specific
situation will occur. Generally speaking, a risk is characterized in terms of
the magnitude of the potential loss related to the occurrence of the situation
[1], and in terms of the probability that the situation/loss will occur. In the5

health domain, a commonly considered risk type directly relates the concept
of potential loss to the happening of a specific event, named the adverse
event. Examples of adverse events (for simplicity, events, from now on) are
the development of cardiovascular diseases [2], of Type II diabetes [3], falls
in the elderly [4], and development of depression [5].10

In epidemiological research, a common activity consists of identifying
which are the risk factors associated with the happening of an event. A
vast scientific literature documents which risk factors are (statistically) re-
lated with the appearance of a pathology within a certain time span; e.g.,
smoking is often referred to be a risk factor for cardiovascular diseases [6].15

Although a number of risk assessment tools are available [7, 8], to the best
of our knowledge, few or none of them exploit the huge amount of scientific
literature that relates risks and risk factors.

In this paper we introduce the Framework for the Assessment of Risk of
adverse Events (FARE), a framework supporting the evaluation of risks in the20

health domain. FARE exploits the existing literature in a field and provides
as output the probability (the risk score) that a subject will experience an
event within a given time span. To this end, FARE provides two major
contributions: a formal ontology (On2Risk) for representing the available
knowledge about a specific risk; and a methodology that computes a subject-25

specific risk by taking as input the mentioned ontology and subject-specific
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Figure 1: FARE main components and usages.

information (the subject’s profile).
On2Risk organizes the existing knowledge in a structured manner: in this

way knowledge can be easily processed by automatic software (e.g. [9, 10]).
It supports important notions such as Risk Factors, Odds Ratios (statistical30

knowledge about the relation between the risk and the specific factor), Esti-
mators (how risk factors are evaluated), synergies between Risk Factors (the
concurrent exposure to multiple risk factors further increases the overall risk),
and management of missing information (some data might be missing from
the subject’s profile). While we are aware of previous ontologies for medical35

data (see Section 2.1), to the best of our knowledge none of them includes
such a rich and quantitative representation of risk factors to be directly used
by a risk assessment tool.

The usage of FARE follows a two-step process. The first step takes as
input an On2Risk instance with knowledge about a specific risk, and pro-40

duces a probabilistic logic program that is able to compute the risk. The
second step, subject-dependent, takes as input a subject’s profile, feeds the
logic program, and returns the subject’s probability of experiencing the event
within a defined time span (Figure 1). While the second step is executed one
or more times for each subject, the first step is executed only when the45
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On2Risk instance changes, i.e. whenever novel insights are gained about a
specific risk.

There are other possible approaches to risk assessment in the health do-
main, which can use rule-based procedures such as belief rule-based risk
assessment tools [11], statistical techniques such as regression and survival50

analysis [12, 13], and machine learning tools, as in [14].
FARE has a number of advantages with respect to these other risk assess-

ment implementations. First, it is generalizable: it can be applied to many
different health risks, provided the knowledge about those risks is available.
Methods like the ones based on machine learning instead, because of the55

need of a learning phase, are not directly generalizable. Second, it is not
based on a specific dataset, but rather exploits the existing literature, thus
not requiring parameter estimation (for statistical techniques and belief rule-
based procedures) or learning phases (for machine learning). Therefore it is
independent of the specific cohort. Third, it manages incomplete informa-60

tion about the subject (in clinical practice it can happen that not all the
required subject’s data are available). Finally, the first concrete applications
of FARE, FRAT-up and DRAT-up, were successfully applied to assess fall
and depression risks in the elderly, and they compared favorably with respect
to state-of-the-art risk assessment tools [15, 16, 17, 18]. The FARE proba-65

bilistic logic rules formulation, the On2Risk ontology, and the architecture
of the framework are novel contributions of this paper.

This paper is organized as follows. A brief background about the adopted
technologies (ontologies and probabilistic logic programs) is given in Section
2. In Section 3 we describe On2Risk and its main concepts. Section 470

reports the mathematical foundation of FARE and then describes how a
Probabilistic Logic Program (PLP) can effectively encode the risk evaluation
algorithm. Overall implementation of the framework, together with glimpses
of how a PLP is automatically generated starting from an On2Risk instance,
are described in Section 5. Previous work on health risk evaluation, a brief75

glance on the falls and depression domains, and a summary of the validation
results of FRAT-up and DRAT-up are in Section 6 and discussed in Section
7.

2. Background

In the following, we provide a brief introduction on the technologies that80

we exploited in the FARE framework. We do not provide an exhaustive
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description, but rather we sketch the advantages of the chosen tools, and
point the interested reader towards more detailed documentation.

2.1. Formal ontologies

A formal ontology is a conceptualization of the knowledge about a domain85

by means of a formal language [19]. A number of ontology languages exist and
have been classified depending on their type of logic [20]. Description Logics
(DLs) [21] in particular are a family of logic languages used to represent the
knowledge of an application domain in a structured way, where the important
notions of the domain are described by concepts and binary relations among90

them. Usually, the information contained in an ontology can be distinguished
into the terminological box TBox, containing the definition of the concepts
important for the domain, and the assertion box ABox containing facts and
properties related to the individuals being part of the domain. For example,
the notions of “Person” and “Student” would be represented as concepts.95

The relation “every student is a person” would be part of the TBox. Finally,
“John is a student” would be an assertion in the ABox. The Semantic Web
Initiative1 has defined languages, standards, tutorials and best practices for
representing logic ontologies, and it is a first starting point for the interested
reader. A number of tools exist to help users to properly express the domain.100

We used Protégé2, a free ontology editor supporting W3C standards.
In FARE the starting point is the knowledge contained in the scientific

literature related to a specific risk. Unfortunately, almost the totality of
scientific papers have their content organized for human readers: i.e., they
convey their content by means of images, tables and natural language. Con-105

versely, in the epidemiological field the use of ontologies has been recognized
as an important step [22]. In the broader health sector, we mention the
SNOMED-CT3 ontology for precise definition of clinical health terms, and
the Gene Ontology initiative4.

2.2. Probabilistic Logic Programs110

Rule-Based Systems (RBS) allow to define the available knowledge in
terms of rules of the form antecedent → consequent, whose meaning can

1https://www.w3.org/standards/semanticweb/
2http://protege.stanford.edu/
3http://www.snomed.org/snomed-ct
4http://www.geneontology.org/
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be intended as “if the antecedent is satisfied, then the consequent is sat-
isfied too”. An inference engine exploits such knowledge to perform some
computation.115

Logic Programming (LP) [23] is based on First Order Logic (FOL), and
exploits the rules (namely, clauses) in a backward manner. Rules are often
represented in the form head ← body, whose intended meaning is that head
is true if body is true. Rules may have the form of head ← true: in such cases
the antecedent is always true, and the consequent is interpreted as a fact.120

Given a program P (a set of clauses) and a goal G, an LP inference engine
looks to prove that G is a logical consequence of P , i.e. that P |= G. One of
the most well known LP languages is Prolog [23]: a number of dialects, inter-
preters and compilers are available, supporting different program semantics,
and providing a rich set of software libraries for many common tasks (from125

exposing web-based services compatible with modern web standards, to the
definition of grammars and the automatic construction of language parsers).
Indeed, Prolog is considered a fully fledged programming language.

Probabilistic Logic Programs (PLP) are an extension of LP, where also
probabilities can be taken into account. A widely adopted semantics for130

PLP is the distribution semantics [24], where a probabilistic logic program
defines a distribution on non-probabilistic logic programs called worlds. The
probability distribution of a query in a probabilistic program is obtained
by marginalization, from the query in the various worlds together with the
probabilities of the worlds. In our framework we opted for Logic Programming135

with Annotated Disjunctions (LPAD) [25], a type of PLP that extends Prolog
and allows the presence of disjunctions in the head. We follow the syntax
of the cplint implementation 5 . Syntactically, the rules have the following

5cplint is currently available in three different flavors:

• a YAP-based implementation http://ds.ing.unife.it/~friguzzi/software/

cplint/manual.html ;

• a SWI-based implementation http://ds.ing.unife.it/~friguzzi/software/

cplint-swi/manual.html ;

• and as a web-app available online http://cplint.ml.unife.it/p/sublist_

sldnf.pl

where YAP (https://www.dcc.fc.up.pt/~vsc/yap/) and SWI (https://www.
swi-prolog.org/) are two Prolog interpreters and compilers.
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form:
h1 : p1; h2 : p2; . . . ; hn : pn : − b1, b2, . . . , bm.

Where h1 : p1; h2 : p2; . . . ; hn : pn are the head disjuncts, while b1, b2, . . . , bm140

are the body conjuncts. The intended meaning is that each hi has the prob-
ability pi of being true if the body of the rule is true. We will skip all the
caveats of the LPAD syntax. We shall recall only that terms starting with
capital letters are variables.

We want to express our risk assessment algorithm in a probabilistic logic145

language, not only because these languages are particularly well suited to
represent logical and probabilistic relationships, but also because every step
of reasoning of their engines is clearly explainable, and they interact easily
with formal ontologies, that are written in logical languages too. We opted for
LPAD because it has a more general syntax than other similar languages [26],150

and is particularly well suited to represent probabilistic relations between
causes and effects, where the causes for the same effect (e.g. risk factors for
a risk) are causally independent. In a previous work [15], we presented the
mathematical ground for our model, including how it exploits the assumption
of causal independence.155

3. On2Risk

On2Risk is an ontology about risks. It is defined in the OWL 2 Web
Ontology Language [27] and is open access and freely downloadable6. Its aim
is to organize scientific knowledge about risk factors, including quantitative
information that can be automatically extracted and used by risk assessment160

algorithms. The concept of risk is mapped to the Risk class. An instance of
this class is e.g. StrokeIn1Year, the probability to suffer a stroke at least
once during the next year. In On2Risk we represent a scientific source with an
individual (instance) of the class Reference. Each reference has annotations
attached such as title or DOI identifier, following the Dublin Core standard165

[28].
A key concept in On2Risk is the RiskFactor. It is introduced in Section

3.1, together with a quantitative measure of its impact, diagnostic methods,
a classification by value type, and a description of how missing information
on its exposure is handled. On2Risk also rules the way risk factors are170

6http://ffrat.farseeingresearch.eu/on2Risk
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computed (Section 3.2). A comprehensive description of On2Risk is included
as supplementary material.

3.1. Risk factors

A risk factor is a characteristic of subjects that is reported in scientific lit-
erature to be significantly associated with an augmented risk (e.g. Diabetes175

and Age are associated with several health risks). To support risk assessment
algorithms, On2Risk includes a quantitative measure of the impact of a risk
factor on a risk. Various measures can be used. We focus on the odds ra-
tio, since in epidemiology it is the most commonly used measure to quantify
the effect of being exposed to a risk factor. Other impact measures may be180

supported in a similar manner.
To represent the fact that there may be more than one procedure to

estimate a risk factor, and that the exposure to a risk factor is a general
property of a subject independently of how it is measured, we introduced the
class Estimator. Estimators are used to evaluate risk factors. They may185

be as simple as a direct observation or a question to the subject (as in the
case of age and sex) or more convoluted, like a CES-D questionnaire for de-
pression (Center for Epidemiologic Studies Depression Scale [29]), that is an
estimator for the risk factor Depression. Estimators and risk factors are the
only concepts used to describe a subject in our formalism. In the following,190

we refer to them as “features”.
On2Risk does not include specific subjects with specific feature values, but
defines names, characteristics and relationships of features. Some features
answer to typical yes/no questions, such as “is the subject affected by Parkin-
son disease?”, while others expect a numerical value, like “number of drugs”.195

To represent missing information, which can be frequent in the health do-
main, each feature instance may be assigned the value unknown. Each feature
can be “ternary” or “scalar with unknown”. A ternary feature may take a
three-valued logic assignment: “true”, “false”, or “unknown”. A “scalar with
unknown” feature may take a numerical value belonging to a finite interval,200

or be assigned “unknown”. Following this distinction, RiskFactor is sub-
classed by TernaryRiskFactor and ScalarRiskFactor, while Estimator is
subclassed by TernaryEstimator and ScalarEstimator. In the following
for brevity with “scalar” we will mean “scalar with unknown”.

We want risk assessment algorithms based on On2Risk to be able to cope205

with missing data. To this end we take into account the possible values of an
unknown factor in the population of interest, according to its prevalence (i.e.
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7An indirect risk factor may be produced only with direct risk factors as input, and
the two sets DirectRiskFactor and IndirectRiskFactor are a partition of RiskFactor.
This structuring forbids cyclic dependencies of derivation between risk factors and provides
a valid representation for the risk factors we considered in our practical applications.

9

Figure 2: UML activity diagram showing operations of interpretation and aggregation.

the distribution of the values of the risk factor on a reference population).
On2Risk includes the proportion of people affected by a dichotomic risk factor
and the proportion of people affected by each level of a scalar risk factor.210

3.2. Computing risk factors

The concepts of estimators and risk factors are tightly coupled with the
methods that lead from the values of one or more estimators to the value of
a risk factor. We want these methods to be quantitative functions so that
this information may be interpreted and used automatically by risk assess-215

ment algorithms. In scientific literature it is also possible to find statistical
data about risk factors that are derived from other risk factors. To use that
information, we also map the procedures to obtain the value of a risk factor
starting from the values of one or more other risk factors.
Instances of these procedures belong to the class ToRiskFactor. We call220

direct risk factor, part of the class DirectRiskFactor, a risk factor that is
obtained by one or more procedures ToRiskFactor that start from estima-
tors. We call indirect risk factor, part of the class IndirectRiskFactor, a
factor obtained starting from other risk factors.7

Procedures for direct risk factors (with estimators as input) are composed225

of two phases: a first phase where interpretation functions are applied to
single estimators, and a second phase where the interpretations of all the
involved estimators are aggregated to produce a single output value for the
risk factor. The output of an interpretation is used as input to an aggregation
function (Figure 2).230



Before continuing with the presentation of the domain concepts, let us
discuss a simple example to better clarify why we need to distinguish between
estimators, their interpretation, the aggregation of such interpretations and
the consequent mapping into a risk factor. Let us consider the domain of
falls : from Table 6 in [30], we get to know that vision impairment has been235

associated with an augmented risk of falling. In our terminology, we would
say that vision impairment is an instance of the TernaryRiskFactor class
(the subject might suffer of vision impairment, might not, or it could be
unknown). However, how could we decide that a subject suffers/does not
suffer of vision impairment? Again from the medical literature, we get to240

know that at least three different methods are used to assess vision impair-
ment: the visual acuity test (aka the Monoyer’s scale), the visual stereognosis
test and the contrast sensitivity test. Each of these tests is an instance of
the Estimator class. Of course, each test has its own meaning and should
be properly interpreted: for the visual stereognosis, an outcome value lower245

than 4 indicates visual impairment; for the visual acuity, an outcome value
lower than 6 indicates visual impairment. The EstimatorInterpretation

instances take care of such difference, providing the right understanding for
each different estimator. Finally, what if the sight capabilities of a subject
have been tested with all the three mentioned tests? Obviously, if the subject250

failed all the three tests, we would say that she/he suffers of vision impair-
ment only once, and not that she/he is thrice-visual-impaired! An instance
of AggregationOfInterpretations class would take care exactly of such
aspect, by aggregating different estimator interpretations towards the same
risk factor.255

Interpretations belong to the class EstimatorInterpretation and are
partitioned in the TernaryInterpretation and ScalarInterpretation

subclasses, depending on the interpretation output. The interpretation input
is a ternary or scalar estimator. When the estimator is ternary, the inter-
pretation function is often an identity function. In these cases the ternary260

estimator is used directly as the interpretation, so TernaryEstimator is a
subclass of TernaryInterpretation.
Another typical case involves a threshold applied to a scalar estimator. In this
case the input is scalar while the output is ternary. EstimatorInequality-
Interpretation is a subclass of TernaryInterpretation capturing this265

concept. It has the properties

• isAboutScalarEstimator exactly 1 ScalarEstimator,
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• Inequality exactly 1 inequalityOperator,

• ScalarEstimatorValue exactly 1 int.

All code excerpts follow the OWL 2 Manchester syntax [31]. The inequality270

may be “=”, “>”, “≥”, “<”, or “≤”. The interpretation of an instance of
an estimator is true if its value respects the given inequality with the given
“ScalarEstimatorValue”.
To cover the cases where there is an interpretation of a scalar estimator that
maintains the scalar nature but renders it more coarse grained, we intro-275

duce the specialization of ScalarInterpretation called DiscreteLevels-

EstimatorInterpretation. It has the following properties:

• isAboutScalarEstimator exactly 1 ScalarEstimator,

• Step1Start exactly 1 int,

• StepSize exactly 1 int, and280

• LastStep exactly 1 int.

The output is 0 for estimator values less than Step1Start, is 1 when corre-
sponding to Step1Start and increases by 1 for each increase of StepSize of
the estimator value, up to a maximum output value of LastStep. E.g. Age-
DiscreteLevels is defined with Step1Start 70, StepSize 5 and LastStep285

4. This means that the output value is 1 for each input value between
70 and 74, 2 between 75 and 79, and so on. DiscreteLevelsEstimator-

Interpretation covers also the cases when the estimator value starts from
0 or from 1 and must not change after the interpretation. It is sufficient to set
Step1Start as 1, StepSize as 1 and LastStep as the maximum estimator290

value.
The second step to compute a risk factor starting from one or more estima-

tors is to aggregate the interpretations. An aggregation function is expressed
with an instance of the class AggregationOfInterpretations, specializ-
ing ToRiskFactor. It has the property hasOutputRiskFactor exactly 1295

DirectRiskFactor. It may be specialized to represent a wide range of func-
tions, like AND, min, sum, mean, and so on. We present two specializations,
denoting an OR between ternary estimators (in Kleene’s three-valued logic
[32]) and a max between scalar estimators. The max function when all inputs
are known numbers produces the maximum between them, while if there are300
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unknown inputs produces an unknown output. These aggregation functions
when having a single input are identity functions.

E.g. Let us consider again the example related to the visual impairment
and the risk of falling. As mentioned earlier, various tests target different
visual functionalities, but all diagnose a visual impairment when their score305

is low. We model their aggregation with AcuityContrastStereognosis-

ToVisualImpairment where the risk factor VisualImpairment is given by
applying the OR operator to three inequalities, on VisualAcuity, Contrast-
Sensitivity and VisualStereognosis. AcuityContrastStereognosis-

ToVisualImpairment is an individual of class LogicalOREstimatorsTo-310

Factor, subclass of AggregationOfInterpretations. It has the properties:

• hasEstimatorInequality VisualAcuityInequality,

• hasEstimatorInequality ContrastSensitivityInequality,

• hasEstimatorInequality VisualStereognosisInequality, and

• hasOutputTernaryRiskFactor VisualImpairment.315

Indirect factors are computed with functions represented by members of
the class FactorsToFactors that take direct factors as input, and have the
property hasOutputRiskFactor exactly 1 IndirectRiskFactor.

3.3. Synergic factors

In some cases, the presence of more risk factors determines a risk that is320

higher than what would be expected by taking into account the contributions
of the individual risk factors [33]. In other terms, the presence of more
risk factors acts as an additional risk factor. On2Risk models this effect
with the class SynergicFactorsToFactor, a specialization of FactorsTo-

Factors. It represents a function that receives two or more direct ternary325

risk factors as input and outputs an indirect scalar risk factor, as expressed
by the properties:

• hasOutputRiskFactor exactly 1 IndirectScalarRiskFactor and

• hasSynergicRiskFactor min 2 DirectTernaryRiskFactor.

The intended semantic is that the output scalar risk factor takes, for a spe-330

cific subject, a value that is the number of the input factors to which he/she
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is affected.
E.g. Suppose there is the need to represent a synergy between dizziness and
vertigo, Parkinson, history of stroke and depression. It is possible to de-
fine an instance of SynergicFactorsToFactor called ToComorbidity, with335

properties:

• hasOutputRiskFactor ComorbidityRiskFactor,

• hasSynergicRiskFactor DizzinessAndVertigo,

• hasSynergicRiskFactor Parkinson,

• hasSynergicRiskFactor HistoryOfStroke, and340

• hasSynergicRiskFactor Depression.

If a subject is affected by Parkinson and Depression but not by the other two
factors, he/she has a value of 2 for ComorbidityRiskFactor.

4. A Rule-based model and computation of risk

On2Risk has been designed to support algorithms for quantitative risk345

assessment. Quantitative impact of risk factors on a risk is expressed by
means of odds ratios. The most commonly expected output of a risk assess-
ing algorithm is a probability of the event, in a given time period. On2Risk
represents known data about risk and is not linked to a specific algorithm.
The algorithm we present follows a rule based approach. We describe the350

function used to assess the risk and how we compute its parameters starting
from risk factor odds ratios (Section 4.1). The whole process of risk assess-
ment, starting from estimator values, can be implemented with logical and
probabilistic rules. Having a whole mapping of the algorithm in PLP allows
for easier interpretability of the model and faster prototyping of new fea-355

tures. The principal data flow is depicted in Figure 3. We present such an
implementation based on a three-layered architecture (Section 4.2).

4.1. From ORs to Probabilities

The mathematical foundation of our approach is expressed in an equation
that computes the probability of happening of an event starting from the odds360

ratios of the risk factors. Its full derivation is presented in [15].
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1− P (d|Ei = 1)

1− P (d|Ei = 0)

1− C0 + C0ORi

)
. (1)

We call

Ci = C0
ORi − 1

1− C0 + C0ORi

(2)

the contribution of the ith risk factor to the risk.
This methodology may be applied also to scalar and synergy risk factors

14

Figure 3: Simplified diagram depicting how risk is computed starting from estimators.
Each quantitative value has one or more scientific references.

For simplicity we will restrict here to the case where all risk factors are
dichotomous without unknown values. Let E0, E1, . . . , En be n + 1 dichoto-
mous random variables, representing risk factors, with values in {0; 1} and
E = (E0, E1, . . . , En). We say that the ith risk factor is present if Ei = 1. d365

is the event. The odds ratio relative to the risk factor Ei, with i = 1, . . . , n,
is defined as

ORi :=
P (d|Ei = 1)

P (d|Ei = 0)
.

We define C0 as the event probability relative to a subject with none of
the accounted risk factors. The event probability given the information on
the subject’s risk factors is computed as370

P (d|E) = 1− (1− C0)
n∏

i=1

(
1− EiC0

ORi − 1



Figure 4: Layers of the risk assessment algorithm.

and to inputs with unknown values, as detailed in [15].

4.2. Three-layered architecture375

In this and the following subsections we describe a scheme of logical and
probabilistic rules by which it is possible to code the FARE risk assessing
algorithm. With our approach being a rule-based one, the mathematical
model expressed in Section 4.1 was designed to have a natural translation in
form of rules.380

The whole algorithm computes the probability of happening of the event,
in the given time interval, starting from a list of estimator values. We struc-
ture it in three layers (Figure 4).

1. The first layer computes the probability of happening of the event start-
ing from risk factor values without “unknown”. That is, from risk fac-385

tors expressed in Boolean values or with scalars without “unknown”.
It is described in Section 4.3.

2. The second layer removes the unknown values, using risk factor preva-
lences. The procedure is described in Section 4.4.

3. The third layer computes risk factor values starting from the values390

of the estimators. Unknown values in estimators may cause unknown
values in risk factors. The procedure is described in Section 4.5.

4.3. First-layer: dealing with the probability of the adverse event

Rules of the first layer compute the probability of the event starting from
risk factor values without “unknown”. The semantics are identical to those395

of equation (1) and fit naturally in LPAD rules.
One rule is used to express the fixed base probability of the event, called

C0 in (1). The parameter C0 is found by imposing that the probability of
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the event for a subject with all estimators unknown, is equal to the preva-
lence of the event in the population (i.e., the adverse event probability). We400

express the probability to suffer an “event E” of a subject S with the term
adverseEventE(S). If, for example, the base probability C0 of the event E
is 0.075, it is defined by the following rule.

adverseEventE(S) : 0.075.

For each Boolean-valued risk factor, its contribution is defined in equation405

(2) and is taken into account with a rule. Equation (2) includes two param-
eters: ORi and C0. In FARE, the odds ratio are extracted from On2Risk,
that is filled with data from scientific sources. For instance, if the odds ratio
of “risk factor R” to the “adverse event E” is 2.32, from Equation (2) its
contribution is 0.09 and is factored with the following rule.410

adverseEventE(S) : 0.09 :- factorB(S, ’risk factor R’, t).

Term factorB(S, ’risk factor R’, t) is true when the presence of
the risk factor R is true for subject S. In our coding t stands for true, f for
false and u for unknown.

A scalar risk factor with K+1 levels (without loss of generality, from 0 to415

K) is coded as a set of K dichotomous risk factors. Namely, the Nth of these
coding dichotomous risk factors is true if the scalar risk factor is at least
at level N. The following example shows how a scalar risk factor factor T

contributes to the risk of event E.

adverseEventE(S) : 0.01 :- factorS(S, ’factor T’, N), number(N), N >= 1.420

adverseEventE(S) : 0.01 :- factorS(S, ’factor T’, N), number(N), N >= 2.

adverseEventE(S) : 0.01 :- factorS(S, ’factor T’, N), number(N), N >= 3.

Where factorS(S, ’factor T’, N) unifies when subject S has risk fac-
tor T at level N. The contribution 0.01 of each dichotomous risk factor is
calculated from the odds ratio of one unit increase of factor T as from Equa-425

tion (2).
The synergy between two or more dichotomous risk factors is implemented

with a set of rules, one to list the risk factors involved and one for each
possible level of the synergy. The following example contains rules to define
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least true factors(S, L, N) is true if subject S is affected by at
least N risk factors from the list L. The contributions of the levels of a given
synergy have all the same magnitude. Thus, the level of a synergy affects
the computation of the risk in a way that is analogous to the level of a scalar
risk factor.445

4.4. Second-layer: dealing with unknown values

The second layer, when encountering a known value, simply passes it
up to the first layer. When encountering an unknown value, it splits the
remaining of the computation, leveraging LPAD expressiveness, into two or
more classes of worlds. Each class of worlds has one of the possible values of450

the risk factor in place of the unknown one. The probability of each class of
worlds is multiplied by the probability of the corresponding risk factor value.
While the first layer depends on the risk to be assessed, the second and third
layers have the objective of assigning “known” values to risk factors and are
independent of the specific risk of interest.455

When a ternary factor is t or f, it is simply passed up as a factor in
Boolean values with the corresponding assignment (t or f). The following 3
rules show how the Parkinson disease risk factor is converted from a three-
valued form to a Boolean-valued form, with two rules that directly pass up
the true and false values, and a third rule that, when the original value is460

unknown, assigns true with 0.01 probability and false with 0.99 probability.
This prevalence may be read from On2Risk and is ultimately extracted from
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the participating factors and the quantitative contribution of a synergy factor430

called “synergy F”.

synergy(’synergy F’, L) :- L =

[’factor A’, ’factor B’,

’factor C’, ’factor D’].

adverseEventE(S) : 0.015 :-435

synergy(’synergy F’, L), at_least_true_factors(S, L, 2).

adverseEventE(S) : 0.015 :-

synergy(’synergy F’, L), at_least_true_factors(S, L, 3).

adverseEventE(S) : 0.015 :-

synergy(’synergy F’, L), at_least_true_factors(S, L, 4).440

at



a scientific source [34].

factorB(S, ’parkinson’, t) :- factor3(S, ’parkinson’, t).

factorB(S, ’parkinson’, f) :- factor3(S, ’parkinson’, f).465

factorB(S, ’parkinson’, t) : 0.01 ;

factorB(S, ’parkinson’, f) : 0.99 :- factor3(S, ’parkinson’, u).

The term factorB is used when factor values are Boolean. factor3 has
similar meaning, but factor values are ternary.

Factors with values that are scalar with unknown, are simply passed up470

when the value is a known number. In case of unknown the probability is
distributed between the possible levels, including level 0, according to the
prevalence. The following example is about the risk factor age.

factorS(S, ’age’, N) :- factorSU(S, ’age’, N), number(N).

factorS(S, ’age’, 0) : 0.25 ; factorS(S, ’age’, 1) : 0.25 ;475

factorS(S, ’age’, 2) : 0.20 ; factorS(S, ’age’, 3) : 0.16 ;

factorS(S, ’age’, 4) : 0.14 :- factorSU(S, ’age’, u).

factorS is used when the factor value is scalar without possibility of
unknown, whereas factorSU is used when unknown is a possible value.

4.5. Third-layer: dealing with estimators480

The third layer contains algorithms that, starting from the values of one
or more input estimators, compute the exposure to a risk factor, with the
possibility of unknown values.

For some factors an identity function is enough, like in the following
example.485

factor3(S, ’parkinson’, X) :- member(estimator3(’parkinson’, X), S).

Where estimator3(’parkinson’, X) means that the estimator named
parkinson is associated, in three-valued logic, with the value X, that can be
t, f, or u. S is the subject the check is made on.

A scalar risk factor may result from an interpretation that discretizes a490

scalar estimator, as seen in the description of On2Risk (Section 3.2). Such an
interpretation is obtained with 4 rules: a pair of rules handle cases resulting
in a risk factor with level 0 or with the maximum level, a rule for cases
resulting in intermediate levels, and a fourth that applies when the estimator
is unknown, resulting in an unknown risk factor. The following example495
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shows how the risk factor age is computed starting from the estimator with
the same name.

factorSU(S, ’age’, 0) :-

member(estimatorSU(’age’, N), S), number(N), N < 70.

factorSU(S, ’age’, 4) :-500

member(estimatorSU(’age’, N), S), number(N), N >= 85.

factorSU(S, ’age’, L) :-

member(estimatorSU(’age’, N), S), number(N),

N >= (70 + (5 * (L - 1))), N < (70 + (5 * L)).

factorSU(S, ’age’, u) :- member(estimatorSU(’age’, u), S).505

factorSU(S, ’age’, L) represents that subject S is affected by the risk
factor named age with level L, where L is a scalar with the possibility of
being unknown. We might notice that the rules above have to be mutually
exclusive: if not, a wrong probability would be calculated. Such property is
guaranteed by the fact that these rules are not directly defined by the devel-510

oper, but rather they are generated automatically by an algorithm, starting
from the ontology.

A scalar estimator may be used to compute a three-valued risk factor
applying a threshold. Three rules are used to state that: the factor is true
when the threshold is satisfied, the factor is false when the threshold is515

not satisfied, and the factor is unknown when the estimator is equally unde-
termined. The following example shows the rules inferring the value of the
depression risk factor from the CESD estimator.

factor3(S, ’depression’, t) :-

member(estimatorSU(’CESD’, N), S), number(N), N > 20.520

factor3(S, ’depression’, f) :-

member(estimatorSU(’CESD’, N), S), number(N), N =< 20.

factor3(S, ’depression’, u) :-

member(estimatorSU(’CESD’, u), S).

The call member(estimatorSU(’CESD’, X), S) unifies X to the value525

of estimator CESD. SU stands for “scalar valued with the possibility of being
unknown”.

As seen in Section 3.2, an aggregation may compute a risk factor value
using one of a variety of rules such as logical OR and arithmetic max, that
present one or more interpretations. In cases where there is just one inter-530

pretation it is not necessary to represent the OR or max explicitly, so the
code may be simplified using the interpretation directly, as in the previous
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examples. When there are two or more interpretations instead, the aggrega-
tion must be coded explicitly. We explain how the OR kind of aggregation
is implemented. The max may be implemented in a similar way. The imple-535

mentation has 3 parts.

1. The first part contains a rule for each estimator that checks if the
interpretation is true. If at least one interpretation is true, the factor
is also true.

2. The second part similarly has one rule for each estimator, this time540

checking two conditions: if the factor is not already true (following
a unification in a rule of the first part) and if the interpretation is
unknown. If a rule of the second part unifies, the factor is unknown.

3. The third part has just one rule that checks if the factor has not an
assigned value of true or of unknown and by exclusion assigns false.545

This implementation is compliant with Kleene’s three-valued logic [32], the
same logic chosen for On2Risk (Section 3.1).

In the following example the factor vision impairment is computed
starting from 3 estimators: visual acuity 3 m, contrast sensitivity,
and visual stereognosis. To each estimator is applied a threshold inter-550

pretation and the interpretations are aggregated by logical OR.

factor3(S, ’vision impairment’, t) :-

member(estimatorSU(’visual acuity 3 m’, N), S), number(N), N =< 5.

factor3(S, ’vision impairment’, t) :-

member(estimatorSU(’contrast sensitivity’, N), S), number(N), N =< 16.555

factor3(S, ’vision impairment’, t) :-

member(estimatorSU(’visual stereognosis’, N), S), number(N), N =< 3.

factor3(S, ’vision impairment’, u) :-

member(estimatorSU(’visual acuity 3 m’, u), S),

!, \+ (factor3(S, ’vision impairment’, t)).560

factor3(S, ’vision impairment’, u) :-

member(estimatorSU(’contrast sensitivity’, u), S),

!, \+ (factor3(S, ’vision impairment’, t)).

factor3(S, ’vision impairment’, u) :-

member(estimatorSU(’visual stereognosis’, u), S),565

!, \+ (factor3(S, ’vision impairment’, t)).

factor3(S, ’vision impairment’, f) :-

\+ (factor3(S, ’vision impairment’, t)),

\+ (factor3(S, ’vision impairment’, u)).
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8http://ffrat.farseeingresearch.eu
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5. Implementation of the system570

FARE allows the user to assess the risk of a subject whose data is man-
ually inserted, run analyses on datasets in batch mode, compile and use
an LPAD risk assessing program or run the assessment directly in the Java
environment. The system may be seen as composed of 2 main parts.

1. A core Java application that creates the risk assessing algorithm, ac-575

cesses data sets of subjects, runs the assessment directly or produces an
LPAD program able to compute the risk, and translates the provided
information about subjects in Prolog. The subjects are then ready to
be assessed by the LPAD program.

2. An LPAD environment where the LPAD version of the risk assessment580

is executed, with Prolog scripts to run the assessment on whole sets of
subjects and aggregate the results.

For manual insertion of subject data, it is possible to use a Web interface,
like the one available for FRAT-up 8. For a study on its usability see [35].

The core application of FARE is a Java program that includes a number585

of features.

1. Composing a Java object that represents a program computing the
probability of an event, “assessment program object” from now on.
The input is a source with quantitative data about estimators and risk
factors, and with functions from estimators to risk factors, like the590

ontology On2Risk described in Section 3, that can be accessed with a
query language like SPARQL.

2. Constructing/Generating an LPAD program that computes the proba-
bility of an event, starting from an assessment program object of point
(1).595

3. Reading estimators or, directly, risk factors about sets of subjects from
a database or from a comma-separated values (csv) file.

4. Writing Prolog rules defining the estimator values of a set of subjects
from point (3), to be feed to a risk assessment LPAD program of point
(2).600

5. Deriving the values of a subject risk factors starting from his/her es-
timators, supplying the estimators to factor functions contained in an
assessment program object of point (1).



Figure 5: UML Collaboration Diagram of LPAD production steps. Messages are numbered
in a consistent chronological order.

6. Computing the probability that an event will happen to a subject start-
ing from the subject’s risk factor values, applying an assessment pro-605

gram object from point (1).

7. Applying the assessment to sets of subjects data (subjects’ profiles) and
computing various quality measures, like AUC and Brier score [36].

In feature (2), the LPAD rules for risk assessment are automatically gen-
erated from the Java application. The process of producing and writing the610

LPAD program goes through a sequence of steps as depicted in the UML
Collaboration Diagram of Figure 5 and encompasses the composition of an
assessment program object of feature (1). First a data source, like On2Risk,
is read through a wrapper and data are extracted; they include (a) the names
and types of the risk factors and the estimators; (b) the prevalences of the615

risk factors; (c) the probability of the event in absence of risk factors C0;
(d) the odds ratios associated to the risk factors ORi; and (e) for each risk
factor a function that specifies how it is computed starting from one or more
estimators.

Applying the mathematical model described in Section 4.1, the probabil-620

ity contribution Ci associated to each risk factor is computed starting from
the probability of the event in absence of risk factors C0 and the odds ratio
of the risk factor ORi, using equation (2). This is required because our ap-
proach is based on probabilities (it is indirectly based on odds ratios). The
probability contributions together with data (a), (b), (c), and (e) compose625

the assessment program object of feature (1).
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Figure 6: UML Activity Diagram of FARE risk assessment.

In the next step an LPAD program creator algorithm uses the assessment
program object to build a representation in a composite Java object of an
LPAD program, a tree that mirrors the syntactical tree of a well-formed
LPAD program. Finally in the last step an LPAD codifier writes the actual630

LPAD program according to customizable formatting rules.
The core application permits to assess the risk of a subject directly in

Java, starting from his/her values of the relevant estimators. Data contained
in an assessment program object from feature (1) is used first to compute
risk factor values starting from estimator values (feature (5)), and then to635

compute the event probability, starting from risk factor values (feature (6)).
The whole procedure is depicted in the UML Activity Diagram of Figure 6.
The resulting event probability is equal to applying the LPAD rules described
in Section 4, and the diagram applies to them too, looking at the rule layers
backwards from layer 3 to layer 1.640

Subject estimators are received from a dataset or from user input as in the
FRAT-up Web application. Using the estimator to factor functions, sub-
ject’s risk factors are computed, possibly with unknown values. Using the
probability of the event in absence of risk factors, the prevalence of the risk
factors, and their contributions to the risk, the unknown values are handled645

and the probability of the event is computed, according to Equation (1).
Both the LPAD and the Java implementations have good computational

performances in typical cases where almost all the subject factors are known,
with a computation lasting less than 15 milliseconds on a low cost machine
(e.g. on a MacBook Pro 2010, 2.4 GHz Intel Core i5). When the subject650

factors contain many unknown values the computation is slower, requiring
in the LPAD implementation more than 10 seconds in the worst case where
all estimators are unknown using FRAT-up. This is due to the fact that

23



9This optimization exploits properties of statistical independence: it can be proved that
it is not necessary to split the problem in two or more possible worlds for each unknown
variable, but it is sufficient to split on the factors that are part of a synergy (11 out of 26 in
FRAT-up, 0 out of 5 in DRAT-up). This reduces the computation by orders of magnitude
and allows to compute the risk in less than 15 milliseconds even in the worst case in the
FRAT-up Java version.

10 The Global Burden of Disease Study 2010. http://www.healthdata.org/gbd
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the presence of unknown values makes the problem harder (a brute force
implementation would compute a probability of the event for each of the655

possible assignments of the unknown factors). The LPAD interpreter features
general purpose optimizations and is a lot faster than a brute force algorithm,
but still lacks an important domain specific optimization, that instead we
could deploy in the Java version 9.

6. Validation of the approach on two health-related domains660

Tools for risk evaluation are key components of preventive medicine, as
they inform prevention policies about people at higher risk. They have been
developed for several specific medical conditions, e.g. cardiovascular dis-
eases [2] or type 2 diabetes [3]. Two risk prediction models (RPMs) have
been developed according to the framework presented in this study for two665

health-related domains: FRAT-up, a fall risk assessment tool for community-
dwelling older adults [37, 15, 16], and DRAT-up, a depression risk assessment
tool for community-dwelling subjects aged 60-75 [17]. They have been vali-
dated using four and three large European epidemiological datasets, respec-
tively. The datasets had different sets of risk estimators. In order to enable670

FARE to operate on them, for each dataset we only had to write a differ-
ent set of third-layer rules (without changing the other two layers). These
rules were written before testing FARE and without being influenced by its
performance.

6.1. Validation on fall risk675

Falls are the most burdensome cause of injury among older adults10. Not
only are they responsible for physical injuries and consequent physical disabil-
ity, but also for an increase in fear of falling, and a decrease in self-confidence,
physical activity and social participation.



Table 1: AUC (95% CI) for FRAT-up on different datasets.

ActiFE ELSA InCHIANTI TILDA

0.562
(0.530, 0.595)

0.699
(0.680, 0.718)

0.636
(0.594, 0.681)

0.685
(0.660, 0.709)

A number of risk factors have been identified to contribute to proneness680

to falling (e.g. cognition impairment, visual loss, etc.) [30, 38] and various
preventive programs have been shown to be effective [39, 40, 41].

The odds ratios of the fall risk factors were taken from a review and
meta-analysis [30] and the parameter C0 was calculated assuming an average
probability of falling of 0.31 [42].685

We have compared its performance against common indicators of fall
risk and data-driven models. Common fall risk indicators were history of
falls, gait speed, and the Short Physical Performance Battery [18], which can
be used by FRAT-up as risk factor estimators. Data-driven models were:
a Poisson Lasso regression trained on an extensive number of variables of690

the InCHIANTI dataset (NCT01331512) [18] and stepwise logistic regres-
sions trained on FRAT-up risk factors and their two-way interactions of four
datasets of epidemiological studies of older adults [16]: Activity and Function
in the Elderly in Ulm (ActiFE-Ulm) [43, 44], English Longitudinal Study of
Ageing (ELSA) [45], InCHIANTI [46], and The Irish Longitudinal Study on695

Ageing (TILDA) [47, 48].
Regarding validity, results have shown that FRAT-up significantly out-

performs simple fall risk indicators and is equivalent to the data-driven Pois-
son Lasso regression. Namely, the AUC (95% confidence interval (CI)) for
FRAT-up was 0.638 (0.610–0.666), for the Poisson Lasso was 0.639 (0.611–700

0.667), and for gait speed was 0.594 (0.566–0.622) [16].
On the four different datasets, FRAT-up attained different values of AUC,

ranging approximately from 0.56 to 0.70 as reported in Table 1. On each
dataset, FRAT-up AUC was always greater than the AUC of data-driven
models trained on external datasets (Figure 7).705

6.2. Validation on depression risk

In recent years, the importance of prevention and early identification
of depression has been increasingly recognized [49]. Late life depression is
particularly disabling: it causes personal and familial suffering, heightens
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Figure 7: Results from FRAT-up validation on four epidemiological datasets of older
adults. (a) Receiver Operating Characteristic curves for FRAT-up. (b) AUC of FRAT-
up and four cohort-specific risk models trained with stepwise logistic regression. More
detailed numerical results can be found in [16].
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Table 2: DRAT-up performance. 95% confidence intervals in brackets.

ELSA InCHIANTI TILDA

AUC 0.761
(0.746, 0.775)

0.736
(0.703, 0.769)

0.768
(0.717, 0.815)

Brier score 0.054
(0.052, 0.056)

0.133
(0.118, 0.148)

0.041
(0.036, 0.045)

Figure 8: ROC curve of DRAT-up on the three validation datasets.

suicide risk, worsens the outcomes of associated physical conditions and in-710

creases healthcare costs [50]. Treatments include antidepressant drugs [51]
or psychosocial interventions [52]. Clinical outcomes remain suboptimal due
to lack of resources and frequent under-diagnosis [53].

DRAT-up was validated on 24689 samples, relative to 11704 individuals,
from the three datasets ELSA, InCHIANTI, and TILDA. The probability715

contributions Ci were derived from the odds ratios reported in [54] and C0 =
0.061 was derived from [55].

The AUC and the Brier score attained by DRAT-up on the 3 datasets,
including 95% confidence intervals (CI), are reported in Table 2. The AUC
ranged from 0.736 in InCHIANTI to 0.768 in TILDA. DRAT-up was char-720

acterized by a fair performance in all three datasets, with similar Receiver
Operating Characteristic (ROC) curves, displayed in Fig. 8.

A previous RPM, by Okamoto and Harasawa, was based on a stepwise lin-
ear discrimination analysis of a sample of 754 subjects aged 65 and older[56].
We compared DRAT-up with the model developed by Okamoto and Hara-725

sawa on the ELSA and TILDA datasets. We judged that the InCHIANTI
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dataset could not be harmonized to calculate the Okamoto score. The AUCs
for the Okamoto score on the ELSA and TILDA datasets are respectively
0.672 (95% CI 0.657-0.690) and 0.683 (95% CI 0.628-0.735). Thus, upon di-
rect comparison with a previously-proposed RPM, DRAT-up showed a higher730

discriminative ability.

6.3. Validation conclusions

The rules derived from the literature produced valid fall and depression
risk assessment tools. Their predictive accuracy was greater than commonly-
used risk indicators (e.g. gait speed for fall risk), previously-proposed models735

(the Okamoto score for risk of depression), or data-driven models trained on
external datasets. In this regard, we highlight that since our risk models
were not trained on the datasets we used for validation but were derived
from literature knowledge, our results have external validity. Furthermore,
our approach proved to be adaptable and to work on different domains and740

on different datasets, which where not specifically designed to study fall
nor depression. Finally, it was able to seamlessly cope with missing data,
an ubiquitous issue that affects real-world and research-based datasets. All
these represent clear advantages over other similar tools.

7. Conclusion and Discussion745

Risk assessing protocols have been experimented with differing results in
numerous application fields including ecology [57], suicide [58], cardiovascular
diseases [59], health as a whole [60], and many others.

In this article we presented a general approach for risk assessment. This
approach is characterized by an ontology (On2Risk) that structures the avail-750

able scientific literature about risk factors. The ontology also stores informa-
tion that allows to handle missing data and to quantify synergies between risk
factors. The starting point of our approach is always some medical knowledge
already published and accepted by the medical community. Such knowledge
is usually made available through scientific papers and books, i.e., it is rep-755

resented in natural language texts, images, tables summarizing odds ratio,
bibliographic references, etc. Although easily accessible by human health ex-
perts, such knowledge is not automatically exploitable through an algorithm.
The On2Risk ontology is our proposal for a suitable formal representation of
such a knowledge.760
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The adoption of On2Risk brings another advantage. An ontology-based
approach allows any user (or any algorithm) to inspect the knowledge risk
tools are based on, by simply navigating the ontology itself: in this sense,
On2Risk might be seen as an answer to the urgent need of having explainable,
transparent AI tools, especially in the health field.765

Formal ontologies are not the only way for representing knowledge. E.g.,
we could have represented the knowledge directly by means of a PLP. While
from a computer science perspective such alternative sounds plausible and
reasonable, we might notice that formal ontologies (with various degrees of
expressiveness) are becoming a standard in the health domain.770

In any case, our approach requires the extraction of machine-readable
data from sources that are only human-readable. Creating and updating a
formal ontology requires human work and sometimes a huge effort. This is an
unavoidable limitation of our approach: when building a risk tool for a new
domain, the developer should identify proper knowledge, possibly merging775

different knowledge sources, and then proceed to create a formal representa-
tion. Such process is known to be time-consuming. Conversely, the lack of a
training phase is a clear practical advantage.

The ontology is the input (other inputs could be possible in the general
approach) to a probabilistic rule-based system. The mathematical model780

underneath the rule-based system was designed to have a natural translation
in form of rules. The scheme of the rules was written in the LPAD language.
The presented system has a three-layered architecture that from a list of risk
estimators computes the probability of happening of the event. This can be
done also in the presence of unknown values of risk factors.785

We detailed and explained FARE characteristics in the light of its first
practical implementations, FRAT-up and DRAT-up. The chosen fields of ap-
plication are fall and depression risk assessments, both crucial because of the
severe related problems, like death, disability, hospitalization and quality of
life reduction. FRAT-up and DRAT-up were validated with good results in790

a total of seven different assessments, with data from four different datasets,
showing the effective FARE modularity. In fact, in order to apply the tools
to different datasets, only a single layer had to be re-written (leaving the
higher-level layers unchanged). The performance of FRAT-up and DRAT-
up was compared to the performance of other tools showing the effectiveness795

of the proposed risk assessment method. Despite its excellent promises, the
effectiveness of the method in other health-related areas remains to be ex-
plored.
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It should be noted that the FRAT-up and DRAT-up implementations are
based only on information present in scientific literature and no learning is800

made on the available data. We believe that adding data-driven capabili-
ties (automatically learn from data) to these implementations could allow to
exploit further potentially useful data sources (like wearable devices) which
could result in future performance improvements. Solutions have been devel-
oped in the past for learning the probabilities of the single risk factors. For805

instance, approaches based on Inductive Logic Programming ([61] is among
the earliest, to the best of our knowledge) have been proposed, while recently
also solutions based on Expectation Maximization algorithm [62] have ap-
peared. These approaches focus on learning the parameters, hence On2Risk
might be exploited as a background knowledge (once it has been stripped810

of odds ratio). Interestingly, in [63] a solution for learning the structure of
the program (i.e., the rules) is presented: this could open up the possibil-
ity of mixing previous knowledge coming from On2Risk with new knowledge
(still in the form of logic rules) learned from other data sets, by introducing
(learning) novel risk factors.815
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