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Abstract: Multi-agent systems (MAS) are built around the central notions of agents, interaction,
and environment. Agents are autonomous computational entities able to pro-actively pursue goals,
and re-actively adapt to environment change. In doing so, they leverage on their social and situated
capabilities: interacting with peers, and perceiving/acting on the environment. The relevance of
MAS is steadily growing as they are extensively and increasingly used to model, simulate, and
build heterogeneous systems across many different application scenarios and business domains,
ranging from logistics to social sciences, from robotics to supply chain, and more. The reason
behind such a widespread and diverse adoption lies in MAS great expressive power in modeling
and actually supporting operational execution of a variety of systems demanding decentralized
computations, reasoning skills, and adaptiveness to change, which are a perfect fit for MAS central
notions introduced above. This special issue gathers 11 contributions sampling the many diverse
advancements that are currently ongoing in the MAS field.

Keywords: multi-agent systems; agent-based modeling; agent-based simulation; decision support

1. Introduction

As intelligent systems pervade more and more our everyday life, the need for a coherent set of
abstractions and technical tools to support their design, development, and maintenance keeps growing
steadily. Multi-agent systems (MAS) nowadays represent the richest and most reliable source for such
abstractions, given that they provide the components (the agents) to encapsulate essential features such
as cognition and autonomy, as well as the notions required to put systems together (agent societies)
and make them work in the real world (MAS environment) [1]. In addition, a few decades of intensive
academic and industrial research on MAS, and their integration with the most recent advances in AI
techniques and IoT technologies, have promoted the intense development and widespread diffusion
of novel agent-oriented techniques, methods, and tools, and paved the way towards the acceptance of
MAS as the forthcoming industrial mainstream for complex yet reliable intelligent systems.

Yet, the articulation of the MAS scenario is nowadays so overwhelming that the transition is going
to make both researchers and practitioners busy for two more decades, at least—before all aspects and
issues concerning MAS techniques and methods are fully understood and addressed within the many
relevant application scenarios where MAS are required to operate. Providing a platform where MAS
researchers can share their most novel and exciting findings and results is then crucial to support and
promote the development and spreading of new MAS models and technologies: this is in fact the main
motivation behind the special issue.

Appl. Sci. 2020, 10, 5329; doi:10.3390/app10155329 www.mdpi.com/journal/applsci1
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2. Overview

Before delving into the individual contributions gathered, a few general statistics and observations
are useful to have an overview of the content and outreach of this special issue:

• 53 papers have been submitted for peer review, out of which 11 were finally published, resulting
in an acceptance rate of ≈ 21%;

• the average time to publish, intended as the time passed from submission to online availability, is
41 days, with a standard deviation of ≈ 16 days—dates are publicly available on each paper web
page, accessible from the special issue home page (https://www.mdpi.com/journal/applsci/
special_issues/Multi-Agent_Systems_2019, last accessed 21 March);

• papers already generated an average of 538 downloads (≈281 standard deviation)—we deem
citations not worth considering yet, after just (less then) 1 year since publication;

• published papers have been co-authored by authors coming from 10 different countries, covering
Europe, Asia, North and South America. Amongst these, Italy and China are the most represented,
having 2 papers with more than one local author.

These numbers are in line with previous edition of the special issue [2], except for a lower
acceptance rate, which reflects the more selective review process meant to increase the quality of the
special issue and its potential impact on research and practice.

Figure 1 shows the wordcloud generated from the full text of the published papers.

Figure 1. Wordcloud generated from the full text of each publication of the special issue.

The most mentioned words are “agent” and “model”, closely followed by “simulation” and
“system”, and then by “task” and “data”. The former four words are not surprising and confirm
our editorial for previous edition: MAS are well-known and widely adopted also outside the strict
boundaries of computer science and engineering exactly for the purpose of modeling and simulating
complex systems, in fields as diverse as bioinformatics, social sciences, network science, supply chain,
and logistics. The latter two words may instead appear as rather novel, and point to the increasingly
widespread exploitation of MAS for novel purposes, such as collecting, managing, and analyzing data
to turn it into actionable knowledge, and support execution of tasks requiring peculiar capabilities such
as reasoning, reactiveness to environmental conditions, compliance to complex inter-dependencies.

Other highly relevant words working as clues for relevant application areas and kind of systems
are the following ones:
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• “game”, “role”, “social”, and “interaction”, which point to the social dimension of agenthood;
• “robot”, “environment”, “action”, and “time”, which emphasize the situated dimension of MAS.

In our previous editorial we analyzed a similar wordcloud from the perspective of the topics
that were subject of the publications, which were: agent-based modeling and simulation, situated
systems, socio-technical systems, and semantic technologies. Except for the latter, relevance of the
other is confirmed by the current edition. That said, this year we would like to take a different point
of view, by answering the following question: what are MAS used for? In the following sections we
classify the papers included in this special issue according to the following four usage destinations,
and summarize their main contributions:

Decision support—papers gathered in this category exploit MAS, in particular their ability to
perform distributed reasoning, to deliver insights about a certain topic, with the goal of enhancing
humans’ decision making processes and lower their cognitive overhead.

Modeling framework and methodology—in this category, what matters the most is the expressive
power of the agent abstraction as a conceptual tool supporting engineering of complex systems
featuring autonomous components.

Programming abstraction and simulation framework—complementary to the previous category, in this
one MAS are mostly used for their operational features, as a software tool enabling development and
execution of the complex systems already mentioned, especially in simulated scenarios.

Execution infrastructure—here, MAS are used as the backbone infrastructure executing the
computations demanded by the application at hand, leveraging MAS themselves as an efficient
and effective distributed computing platform.

3. MAS for Decision Support

Interestingly enough, the category reflecting the new entry w.r.t. previous editorial is also the
most represented: 4 papers out of the 11 published exploit MAS to deliver decision support.

In [3], the authors exploit agent-based modeling and simulation to define a photovoltaic adoption
prediction model based on self-reported behavior, then refined by a genetic algorithm looking at
observed data. The goal is to help energy-related decision making by policy makers, by modeling and
predicting households pondering whether to adopt photovoltaic energy solutions. Here, the agent
abstraction is useful to model individual behavior driven by rational utility functions (such as economic
savings), and the social dimension stemming from neighborhoods influencing each others’ decisions.

In [4], an MAS is used as the operational backbone of a game-theoretic approach to task allocation
under strict spatio-temporal constraints, applicable to deliver decision support in many critical
scenarios such as disaster relief. Here the main motivation behind usage of an MAS lies in the
preference of quickness over optimality as regards convergence to useful allocations, as the targeted
scenarios do not mind optimal solutions if they do not come within a reasonable time. As such, an MAS
is built to run a scheduling algorithm rooted in game theory in a decentralized fashion, improving
convergence time while giving away optimality.

In [5], an MAS is proposed as a platform for instrumenting a collective of neural network based
classifiers by adopting a crowdsourcing metaphor: each classifier is an agent, each classification is an
opinion, and the overall prediction delivered by the system is the aggregation of the crowd’s opinions.
The goal is to improve prediction accuracy and transparency, by letting agents interact socially to
exchange knowledge (e.g., new features), gain reciprocal trust, and change opinion when given enough
evidence. The agent abstraction is then used mostly for its autonomy, and the MAS as an enabler of
the sociality needed to improve transparency and accuracy through the exchange of information.

In [6], the authors target the green coffee supply chain with an agent-based decision support
system devoted to planning production scheduling in face of fluctuating and peak demand.
The modeled supply chain is rather complex, with plenty of interdependencies amongst activities and
variables influencing the decision process at each step. An MAS is thus used to tame this complexity,
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by modeling all the different tasks and processes as autonomous agents, each undergoing its own
reasoning to take decisions, while interacting with others upon need.

In spite of the heterogeneity of the application domains and the techniques adopted, all the
described approaches leverage on MAS central notions to improve delivering of decision support
functionalities, either by simulation [3,4] or as an operational platform [5,6].

4. Agent-Based Modeling and Methodology

As witnessed by the following papers, modeling complex systems of any sort within
heterogeneous scientific disciplines is a staple in MAS application, either for observing such systems
to devise out properties, patterns, and laws, or for crafting them in compliance with agent-oriented
methodologies so as to obtain MAS non-functional properties—decentralization, reactiveness to
change, etc.

In [7], an MAS is used in the context of social sciences to model residents in a smart city so as
to study their social engagement during time (e.g., daylife vs. nightlife) and across space (city center
vs. business district). The idea behind such a modeling is that activity of the residents are influenced
by what others are doing and by environmental conditions, such as the presence of shops, events,
etc., hence the social and situated nature of agents in an MAS is a perfect fit. Based on this modeling,
the authors study various aspects of social and institutional engagement, such as mutual trust and
trust in institutions.

The application context of [8] is instead totally different, as it deals with observation of emergent
properties, in particular scale-free features, for robotic systems implementing swarming behaviors,
such as collective foraging. The authors aim at testing whether scale-free attributes may also arise in
artificial collective systems inspired to biological ones, such as ant colonies, and then whether such
attributes have positive influence on the overall system performance. In such a context, the agent
abstraction is particularly useful while modeling individual behavior of robots, which depends on
environmental conditions (situatedness) and peers actions (sociality).

In [9], we are introduced to yet another research field exploiting the expressive power of the
agent abstraction for modeling, while also considering a methodological perspective: psychology,
in particular, educational games design. The authors describe a design process for educational games
which heavily relies on the agent abstraction for modeling both human behavior and the software
system engaging players, for instance, the admissible actions at each stage of the game, their effect on
the system or the player(s), and the modalities of interaction between players and with the software
control system. To further consolidate the agent metaphor, the authors also consider virtual avatars
representing players and system characters, so as to leverage on more natural interactions.

5. Agent-Oriented Programming and Simulation

Complementing the modeling aspect discussed in previous section, the two following works
exploit agent-oriented programming to deliver software tools enabling design and deployment of
MAS and agent-based simulations.

In [10], a model-driven approach is proposed to reconcile all the different existing organizational
models meant to let MAS designers operationally define the social dimension in an MAS.
Organizational models respond to the need of guaranteeing correctness of the overall MAS behavior
despite individual agents are autonomous entities, hence, as such, are able to choose their own course
of actions in isolation—and while pursuing their own individual goals. Through these models and the
corresponding software tools, MAS designers have ways of specifying co-operation protocols amongst
agents, taming their individual behaviors and steering them towards a coherent system-level goal.

In [11], the focus of the contribution and the main novelty regard seamless deployment on
simulated and production environments, with little modifications as possible to the agent logic.
The authors propose a coherent and integrated Python development framework encompassing
testing, simulation, validation, and deployment software production stages, as well as autonomy,
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reactiveness to environment events, and social ability facets of an MAS. The proposed framework,
ARPS, revolves around a few crucial architectural components: the agent manager, agents themselves,
a discovery service, and a discrete events simulator. Facilities for dealing with sensing and actuating
in either simulated or physical environments are made available, and agent behavior as well as social
interactions can be defined through policies dictating which actions correspond to which event.

Both the aforementioned contributions aim at providing general-purpose agent-based solutions
to let other developers build their own MAS.

6. MAS as Execution Infrastructure

The last usage destination—that is, exploiting an MAS as the execution infrastructure for a
given system—is quite common in MAS literature, as the agent abstraction is a general-purpose
programming concept with applications in many business domains and for heterogeneous systems.

In [12], an MAS is used in the context of multi-robot formation: first, a distributed consensus
algorithm is simulated on a multi-agent based simulation software to assess desired properties despite
uncertainty of data and delay in communications, then such algorithm is implemented as an MAS and
deployed on a real robotic platform comprising four mobile robots, further assessing effectiveness.
In this work, the value added of the MAS lies in its natural predisposition to distribution and tight
coupling with environment sensing and actuation, which are necessary features of multi-robot systems.

In [13], instead, an MAS is used as the platform for training unmanned surface vehicles: agents in
the MAS correspond to vehicles’ controllers and implement a distributed learning algorithm meant
to achieve optimal coordinated behavior. Here, the agent abstraction is chosen for its capability to
express adaptive behavior by learning new behavioral rules (likewise plans in BDI architectures)
while operating.

Both contributions showcase the ability of MAS architectures to provide a suitable infrastructure
for effective and efficient execution of heterogeneous tasks (consensus in the former, learning in
the latter).

7. Conclusions

The large number of submissions to this second installment of the MAS special issue has made it
clear that there is still a huge space that initiatives of this sort can help covering. In addition, the quality
of the papers collected and published here testifies the effort that the scientific community is devoting
to the development of novel MAS models, techniques, and methods. The breadth of the MAS-related
topics faced by submitted papers (which for obvious reasons cannot be fully analyzed here) also
witness the increasingly expanding reach of agent-based techniques and solutions.

This is mostly why this special issue on the one hand provides readers with a very representative
picture of the state-of-the-art of MAS research, on the other hand is far from being conclusive under
any possible viewpoint. The articulation and expansion of the MAS field leave the space open for many
other initiatives like this special issue—so we expect to see many more of them in the next few years.

In the meanwhile, we are quite confident that the readers of Applied Intelligence will be able
to understand the extent of the application scenarios that MAS are going to cover in the next
decades, as they become the conceptual and technical foundation for the next generation of complex
intelligent systems.

Author Contributions: Conceptualization, S.M. and A.O.; methodology, S.M.; software, S.M.; validation, A.O.;
writing–original draft preparation, S.M.; writing–review and editing, A.O.; visualization, S.M. All authors have
read and agreed to the published version of the manuscript.
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Abstract: Designing and evaluating energy policies is a difficult challenge because the energy
sector is a complex system that cannot be adequately understood without using models merging
economic, social and individual perspectives. Appropriate models allow policy makers to assess the
impact of policy measures, satisfy strategic objectives and develop sustainable policies. Often the
implementation of a policy cannot be directly enforced by governments, but falls back to many
stakeholders, such as private citizens and enterprises. We propose to integrate two basic cornerstones
to devise realistic models: the self-reported behaviour, derived from surveys, and the observed
behaviour, from historical data. The self-reported behaviour enables the identification of drivers and
barriers pushing or limiting people in their decision making process, while the observed behaviour is
used to tune these drivers/barriers in a model. We test our methodology on a case-study: the adoption
of photovoltaic panels among private citizens in the Emilia–Romagna region, Italy. We propose
an agent-based model devised using self-reported data and then empirically tuned using historical
data. The results reveal that our model can predict with great accuracy the photovoltaic (PV) adoption
rate and thus support the energy policy-making process.

Keywords: simulation model; multi-agent systems; photovoltaic energy; parameter fine-tuning;
self-reported behaviour; predictive model

1. Introduction

The European Union is deeply committed to curtailing its greenhouse gas emissions by at least
20% by 2020, w.r.t. 1990 levels, as stated in the sustainable growth strategy outlined in [1]. The path to
achieve such a goal passes through an increase up to 20% of the share of renewable energy sources in
final energy consumption and a 20% rise in energy efficiency. All EU members and regions should put
an effort in this direction to contribute to these common objectives. For instance, Italy was supposed
to reach a 17% share of final energy coming from renewable sources in 2014, a target that have been
reached and slightly surpassed [2].

The complex task of enforcing these guidelines is shouldered by national and regional policy
makers. Energy policies have a strong impact on sustainable development and they influence economy,
society and environment. Policy makers have to devise plans targeting strategic objectives, e.g., cutting
greenhouse emissions, with the goal of satisfying different constraints (i.e., limiting pollutant emissions,
not exceeding a financial budget, etc.) and respect the EU guidelines. After having been devised,
the plans need to be enforced with implementation instruments (from incentives to investment grants,
passing through tax exemptions) [3–5]. One aspect that tends to be severely underestimated while
planning energy policies is the strong influence of human behaviour together with social dynamics;
it is often studied with the assumption that consumers are rational and guided only by financial and

Appl. Sci. 2019, 9, 2098; doi:10.3390/app9102098 www.mdpi.com/journal/applsci7
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economic drivers [6–8] which severely affect the accuracy and realism of the study. In fact, the decision
process of involved agents (i.e., private citizens) is deeply influenced by non-economical motivations,
such as social influence, peer pressure, bandwagon effects, lack or wealth of knowledge, risk aversion,
etc. [9–12]. Properly understanding the decision making process is critical to better influence the
interested parties’ behaviour and steering them toward good practices and policy objectives. In this
context there is urgent need of appropriate and accurate models for enabling policy makers to design,
evaluate and implement energy policies to satisfy strategic objectives and develop sustainable strategies
that have a strong impact on economy, society and environment.

We propose to merge in the model definition two types of knowledge: (1) self-reported behaviour
derived from large scale surveys and interviews, and (2) observed behaviour based on real data
measuring the actual effect of the target energy policy. The models are used to bridge the gap between
these two behaviours and enable a better understanding of private citizens decision-making processes.
We claim that social and economic drivers and barriers can be extracted from quantitative analysis of
survey data, whilst a deeper understanding of how these drivers operate and interact can be derived
from interview findings. On the basis of these drivers and barriers, we build a parametric model,
whose parameters can be empirically tuned so that the model reproduces the observed behaviour.
We expect the parameter tuning to generate different outputs (i.e., parameter values for different
drivers and barriers) for different private entities classes (private citizens, enterprises, etc.) and for
different countries and geographical situations.

The final outcome of merging self-reported and observed behaviour is the creation of predictive
models with the ability to forecast the stakeholder behaviour in the presence of specific energy policies,
financial and economic situations. These predictive models can be inserted into simulations and used
by policy makers in a what-if fashion, namely by proposing alternative scenarios and observing the
emerging behaviour of consumers related to energy efficiency and overall cost.

In this work we focus on policies for promoting energy production from renewable energy
sources and, in particular on photovoltaic (referred to as PV) power generation. We use, as a case study,
self-reported and observed behaviour in the Italian region of Emilia–Romagna, where the majority
of the total installed photovoltaic power is generated by small/medium panels installed by private
citizens and enterprises. For this reason the regional policy makers cannot directly decide the total
power installed, but they have to push the PV power generation through indirect means, usually in
the form of incentives to the PV energy. The decision to install a PV panel is not driven exclusively by
economical/technical considerations (although these aspects have clearly a significant impact), but it
involves also different factors determined by the human behaviour and social interactions [13,14].
As observed behaviour, we employ the data regarding the historical yearly installation rate of new
photovoltaic panels and the total amount of installed photovoltaic power reported by the national
and regional governments. On these data we craft an agent-based model for simulating the adoption
of photovoltaic panels. We consider individual households as the actors populating the simulation
environment and deciding whether to install a PV panel or not. The behavioural rules of the agents
are devised using self-reported data collected thanks to surveys and questionnaires conducted among
private citizens. From these data we derive the drivers and the barriers that influence the adoption of
a PV panel. The importance of each factor is decided during the following phase, when we use the
observed data in order to fine-tune the parameters of the model. The model takes into account both
geographical, economical and social aspects.

The validation and final evaluation of the proposed model has been performed over a period
of 11 years by comparing the historical PV power installation trend in a certain period to the one
generated by the agent-based simulators. The historical data collected over this time span is divided
in two sub sets in order to achieve a two-fold purpose: (I) tune the agent-based model’s parameters
(combination of self-reported and observed behaviour) and (II) test the accuracy of the approach by
assessing its predictive capacity. For this purpose, the first seven years were used for parameter tuning
and for the remaining years we compare the historical data with the simulated behavior—a small
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discrepancy would mean a good accuracy of the model, otherwise, a large gap would indicate a model
not really usable. The experimental results highlight that with our model it was possible to predict
future trend of installed PV power; this information and predictive capability can greatly help policy
makers in their task.

The structure of the paper is the following. In Section 2 related works are discussed. Section 3
provides a general overview of the proposed approach. Section 4 presents the surveys used to identify
drivers and barriers governing people’s decisions and the method to derive the model for the agents’
behaviour. Then, Section 5 describes the proposed agent-based model. The method used for tuning
the model’s parameters is described in Section 6. Section 7 reports the evaluation of the proposed
approach, validating the fine-tuned agent-based model and assessing its accuracy. Finally, Section 8
concludes the paper, summarizing the obtained results and suggesting future research directions.

2. Related Work

The adoption of renewable energy sources, such as photovoltaic panels, can be framed as
an innovation diffusion problem, an issue that has been the subject of many research works. Several
findings suggest that the diffusion of an innovation is a social process. A common methodology to
deal with this problem is agent-based modeling and simulation, where the agents are connected to
form a interconnected network; agent-based models are also referred in the literature (and in the rest
of this paper) as ABMs. Agent-based modeling is a computational approach that provides a tool
for researcher with the purpose of creating, analysing and experimenting with models composed of
agents that interact within an environment. Agent-based models are a simplified representation of
the reality that can be used to explore certain aspects that would be harder to study without the aid
of computational experiments [15]. Agents are usually distinct parts of a program that are used to
represent social actors/individuals, organizations such as firms and enterprises, or bodies such as
nation-states. They are programmed to react to the computational environment where they reside;
this “simulated” environment is a representation of the real environment where the social actors
operate [16].

In particular, ABMs have been used to study how innovative technologies spread in the real
world [17–20]. It has been noted that the adoption rate of innovation does not depend exclusively
on economic factors (i.e., costs or available budget), but many other aspects can have a profound
influence. For instance, Abrahamson et al. [21] describe a threshold ABM where the adoption rate of a
new technology is influenced by the “bandwagon effect”, with new adopters facilitating the spread of
knowledge that in turn increases the adoption of the innovative technology by new agents. Similarly,
Chatterjee et al. [22] consider that potential adopters can have precise information about the cost
of a innovative technology but can only estimate its benefits and real value—hence the perceived
worthiness is an important factor. The main idea is that the information about an innovative technology
spreads among an increasing network of agent through communication with previous adopters—in
this way the uncertainty about the innovation potential decreases. The PV technology diffusion can be
cast as a problem of innovation adoption, hence these insights will be partially incorporated in the
model proposed in this paper.

Extensive research has been devoted to investigating the PV technology via ABMs [23–26], with a
special focus on rooftop PV panels—systems that are typically installed by private citizens and small
enterprises. The rest of this section reviews some of the approaches proposed in the last few years.

Zhao et al. [27] describe an ABM for studying the diffusion of PV systems where agents are
homeowners which decide whether to install a PV panel or not. They consider four main factors that
affect the agents’ decision: payback period, household income, neighbourhood and advertisement.
The final decision of each agent is based on a linear combination of these four factors, called “desire
level”. If the desire level is above a certain threshold, the household will opt for installing a PV
panel. Selecting the correct value for the threshold is not an easy task: it strongly impacts the decision
algorithm of the agents but the authors do not offer a general method to compute it. Instead, the domain
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experts’ knowledge is used to select a set of realistic values, which have to be tested and validated on
test-case scenarios (without comparison with historical trends). With our approach we aim at finding
the correct values for the ABM parameters through the fine-tuning process guided with observed data.

Extending the work of Zhao et al., Palmer et al. propose a different ABM [28]: again, the agent
decision criterion is based on four different factors, but in this case these factors are weighted according
to the agents’ social class. Each agent (corresponding to a household) is associated to a specific social
class; a small-world network connects all agents and households belonging to the same classes tend to
be linked together. The model parameters are calibrated using the PV installation trend in Italy during
the 2006–2011 period but all the data set is using for the training, therefore no validation is performed
using new data. This poses a risk of overfitting the model parameters to the particular historical period
taken into consideration. The risk is also increased due to the selected period: in 2006–2011 the PV
installation rate was mainly governed by a set of incentives offered by the Italian government that
changed considerably in 2012, as was described in detail by Borghesi et al. in [29].

The approaches listed so far discounted the geographical location of buildings.
Robinson et al. [30] introduce this new element and integrate data coming from a geographic
information system (GIS) with an ABM, with the goal of analysing the diffusion rate of PV panels.
The addition of the actual topology of the target area permits to include the effects of solar exposure
and population density on the diffusion of PV systems, thus improving the accuracy of the model.
The parameters calibration is done using real data of the historical PV adoption in the city of Austin,
Texas. While the results are interesting, no validation has been performed yet, i.e., all the data has been
used to fine-tune the model, whose accuracy w.r.t. new observed behaviour has not been computed.
Davidson et al. [31] take into account geo-spatial information as well as population demographics
in order to forecast the photovoltaic adoption trends. Their goal consists in understanding the best
predictors for the installation of PV panels. The analysis highlights that a relatively small subset of
geo-spatial data can be used to obtain estimates (in terms of PV adoption trend) as accurate as those
obtained with much larger and more comprehensive geo-spatial data sets. This work does not develop
an agent-based model and it is mostly focused on understanding which are the geo-spatial factors
with the major impact on the PV adoption and thus is not directly comparable with the one proposed
in this paper.

Zhang et al. [32] outline an ABM to study the adoption (both at individual and community
level) of rooftop PV panels, considering the San Diego county as a case study. The key point of the
proposed approach is to learn a model for the behavior of individual agents using combined data of
individual adoption characteristics and property assessment; the learned model is then integrated
in the agents involved in the simulation. They also employ their system to evaluate different policy
strategies targeted at fostering PV adoption. The proposed model is calibrated using observed PV
adoption rates in the city San Diego, California. The authors also propose a preliminary validation of
their model, comparing its prediction accuracy to the accuracy of baseline model (a model taking into
account fewer factors than the presented one). The validation lacks a full comparison of the model
predicted behavior and the observed one.

Macal et al. [33] describe an agent-based model (called BE-Solar), that incorporates a social
and behavioral decision framework for understanding the technology adoption process. The main
limitation of this approach is the lack of model calibration and validation. Rai et al. [34] present a
empirically-driven agent-based model of technology adoption applied to residential solar photovoltaic.
The variables describing the agents’ behaviour are fine-tuned using historical data. In their work,
they propose a theoretically-based framework and consider multiple validation criteria.

Agent-based models have also been employed to simulate policy scenarios and provide
recommendations. For example, Lee et al. [35] proposed an ABM to model the decision-making
process of homeowners while buying and installing energy efficient technologies in their homes.
Homeowners’ decisions are based on a simple additive weighting algorithm that estimates the utility
values of different options, ultimately selecting the one with the maximum utility value. The utility
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values of different options are calculated based on a combination of empirical factors (derived from
housing stock data), social factors, and policy regulations. Installations lead to altered energy demand
and CO2 emissions. The model was partially calibrated using observed data; due to the limited
availability of historical data only a couple of technologies were subjected to calibration. Although this
is a clear limitation, validation was not the main scope of the paper that instead was mostly focused
on providing a tool for comparing different scenarios.

Johnson et al. [36] model households photovoltaic solar panels adoption following an approach
where household agents initially make decisions based on their subjective beliefs, awareness,
and attitude towards the technology. These factors determine the chance the homeowners meet
with a photovoltaic installation company, at which point they become rational profit-maximising
consumers, weighing up the costs and benefits (subsidies etc.) of installing solar panels. This model
enabled the researchers to make recommendations to regional government on the potential impact of
incentive policies, and how different policies compared in terms of costs, energy capacity installed,
and participation rates. No validation technique for this model was proposed, as this work is more
focused on studying the theoretical impact of different policies, rather than providing a predictive tool.

Adepetu et al. [37] employ an ABM to study the impact of realistic incentive mechanisms on the
adoption and diffusion of PV-batteries. They observe that while many different types of incentives
have been proposed in the last few years, those incentives did not have the same effect in different
parts of the world, due to the underlying different conditions and contexts (referred to as jurisdictions).
Then, in their work they propose jurisdiction-specific ABMs in order to find the best incentive policies.
As a case study they consider two distinct jurisdictions, Ontario and Germany. The agents’ decision
process is partially based on questionnaires (self-reported behaviour) and the tuning of some of the
model’s parameters is performed using historical data. The proposed approach is interesting but it is
explicitly focused on PV-batteries and do not consider PV panels on rooftops, hence it is not directly
comparable to ours; moreover, the authors validate the models using historical data (looking for
parameters values that lead to the best fit with observed data) but they do not evaluate the predictive
capacity of the proposed ABMs—the main focus is the comparison of incentive policies among different
jurisdictions. Furthermore, the proposed paper do not provide statistical, quantitative measures of the
accuracy of the fitting method, hence the comparison is not possible.

Sinitskaya et al. [38] describe an agent-based model to explore the impact of installers of PV
panels on the adoption rate of PV technology among residential households. PV installers and PV
household buyers are modeled as agents and the explicit goal is to maximise the profits for panels
installers—hence their work is not directly comparable to our methodology. However, a shared aspect
is the use of interviews with the involved stakeholders (investors and homeowners) in order to devise
the proper (realistic) decision algorithm of the model’s agents.

Lee et al. [39] propose to combine ABMs with a logistic regression model to estimate the correct
values for the model parameters. They apply this hybrid scheme to the case study of rooftop PV
panels adoption in a neighborhood located in Seoul, South Korea. The agents in the ABM are buildings
placed in a geographically accurate simulated world, thanks to a geographical information system
(GIS). The house owners of the corresponding building decide whether to install a PV panel or not,
depending on multiple factors (economical, social, geographic). The parameters of each agent are
tuned using logistic regression and very fine-grained building-level data collected during multiple
years. The validation is performed using the cumulative observed data (sum of all adopted PV systems
in the neighbourhood). In this way, this work uses the observed behaviour to obtain realistic models
(the logistic regression is guided by historical data), although the decision algorithm of the agents is
not based on self-reported behavior. Moreover, the validation is performed on the same time period
used for tuning the parameters (albeit at different granularity), and thus no indication is provided on
the predictive capacity of the approach.

While there are recent works that strive to bridge the gap between self-reported and observed
behavior (for instance [37,39]), they do not explicitly frame the problem in these terms, thus they only
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consider a partial aspect of the overall issue. For example, Lee et al. [39] do not consider self-reported
behaviour. Furthermore, the majority of the approaches terminate their analysis at the first step of the
validation phase: the ABM parameters are tuned using historical, observed data but no study on the
prediction capability of the model is performed. In this way, these approaches are proven to be well
suited for describing the observed data (a worthy task), but no guarantee is given about the usefulness
for predicting future trends—which is a very important aspect for policy makers. On the contrary,
our approach advances the state of the art in two ways: (I) it explicitly states the need of considering
both self-reported and observed behaviour, as only via merging them it is possible to obtain accurate
ABMs; (II) it is validated on a predictive task, that is the model parameters are tuned using a subset of
the observed data while the test is performed using a separate subset (a different time period).

3. Methodology Overview

This section provides an overview of the proposed methodology. The rest of the paper is
devoted to describe how the proposed approach has been applied to the photovoltaic adoption
in the Emilia–Romagna region. Figure 1 depicts the scheme of the methodology. The main idea
was to start from the self-reported behaviour (collected through questionnaires and interviews) and
extract drivers and barriers influencing the stakeholders’ decision process. These decision factors
were encoded in an agent-based model via a set of parameters—the relative values of the parameters
indicated the magnitude of the impact caused by the associated factor. This ABM was a template for
the decision process inferred from the extracted drivers and barriers.

Figure 1. Methodology scheme.

A key part of an ABM was assigning a value to the model parameters. Since it was very hard
to deduce appropriate parameter values only through self-reported behaviour, the model template
underwent a fine-tuning phase where the parameters are empirically tuned using part of the observed
behaviour. The observed behaviour was a time series describing the emergent overall behaviour that
we want to simulate. Adopting standard machine learning terminology, we partitioned the observed
behaviour into training and test sets. We trained the model (changing the parameters’ weights) to
make the output of the simulator as close as possible to the training observed behaviour and we
validated it on the test set.

After the fine-tuning (also referred as calibration in the literature) the final outcome was a
simulator that is able to predict with great accuracy the behaviour of interest. Now, the predicted
behaviour and the test set (a subset of the observed behaviour) can be used to assess the quality of the
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approach; we defined this phase as model validation. The model validation stage can have different
outcomes, depending on the accuracy of the predicted behaviour measured using the validation error
(the difference between the predicted and the observed behaviour). If the accuracy was not high
enough, it was possible to recalibrate the ABM parameters, for example using a different training
set or improving the calibration method itself (i.e., letting the fine-tuning algorithms run for a longer
time, thus exploring more parameters configurations). If the validation error is too big, a simple
recalibration would probably not suffice; in this case the ABM template should be revisited in order
to better encapsulate the drivers and barriers previously identified. If the validation results are very
poor the best recourse would be a major overhaul of the ABM, possibly repeating the questionnaires
and interviews phase with different questions, in order to get a deeper grasp of the agents decisional
process. This second refinement should be performed by domain experts and it is out of the scope of
this paper.

A key element of the proposed approach was the combination of agent-based models with
automated fine-tuning techniques, to calibrate/validate the models. This way led to a method capable
of filling the gap between observed and predicted data. We therefore merged methodologies belonging
to both agent-based modelling and automated parameter tuning, moving towards a research area that
has been very rarely explored so far. In our case, applying an automating tuning mechanism means
exploring the configuration space of the ABM with the goal of finding the parameters with the best
performance, that is those parameters that minimize the distance between the predicted behaviour
and the observed one. As shown in Section 7, an ABM validated using historical data can be also used
for predictive tasks with good accuracy, hence helping policy makers devising policies and strategies.

4. Driver and Barrier Extraction

The first challenge that needs to be addressed consists of the definition of the agents behaviour.
The factors (drivers and barriers) influencing the decision-making process of the actors of the simulation
model need to be identified. Drivers are those elements that lead to making a specific energy efficiency
investment, while barriers are those elements against the investment. These factor were extracted
from a large set of empirical data, gathered through questionnaires and interviews conducted in the
Emilia–Romagna region as part of the ePolicy European research project [40]. The empirical data
collection took place between March and August 2013. In this section we provide a partial overview of
the methodology and the results of the surveys; for the complete and detailed discussion we refer to
the work of Balke and Gilbert [41].

The tools used to collect the data are the following:

1. an online questionnaire concentrating on the general attitudes towards photovoltaic and its
adoption (196 questionnaires were completed);

2. semi-structured interviews with both apartment block caretakers (building administrators) and
employees of photovoltaic installation companies (11 interviews of average length between 60
and 90 min).

The results of both questionnaires and interviews indicated that a series of economic and social
elements come into play when deciding to install a PV panel. Some of the factors involved in
the decision process were purely economical (for example the profitability of the investment) or
physical (such as the type of house and/or the availability of enough roof surface). Other elements
reflected personal values and motivations (such as environmental awareness) and represented the
social component of the decision process (for example the diffusion of PV-related information within
peer networks). A very important aspect to be considered in the simulation is that many households
pondering about PV installations are not able to make a clear costs-benefits calculation, but rather act
on (other) perceived benefits of photovoltaic.

Some of the drivers identified are the following:

• high energy costs and potential saving after the PV panel installation,
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• a general interest on renewable energy and sensitivity towards environmental concerns,
• the possibility to generate their own electricity,
• the knowledge regarding PV technologies (its costs, the incentives, etc.)—often acquired through

social networks.

Conversely, these were some of the main barriers:

• misinformation about the cost of PV panels (often perceived as higher than the real one),
• uncertainty about the bureaucratic procedures,
• poor knowledge regarding the incentive mechanisms offered by government bodies,
• fiscal limitations (for example, the up front initial price of the panels),
• trust issues such as the stability of the price for solar-produced electricity in the long run,
• personal low risk propensity.

As illustrated in the following sections, the drivers and barriers identified via interviews and
questionnaires form the basis of the decision model of each agent in our simulation. However, even
when drivers and barriers have been identified, it is not clear how these parameters are weighted and
which is their relative importance in understanding the decision making strategy of different house
owners. For this purpose, the model parameters associated with the decision factors will undergo
an empirical tuning phase exploiting the observed data, the historical installation rate of PV panels in
the Emilia–Romagna region.

5. The Agent-Based Model

The process of extracting drivers and barriers from self-reported behaviours and embedding
them in an agent-based model is not straightforward. Self-reported behaviour is not always easily
quantifiable and, generally speaking, it cannot be used to directly infer a set of rules defining
the decision algorithm of the simulated actors. In recent years, the authors of the current paper
experimented with several ABMs with the purpose of better capturing the self-reported behaviour.
In [42] a purely economic ABM was proposed, in order to understand the impact of national and
regional incentives on the adoption of PV panels by residential homeowners. Each agent takes into
considerations a series of economic factors that influence its decision to buy and install a PV panel.
The model presented in [29] adds a preliminary social component: the behaviour of each agent is
influenced by the decisions already taken by its neighbours and by the perception of PV technology
possessed by each agent.

The knowledge gained with the previous works led to the methodology presented in this paper.
For example, a very important lesson is that discounting non-economical factors generates ABMs
fail to properly reflect the observed behaviour. The critical improvement of the currently proposed
approach is the refinement of the agents decisional process and, most importantly, the fine-tuning
strategy that lead to a model capable of predicting the future trends of PV panels installation rate.
A preliminary version of the model discussed here (but without the optimal fine-tuning and predictive
capability) was already presented in [43]. The model presented in this paper also adds an entirely new
aspect compared to previous works, namely the adoption of real geographical data to obtain a more
realistic ABM.

The model discussed in [43] was used mainly as a proof-of-concept of the proposed approach,
namely it allowed to explore possible methods to merge self-reported behaviour (encapsulated in
the decision algorithm of the agents in the model) and observed behavior (the real, historical data
on PV installed power in the Emilia–Romagna region). The agent-based model was created and
its parameters were tuned using methodologies described in the following section, but after the
fine-tuning no validation was performed. In particular, the model was trained using the historical data
gathered in the 2007–2013 time frame; no assessment of its predictive capacity was performed, in part
due to a lack of sufficient observed data. Conversely, the current work provides a comprehensive
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evaluation of the overall proposed methodology and of the predictive capability of the approach. In the
last years, additional observed data was collected (4 more years, 2014–2017) and used to properly
validate the ABM, after the parameter tuning.

The model was composed of two types of agents: house owners and the region. The region agent
provided regional incentives to house owners; at the start of the period there are some initial funds and
each year the region receives a further constant budget to foster the installation of PV plants. The house
owners (also referred to as households) are the main actors in the simulation: each house owner
decides whether to install a PV panel or not, based on a decisional process illustrated in the following
sections. Each house owner is described by a set of attributes: age class, education level, income,
family size, consumption, roof area, budget, geographical coordinates and social class. These attributes
cooperate to define the household behaviour and to build a social network linking all agents.

The ABM was built in two stages. Firstly, the simulation environment was set up and the virtual
world was populated with agents (the households)—this was the configuration phase. The placement
of houses followed the actual buildings distribution in the Emilia–Romagna region, in particular taking
into account houses positions and their roofs. Then, the social network among household agents was
built; the network was created depending on the reciprocal, physical distance between households
and the distance in terms of attributes such as class, income, age, and so on. The social network’s main
contribution was defining how the information about PV system was spread across the simulated
world and its agents.

After the configuration, a second stage takes place, called simulation phase in the rest of the
paper. During this stage, the simulated world comes to life and the agents begin to ponder whether to
install a PV panel or not. The simulation itself can be decomposed as a series of smaller steps, each of
them lasting for six months. The installation decision was influenced by several factors, ranging from
financial considerations such as the household income and the initial investment cost (and related
payback time), to other aspects such as the environmental sensitivity and the neighbours behaviour
(neighbours in the social network). The influence of these different factors was encapsulated in four
expressions (also referred to as utility functions; these four expressions were then combined in order
to establish the desire level of each agent—if the desire remains below a certain threshold, then the
household does not install a PV panels, otherwise it proceeds with the investment.

5.1. Configuration Phase

The virtual environment initial conditions are defined during the configuration stage; moreover,
the simulated world was populated with the agents, placing the buildings and assigning them a roof
size according to the actual distribution observed in the Emilia–Romagna region (data made publicly
available by the region itself). First, the world-area was filled with buildings and their roofs (fixed
geographical coordinates). Secondly, the families-households were created (as many as specified by
an input parameter) and each one was placed inside a building (buildings are not shared); households
with higher income and the more numerous ones get the buildings with larger roofs.

The positions of the buildings in Emilia–Romagna were obtained by parsing the Ersi shape-files
publicly available (http://dati.emilia-romagna.it), which are the results of territorial surveys conducted
by the region; in these files each building was represented by a polygon encapsulating multiple
information about the building. The agent-based model proposed here requires only position (spatial
coordinates) and roof size, hence only these relevant information were extracted. QGIS [44] (an open
source Geographic Information Systems, GIS) was the tool employed to parse the Ersi files and collect
the needed information (position and roof size).

An important aspect that had a strong effect on the adoption of PV panels (and innovation in
general) is the presence of incentive mechanism, aimed at fostering the diffusion of new (or less known)
technology. From 2006 to 2014 the Italian government offered national incentives to private citizens
willing to install PV panels, namely feed-in tariffs referred to as Conto Energia. There have been a few
different tariff schemes during the incentives years ([45–48]), differing for the price guaranteed for
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the produced electricity. The national incentives are available to all house owners and the tariffs are
those actually offered during the considered period. On top of the Italian feed-in tariffs, regional policy
makers in Emilia–Romagna devised a number of different additional regional incentive mechanisms,
such as investment grants, fiscal incentives, loans, interest funds, etc (see [42] for more details).
Historically, the national incentives outweighed the regional ones by at least one order of magnitude
therefore their influence has been much stronger [49,50], thus regional incentives have little or no
impact on the agents behaviour.

5.1.1. Social Classes

The agent households were characterized with a set of attributes, whose values permitted to define
the category of the family; these attributes were: income, size (number of components), education
level, age class (average value among all components), number of earners, yearly energy consumption
and social class. The attribute values assigned to the households followed the real distribution in
the Emilia–Romagna region, obtained from the Survey on Household Income and Wealth (SHIW)
provided by Bank of Italy (https://www.bancaditalia.it/statistiche/indcamp/bilfait/). On the basis
of its attribute values, each agent possesses an associated budget for installing a PV panel. Clearly,
the spending capability of a household is directly related to its income class, and this influences the
price that each family is willing to pay for purchasing the PV panel. Households with higher income
will accept to pay more for the initial investment, while a lower income was associated to a lower
budget to invest in a PV system. Generally speaking, households that belonged to the same category
(class) made similar decisions when deciding whether to install a PV panel. In practice, the proposed
model assumed that this available budget of each family was determined by the attributes defining the
family category. A linear regression model was then used to correlate the budget to the explanatory
variables obtained from the SHIW data.

Households social classes serve to mimic the different adoption rates of innovative technologies
observed in many scenarios [51]. For instance, the so called S-shape curve [52] has been widely used to
describe the adoption of an innovation: initially, the adoption rate of a new technology is slow since it is
not well understood and its benefits are unclear (or not fully perceived). In a second phase, the adoption
rate rises together with the spread of the technology and associated knowledge (mass market phase).
Beyond a certain point, the market gets saturated and the adoption rate flattens. Rogers [52] identifies
five categories of different adopters: (1) innovators, (2) early adopters, (3) early majority, (4) late
majority and (5) laggards. The different categories were usually reflected on characteristics defining
each adopter, such as socio-economic status (i.e., high-income individuals can afford to invest more
on new and not yet well-established technologies). Each house owner fell in one of the five adopters
categories, depending on three of its attributes (the most important features): age class, education level
and income. K-means was used to identify the five clusters and group the agents belonging to the
same class.

5.1.2. The Social Network

As discussed previously, the behavior of a household-agent is significantly impacted by its
social network. For this reason, during the configuration phase the social links between agents are
created, namely each family has a set of friends (other households). Since previous research has
shown (see [53–56]) that a small-world topology maps well the real network of relationships that exists
between people, the social network adopted in this ABM has small-world properties. Small-world
networks are characterised by a shortest-path distance between nodes that increases relatively slowly
as a function of the number of nodes in the network [57].

The extended version of the rank-based model proposed by Liben–Nowell et al. [58] was used to
get the small-world properties. The probability that a link between node u and node v existed was
proportional to a ranking function which depended both on the geographical proximity of the nodes
(physical neighbours) and on the attribute proximity of the nodes (how the nodes are similar w.r.t.

16



Appl. Sci. 2019, 9, 2098

their attributes). After a network was built using the extended rank-based method, randomness was
added through long-range links. These links drastically reduced the average path length because they
connect distant parts of the network. The randomization process takes every edge and rewires it with
an empirically obtained probability p.

5.2. Simulation Phase

In the simulation phase the system evolved as previously described: the decision regarding
the installation of new panels took place between 2007 and 2013, then the simulator ran until 2036
to consider the lifetime of PV panels. As described at the beginning of Section 5, each agent had a
particular desire level that encapsulates its willingness to invest in a PV panel. The desire level of each
household is computed during the configuration phase (Section 5.1), depending on the agent’s set of
attributes and mathematically expressed as an utility function. The function is a weighted combination
of different factors: household income, payback period (of the initial investment), perceived and
expected environmental benefits, and the pressure from neighbours (as identified by the social network
among agents). The weights were used to combine these factors depending to the household class,
or category (see Section 5.1.1). The actual values of the weights cannot be analytically obtained and
were instead tuned via model calibration, exploiting the real historical data about PV power installed
in the Emilia-Romagna region in the 2007–2013 period (detail in Section 6).

The average lifetime of a PV system was 20 years; the expenses and gains cumulated during
this lifespan served to estimate the return on equity (ROE) of a PV panel. The yearly cash flow was
computed by subtracting the yearly total expenses from the yearly earnings—clearly considering
only PV-related financial movements. The yearly expenses can be obtained by summing the cost of
the system divided by its lifetime (mortgage payment), the maintenance costs and the interests on
eventual loans. Potential yearly earnings comprised the surfeit electricity sold to the national electrical
grid and the electricity bill savings granted by self-production. Alongside, there could be national
and/or regional incentives, with a profound impact on the overall profitability of an investment.
The incentives can influence yearly cash-flows in different ways: for instance, the gains are directly
linked to the Italian national feed-in tariffs, while yearly expenses depend on the initial cost (affected
by regional investment grants) and loan interests (target for several incentive schemes).

Each household had to find the optimal size for the PV system (the size that maximises the
ROE); if the set of conditions characterizing an agent were unfavourable, the house owners can
also opt not to install a PV panel. The problem was solved with an heuristic algorithm based on
Simulated Annealing [59]. The proposed model assumed that households aimed at making well
informed decisions, for example by getting advice from PV installers in order to properly understand
the available options. Hence, agents are supposed to purchase PV panels with the goal of maximising
their reward w.r.t. energy production and financial savings.

The Utility Function

One of the most important component of the proposed approach is the criterion used by
agents/households to decide whether to install a PV panel. As mentioned earlier, this decision
is taken by each agent based on the values of its attributes. The decision criterion for agent v is
expressed by the utility function (also referred to as desire level):

U(v) = wP(cv)uP(v) + wB(cv)uB(v) + wE(cv)uE(v) + wN(cv)uN(v) (1)

where cv is the class of the agent (details in Section 5.1.1). The utility function is a weighted combination
of four components:

1. the investment payback time uP(v), representing the expected payback period of the PV panel;
2. the available budget uB(v), that strongly impacts the possibility to make the initial investment

(without considering external incentives);
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3. the impact of the neighbours’ choices uN(v);
4. the potential benefits generated by investing in a PV panel uE(v) (estimated in relation to a

decrease in consumption of electrical energy from other non-renewable sources).

Each factor in Equation (1) was weighted by a class-dependent parameter; these weights are
wP(cv), wB(cv), wN(cv) and wE(cv)—the notation serves to express their dependency on the agent
class cv. Each agent had its set of specific weights; agents of the same social class do not share the
same weights (at least not necessarily—this still could happen as a byproduct of the parameters tuning
procedure). A key aspect of the proposed approach was assigning correct values to these weights: this
is the crucial operation where the self-reported behaviour obtained with questionnaires and interviews
(which guided the definition of the agents behaviour) was merged with the observed behaviour
(historical data of installed PV power). This passage will be described in detail in Section 6.

The first factor in Equation (1) regards the payback period, pp. To obtain a balanced influence
of all factors in the utility functions, all factors where normalized in a [0,1] range. In the case of the
payback time, the normalization takes advantage of the bounds on the minimum payback period
min(pp) (assumed to be equal to one year) and on the maximum payback period max(pp), assumed
to be 21 years since the expected useful life for PV systems is 20 years. Hence, the payback influence
for agent v is computed following [28] and expressed by this equation:

uP(v) =
max(pp)− pp(v)

max(pp)− min(pp)
=

21 − pp(v)
20

(2)

where pp(v) is the payback period for the initial investment. Its value is computed using the net
present value (NPV) of the PV system—the NPV typically starts with negative values (due to the initial
cost of the investment) and it gradually gets closer to zero, while the initial cost is offset by yearly gains
due to electrical bill savings and sale of own-produced energy. When the NPV turned from negative to
positive it indicated the point when the investment became profitable. The computation of the NPV
was based on the yearly cash flows—each agent measures its expenses and gains (taking into account
also national and regional incentives) and computes its yearly NPV accordingly.

The household budget uB(v) is given by:

uB(v) =
evbudget

vequity
(3)

with the initial investment vequity computed as the PV panel installation cost minus any applicable
incentive. vB is the disposable budget of the household.

The third factor contributing to the agents’ decision is the environmental benefit that can be
gained by adopting PV technology, instead of consuming electrical energy coming from non-renewable
resources. These benefits are measured in terms of oil saved, which is in turn correlated with an overall
decrease in CO2 production. The Italian Regulatory Authority for Electricity and Gas provides a
factor to convert the produced energy (expressed in MWh) to the equivalent in tonnes of oil (TOE)
(A TOE is defined as the amount of energy released by burning one tonne of oil, or 0.187 TOE for
each MWh produced). Thanks to this conversion, the ecological benefits can be computed with the
following equation:

uE(v) =
1

eoilnotConsumed−oilconsumed
(4)

The final component of the desire function (Equation (1)) is the influence of the other members of
the social network of the agent. This factor is identified by uN(v) and it encapsulates the importance
of the neighbours’ choices in shaping the household behaviour. As previously mentioned, the agent’s
neighbours are the nodes (other households) with a shared links; the vicinity of two nodes depends
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on geographical proximity and social class similarity. The neighbourhood influence contribution is
computed with the following equation:

uN(v) =
1

1 + e
1
2 Lv,tot Lv,adopter

(5)

with Lv,tot being the total number of links of agent v and Lv,adopter the number of links shared
with adopters.

6. Parameter Tuning

So far, only the agent-based model has been described. The model has been built upon the insights
gained by analysing the self-reported behaviour, gathered through questionnaires and interviews.
By leveraging this information it was possible to identify barriers and drivers that affect the decision
criterion regulating the installation of a PV panel (see Section 4). These factors were then used as a
guide for the behaviour of the agents in the simulation world; however, the algorithm describing the
agents’ behaviour hinged on a set of parameters that cannot be easily obtained through analytical tools.
At this point, the second stage of the proposed methodology came into play, namely the observed
behaviour. Historical data will be used to fine-tune the model parameters, thus obtaining a model
which is capable to faithfully describe real world dynamics and that can be used to make accurate
predictions, as reported in Section 7.

The historical data of the PV panels installation trend in the Emilia–Romagna region was gathered
looking at the data provided by the Italian government [49], in particular, the PV installation trend
in Emilia-Romagna from 2007 to 2017 (Unluckily the data regarding years earlier than 2007 is very
scarce due to the almost negligible consideration given by the Italian government to PV technology).
The data set is divided in two chunks: training set, from 2007 to 2013, and test set, from 2014 to 2017.
The training set is used to fine-tune the model parameters (trying to fit the simulated trend to the
observed one). Afterwards, the trained model can be used to predict the PV installation rate during
the test period; then, it is possible evaluate the quality of the prediction and thus the accuracy of the
model, by comparing the historical data with the predicted one.

As a reminder, the parameters that needed to be tuned were the weights of the utility function:
wpp(cv), wB(cv), wN(cv), and wE(cv). In practice, the scope was to find the weights values that better
fit the curve representing the Emilia–Romagna PV power installation rate. The tuning problem can be
seen as fitting a model to real data; there exist several methods to perform this task. After a preliminary
evaluation of different methods, a genetic algorithm (GA) [60] came across as the technique that
provided best results without requiring excessive computational resources. This happens because GAs
are apt at finding solutions in spaces where it is hard to derive analytical models and it is not easy to
mathematically find global optima. Another benefit derived from the use of a genetic algorithm is the
fact that they have been proven to be very effective at dealing with problems where small changes
in the weight configuration can lead to a great impact on the final outcome. This is the case of the
proposed agent-based model: the four factors of the desire function are strongly intertwined and
linearly combined (see Equation (1)). Moreover, the decision criterion is influenced also by the social
interaction: the weights assigned to a given agent can modify its decision, which in turn has an impact
on the decision process of other (possibly many) neighbours.

The genetic algorithm began with a random initial population of parameters configurations
(the “individuals” in GA terminology). The initial population was then evaluated by running the
agent-based model and observing the PV installed power by all households, given the currently applied
parameters. Since during the training phase, the target PV power is available (the real, historical PV
installation data in Emilia–Romagna), it was possible to assess the accuracy of the fit of the current
population, by measuring the difference between target and simulated power. After the evaluation,
the GA selected the next generation of individuals (a different set of model parameters), which were
evaluated as well, with the goal of finding the best fitting population. To generate the next population
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the tournament selection [61] was employed: k individuals are selected from the actual population
using n tournaments of j individuals. From every tournament emerges a winner (the individual with
the highest fitness—the one generating the smallest distance between simulated and historical PV
power) and this is the parameter configuration selected for the next generation.

The new population was not deterministically decided with the tournament mode, but a certain
degree of randomness is introduced through crossover and offspring mutation. The former mechanism
randomly chose two individuals for reproduction and one or multiple children were bred from them;
in the proposed genetic algorithm one-point crossover has been used. A single crossover point on both
parents’ configuration is selected and a new child configuration is created via a swap of the values
beyond the crossover point. The second random mechanism, mutation, works by randomly modifying
values (parameters of the agent-based model) in randomly chosen individuals. The evolution process
(creation of offspring, random mutations, evaluation) was repeated four hundred times.

7. Model Validation

After the parameter tuning via genetic algorithm described in the previous section, the resulting
model accuracy needed to be measured. For this analysis, the ABM was composed by by 2000 agents;
each simulation required around 10 s with a 2.40GHz Intel QuadCore (i7-5500U CPU) with a 16GB
of RAM. The genetic algorithm used a population of 50 individuals and the overall time required to
calibrate the model was around 30 h. As mentioned before the parameters tuning was made using
observed data in the period 2007–2013; observed data in the 2014–2017 range was used only during
testing. To summarize, the experimental setup was the following: (1) create an ABM and calibrate
its parameters with the genetic algorithm; (2) simulate the 2007–2017 period with the fine-tuned
ABM; (3) observe the simulated PV cumulative installed power and adoption rate—the difference
between observed and simulated data in 2007–2013 measures the quality of the fine-tuning technique,
while the difference measured in the 2014–2017 period serves to evaluate the predictive capability of
the model. This scheme was repeated 30 times to obtain statistically significant values; in the rest of
the paper, only mean values were reported (in both graphs and table). As metrics for the evaluation,
we considered the mean absolute error (MAE), the root mean squared error (RMSE), the mean absolute
percentage error (MAPE), and the coefficient of determination (R2). These are standard metrics and
are defined by the following equations (the equation for R2 is not reported for the sake of clarity):

MAE =
1
N

N

∑
i=1

|oi − si| (6)

RMSE =

√√√√ 1
N

N

∑
i=1

(oi − si)2 (7)

MAPE =
100
N

N

∑
i=1

|oi − si|
oi

, (8)

where N is the number of runs (30), si is the simulated value, for instance the PV power installed in
one year in the simulated environment of the ABM, and oi is the observed value.

We considered two outcomes to measure the fine-tuning and prediction results: (1) the yearly
installed PV power and (2) the cumulative installed power, that is the total value obtained by summing
previous years installed power and the current year’s installed capacity. The former value better
reflects the yearly changes in adoption rate while the latter could be more useful to policy makers to
devise strategies for reaching long-term goals (i.e., a certain amount of total PV power by year 2020).
Table 1 reports the validation results after the parameter tuning. Each row corresponds to a year;
the table includes both the period used as training set (2007–2013) and the period used to evaluate
the predictive capability (2014–2017), separated by a horizontal line. The last row reports the average
values computed over the whole time frame 2007–2017. The first column corresponds to the year;
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the following three columns report MAE, RMSE and MAPE for the yearly installed PV power; the last
three columns show the same metrics computed on the cumulative installed power.

Table 1. Validation and prediction results of installed photovoltaic (PV) power; yearly rate and
cumulative installations.

Year
Yearly Installed Power Cumulative Power

MAE RMSE MAPE MAE RMSE MAPE

2007 0.02 0.04 0.001 0.0003 0.0004 3.33
2008 0.53 0.62 15.41 0.006 0.008 12.93
2009 0.24 0.35 4.76 0.004 0.004 3.83
2010 0.37 0.35 3.03 0.006 0.007 0.26
2011 1.07 1.43 4.04 0.012 0.023 2.65
2012 0.3 0.35 1.39 0.011 0.018 1.58
2013 0.3 0.41 3.04 0.015 0.016 1.83

2014 0.27 0.21 4.05 0.013 0.02 1.43
2015 1.74 1.82 32.95 0.012 0.018 0.51
2016 0.44 0.64 7.55 0.0002 0.0012 0.07
2017 0.51 0.72 8.59 0.017 0.021 1.68

Average 0.52 0.69 7.71 0.008 0.009 2.73

Let us consider first the yearly adoption rate. Following the type of validation made by most
other works in the literature, that was looking only at the results on the training set, it can be noted that
the fit was extremely good. The average R2 on the training set was equal to 0.997, the MAE was equal
to 0.385, the RMSE was equal to 0.483, and the MAPE was equal to 4.52. These values indicate that the
parameter tuning was very effective. A higher MAPE can be observed for the year 2008 (15.41); the
simulated installed PV power was lower than the observed one and this could indicate that the current
version of the ABM did not include some drivers that boosted the adoption of PV panels in early years.
Moving on and considering also the predictive capability of the proposed approach, the results remain
promising. However, it can be observed that the accuracy decreases in the test set, especially in 2015,
where the simulated installed PV is significantly lower than the observed one; the proposed ABM
overestimates w.r.t. the historical data. The statistical results obtained considering both the train and
the test set were the following: R2 = 0.991, MAE = 0.524, RMSE = 0.693, and MAPE = 7.71. Conversely,
if we computed the average values only over the test period, these were the results: MAE = 0.896,
RMSE = 1.16, and MAPE = 16.36. The precision was skewed especially by the large error made in 2015
(MAPE equal to 32.95). Probably this was due to the fact that the ABM underestimates the impact
of the reduced national and regional incentives on the households decision process; as a reminder,
national incentives by the Italian government ceased at the end of 2013.

In order to contextualize these values, the comparison with the validation results proposed by a
recent related work could be considered, namely Lee et al. [39] (see Section 2 for details); this work
was chosen because it provided easily comparable metrics and has a similar approach (tuning the
parameters of a ABM using historical data). The comparison might not be completely fair since
Lee et al. used different sets for parameter tuning and validation, respectively, building-based data
and area-wide (summing the power of all PV panels installed in a neighbourhood) data while our
ABM was trained and validated using region-wide yearly adoption data. However, the comparison
is legitimate because we include the test set not used for the parameters calibration, thus increasing
the difficulty of the task tackled by the proposed approach. Lee et al. proposed three different ABMs,
with MAPE equal to 14.86, 13.57, and 62.52 (average value computed over all years). Our ABM instead
has an average MAPE (considering both training set and test set) equal to 7.71, a significantly lower
value. Moreover, it can be worth to notice that even the results on the test set alone (MAPE = 16.36) are
similar to those obtained by Lee et al., although these numbers are not really comparable since they

21



Appl. Sci. 2019, 9, 2098

refer to entirely different tasks, pure validation (Lee et al.) and prediction (the approach proposed in
this paper).

Figure 2 shows the PV installation growth rate in the considered time period (2007–2017). The solid
blue line corresponds to the PV growth rate predicted by the agent-based model while the black dashed
lines depicts the real installation trend in Emilia–Romagna. The x-axis displays the year and the y-axis
reports the PV power growth in percentage. The figure contains the results for both the training set
(period 2007–2013) and the test set (2014–2017). In this way it is possible to observe the quality of
the proposed fitting mechanism, by observing the lines discrepancies in the training set. At the same
time, the figure reveals that the ABM does not suffer from overfitting and the proposed methodology
can be used to create models that generalize well and, consequently, that can be used for predictive
purposes—by looking at the differences between the lines in the test set. The visual analysis revealed
results similar to those presented with the quantitative analysis. In fact, it can be noted that the
parameter tuning was very effective (in practice the two lines overlap in the training set) and that
the predictive capability are good as well, albeit slightly less accurate. Focusing on the PV case study,
there were also useful insights that can be gained by looking at the installation trends, both real
and simulated. Both curves clearly indicated that the initial growth rate has been relatively slow
(2007–2009), possibly motivated by an initial reluctance due to limited knowledge and doubts about
the PV technology. As the knowledge gets more widespread and the Italian national incentives
increased (higher feed-in tariffs were offered in the years 2010 and 2011), the installation growth
increases steeply, with a distinct peak around 2011. After 2011, there was a steady decline in number
of new PV panels installed, as the financial benefits for homeowners start to become smaller, due to a
decrease in national incentives not compensated by regional incentives or by a sufficient decrease in
the cost of the technology.

Figure 2. Model calibration results—yearly installed photovoltaic (PV) power.

This could be partially explained by the extremely complex situation that occurred in the Italian
PV technology field in the last few years, with longstanding incentive mechanisms that abruptly
came to an end and different regulations following one another. This situation generated a marked
discontinuity in the installation trend, a discontinuity that was very hard to forecast. Clearly, there is
still room for improvement in terms of ABM accuracy, but it is important to notice that the proposed
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approach can already emulate the observed behaviour with a precision more than sufficient to help
policy makers in their decisions.

Now we look at the validation results with the cumulative installed power (last three columns of
Table 1). The effect of the worse accuracy computed in the test set is amplified by the smaller magnitude
of the installation rates observed in the 2014–2017 period w.r.t. the peak values observed in previous
years. If we consider the total PV installed over the years the results of the parameters calibration are
still very good and the “small-values” effect noticed in the test set loses its influence. Figure 3 shows
the cumulative installed PV power in Emilia-Romagna in 2007–2017, both according to the historical
data (black dashed line) and to the agent-based model (red continuous line). Since our simulator
considers only 2000 agents against the millions of households in Emilia–Romagna, the historical and
simulated absolute values differ by orders of magnitude; in order to render the comparison possible
both sets (observed and simulated) were normalized dividing by the maximum value (year 2017).

As both the quantitative analysis and the graph reveal, the parameters tuning works even better
for the cumulative installed power. In this case, the average values computed over the whole time
frame were the following: R2 = 0.999, MAE = 0.008, RMSE = 0.009, and MAPE = 2.73. The error was
lower w.r.t. the case of the yearly PV installed power because the yearly changes in adoption rate
are “smoothed” by the sum operation. This effect is even more pronounced when considering the
test set alone. In this case the MAE is equal to 0.011, RMSE equal to 0.015 and MAPE equal to 0.92;
the MAPE in particular was even lower than the training set case—this happened because in the last
years (2014–2017) the PV panels installation rate has greatly slowed down, hence the errors made with
the years in the test set have a relatively smaller impact on the total installed power.

Figure 3. Model calibration results—normalized cumulative installed PV power.

8. Conclusions

In this paper we presented a novel methodology to fill the gap between self-reported behaviour
and observed behaviour, by means of agent-based model and empirical parameter tuning. As a case
study, we considered the diffusion of photovoltaic power in the Emilia–Romagna region of Italy.
The first step of the approach consisted in a data collection phase to enable the identification of the
drivers and the barriers that influence the decision making process of house owners faced with the
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possibility of installing a PV panel on the top of their houses. The data have been collected through
online questionnaires and interviews.

These drivers and barriers were then used to model the decision process of the agents composing
the simulation. Having both self-reported and observed behaviour, parameters attached to the various
decision factors can be empirically tuned, thus enabling agent-based models to be used also for
predictions, even in an approximate manner. The idea is that given the agent-based model based
on the self-reported behaviour, its parameters can be adjusted and tuned exploiting past real data.
Hence, a ABM that takes into account economic, social and geographical factors to emulate the
self-reported behaviour has been proposed. The model is characterized by a set of parameters that
were fine-tuned using a Genetic Algorithm. Finally, the accuracy of the model prediction has been
evaluated, by analysing the difference between the historical PV installation rate and the results
produced by the simulator. The results are very promising and the proposed approach can be used by
policy makers to guide their decisions.

The future research directions that have yet to be explored are the following. First, the ABM
can be refined in order to achieve a even greater prediction accuracy. Second, it is important to test
the proposed methodology in different conditions (different region/countries, extended time period).
Another possible direction to explore consists of scaling up the simulation size, up to the point of
including hundreds of thousands of agents; this should lead to result even closer to the observed data.
In our opinion, the most promising direction is to integrate the proposed approach and predictive
model in a larger scheme aimed at helping policy makers with their task. After having bridged
the gap between self-reported behaviour and observed behaviour, the following step would be to
reach a target behaviour, i.e., the desired level of photovoltaic power production. For this purpose,
the agent-based model could be used to extract the best guidelines for policy makers to achieve the
desired strategic objectives.
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Abstract: Multi-agent task allocation is a well-studied field with many proven algorithms.
In real-world applications, many tasks have complicated coupled relationships that affect the
feasibility of some algorithms. In this paper, we leverage on the properties of potential games
and introduce a scheduling algorithm to provide feasible solutions in allocation scenarios with
complicated spatial and temporal dependence. Additionally, we propose the use of random sampling
in a Distributed Stochastic Algorithm to enhance speed of convergence. We demonstrate the feasibility
of such an approach in a simulated disaster relief operation and show that feasibly good results can
be obtained when the confirmation and sample size requirements are properly selected.

Keywords: multi-agent systems; multi-agent planning and scheduling; potential game; equilibrium
selection

1. Introduction

Application of multi-agent systems have often been considered for large-scale problems that
are otherwise difficult or impossible to solve with only a single agent. Despite the difficulties in
coordinating multiple agents, systems with multiple heterogeneous agents have often been preferred
over a single omnipotent agent and the belief that the collective effort of multiple agents is superior to
that of an individual can be attributed to concepts of robustness, parallelism, and cost issues.

Therefore, challenges in managing a multi-agent system have been extensively studied with the
proposal of a variety of approaches and algorithms [1–8] which are applicable to a multiplicity of
systems ranging from military operations to resource distribution [2,6,8–10]. One notable approach
is the introduction of game-theoretic framework in multi-agent systems. With the continuous
development of intelligence in autonomous systems, concerns of social awareness and acceptability [11]
have been frequently raised. In traditional systems which are designed to achieve near-optimal
solutions, agents are often programmed to be greedy and to seek maximum rewards for their actions
leading to a competitive environment within the system, such that an agent may act in a manner that
jeopardize the overall objective of the group for their own good. This concern leads to the adaptation of
a game-theoretic framework which provide each individual agent freedom over its actions while at the
same time, ensure that the solutions proposed by the collective action are socially acceptable and stable
despite the players being self-regarding. As such, many game-theoretic models have been proposed to
meet the requirements of different application scenarios and equilibrium selection algorithms ranging
from constraint optimization [2,12] to learning [13–15] have been designed and shown to be feasible.

In this paper, we consider a game-theoretic framework for the coupled-constraint task allocation
problem which is highly applicable to situations concerning military and disaster relief operations
where the number of tasks is, generally, significantly large and are frequently spatially and temporally
correlated. In such emergency situations, higher levels of emphasis are placed on the speed of
decision-making rather than the optimality of the decisions, and as such, the main objective of this

Appl. Sci. 2019, 9, 2117; doi:10.3390/app9102117 www.mdpi.com/journal/applsci29



Appl. Sci. 2019, 9, 2117

paper is to propose a game-theoretic model that enables autonomous multi-agent systems to make
quick decisions that are feasible despite possibly having lower levels of optimality. We build on
our previous work [16] which considers a game-theoretic framework for spatially constrained task
allocation environments, taking into account additional temporal constraints and, at the same time,
propose some modifications to the Distributed Stochastic Algorithm to allow quicker convergence in
congested problems.

2. Preliminaries

2.1. Coupled-Constraint Consensus-Based Bundle Algorithm (CCBBA)

CCBBA [8] is an extension to a market-based task allocation model called Consensus-Based
Bundle Algorithm (CBBA) [3]. CCBBA was designed to address the inadequacies of CBBA, namely
the inability to feasibly resolve problems with complex spatial and temporal relationships. As far as
we know, CCBBA is the first algorithm to propose such relationships which mimic the requirements of
emergency operations in the real world. Coupled constraints, which affect both space and time, can be
succinctly described as follows:

Definition 1. (Spatial coupled constraints)

1. Unilateral dependency: Task A can only be assigned if task B is assigned;
2. Mutual dependency: Tasks A and B must either both be assigned or not at all;
3. Mutual exclusivity: Only either task A or B can be assigned at each time.

Definition 2. (Temporal coupled constraints)

1. Simultaneous: Tasks A and B must begin at the same time;
2. Before: Task A must end before task B begins;
3. After: Task A must begin after task B ends;
4. During: Task A must begin when task B is in progress;
5. Not during: Task A must either end before task B begins, or begin after task B ends;
6. Between: Task A must begin after task B ends and end before task C begins.

These constraints may be non-exhaustive but are more than sufficient to meet the requirements of
real-world applications. Mathematically, the constraint relationships between the tasks can be denoted
as two matrices—the dependency matrix, D, and temporal matrix, T . The entry (q, p) in Dq,p describes
the spatial constraints between the qth and pth elements in the form of a coded variable shown in
Table 1 while in Tq,p, the value (q, p) in the temporal matrix specifies the maximum amount of time q
can begin after p begins.

Table 1. Code for Dependency matrix entry Dq,p.

Code Relationship

0 p is independent of q
1 p is unilaterally dependent on q
−1 p and q are mutually exclusive

Although CCBBA can handle most coupled-constraint task allocation, it faces convergence issues
in certain problem scenarios due to latency. As the problematic scenarios cannot be accurately predicted
beforehand, it is infeasible to depend solely on CCBBA in emergency operations.
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2.2. Potential Games

The concept of a potential game was first conceived by Monderer [17] and lays the necessary
foundations in most of today’s work in game theory.

Definition 3. (Ordinal potential game) [18] A game is an ordinal potential game if and only if a potential
function φ(A) : A �→ R exists such that:

Ui(a′′i , a−i)− Ui(a′i, a−i) > 0 ⇔ φ(a′′i , a−i)− φ(a′i, a−i) > 0 ∀ai, a′i ∈ Ai ∀i ∈ N (1)

where Ai is player i’s action set, N is the set of all players, Ui is the local utility of player i, a′i and a′′i are the
actions of player i, and a−i is the action of all other players except i.

Effectively, a game is an ordinal potential game if and only if any unilateral change in actions by
an individual that leads to a change in its local utility affects the potential function in the same manner.
The suitability of a game-theoretic framework for task allocation problems lies in the characteristics of
a potential game. Foremost, every finite potential game possesses the finite improvement property and
has at least one pure-strategy equilibrium. Additionally, for every game with a finite improvement
property, it will always converge to a Nash equilibrium [17,19–21]. Therefore, by modeling a task
allocation problem as a finite potential game, we can guarantee the existence of a feasible pure-strategy
allocation that is socially acceptable.

2.3. Game-Theoretic Models

Multiple game-theoretic models for task allocation have been introduced [1,2,5,6,22] and our
previous work introduced a game-theoretic model for task allocation problems with spatial coupled
constraints [16]. Consider a set of agents N = {1, · · · , n} and a set of tasks M = {k1, · · · , km}.
The action set of agent i, Ai, is then an ordered combination of all compatible tasks available inclusive
of the null action 0, and the action profile ai ∈ Ai is the (ordered) path that agent i will take. The reward
of each task, ukj , for a generic game-theoretic task allocation model is then defined as

ukj(a) =

⎧⎨
⎩vkj

(a) if tc
kj
(a) ≤ td

kj
,

0 otherwise,
(2)

where vkj
(a) is the reward of the task, tc

kj
(a) is the completion time, and td

kj
is the deadline. The amount

of reward provided and the time which the task will be completed are both dependent on the collective
action of all agents. To consider the spatial relationships between the tasks, the reward structure in
Equation (2) can be adapted [16] to give

ukj(a) =

⎧⎪⎪⎨
⎪⎪⎩
−Ckj

(a) if spatial constraints are violated,

vkj
(a) else if tc

kj
(a) ≤ td

kj
,

0 otherwise,

(3)

where Ckj
(a) is a function dependent on the collective action of all agents that returns a real non-zero

positive value. With either reward structure, the marginal utility of each agent for each task is then

μ
kj
i (ai, a−i) = ukj(ai, a−i)− ukj(0, a−i), (4)

and the local utility of any agent is given as the sum of its marginal utilities,

ui(ai, a−i) = ∑
kj∈M

μ
kj
i (ai, a−i). (5)
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The agents in the model act in a greedy manner at each iteration, selecting an action profile a∗i
that maximizes their local utility,

a∗i = arg max
ai∈Ai

ui(ai, a∗−i), (6)

and the global utility is the sum of all task utilities,

ug(a) = ∑
kj∈M

ukj(a). (7)

For a spatial coupled-constraint task allocation problem, the above game is an exact potential
game which always converge to a feasible solution when function Ckj

(a) is well-designed. The proofs
for the game model can be found in [23].

Recall the definition of an agent’s action set in the model above. The size of an agent’s action
set is approximately O(m̄!), where m̄ is the number of tasks that the agent can service (i.e., tasks that
are compatible with the agent), since the action profile is an ordered sequence of task to service (i.e.,
an ordered path). This essentially means that the size of the action set blows up when the number of
compatible tasks is large, making the model highly impractical in crowded problems which require
quick decision-making due to the large number of action combinations that needs to be evaluated.
In fact, this is a common problem that plagues most game-theoretic task allocation models as the
computational load in equilibrium selection is generally highly dependent on the size of the task set.
Chapman [2] attempted to overcome this issue by approximating a single large game as a series of
smaller static potential games within a limited time interval where the agent’s action is a vector of
tasks to attend to during the interval [t, t + w], given as ai = {kt, kt+1, · · · , kt+w}. While this approach
may help to alleviate the issue in most scenarios, it alone cannot guarantee improvements in extreme
situations when many tasks are present in any of the time intervals.

2.4. Equilibrium Selection

An equilibrium selection algorithm is a negotiation mechanism that allows players to determine a
Nash equilibrium, which is the stable state in the game where all players reach an agreement on their
collective action. A variety of equilibrium selection algorithms have been proposed, each considering
wildly different approaches. Chapman [24] methodically categorized these approaches into three
main categories—a learning process [13–15], a traditional constraint optimization [2,12], or a heuristic
search [22,25–27].

As seen previously, game-theoretic task allocation models tend to be impractical when considering
large games due to high computational load. As such, the study on application of game-theoretic task
allocation in crowded problems have largely been avoided. While some have attempted to propose
algorithms that can accelerate this equilibrium selection, none seem to have convincingly tackled the
problem at hand. Borowski [27] proposed a fast convergence algorithm whose convergence time is
roughly linear, instead of exponential, with the number of agents but did not provide any answers to
the more demanding issue—the dependency on the number of tasks.

Distributed Stochastic Algorithm (DSA)

DSA is a myopic, greedy, local search algorithm that employs a random parallel schedule, in
which each agent will, with some probability, called the degree of parallel executions, change its action.
The preferred action will be determined by the arg max decision rule. The motivation to implement
such a schedule is to minimize the phenomenon known as “thrashing”, where having all agents change
their actions at the same time unintentionally leads to a suboptimal Nash equilibrium. However,
a random parallel schedule cannot completely eliminate thrashing although it may be minimized.
Furthermore, DSA almost surely converges to a Nash equilibrium in potential games due to the finite
improvement property as there is a probability of moving towards the Nash equilibrium, which is an
absorbing state, at every time step [24].
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3. Game Design

We extend the model in our previous work [16]. To begin, it is necessary to determine a variable
in the model that relates the agents’ actions to time and the most obvious variable for consideration
will be the task completion time, tc(a). If it is possible to influence the variable in such a way that the
temporal constraints are reflected in the task completion time, then explicit alteration of the reward
structure for the game model will not be required. (i.e., If the task completion time is determined in
such a way that the temporal constraints are always satisfied, then the agent’s reward will be reduced
if the chosen action cannot provide a feasible solution since the task will be incomplete.) In essence, a
task allocation problem with both spatial and temporal coupled constraints can be considered to be
two sub-problems—an allocation and a scheduling problem. The game model for allocation penalizes
agents for actions that violate spatial constraints, while the scheduling algorithm eliminates possible
rewards for actions that violate temporal constraints.

To reflect the temporal relationships between the tasks, a temporal matrix T is introduced.
This temporal matrix differ from the matrix in CCBBA [8] in that the entries in the matrix do not
represent time value restrictions but instead describes the explicit relationships between tasks using a
coded variable in Table 2 for simplicity purposes. This difference is trivial as the temporal matrix and
the proposed algorithm can be adapted to consider time relationships similar to CCBBA if required.

Table 2. Code for Temporal matrix entry Tq,p.

Code Relationship

0 p is independent of q
1 (Simultaneous) p must begin at the same time with q
2 (Before) p must end before q begins
3 (After) p must begin after q ends
4 (During) p must begin while q is in progress
5 (Not During) p must either end before q begins, or after q ends

While CCBBA describes six types of temporal coupled constraints, only five types of constraints
need to be considered, less the between coupled constraint. Recall that the between coupled-constraint
states that task A must begin after task B ends and end before task C begins. Therefore, it is possible to
decompose a between coupled constraint into a before and an after constraint as seen in Figure 1.

Figure 1. Decomposition of between coupled constraint.
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3.1. Learnability of Ckj
(a)

When considering only spatial coupled constraints, the function Ckj
(a) in Equation (3) is

well-designed if it is learnable [1,28,29]. However, when considering games with both spatial and
temporal constraints, additional restrictions on function Ckj

(a) need to be imposed.

Example 1. Consider that agent i selects a path ai = {k1, k2} such that some spatial constraints are violated
by k1. Agent i’s local utility can be easily computed as

ui({k1, k2}, a∗−i) = −Ck1(a) + vk2 + c (8)

where vk2 and c are some positive rewards that agent i gained from attending k2. Now, assume that there exists a
task k3 ∈ a∗−i that k2 is spatially dependent on. Furthermore, k3 is also temporally dependent on k2 such that if
agent i considers ai = k2, the temporal constraints for k3 cannot be satisfied and k3 will be unassigned. In this
way, agent i’s local utility for ai = k2 is

ui(k2, a∗−i) = −Ck2(a). (9)

The (possibly) only feasible solution is ai = 0 which leads to zero local utility for i. However, for some game
settings (e.g., Ck1(a) is the number of spatial constraint violations for task k1 as a result of collective action, a,
and reward vk2 is significantly large), it is possible that

ui({k1, k2}, a∗−i) ≥ ui(0, a∗−i) ≥ ui(k2, a∗−i) (10)

and thus, path ai = {k1, k2}, which is infeasible, is the preferred action. For the game to converge to a feasible
solution, it is imperative that

ui({k1, k2}, a∗−i) < ui(0, a∗−i) (11)

− Ck1(a) + vk2 + c < 0 (12)

or rather,
− ∑

kj∈Kconstrained

Ckj
(a) + ∑

ki∈Kunconstrained

vki
+ c < 0 ∀ki, kj ∈ ai, (13)

where Kunconstrained are tasks assigned to agent i that do not violate any spatial constraints, and Kconstrained are
tasks assigned to agent i that violate some spatial constraints.

In other words, the magnitude of the penalty needs to be sufficiently large to ensure that agents
will never prefer a path that is infeasible. A possible design for Ckj

(a) which satisfies Equation (13)
and is learnable can then be

Ckj
(a) = G × Nkj

(a) (14)

where G is a gain, and Nkj
(a) is the number of agents attending to task kj based on the collective action

a. Any sufficiently large gain should satisfy the constraint.

3.2. Scheduling Algorithm

Before describing the scheduling algorithm, some terminologies that will be used in the
discussions are first defined along with the assumptions that are made.

Definition 4. (Allocation) A task is allocated if the task is in the path of any agent (i.e., kj is allocated if kj ∈ a).

Definition 5. (Assignment) A task is assigned if there exists a task completion time determined by the
scheduling algorithm.
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The definitions essentially differentiate allocation and assignment such that

Massigned ⊆ Mallocated ⊆ M. (15)

In other words, not all allocated tasks must be assigned. Allocated tasks that are incompatible
with the temporal constraints will not be assigned. In this way, the scheduling algorithm can be
thought of as an oracle which advises the agents on the suitability of their actions. All constraint
violations are then determined based on assignments rather than allocations.

Assumption 1. (Complete information game) Every agent has complete information with regards to the
environment. They know the locations and details concerning all agents and tasks. This assumption, though
demanding, is not overly restrictive. Firstly, in multi-agent systems, it is not unusual for an agent to understand
the basic capabilities of other agents within the system, especially in cases where the agents are expected to
cooperate. Secondly, the main research objective of this paper covers that of task allocation rather than path
planning or mapping. Therefore, it is fair to assume that there is sufficient knowledge regarding the environment
when assigning agents to tasks.

Assumption 2. (Optimistic agents) If an agent arrive at a task that it cannot complete due to insufficient
information on the schedule resulting in the inability to determine a feasible service time window, then the agent
will hold at this task for a user-specified time period before leaving. If sufficient information can be gathered
during this hold period, then the agent will attempt to complete the task (i.e., determine a task completion time).
In other words, agents are optimistic. In our application, this hold period is trivially considered in the form of
number of iterations rather than true time units.

The scheduling algorithm (Algorithm 1) is designed using a greedy approach—assignment is
based on the earliest-first principle. Additionally, cooperation between agents to complete a single
task is permitted. The duration of service for each task, and thus completion time, is then determined
based on some function fs that is dependent on the number of agents and starting times.

To begin, the availability of each agent, which can be computed from the expected time of arrival
at the targeted task in its path ai, needs to be determined. (i.e., The initial availability of an agent is
first determined based on the expected time of arrival at the first task in its path ai, which is also the
initial target. After leaving the first task, the agent targets the next task in the path and determine its
availability based on the targeted task. Target transition and availability computation continue in such
a manner until the agent reaches the final task in its path whereby having no target after leaving the
final task, the availability is set to be infinity.) At each iteration, the agent with the earliest availability
is selected (line 4) and the serviceability of the allocated task is determined by the temporal constraints
that are enforced on the task. For example, if task A is to end before task B begins, then task A will
only be serviceable if an expected start time for task B exists. In fact, it is for this particular reason that
the second assumption is necessary since most tasks can be unserviceable in complicated scenarios if
the agents are pessimistic. Additionally, it should be noted that for a task to enforce some temporal
constraints, it has to be allocated (e.g., If task C must begin after task D, but task D is not allocated, then
task C can be considered to be having no temporal constraints). Temporal constraints do not actively
enforce allocations, but rather, consider that if dependent tasks are allocated, then their assignments
must be constrained.

If the allocated task is unserviceable, then the agent is placed on hold and the next available agent
is considered. Otherwise, a service time window can be computed, and the agent determines the
expected completion time for the task and updates its availability based on the next task in its path. At
any iteration, if any agent has been placed on hold at a task for longer than the specified hold period,
then it leaves the current task and transits to the next task in its path (line 11 to 16) and will most
probably never return to the skipped task. If an agent completes all its allocated task, then it will no
longer be considered even if it has the earliest availability. The algorithm converges when all agents
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can no longer proceed for any reason (e.g., all allocations have been assigned, all agents’ allocated
tasks are temporally constrained, etc.).

Algorithm 1 Scheduling Algorithm: schedule

1: Input: a ← (ai, a−i)

2: Initialize: L = 1n, ts = −1n, tc = −1n, hold = 0n, Con(i, L, a, tc, ts) = {0, 1}
3: Sort:
4: i ← arg mini∈N (availability)
5: Constraint:
6: if Con(i, L, a, ts, tc) = 1 then

7: if holdi < maxHold then

8: holdi = holdi + 1
9: i ← arg mini∈N\{i}(availability)

10: goto Constraint
11: else

12: holdi = 0
13: Li = Li + 1
14: update(availability)
15: goto Sort
16: end if

17: Schedule:
18: else if Con(i, L, a, ts, tc) = 0 then

19: L, ts, tc ← compute_schedule(i, L, a, ts, ts, fs)

20: Li = Li + 1
21: if not first then

22: L0 = L

23: L, ts, tc, hold, availability ← align(L, a, ts, tc)

24: if L �= L0 then

25: L, ts, tc, hold, availability ← constraint(L, a, ts, tc)

26: if ismember(L, Lhist) then

27: return
28: else

29: append(L, Lhist)

30: end if

31: end if

32: end if

33: goto Sort
34: end if

In the event that multiple agents have been allocated to the same task, then agents will only
participate if the task has yet to be completed at their time of arrival. If an agent were to participate in
servicing a task, then it will update the expected completion time of the task, its own availability and
also the availability of all other (previous and current) participating agents to reflect the change based
on fs. Immediately after updating the schedule, the algorithm will invoke an alignment procedure
(Algorithm 2) and possibly a temporal constraint check procedure (Algorithm 3) before moving on to
the next iteration.
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Algorithm 2 Alignment procedure: align

1: for all agents i participating in task k do

2: find k in ai

3: if index(k ∈ ai) + 1 �= Li then

4: ts, tc, holdi ← drop(tasks after k)
5: Li = index(k ∈ ai) + 1
6: end if

7: end for

8: update(availability)

Algorithm 3 Constraint check procedure: constraint

1: if Con(i, L, a, ts, tc) = 1 then

2: loop:
3: for k which violate constraints do

4: for i ∈ N do

5: tc, ts, hold ← drop(k and tasks after)
6: affected tasks ← tasks after
7: update(availability)
8: end for

9: while len(affected tasks) �= 0 do

10: for i ∈ N do

11: tc, ts, hold ← drop(affected tasks and tasks after)
12: affected tasks ← tasks after
13: update(availability)
14: end for

15: end while

16: end for

17: if Con(i, L, a, ts, tc) = 1 then

18: goto loop
19: end if

20: end if

The alignment procedure (Algorithm 1, Line 23) is crucial in this algorithm when multiple agents’
availability are updated simultaneously to ensure that the agents’ availability are in-line with their
targeted tasks. The importance of this procedure is shown in the following example.

Example 2. Consider an agent i with ordered path ai = {k1, k2, k3}. Agent i was previously expected to
complete task k1 and k2 at time t1 and t2, respectively and its availability to begin work at k3 is expected to be t3.
However, agent j now decides to participate in task k1 and the expected completion time for task k1 is brought
forward to t1 − w. Agent j then updates agent i’s expected availability to be some time t2 − w′ as j expects i to
be at the next step in the path, k2, because it cannot easily predict i’s availability any further than the next step.
This leads to a loss of alignment between path step and expected availability and any further scheduling will only
be incorrect.

Therefore, an alignment invoked at task k is effectively a procedure to bring agents back to k
such that the agents must reschedule for all tasks in their path after k. When an alignment procedure
is invoked, temporal constraint violation checks (Algorithm 1, Line 25) are necessary as a result of
dropping some tasks when aligning the agents. If no agents are realigned, then a temporal constraint
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violation check is not necessary. However, if a temporal constraint violation is found during the
checking procedure, then tasks with violations (and all future tasks in the path) will be dropped.
Further alignment for all agents (Algorithm 3, Line 9) is required before checking for temporal
constraint violations again.

One major issue resulting from the alignment and temporal constraint check procedure is that
cycling may occur. Cycling refers to the phenomenon when, as a result of removing some conflicting
task schedules, the overall schedule reverts to a historic state. Since the scheduling process is
deterministic, then the process is stuck in an infinite loop. Maintenance of a history on the scheduling
outcome, such as the path step of every agent, L, whenever a constraint check procedure is invoked
will help to identify cycling and if a cyclic state transition is observed (Algorithm 1, line 26 to 27), then
the scheduling is considered to have converged as defined previously since it is infeasible to continue
with the scheduling process. Please note that the scheduling algorithm is anytime (with respect to
temporal constraints) as temporal constraint checks are considered at every iteration when necessary.
Therefore, any schedule proposed by the algorithm at the end of an iteration is feasible, even when a
cyclic state transition is present. The convergence of the algorithm when faced with cycling can be
thought of as an early termination of the scheduling process which provides a feasible but incomplete
schedule. Hence, the impact of cycling can be considered trivial as such phenomenon leads to low
global and local utility due to “incompleteness” in the scheduling process where agents are unlikely to
prefer such collective action. Generally, cycling tends to occur when the number of agents considered
for the problem is too low when compared to the hold period and therefore, proper selection of hold
period will minimize the occurrence of cycling.

Theorem 1. Using the proposed game model and scheduling algorithm for a game with spatial and temporal
coupled constraints, the game will always converge to a feasible solution where all the coupled constraints
are satisfied.

Proof. We prove by contradiction. Consider a game with both spatial and temporal coupled constraint
which converged to an infeasible solution where agent i selected a path a′i which contains kj that
violates y spatial coupled constraints. We also know that there exists a null action which is always
feasible. If a∗−i violates x ∈ R+ number of spatial coupled constraints, then

ukj(a′i, a∗−i) = −G(x + y), ukj(0, a∗−i) = −Gx (16)

μ
kj
i (a′i, a∗−i) = −Gy < μ

kj
i (0, a∗−i) = 0 (17)

ui(a′i, a∗−i) < ui(0, a∗−i) (18)

a′i �= arg max
ai∈{a′i ,0}

ui(ai, a∗−i) (19)

a′i is not the argument which maximizes the local utility of agent i and thus, a′i cannot be the preferred
action at equilibrium.

Explicit consideration on temporal constraint violations in the proof is not necessary as the
scheduling algorithm will always propose a temporally feasible schedule. Since violations in the
solution are determined by the assignments rather than allocations, any task in any path that do not
meet the temporal requirements will not be assigned. Therefore, it is only necessary to show that
agents will never choose an action that violates spatial constraints given current observations to prove
the feasibility of the solution.

4. DSA with Sampling

For equilibrium selection, the DSA algorithm was considered to be the basis for improvement.
The DSA is preferred over other algorithms such as log-linear learning for its relatively low overhead,
good solutions [2,24] and ease of decentralization. In theory, DSA uses a best-reply dynamic given a
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complete action set and therefore, when considering a very large action set, DSA requires significant
computational power and time to determine the best reply, making implementation impractical. Hence,
by somehow placing a limit on the number of evaluations required, it is possible to implement DSA in
a game with significant number of tasks.

One obvious way to do so will be to constrain the action set of every agent to reduce the
computational load, where at each iteration, the action set is randomly sampled with a pre-defined
sample size s (Algorithm 4, Line 4). It is necessary to further ensure that the null action, which is
always feasible, is included in the constrained action set so that agents will always have a feasible
action to consider. An agent will then choose to either maintain its action, or select an action in the
constrained set using the best-reply dynamics. Marden [26] took a similar approach in his payoff-based
implementation of log-linear learning albeit for different reasons, and consider only one randomly
chosen action at every iteration, without the restriction of having a null action. In our implementation,
the rate of convergence is expected to improve due to the reduction in number of evaluations required
at every iteration. Recall that the motivation for using a parallel degree of execution in DSA is to
introduce stochasticity into the model in hopes of escaping from a local optimum. This also means that
the search path taken to select the Nash equilibrium is stochastic and in a problem with multiple Nash
equilibria, the game can terminate at either equilibrium when played multiple times despite having
similar levels of parallel degree of execution. Instead of using parallel executions, stochasticity is
introduced into the equilibrium selection through having constrained action sets. Intuitively, DSA with
sampling will still arrive at a Nash equilibrium as t → ∞. A basic implementation of the game-theoretic
coupled-constraint task allocation is shown in Algorithm 4.

Algorithm 4 Game-Theoretic Implementation

1: Input: N ,A, s, tcon, t = 1, T = 1, aT=0 = 0

2: while t ≤ tcon do

3: for i ∈ N do

4: Ai,T = datasample(Ai, s)
5: assignmenti,T−1 = schedule(ai,T−1, a−i,T−1)

6: ui,T−1 = utility(assignmenti,T−1)

7: mμ = 0, bestActioni,T = ai,T−1

8: for ai,T ∈ Ai,T do

9: assignmenti,T = schedule(ai,T , a−i,T−1)

10: ui,T = utility(assignmenti,T)

11: if ui,T − ui,T−1 > mμ then

12: mμ = ui,T − ui,T−1

13: bestActioni,T = ai,T

14: end if

15: end for

16: ai,T = bestActioni,T

17: end for

18: if ai,T = ai,T−1 ∀i ∈ N then

19: t = t + 1
20: else

21: t = 0
22: end if

23: T = T + 1
24: end while

39



Appl. Sci. 2019, 9, 2117

The proposed equilibrium selection algorithm should have a lower dependency on the number of
tasks and the rate of convergence is affect by two main parameters—the number of confirmations tcon

(Algorithm 4, Line 2) and the sample size s (Algorithm 4, Line 4). Therefore, by carefully varying the
number of confirmations and sample size, the equilibrium selection will be capable of satisfying the
time requirements of the game.

5. Results and Discussion

We assess the game design and equilibrium selection algorithm in a simulated disaster relief
operation in a 10-by-10 grid world. In this operation, there are three types of mission-specific
autonomous vehicles, each with varying response capabilities, to be allocated to different types of
disaster situations. The engineering vehicles are capable of clearing wreckage from collapsed structures
while the rescue vehicles are required to extract casualties to a safe location and the firefighting vehicles
are equipped to deal with fire outbreaks in the region. The agent-task compatibilities are depicted in
Figure 2. Furthermore, some sites may be struck with more than one type of disaster which will then
require agents to work together albeit with some constraints.

Figure 2. Agent-Task compatibilities in a disaster relief operation [30–34]. The figure is a composite
image constructed from the various sources cited.

5.1. Mission Coupled Constraints

1. In an area where a fire broke out due to collapse of structures, cooperation of both engineering
vehicles and firefighting vehicles will be required. To allow the engineering vehicles to begin
clearing the wreckage efficiently, the fire needs to be first extinguished. Wreckage clearance task is
dependent on the response to fire and must begin after the fire has been extinguished.

2. In a fire outbreak, some casualties may be trapped in the fire. Assuming that the rescue vehicles
are well-equipped to withstand some levels of heat such that casualty extraction is possible when
firefighting vehicles are on site to provide assistance in controlling the fire. Furthermore, casualty
extraction will not be possible after the fire has been extinguished as the casualties will have likely
suffocated during the process of firefighting. Casualty rescue is dependent on firefighting operation
and must begin during firefighting.

3. The rescue vehicles do not possess the heavy lifting capabilities required to rescue casualties
trapped in a wreckage. Assistance from the engineering units is required. Casualty rescue is
dependent on wreckage clearance task and must begin after the wreckage have been cleared.
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These constraints are only applicable when the tasks are in the same position (e.g., casualties
trapped in a burning house.) The mission coupled constraints for these sites with multiple types of
disaster can be reflected in the dependency matrix (Table 3) and temporal matrix (Table 4) as follows:

Table 3. Mission Dependency matrix.

Fire Casualty Wreckage

Fire 0 1 1
Casualty 0 0 0
Wreckage 0 1 0

Table 4. Mission Temporal matrix.

Fire Casualty Wreckage

Fire 0 4 3
Casualty 0 0 0
Wreckage 0 3 0

5.2. Feasibility of Game Model

Several agents and disaster sites at random locations of the grid world were considered. The
summary of the disaster relief operations and agent parameters are provided in Table 5 with 20
different relief operations, each simulated as a game to be played 20 times each. The reward for the
successful completion of each task was given as a time-decaying function

vkj
(a) = νkj

exp(−λkj
tc
kj
(a)) (20)

where νkj
is the intrinsic value of the task, and λkj

is the discount factor for task kj, to reflect the urgency
of the tasks and motivate the agents to work in an efficient manner.

Table 5. Disaster relief operation details and simulation parameters.

Agents 6 Tasks 27 Parameters

Engineer 2 Fire 3 Path length 4
Rescue 2 Casualty 3 Sample size 20

Firefighter 2 Wreckage 3 Confirmations 100

Casualty
dep−−→ Fire 3 Hold period 4

Casualty
dep−−→ Wreckage 3

Wreckage
dep−−→ Fire 3

dep−−→ depicts a dependency relationship (i.e., a task of each type in the same location leading to a
coupled constraint).

The feasibility of the game model using DSA with sampling can be inferred from the satisfaction
of all coupled constraints in all the solutions obtained and the stochasticity of DSA is evident from
the variation in global score values and computational times across the games for every operation
scenario. For a centralized approach, the computational time for each game is below 1 min and when
considering a synchronous decentralized approach, the estimated computational time falls to generally
below 10 s. In a decentralized approach, each agent will run the scheduling algorithm, based on other
agents’ previous actions, independently. After evaluating the possible schedules, the agent will decide
on its choice of action and communicate its decision to all other agents. Without explicitly considering
the means of communication but assuming synchronous, the simulation times of a decentralized
approach is estimated based on the slowest agent for each iteration and the overheads accumulated
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in the communication process. For a synchronous decentralized approach, the model can provide a
feasible solution quickly.

Figure 3 provides the graphical interpretation of a proposed schedule for one of the simulated
games and information on the labels for the schedule are provided in Table 6.

Figure 3. Example of a feasible schedule.

Table 6. Labeling information for agents and tasks.

Label Type

A1, A2 Engineer
A3, A4 Rescue
A5, A6 Firefighter

1, 2, 3 Fire
4, 5, 6 Casualty
7, 8, 9 Wreckage

11
dep−−→10, 13

dep−−→12, 15
dep−−→14 Casualty

dep−−→ Fire

17
dep−−→16, 19

dep−−→18, 21
dep−−→20 Casualty

dep−−→ Wreckage

23
dep−−→22, 25

dep−−→24, 27
dep−−→26 Wreckage

dep−−→ Fire
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The schedule in Figure 3 represents but one of many possible solutions to the simulated scenario.
For a complex multi-agent multi-task allocation problem coupled with a flexible hold period, multiple
Nash equilibria are likely to exist and the stochasticity of the agents’ actions due to random sampling
leads to variation in the route of progression for each game, and thereby terminating at various
different solutions. Regardless of the progression, the feasibility of the scheduling algorithm to satisfy
the temporal constraints are evident from the complementary behaviors portrayed in the solution
(e.g., A rescue-type agent (A4) waits at a casualty-type task (13) for a short period so that the temporal
constraint which require the rescue (13) to occur during firefighting (12) can be satisfied, rescue-type agent
(A4) attempts a casualty rescue (21) task after the wreckage (20) have been cleared by an engineer-type
agent (A1), etc.)

Moving beyond providing a feasible solution, the game should converge within a reasonably
short time period to ensure the practically of a game-theoretic implementation in real-world operations
and hence, further studies on the number of confirmations tcon and sample size s, which are the main
parameters influencing the rate of convergence, are presented in the subsequent sections.

5.3. Number of Confirmations

In this section, the effects of variation in number of confirmations on the global score and
computation times are examined. Simulation of an operation setting similar to the example in Table 5
but with varying number of confirmations at 10, 50, 100, 500, and 1000, respectively, were considered
and the results are shown in Figure 4 with the means and standard deviations for the various aspects of
the simulation presented in Tables 7–9. The observed global scores are generally similar at the selected
levels of confirmations and the standard deviation generally decreases with increasing number of
confirmations, providing a tighter bound to the range of scores. Intuitively, the decrease in standard
deviation is in relation to the increasing probabilities of the solution being a Nash equilibrium (refer to
Appendix A).

With only 10 confirmations, the mean global score is recognizably lower, and the range is also
obviously greater as compared to the global scores for games with higher levels of confirmation.
This lower levels of performance can be attributed to the extremity of the constraints placed on the
agents’ action set. With a sample size of 20 and 10 confirmations, the agents are expected to be exposed
to a maximum of 191 unique actions which barely covers approximately 5% of all possible actions.
The exposure of an agent refers to the number of actions that it has seen from the moment when it
last changed its action. As such, it is plausible that the agents do not have sufficient understanding
of the full range of possible actions, leading to agreements that are less efficient. However, it should
be noted that such inefficiencies lead to a global score which is merely 3% lower as seen in Figure 5.
Indeed, it can be argued that agents do not need to understand the entirety of their action sets to
arrive at reasonable solutions. With 50 confirmations, the maximum exposure is at 951 unique actions,
or approximately 26% of all possible actions. Yet, mean global scores comparable to those at higher
levels of exposure are observed. With 1000 confirmations, it is highly likely that every agent has seen
its entire possible action set since there are only 3610 possible actions while it is exposed to 19,001
non-unique actions. Interestingly, the maximum scores achieved for each category are similar with a
value of 259.862 except for simulations with only 10 confirmations having a slightly lower maximum
of 259.791. This phenomenon will be amplified in dense task allocation settings since most tasks will
be closely grouped together and most action sequences will provide similar levels of reward. As such,
most Nash equilibria will provide near-optimal solutions and it is, therefore, unnecessary for agents to
have a complete understanding of their possible actions since emphasis is not placed on achieving
the solution with an optimal global score or the Nash equilibrium with the maximum global score.
When constraints are provided at every iteration, agents have lesser numbers of choices to make at
each iteration, allowing them to arrive at a general agreement more quickly and easily as evident in
the short computation times for games with only 10 confirmations. Improvements to the agreement
are then made as the agents continue to explore the possible action space for each iteration.
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Figure 4. Variations in global scores and computation times due to number of confirmations.

However, it is necessary to note that increasing the confirmations do not necessarily lead to
increase in global scores for every play. Recall that in DSA, progression is stochastic and hence the
Nash equilibrium obtained for every play may differ and therefore, there is a non-zero probability of
reaching a Nash equilibrium that has the lowest possible score despite considering a high number of
confirmations in one play while having a Nash solution with a higher score when considering lower
number of confirmations.

Another observation made, from Figure 6, is that the computation times increase with the number
of confirmations as expected. In essence, a confirmation is defined as an iteration where all agents do
not change their actions. This also means that in the new constrained action set of any agent at the
current iteration, there are no actions that can improve any agent’s local utility. For tcon confirmations,
all agents do not change their actions for tcon consecutive iterations. When the agreement between
the agents is not a Nash equilibrium, then the possibility of such an event occurring decreases with
increasing values of tcon. Therefore, as the number of confirmations increases, confidence on the
solution being Nash increases, but at the expense of increasing computation time due to the additional
evaluations made by the agents.
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Table 7. Mean and standard deviation for global scores.

Confirmations Mean Standard Deviation

10 245.302 8.088
50 251.692 8.114

100 249.176 8.420
500 250.786 6.581

1000 251.295 6.556

Table 8. Mean and standard deviation for centralized computation times.

Confirmations Mean Standard Deviation

10 3.772 1.901
50 12.083 2.749

100 18.086 4.173
500 64.859 7.391

1000 120.583 5.699

Table 9. Mean and standard deviation for estimated decentralized computation times.

Confirmations Mean Standard Deviation

10 0.720 0.383
50 2.268 0.512
100 3.400 0.818
500 12.152 1.508

1000 22.410 1.063

Figure 5. Mean global score values for various number of confirmations.
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Figure 6. Mean computation times for various number of confirmations.

5.4. Size of Samples

To investigate the impact of variation in sample size, a dense allocation setting given in Table 10
is considered. The world remains as a 10-by-10 grid but the number of agents and tasks increased
significantly and the sample sizes were varied to be 20, 40, 60, 80, and 100. The simulation results for
the dense task allocation game are displayed in Figure 7, Tables 11–13.

Table 10. Crowded disaster relief operation details and simulation parameters.

Agents 15 Tasks 90 Parameters

Engineer 5 Fire 10 Path length 4
Rescue 5 Casualty 10 Confirmations 100

Firefighter 5 Wreckage 10 Hold period 4

Casualty
dep−−→ Fire 10

Casualty
dep−−→ Wreckage 10

Wreckage
dep−−→ Fire 10

Predictably, the mean global score values increase with increasing size of sample. The sample
sizes of 20, 40, 60, 80, and 100 provided each agent with exposure to approximately 0.3%, 0.6%, 0.9%,
1.2% and 1.4% of its entire action set, respectively. Such low levels of understanding of the action set
usually means that the agreements are suboptimal since the probability of making improvements to
the existing agreement is rather high. Despite the suboptimality of the solutions, it should be noted
that a 5-fold increase in sample size from 20 to 100 led to improvements in score by a mere 5% as seen
in Figure 8. The logarithmic increment trend for the global scores further supports our belief that
agents can make reasonably good scheduling decisions despite having an incomplete, and possibly
small, understanding of their action set in a dense task allocation setting.
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More importantly, from Figure 9, the computation times were observed to increase exponentially
with the sample size. Without the use of sampling in the equilibrium selection, a game-theoretic
approach for task allocation in a dense emergency operation will simply be impractical. Using random
sampling, the computation times were suppressed to provide reasonably good solutions, enabling
game-theoretic implementations in emergency operations which tend to be crowded, complex, and
time-sensitive. In the game simulated, the mean computation times for both the centralized and
decentralized approach were kept well below 60 min and 10 min, respectively, when the sample sizes
are kept smaller than 60. Feasibly good solutions were also obtained quickly when considering a
sample size of only 20 in the simulations.

Figure 7. Variations in global scores and computation times due to size of sample.

Table 11. Mean and standard deviation for global scores.

Sample Size Mean Standard Deviation

20 795.294 21.166
40 823.923 16.742
60 825.086 21.365
80 831.913 17.918

100 839.281 18.486
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Table 12. Mean and standard deviation for centralized computation times.

Sample Size Mean Standard Deviation

20 404.854 165.431
40 1093.975 476.654
60 2804.496 1593.538
80 7360.438 5086.329

100 12,632.142 12,861.328

Table 13. Mean and standard deviation for estimated decentralized computation times.

Sample Size Mean Standard Deviation

20 30.295 12.386
40 80.517 35.030
60 205.754 116.449
80 542.142 376.058

100 928.077 944.542

Figure 8. Mean global score values for various sample sizes.
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Figure 9. Mean computation times for various sample sizes.

6. Conclusions

In this paper, we introduced a game-theoretic framework for allocation of tasks with spatial and
temporal coupled constraints first seen in CCBBA. A game-theoretic modeling of such problems helps
to overcome potential convergence issues faced in a market-based allocation model through leveraging
on the properties of potential games. A well-designed game model alone can effectively overcome
spatial relationships among tasks and when coupled with the scheduling algorithm, allows feasible
assignment of tasks with both spatial and temporal dependencies. Additionally, existing equilibrium
selection algorithms have commonly been restricted by the size of the problem, making implementation
of game-theoretic theoretic task allocation impractical for large-scale problems. However, by using
random sampling in DSA, it is possible to obtain a feasibly good solution within a short time, allowing
game-theoretic implementations in emergency operations which frequently consist of large numbers
of tasks with complex relationships and yet require quick allocation at the same time.

The greatest limitation for the proposed methodology lies in the inability to quantify or guarantee
the optimality of any given solution, in terms of global allocation, despite its feasibility to provide an
allocation solution that considers the spatial and temporal relationships between the different types
of task. A plausible explanation may be due to the existence of multiple Nash equilibria and the
probabilistic approach in DSA. Additional studies to limit the game model to have only a single Nash
equilibrium or to consider deterministic equilibrium selection algorithms that are a capable of selecting
the Nash equilibrium with the maximum global allocation scores will help to overcome this deficiency.

Despite the current flaws in the proposed methodology, reasonably good solutions can still be
obtained quickly to tackle coupled-constraint task allocation problem in a crowded space.
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Appendix A

A Nash equilibrium is defined as a state where all players cannot improve its own position
through unilateral change in strategy and can be identified when all players stop changing their
actions for t iterations. In theory, Nash can only be guaranteed as t → ∞. For some equilibrium
selection algorithms, this may be the only means of identification and the solution obtained cannot be
guaranteed to be a Nash equilibrium since implementation of t → ∞ is impossible. That said, it is still
possible to qualify the Nash properties of a solution through probability.

As the game model proposed in this paper is an exact potential game, there exists at least one
collective action a∗ that is the Nash equilibrium. Assuming that all players except i is at the Nash
equilibrium, then the only possible reason that ai(t) �= a∗i at iteration t is that ai(t − 1) �= a∗i and a∗i is
not in the constrained action set for the current iteration since we know that the proposed equilibrium
selection algorithm will either maintain its previous action, or select an action in the constrained action
set that maximizes its local utility and a∗i is the maximizer. Therefore, the probability that ai �= a∗i is
upper bounded by

δi ≤
(|Ai| − s)(|Ai| − 1)

|Ai|2
(A1)

where Ai is the complete action set for player i and s is the sample size. Given that sampling is
independent for each player at each iteration, then if all players do not change their actions for tcon

iterations, the probability that the solution is a Nash equilibrium is at least

1 − δ ≥ ∏
i∈N

1 −
(
(|Ai| − s)(|Ai| − 1)

|A|2
)tcon

. (A2)

Since (|Ai |−s)(|Ai |−1)
|Ai |2

< 1, then 1 − δ approaches to 1 as tcon → ∞ and it is obvious that DSA with
sampling will converge to a Nash equilibrium with probability 1 regardless of the size of the sample.
Equation (A2) allows the qualification of the solution with regards to simulation parameters s and tcon

by providing a lower bound on the probability of a solution being Nash. While such a qualification
does not reflect the optimality of the solution in terms of global score, it can be used as a guide for the
selection of simulation parameters to balance between the confidence and speed of convergence as
and when required. Increase in either the number of confirmations tcon or sample size s will not only
increase the confidence on the solution being a Nash equilibrium but also the computational times as
seen in the results and discussion. Therefore, when emphasis is placed on either of the aspects—being
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socially efficient or fast convergence, the simulations parameters can be modified accordingly to meet
the objectives.
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Abstract: We present a flexible, robust approach to predictive decision-making using simple, modular
agents (WoC-Bots) that interact with each other socially and share information about the features
they are trained on. Our agents form a knowledge-diverse crowd, allowing us to use Wisdom of the
Crowd (WoC) theories to aggregate their opinions and come to a collective conclusion. Compared
to traditional multi-layer perceptron (MLP) networks, WoC-Bots can be trained more quickly, more
easily incorporate new features, and make it easier to determine why the network gives the prediction
that it does. We compare our predictive accuracy with MLP networks to show that WoC-Bots can
attain similar results when predicting the box office success of Hollywood movies, while requiring
significantly less training time.

Keywords: classification; prediction; multi-agent; wisdom-of-crowds; Hollywood; feature-extension;
collective-intelligence; swarm

1. Introduction

We, humans, want to predict the future; disease outbreak and risk factors, business success,
economics, and many more applications can benefit from better forecasting. Researchers have
developed many tools to help us make predictions, with artificial neural networks (ANNs) being a
current popular choice. ANNs can be used for classification, allowing us to take, for example, a series
of features about an upcoming movie and determine, with fairly high accuracy, if the movie will
be successful. ANNs, however, typically require a large amount of training data and compute time,
and they do not generalize well to other topics. We cannot use an ANN trained on Hollywood movies
to help us determine if some sports team will win an upcoming game or where the next ‘hot spot’ in
an epidemic will be; they are inherently inflexible. Recent efforts are improving their flexibility by
adding to their basic design, as seen in transfer learning [1], however this increases complexity and
compute/data requirements while further obfuscating the internal workings of an ANN, making it
even more difficult to answer the “why" about some outputted classification [2].

Prediction markets (PM) are designed to determine the probability of a future event taking
place. Well-designed PMs encourage agents, human or computer-based, to contribute information to
the market through trading shares and incentivizing correct, truthful information sharing, and then
aggregate the information from individual agents into a collective knowledge [3]. PMs work because
the aggregate knowledge of the group will generally be more precise and complete than the knowledge
that any individual within the group holds. However, participants are expected to be well-informed in
the topic being predicted, which as of current technology, requires human participants [4]. Additionally,
computer agent-based PMs are difficult and programmer-intensive to create. Othman said on
computer-based agents, “agent-based modeling of the real world is necessarily dubious. Attempting
to model the rich tapestry of human behavior within economic structures—both the outstandingly bad
and the terrifically complex—is a futile task [5].” Even if it were possible to model the complexity of
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human knowledge and decision-making within some narrow topic it would be extremely difficult to
generalize across topics. We can consider simpler agents that don’t attempt to model human interaction.
These agents have been studied in simple, academic, scenarios with some success when their behavior
is limited in possible actions and their opponents are not adversarial [6,7]. However, work done by
Othman and Sandholm [8] has shown that simply changing the order in which the agents participate
in the market can drastically impact the outcome of the market, indicating that “markets may fail to do
any meaningful belief aggregation.”

An alternative to PMs is Wisdom of the Crowd (WoC). WoC takes the approach that the opinion
of a large, diverse group will be more accurate than any individual opinion within the group given
a sufficiently competent aggregation mechanism [9]. The classic example that demonstrates this is
guessing how many jelly beans are in a jar at a county fair. Typically no individual is consistently able
to get close to the correct amount, but the aggregate opinion of the group is generally very close to
the correct number of jelly beans. WoC doesn’t expect or require expert knowledge, Scott Page said
“the squared error of the collective prediction equals the average squared error minus the predictive
diversity” [10]. This means the more diverse the crowd, the smaller the predictive error.

In this paper we present a robust, computer-agent-based approach to making predictions about the
success of Hollywood movies that can be easily distributed across multiple computational nodes [11].
We take a WoC approach, using simple agents (WoC-Bots) without expert knowledge that are trained
with different, small, subsets of features that describe the movies. This initially gives us a group of
agents with a diverse and independent set of knowledge. The agents interact with one another socially,
sharing some knowledge, determining the trust they have in other agents and the confidence they have
in their own opinion, and changing their opinion given enough evidence. Following this interaction
an overall conclusion is drawn from the crowd using a trust and performance-based aggregation
mechanism. Our system was compared with traditional multilayer perceptron (MLP) networks trained
with the full set of features available to the agents, as well as a subset of the most highly correlated
features. We show that WoC-Bots are able to achieve more accurate classification results, with reduced
training time and resistance to feature drop-out.

2. Methods & Design

The test scenario for this research involves predicting if a movie will be a success. Success was
defined as the reported revenue being greater than 2× the reported budget for the movie. It is difficult
to determine exactly what revenue is considered a success, and it differs on a movie-by-movie basis.
However, advertising and promotion budgets are generally less than the production budget, which
indicates studios should start to see some positive cash flow if a movie makes 2× the production
budget [12]. Additionally, defining success as we did split our data, discussed more in Section 2.1,
roughly equally between success (47.5%) and failure (52.5%).

2.1. Datasets & Libraries

We primarily used two datasets for this work:

1. The Movie Database (TMDb) (https://www.kaggle.com/tmdb/tmdb-movie-metadata/)
2. MovieLens (ML) https://www.kaggle.com/grouplens/movielens-20m-dataset/) [13]

The MovieLens dataset provides information for more than 27,000 movies, while the TMDb
dataset includes 5000 movies. Only movies found in both datasets, with complete information for
all features used for classification, were considered. The features used for classification are listed in
Table 1. A note about the genre feature; only the first two listed genres were considered for each
movie in classifiers that used the genre feature(s). Each genre was assigned a unique numeric ID.
We were left with 4722 possible movies for testing and training, however 1023 movies appeared to
contain incorrect information, e.g., negative values for movie budget or movie revenue; these movies
were removed from our testing and training subsets. We used both datasets to help reduce sparse
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areas in the data for less popular and older movies. The data was split into two subsets, testing and
training, with 2959 randomly selected examples used for training and 740 examples used for testing.
The training subset was randomly selected from the full dataset at the start of each simulation, with the
remaining examples being used for testing.

Table 1. Features available for classification.

Features Description

budget given to all agents, reported budget for movie

tmdb_popularity
dynamic variable from TMDb API attempting

to represent interest in movie

revenue used for sanity checks, reported revenue

runtime unreliable metric for success without including genre information

tmdb_vote_average average score from TMDb, can be combined with ML average

tmdb_vote_count total votes for a movie from TMDb, can be combined with ML count

ml_vote_average average score from ML, can be combined with TMDb average

ml_vote_count total votes for a movie from ML, can be combined with TMDb count

ml_tmdb_genres
combined genre information from TMDb & ML;

first 2 listed genres used

vote_average combined tmdb_vote_average and ml_vote_average

vote_count combined tmdb_vote_count and ml_vote_count

The data was transformed in the following ways:

• Movies were matched between the two datasets based on ID, using “movieId” and “tmdbId”
values provided in the ML dataset.

• The ML dataset used a 0–5 rating system while the TMDb dataset used a 0–10 rating system,
the ML ratings were multiplied by 2.

• Only overlapping genres from each dataset were considered; e.g., if, for Toy Story, the ML dataset
lists it as “action, animation, family” and the TMDb dataset lists Toy Story as “family, adventure,
animation”, the movie was considered to fall into only the “animation” and “family” genres.

Sample training and testing CSV files encompassing the transformed data can be found
at the following url https://data.mendeley.com/datasets/gj66mt4s4j/2, while the code required
to reproduce the results presented in this article can be found at https://github.com/spg63/
MDPIApplSciCodeRepo. The code will be made available upon request to Sean Grimes or David E.
Breen. Eclipse Deeplearning4j (DL4J) (https://deeplearning4j.org/) [14] is “an open-source, distributed
deep-learning project in Java and Scala spearheaded by the people at Skymind (https://skymind.ai/),
a San Francisco-based business intelligence and enterprise software firm.” DL4J (versions 0.9.1 and
1.0.0-beta3) was used as a neural network library, providing the core multilayer perceptron classifier
used by each agent (discussed in more detail in Section 2.2.1). Additionally, DL4J was used to build
and test the larger MLP classifiers that were compared with our agent-based approach. All non-DL4J
library code was written in Kotlin (https://kotlinlang.org/) (versions 1.3.20 - 1.3.41), running on the
Java Virtual Machine (JVM) (https://www.java.com/en/download/) (versions 1.8.0_151 - 1.8.0_211).
All feature, agent history data, and trained agents were stored in various databases, using SQLite3
(https://www.sqlite.org/index.html) as the database engine.

55



Appl. Sci. 2019, 9, 4653

2.2. Agent Design

Agents are designed to be modular, presenting an interface that includes different algorithms
for all aspects of their behavior. Agents are responsible for coordinating and managing the
following functions:

• Classifier: MLP classifier with a single hidden layer
• Classifier configuration: shape, depth, activation and optimization algorithms
• Initialization algorithm: How the agents are initialized within the interaction space
• Movement algorithm: How the agents move within the interaction space
• Interaction algorithm: How (if) an agent interacts with other agents
• Scoring algorithm: How an agent reaches the conclusion it does; a combination of the internal

classifier and information learned while interacting with other agents

2.2.1. Classifier

Each agent contains a very small, very simple MLP classifier. All agents were configured with
similar classifiers, each containing 2–4 input nodes (one for each feature), a single hidden layer
containing numInputNodes * 2 number of nodes, and an output layer with two output nodes, one for
each of the two output classes, “success” and “failure”. All classifiers used the DL4J implementation
of the Adam updater [15] (learning rate), softmax activation function [16], and traditional stochastic
gradient descent for optimization.

Each agent’s classifier was given a single feature in common with all other agents, the movie
budget. Other features were spread across multiple agents, occasionally in pairs (e.g., budget &
vote_count & vote_average), but more frequently a single feature in addition to budget. Classification
performance was the determining characteristic in assigning features to agents, with very low
(<50% accuracy) performing combinations dropped during early testing in favor of decreased
computational complexity.

2.2.2. Agent Initialization & Movement

All agents currently participate and interact within a centralized ‘interaction arena’ (Arena)
managed by a central controller responsible for registering agents, confirming that their initial location
is valid, and validating each movement. All agents must be initialized within the bounds of the
arena and into an empty space. All movements must be within the bounds of the arena and there
can be at most two agents occupying any space within the arena. Interactions between three or more
agents at the same location are not currently supported. Centralized control is currently being used to
ease implementation, however it is not a requirement. Agents are capable of validating location and
movement on their own, or if required, having some number n other agents confirm all positioning as
valid in a decentralized manner. The Arena can take any 3D shape comprised of rectangles allowing
for arrangements from a simple 4 × 4 square to something more complex, with multiple rooms, floors,
and restricted movement between each, e.g., a simulated building.

Agents are currently responsible for maintaining a history of their movements within the arena,
a history of interactions, and a history of how each interaction affected their internal belief. Historical
information for each agent is stored in memory during each iteration and dumped to individual SQLite
tables for long-term storage.

Agents are initialized with an InitializationAlgorithm and a MovementAlgorithm which
implement simple interfaces, init() and move(), respectively. init() has a single goal, initialize
the agent in the arena in an empty space. Initialization can be random, or account for complexities
like location of other agents, placing agents with similar features close together, localizing similar
information, or spreading them out to facilitate transmission of information between dissimilar agents.
Localizing similar information may allow a group of similar agents to come to an optimal conclusion,
whereas spreading similar agents out may allow the best performing agents to convince others of their
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opinions [17]. The InitializationAlgorithm used in this work randomly initialized agents within a
rectangular arena.

move() also has a simple goal, move the agent within the arena. move() can be as simple or
complex as necessary; randomly selecting a space within the arena and ‘teleport’ the agent to the
new space, or it can require the agent to move towards some target location or another agent. Agents
interact when two agents move onto the same space. The MovementAlgorithm used for this work
randomly moved agents in a “Manhattan-like” fashion, allowing each agent to move one step north,
south, east, or west, within the bounds of the arena.

2.2.3. Interaction & Scoring

The InteractionAlgorithm and ScoringAlgorithm are both designed to be modular, with the
InteractionAlgorithm being responsible for deciding with whom an agent should interact,
truthfulness, and trust updating. The InteractionAlgorithm is required to implement three functions,
shouldInteract() which determines if the agent is interested in interacting with another agent,
truth() which determines if the agent should be truthful with another agent, and updateTrust()

which tries to update the other agent’s trust score. updateTrust() is allowed to be a NO-OP function
when it is not desirable to update other agents’ trust scores. This work assumes all interactions are
acceptable, doesn’t limit repeat interactions, and requires all interactions to be truthful.

The ScoringAlgorithm determines how interactions update an agent’s internal belief state.
Agents are initialized with specific internal values, referenced in Table 2, that are (in part) updated
during each interaction. Many of these values are made available to other agents during interaction,
allowing each agent to determine how certain another agent is, what that agent’s initial classification
values were, and how much influence it will allow the agent to have over its current belief.

Table 2. Internal scoring variables.

Variable Description

current_prediction true if prediction for movie is success

trust_score initialized to classifier precision, updated by other agents

features a list of features used by the agent’s classifier

prior_performance
long-term history of agent performance, varied between 0.7 and 1.3

where 1.0 is average performance

certainty
an average of classifier accuracy and precision, multiplied by

prior_performance, bounded by 0.5 and 1.5

eval_accuracy initial classification accuracy

eval_precision initial classification precision

eval_recall initial classification recall

confidence
biased value based on an average of accuracy, precision, and recall

favoring whichever is deemed most important

Similar to the previous algorithm interfaces, the ScoringAlgorithm used by each agent allows the
scoring to be implemented in a way most appropriate to the given problem. The algorithm is required
to implement a single function, updatePrediction which updates the current binary prediction based
on information from the most recent interaction. The ScoringAlgorithm used in this study works as
follows: initially the agent (agent a) determines how willing it is to accept information from another
agent (agent b), this is a function of a’s current certainty, where acertainty represents a’s current
certainty and aacceptance represents a’s willingness to accept information from b

aacceptance = 1.0 − acertainty (1)
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Agent a then determines how much influence b should have (bin f luence).

bin f luence = bcon f idence ∗ aacceptance ∗ btrustCertainty, (2)

where bcon f idence represents b’s confidence and btrustCertainty represents b’s trust_score ∗ certainty.
b’s influence is modified based on its prior performance where bpriorPer f represents b’s prior
performance, a value between 0.7 and 1.3, as noted in Table 2, and bcorrectedIn f luence represents this
modified value,

bcorrectedIn f luence = bpriorPer f ∗ bin f luence. (3)

bcorrectedIn f luence is multiplied by -1 if b’s opinion (success or failure) differs from a’s opinion. a’s new
certainty, acertainty is now calculated by Equation (4), where a’s certainty is increased if both a and b
have the same belief and is diminished if they disagree,

acertainty = acertainty + bcorrectedIn f luence. (4)

a now checks if it should flip its opinion, which it does if acertainty is less than 0.50. Finally, a updates
its certainty if its opinion changed,

acertainty = 1.0 − acertainty. (5)

2.3. Opinion Aggregation

Effective opinion aggregation is an open question with many different possible approaches [18].
This research hopes to contribute more to this area in the future. We implement a voting system, where
each agent receives a maximum of 100 possible votes for their preferred outcome, success or failure.
We considered three methods of vote aggregation. The first and simplest method gives equal weight to
each agent regardless of performance, the Unweighted Mean Model (UWM) [19]. The second method
gives each agent votes based on prior accuracy, where an 80% accuracy rate would result in 80 votes,
similar to the Weighted Voter Model presented in [20]. Agents are initially allowed 50 votes each until
an accuracy for prior performance can be determined. The third method we used is similar to the
second, however it also takes into account the trust score that other agents are allowed to modify,
giving more granular control over how much influence an agent has on the aggregate opinion. Total
votes for agent a is represented by atotalVotes, where apriorAccuracy represents a’s prior accuracy and atrust

represents a’s trust score,

atotalVotes =
((

apriorAccuracy + atrust
)

/2
)
∗ 100. (6)

During an interaction the agent, a, is allowed to modify another agent’s, b, trust score (btrust)
based on how agent b has performed in the past, if agent a and b are in agreement (doAgree), and if
prior information that a has received from b was correct. Agent a will check its interaction history,
look for any interactions with b to determine what percent of interactions gave advice that was correct
(bpercCorrect). If there are no prior interactions the trust score will not be modified. The trust score can
be modified a maximum of 5% during each interaction.

btrust = btrust + 0.05
(

bpercCorrect ∗ bpriorPer f

)
∗ doAgree (7)

A high-level overview of the training, interaction, and voting process can be seen in Figure 1.
The internal MLP for each agent is trained using available training data, the agents are presented with
a binary question, they are initialized in an arena where they move and interact for some number of
steps (based on time or total interactions). Agents are then assigned some number of votes based on
the system described in Section 2.3 and they vote at the end of the interaction period.
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Figure 1. Agent training, initialization, movement, interaction, and voting.

3. Results

We compared the results from our social, agent-based approach to the results produced by
multiple configurations of a traditional, monolithic MLP developed in DL4J. All agent classifiers
were trained on 4× Nvidia GTX 1070 GPUs using Cuda (versions 10.0–10.1 update 2) through the
DL4J library. Table 3 shows the configuration and accuracy under different training conditions for
each of the 10 agents. All agent classifiers were trained in parallel, taking an average of 2.8 s for
5 epochs and 22 s for 50 epochs; there was no accuracy improvement beyond 50 epochs. Once trained,
the agents can participate in any decision-making configuration without re-training their classifiers.
The best performing agent classifier was the budget, vote_count, vote_average agent, with the most
important feature being budget, followed by vote_count. The worst performing agent was the budget,
runtime agent.

Table 3. Agent Classifier Accuracy for 5 and 50 epochs.

Features 5 Epochs 50 Epochs

budget, revenue 98% 100%

budget, vote_average, vote_count 77.2% 77.6%

budget, tmdb_popularity, vote_average, vote_count 75.4% 75.7%

budget, vote_count 75.7% 75.5%

budget, tmdb_popularity, tmdb_vote_average, tmdb_vote_count 72.8% 74.9%

budget, tmdb_vote_count, ml_vote_count 73% 73.4%

budget, ml_vote_average, ml_vote_count 62.2% 64.1%

budget, ml_vote_count 60.3% 61.9%

budget, tmdb_vote_average 60.9% 61.4%

budget, runtime 53.9% 56.4%

Average (budget, revenue agent removed) 67.93% 68.99%

We tested 10 MLP networks, with a variety of feature sets, and with one containing the final
revenue. Figure 2a shows the accuracy for five classifier configurations when trained for 5 and
50 epochs. The figure shows the change in classifier accuracy when various features have been
removed as inputs into the network.
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Figure 2. Comparison of MLP and Woc-Bots performance.
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All MLP classifiers were trained individually with an average training time of 2.6 s for 5 epochs
and 21.2 s for 50 epochs. Comparing training times with the social agents, training 10 MLP classifiers
in parallel took 1 min and 1 s (3 min and 32 s if computed sequentially) vs. 22 s to train 10 agents
for 50 epochs. It should be noted that inference is slower using WoC-Bots; it takes an average of
260 milliseconds to test 740 examples using an MLP classifier incorporating all the features listed in
Table 1, while it takes the WoC-Bots, encompassing the same feature set, an average of 13.4 s to test
the same 740 examples. But, once trained, the agents can be reconfigured to compute new prediction
results for different feature sets, without requiring retraining, unlike a monolithic MLP.

Accuracy results from five configurations of our social, agent-based prediction system can be
found in Figure 2b. We show results for three aggregation mechanisms after 50 epochs of training:
(1) unweighted equal voting, (2) votes assigned based on initial classifier performance, and (3) votes
assigned based on classifier performance and agent trust (described in Section 2.3), with method (3)
consistently out-performing methods (1) and (2). Method (1) is represented by the blue bar, method (2)
by the orange bar, and method (3) the grey bar. We tested similar configurations across our agents and
MLP networks. Data from Movielens and TMDb was combined, as described in Section 2.1, with no
agent receiving information from only one source.

Similar to Figure 2a, Figure 2b’s labels show which features were included in the interaction.
Feature distribution across agents was optimized for accuracy, within the limits of available features.
Five agents participated in each interaction, with the budget, vote_average and budget, vote_count
interactions being comprised of five copies of the same agent.

WoC-Bots out-performed the MLP classifier in all cases except where final revenue was included
as a feature, indicating that our aggregation method does not give enough weight to an agent with
exceptionally good performance. We tested removing a highly correlated (http://ibomalkoc.com/
movies-dataset/) feature, vote_count, which caused a performance decline in both the MLP and social
agents, with the MLP network accuracy declining 4% compared to a decline of 1.9% in WoC-Bots,
indicating our agents are more resistant to feature drop-out. We also tested removing an unimportant
feature, runtime which showed a 1.7% performance increase in the MLP network and only a 0.3%
increase for WoC-Bots, indicating poorly performing agents have little impact on other agents during
the interaction period and receive few votes during opinion aggregation. Statistical analysis confirms
that runtime is not highly correlated in both the TMDb dataset and an ensemble dataset combining
the Movielens and TMDb data, as used in this article [21,22].

Figure 3 shows the performance of MLP networks and WoC-Bots as features are systematically
added. The results presented in this figure are produced via the classifier performance & trust
aggregation mechanism. The agents are configured to allow for maximum agent participation
without duplicating agents in any simulation testing more than two features. Four copies of an agent,
representing budget and vote_count, participated in the first simulation. Four agents participated in
the budget, vote_count, popularity simulation, eleven agents participated in each of the following
four-feature simulation. Twenty-six agents participated in the budget, vote_count, vote_average,
runtime, popularity simulation with one agent receiving five features, five agents receiving four
features, 10 agents receiving three features, and 10 agents receiving two features.
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Figure 3. Accuracy of MLP vs WoC-Bots w/Max agent configuration while adding features.

In five out of six simulations WoC-Bots out-performed the MLP network, and significantly
out-performed the MLP network when the most important feature, budget, was removed. WoC-Bots
performed best when all features were available, and when the maximum number of unique agents
were participating in the simulation. The MLP network performed best when the three most highly
correlated features were the only features being considered. This performance difference indicates
WoC-Bots are able to gather additional information from features that are less correlated with revenue

without a net negative impact to their accuracy from the additional feature noise.
Figure 4 shows the accuracy for training epochs 1–50 for an MLP network and WoC-Bots.

The network was configured with five features, budget, vote_count, vote_average, runtime,
and popularity. Five agents participated in the simulation with four agents receiving two features
and one agent receiving five features. Each two-featured agent received budget as a feature and
one other feature from the list of features. No agent was duplicated. We choose this agent and
feature configuration to make as fair and direct comparison with an MLP network as possible despite
WoC-Bots performing better when more agents participate in the simulation, as seen in the budget,
vote_count, vote_average, runtime, popularity simulation in Figure 3 where 26 agents were allowed
to participate. WoC-Bots are out-performed in this configuration, slightly, by the MLP network when
trained for more than 40 epochs, however they are able to more quickly integrate information compared
to the MLP network, reaching an optimum (76.3%) at 20 epochs vs. the MLP optimum (76.8%) at
40 epochs.
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Figure 4. Accuracy of MLP and WoC-Bots for five features over 1–50 epochs.

4. Discussion

Our system can easily include new features by creating a new agent to represent those features,
allowing the agent to be added to the next “interaction” without the need to re-train a network
or employ complex, dynamically expandable networks found in [2] when incorporating new data.
Additionally, this design allows us to quickly test the impact of removing features or testing various
combinations of features without the time-consuming re-training step required when changing features
in a full MLP network. This allows us to easily removing features, like runtime, to test how they
impact the final prediction.

WoC performance, or a computer-agent-based version of it, depends on two attributes, a diverse
and independent crowd and an aggregation mechanism that assigns appropriate weights to individuals
within the crowd to reach the correct collective decision [23]. We also know from Othman [5] that
it is not reasonable to develop a computer agent that accurately represents the intricate and diverse
knowledge that humans have. Therefore, we need to find the right balance between independently
thinking agents within a crowd and information sharing to better represent the diverse knowledge of
human agents.

5. Conclusions & Future Work

We have demonstrated a robust, flexible alternative to traditional ANN methods for making
predictions about specific future events. Our implementation takes ideas from prediction markets,
wisdom of crowds, and multi-agent systems to use simple, modular agents in a social setting to answer
binary questions. Our results show that we can attain similar results to that of a multilayer perceptron
when classifying Hollywood movies, while requiring less training time and offering more flexibility
and prediction options. Further, our system is robust, demonstrating only a 1.9% loss in accuracy

63



Appl. Sci. 2019, 9, 4653

when losing the vote_count feature versus a 4% loss in accuracy when the same feature was removed
from the MLP network.

We have three main areas to focus on for improvement in the future. Recent work on deep neural
networks is starting to explain “why” we get certain output. However, there is still a long way to go
before we have the ability to easily answer this question [24]. Our system offers a framework, using a
multi-agent approach, that should allow us to answer “why” more easily; at the core of each agent
is a very simple, single hidden layer MLP. Agents track all interactions, how those interactions affect
their internal belief, and how they change the trust value of other agents. Given the state of the system
during a simulation, the internal belief and trust scores of each agent, as well as each agent’s interaction
history, we can follow the history of each agent, starting with its initial belief post-classification, through
each interaction, allowing us to see when and why an agent’s belief changed (or stayed the same).

The two other areas we will address in future work are (1) the interaction, movement,
and initialization algorithms, allowing us to change and optimize the distribution and flow of
information and (2) the aggregation mechanism. We will use theories from swarm intelligence [25] to
better aggregate the information that each agent possesses in a manner that better extracts information
from the correct agents while limiting the impact that incorrect agents have on the collective opinion.
Unanimous A.I. (https://unanimous.ai/) has a unique, swarm-based aggregation method that
is capable of arriving at a collective answer. Unanimous A.I. maintains a “human-in-the-loop”
approach [26], where their ‘swarm’ is comprised of humans, answering binary and non-binary
questions by working together to move a virtual puck to the collective answer [27]. We prefer
a computer-agent-based approach that allows for new agents to be created as needed to answer
questions as they come up. Our future work will focus on implementing a swarm-based algorithm to
produce an “emergent prediction” from a group of relatively simple, modular agents.
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Featured Application: The agent-based model driven decision support system can handle the

delay in the arrival of raw materials while considering planning scenarios reflecting the context

of the green coffee production, scenarios where the demand is skewed towards the end of the

planning horizon, where the demand is skewed towards the beginning of the planning, and where

demand peaks in the middle of the planning horizon and falls under the available capacity on

the first and last days of the horizon. The exhibition of the management process within the green

coffee supply chain context may help practitioners and managers interested in implementing

the agent-based modeling and simulation approach to increase the possibilities of successful

adopting of the reactive aggregate production scheduling.

Abstract: The aim of this paper is to contribute to the thread of research regarding the need for
logistic systems for planning and scheduling/rescheduling within the agro-industry. To this end,
an agent-based model driven decision support system for the agri-food supply chain is presented.
Inputs in this research are taken from a case example of a Mexican green coffee supply chain. In this
context, the decision support agent serves the purposes of deriving useful knowledge to accomplish
(i) the decision regarding the estimation of Cherry coffee yield obtained at the coffee plantation, and
the Parchment coffee sample verification decision, using fuzzy logic involving an inference engine
with IF-THEN type rules; (ii) the production plan establishment decision, using a decision-making
rule approach based upon the coupling of IF-THEN fuzzy inference rules and equation-based
representation by means of mixed integer programming with the aim to maximize customer service
level; and (iii) the production plan update decision using mathematical equations once the customer
service level falls below the expected level. Three scenarios of demand patterns were considered to
conduct the experiments: increasing, unimodal and decreasing. We found that the input inventory
and output inventory vary similar over time for the unimodal demand pattern, not the case for both
the increasing and decreasing demand patterns. For the decreasing demand pattern, ten tardy orders
for the initial production schedule, an 88% service level, and nineteen tardy orders from the estimated
production results, a 77% service level. This value falls below the expected level. Consequently,
the updated aggregate production schedule resulted in ten tardy orders and an 88% service level.

Keywords: decision support system; agent based modeling and simulation; production scheduling;
green coffee supply chain
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1. Introduction

A main challenge for the agri-food supply chain (ASC) relates to the need for logistic systems
for planning and scheduling/rescheduling due to unpredictable variations in quality, moment and
quantity in primary production; the need for high efficiency of technical equipment despite long food
industry production times; and an intricate network structure where many farms and food processors
trade with multinationals in the wholesaler/retail sector. This challenge is derived from the following
ASC characteristics [1]: (i) for the primary producer echelon, the seasonal growth is often limited to a
specific period in a geographic region, dependent on weather and agricultural practices management,
(ii) for the food processor echelon, high volume and low variety production systems combined with
high volume frequent deliveries, and (iii) for the wholesaler/retailer echelon, the variability of quality
and quantity of supply of farm-based inputs coupled with high demands from consumers, including
food safety legislation and quality standards. This challenge calls for joint decision making in order to
leverage the knowledge resources in the ASC.

From an agent-based modeling and simulation approach, a system is modeled as a set of
autonomous agents that interact with each other and the environment; the agents have behaviors
that are influenced by agent’s interactions [2]. According to an agent’s behavior [3] (i) agents can
respond in an event-action-mode (reactive agent), (ii) agents can have domain knowledge to undertake
a sequence of actions in order to achieve a goal (deliberative agent), and (iii) agents can encompass both
of this features. These behaviors have important implications in the use of the agent-based modeling
approach as a valid methodology to model the supply chain (SC). Moreover, for SC researches and
practitioners, Hilletofth and Lättilä [4] stressed the benefits of agent-based decision support systems
including the ability to convert manager experience into agents, the ability to conduct experiments and
what-if analysis through simulation-based decision support systems and the increased predictability of
operations in the real system. The core functionality component of a simulation model-driven decision
support system is a quantitative model and is used by decision-makers to help in analyzing a real
system by means of modeling and data collection, model validation, system parameter setting, and
system evaluation [5].

Agent-based modeling use and simulation for decision-making within the agri-food industry has
been applied considering the integration of logistics, quality decay and sustainability modeling [6,7].
According to findings from the review conducted by Utomo et al. [8], most agent-based modeling and
simulation applications in agri-food supply chains focus on the simulation of production planning
and investment decisions. However, although there is a volume of literature about applications of
agent-based modeling and simulation in the agri-food supply chains, there is a lack of studies that
consider important actors, such as food processors and retailers in the scope of the model, since most
agent-based modeling and simulation applications focus on one echelon [8].

A make-to-order ASC is considered for this study. For these types of chains, Chatfield et al. [9]
classified the improvement opportunities for the SC modeling approaches into three categories:
model building, model quality, and model execution. Regarding the agent-based modeling approach,
the authors highlighted the issue with model quality as a measure of how well a model represents the
aspects of interest in a real system and how a completely agent-based approach is not the best way to
represent the entire supply chain. Consequently, as the agent-based approach focus on the behavior
and decision processes of individual participants, often at the expense of event-oriented aspects of the
supply chain, hybrid configurations are often necessary.

The aim of this paper is to contribute to these strands of research. To this end, an agent-based
model driven decision support system for the agri-food supply chain is presented. The agent-based
modeling and simulation and discrete-event simulation (DES) combination is the agent-related hybrid
configuration used for the development decision support system. The agent-based modeling and
simulation and DES combination are one of the agent-related hybrid configurations that have received
the most attention. According to Macal [10], a hybrid modeling challenge exists and refers to the
understanding of how agent-based modeling can be effectively used with other simulation and
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modeling techniques operating together in the same hybrid model in such a way that each technique
addresses the part of the problem that it does best.

Inputs in this research are taken from a case example of a Mexican green coffee SC. The green
coffee SC comprises four stakeholders from Cherry coffee cultivation to processed green coffee: (i)
Cherry coffee growers; (ii) Parchment coffee producers; (iii) green coffee producers; and (iv) green
coffee toasters. In this context, the decision support agent serves the purposes of deriving useful
knowledge to accomplish (i) the decision regarding the estimation of Cherry coffee yield obtained at the
coffee plantation, and the Parchment coffee sample verification decision, using fuzzy logic involving
an inference engine with IF-THEN type rules; (ii) the plan production establishment decision, using
a decision-making rule approach based upon the coupling of IF-THEN fuzzy inference rules and
equation-based representation by means of mixed integer programming with the aim to maximize
customer service level; and (iii) the production plan update decision using mathematical equations
once the customer service level falls below the expected level.

This paper is structured as follows: Section 2 presents an overview of the strands of theory used
to underpin the proposed system. Section 3 describes the methodology, while Section 4 presents the
results of the system assessment in the case study. Finally, Section 5 summarizes our conclusions.

2. Literature Overview and Work Position

The present work will try to integrate the following strands of theory to underpin the decision
support system for the ASC. The first strand related to the use of agents in SC modeling and
simulation. Based on the concept of SC uncertainty revised by van der Vorst and Beulens [11] as a
decision-making situation in which the decision-maker lacks understanding; information processing
capacities and effective control actions; the authors assert that SC uncertainty could be reduced through
the implementation of specific-scenario redesign strategies regarding configuration, control structure,
information systems, and governance structures. Supply chain value stream mapping is a technique to
leverage the knowledge of a company’s supply actors [12].

van der Zee and van der Vorst [13] proposed a modeling framework for decision-making
improvement based on agents modeling the SC actors as autonomous objects assigned with decision
making intelligence, jobs representing the SC activities, and types of flows (goods, information,
resources, and job definitions). Broadly, an agent possesses skills and knowledge to interact with
the environment including applications for cooperation, communication, command and control [14].
A multi-agent system is defined by Turban et al. [15] as: “a computer-based environment that contains
multiple software agents to perform certain tasks”; therefore, its scope refers to the breakdown
of a complex solution into sub-problems then assigned to agents supported by a knowledge base.
Furthermore, decision support systems agents could be classified into five types [15]: data monitoring,
data gathering, modeling, domain managing, and preference learning. Indeed, agent-based decision
support systems enable decision-making activities such as knowledge representation, knowledge reuse,
reasoning, and inference techniques [16]. These properties have implications on industrial environment
agent-based solution adoption, feasibility, breakdown robustness, ready reorganizability, effective
response to external disruptions, and reconfigurability. Nevertheless, the adoption barriers comprise
cost, guarantees for operational performance, scalability and standards definition [17]. Other issues
related to barriers of agent-based decision support systems comprise [4] the difficulty to access data
from partners in the SC, long development and validation time, long learning time, and the difficulty
to develop agent rules that generates the wanted behavior. Consequently, the next generation of
decision agents in SC management must consider these barriers in order to develop agents embedded
in systems that will be distributed, dynamic, intelligent, integrated, responsive, reactive, cooperative,
interactive, reconfigurable, and adaptable [18].

In the review conducted by Méndez et al. [19] regarding optimization methods for short-term
scheduling, the authors stated that within the artificial intelligence field, scheduling problems have
been solved by a set of individual agents which can work parallel and their coordination may bring
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a more effective way to find an optimal solution; the agents are expected to interact together to
achieve the goals of the overall system. The second strand of theory comprises to agent-based decision
making for scheduling in supply chains. According to Phanden et al. [20], the agent-based modeling
technique is the most promising distributed approach to tackle the integration of process planning
and scheduling adaptiveness. For their part, Barbati et al. [21] asserted that a relevant number of
applications of agent-based models are devoted to SC planning problems. In that sense, industrial
agent-based solution adoption has focused in following areas [17]: (i) distributed solutions for real-time
manufacturing control problems; (ii) distributed solutions for complex operations management
problems such as planning, scheduling, initiating execution, and monitoring; and (iii) distributed
solutions for coordinating supply chains that will integrate manufacturing, sales networks, suppliers,
customers, and third-party coordinators. The application areas of multi-agent systems designs have
recently evolved from intra-business processes such as job scheduling and production planning
and coordination to complicated decision procedures involving the management of independent
companies but interacting supply chain management partners [22]. Within the manufacturing context,
an agent is an intelligent entity is capable of acting and decision making to accomplish tasks, such as
distributed production planning, scheduling, and execution control [3]. In multi-agent scheduling,
agents manipulate both resource and order variables under their own authority [23].

The third strand of theory encompasses the issues regarding production planning and quality
sorting in the ASC with focus on the coffee SC. An ASC is defined by van der Vorst et al. [24] as
chains where: “agricultural products are used as raw materials for producing consumer products with
higher added value.” For the primary producer echelon of the ASC, the decision-making processes can
broadly be divided into three stages [25]: production planning, cultivation practices, and post-harvest
management and marketing; production planning relates to crop production planning based on market
forces, soil testing and crop rotation practices, whilst cultivation practices encompasses decisions
regarding crop nutrition and irrigation management for maximization of the total production of each
crop. Indeed, a challenge for the agricultural sector relates to the need for a reactive and flexible
crop production supply chains with high yield at low cost [26]. From an agricultural value chain
point of view, Higgins et al. [27] argue: “multi-agent models provide a capacity to accommodate the
complexity of relationships between and within value chain segments by representing these segments
(or their activities) as agents.” For their part, Tsolakis et al. [28] enlisted the decisions for tactically
and operational planning in an ASC, including the planning of harvesting operations and logistics
operations and the adoption of quality management policies. With regards to quality sorting and
grading, van der Vorst et al. [29] stated that quality controlled logistics in the ASC entails an adaptive
control based upon customer requirements and current agri-product quality.

From an agent-based simulation perspective, Handayati et al. [30] identified the value co-creation
in a sustainable ASC, understanding sustainability as a the integration of the moral, ecological, technical,
economic, and social dimensions of human activity [31]: (1) Planning: agro-input selection, cultivating
and harvesting scheduling, more certain demand and price, more certain supply; (2) Cultivating
and Harvesting: exporters requirement fulfillment, and good agricultural practice; (3) Post-harvest
and Distribution: good post-harvest handling, cold storage system for maintaining the freshness of
agri-product; and (4) Consumption: customer’s requirement fulfillment.

From a sustainability perspective and with regard to the Central American coffee supply, Killian
et al. [32] found that organic and fair trade certification production schemes seem to be a viable strategy
for Central American farmers to receive better pricing and to improve productivity to maintain or
increase farm income. Moreover, Killian et al. [33] determined the carbon footprint of the SC of Costa
Rican coffee, sources of the most intense emission and mitigation possibilities.

Regarding coffee yield analysis, Espinosa-Solares et al. [34] found that Cherry coffee yield is
affected more by cultivar characteristics than by harvest date in a two year study in Mexico. For their
part, the study of Bosselmann et al. [35] demonstrated that shade trees not be planted with the purpose
of improving beverage quality in small holder coffee agroforestry systems in Southern Colombia.
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For quality sorting in the Green coffee SC, Green coffee assessment focus on Acidity, Body,
and absence of Defects [36]. Livio and Hodhod [37,38] developed a fuzzy expert system for sensorial
evaluation of coffee bean attributes to derive quality scoring comprising 11 attributes: fragrance,
flavor, aftertaste, acidity, body, uniformity, balance, clean cup, sweetness, overall and defects. Testing
results of the system shown 95% of matching results compared to the experts’ evaluations. Flores and
Pineda [39] also presented a fuzzy logic expert system with the aim to train Honduran coffee cuppers;
testing results of the system shown 97% of matching results evaluating the attributes brew, aroma,
taste, aftertaste, and body.

3. Methodology

3.1. Case Study

Green coffee production is generally characterized by both the necessity of management
agricultural practices improvement and production technology implementation, which is related to
production yield and quality in coffee in coffee plantations with an average yield of 2408 hectograms
per hectare (hg/ha), against 5333 to 25,487 hg/ha reported by the eight countries with highest
productivity [40]. The case study is an order-driven Mexican green coffee SC.

The green coffee SC actors are described below and depicted in Figure 1. The second tier suppliers
are the Cherry coffee growers. In this echelon, the cultivation and harvest of the Cherry coffee take
place in the coffee plantations. In the region where the case study chain is located, there is an altitudinal
gradient from sea level to above 3000 m above sea level. The average annual temperature ranges from
12 ◦C to 24 ◦C, the coffee soils of the region can be classified as suitable, medium and unfit and the
annual precipitation oscillates between 1000 and 3000 mm [41]. These geo-agro climatic characteristics
provide a very varied mosaic wherein each of the regions you can find sites of high, medium, and low
potential both production and quality of coffee.

 
Figure 1. The green coffee SC under investigation.

The harvest refers to the cut of ripe Cherry coffee, with the cut of the fruits in a mature state,
weight is gained in the scale in the sale process, the benefit process is facilitated, the production loss is
reduced when the green coffee is prepared, and organoleptic quality is gained. Cherry coffee is the
most frequent form of sale with a local or industrial intermediary-collector, where the process of wet
profit is carried out. Cherry coffee is transported in plastic sacks or tarpaulins usually used in livestock
feed or various grains.
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The first tier supplier is the Parchment coffee producer, local and industrial intermediary that
carry out the wet benefit process. The wet benefit process consists of mechanically removing the pulp
(exocarp) of the coffee Cherry in the presence of water or without it, and followed either by (i) the
removal of the mucilage (mesocarp) by fermentation or mechanical method, followed by the washing
to obtain Parchment coffee, or (ii) direct drying of the pulpless grains inside the mucilaginous [42].
Parchment followed by threshing to produce semi-washed green coffee. Next, drying of the coffee
beans either through the combined effect of sunlight and aeration or drying machines, to obtain coffee
in the shell. The drying time is variable in each of the methods, the goal being in any case that the
humidity in the coffee bean reaches within the parameter of 11.5–12.5%. The final product of the
wet processing process is called Parchment coffee; the name comes from the fibrous parchment-like
husk which covers the grain at the end of the process. The storage is carried out in warehouses using
mainly jute bags. The process of commercialization of Parchment coffee is carried out mainly between
individual producers, or through their organizations, towards industrial exporters, who will sell it in
the national and international markets.

The focal company of this study is an industrial green coffee producer that stores and distributes
both regional and nationally. In this echelon, the Parchment coffee refinement takes place, the dry
benefit process. In the dry benefit process, the Parchment coffee received and graded is threshed to
release the green coffee bean, to later be classified by its size, density, and color, as well as being cleaned
of foreign objects. In the threshing process, the dry endocarp is removed from the Parchment coffee
to produce green coffee. The dry benefit process starts with the Parchment coffee reception where
the coffee is sampled to perform an organoleptic evaluation and physical revision. The organoleptic
evaluation of coffee sample is the process of sensorial evaluation of coffee beans. In this process, the
toasting and grinding of a sample of Parchment coffee are carried out, an infusion of the roasted and
ground coffee sample is prepared in freshly boiled water, from which the gustatory and olfactory
characteristics of the grain are evaluated, such as flavor, body, aroma, and acidity. In the physical
analysis, defects are visually identified; the defects refer to irregularly shaped coffee beans and coffee
beans of irregular appearance [43].

The purchase decision depends on the results of these evaluations. If the coffee is purchased, the
coffee entry quality grading takes place, namely, the defective beans percentage in the coffee lot is
determined, and then, the lot is stacked on pallets in the warehouse area designated for each coffee
type. Next, in the pre-cleaning process, the coffee enters the pre-cleaning machine, where foreign
materials of a different origin than coffee are eliminated. After the pre-cleaning process, the threshing
process takes place. The pre-cleaning is the technological operation used to reduce the percentage of
humidity of the Parchment coffee to a level of 10 to 12.5%, which allows threshing under satisfactory
technical conditions. In the threshing process, the dried endocarp is removed from the Parchment
coffee of natural coffee to produce green coffee. At the entrance to the thresher, a quality control
point is present in which the metals that Parchment coffee could carry are eliminated. Finally, the
sorting process is the technological operation used to eliminate foreign matter, fragments of coffee
and defective grains of green coffee, and to separate healthy coffee beans according to their shape,
size, and weight. The machinery, the manual labor or the combination of both, can be variable but in
general the methods of this process are classified into sorting by sieve, sorting by vibration-gravity,
pneumatic sorting, and optical sorting. The result of the process is the production of green coffee, with
a defective beans percentage in a coffee lot called percentage of stain, and composition of defined grain
size. In the sorters by sieve, the husk and the stain are separated through a fan, where the coffee that
does not have the appropriate weight is discriminated. In the sorters by vibration-gravity, the coffee is
classified by size and shape, separating it into first, second, third, shell, pellet (amount of broken coffee
beans) and dry Cherry. In pneumatic sorters, coffee is classified by weight in first, second and third,
and stones and sticks of smaller size are also eliminated. In electronic sorters, coffee is classified by
color, eliminating mainly the black and yellow grain, by a computerized optical system that eliminates
undesirable color grains, according to the required preparation and quality standards.
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The typical demand for green coffee declines in autumn (September–December) and peaks in
spring (March–June) as depicted in Figure 2. Green coffee orders from wholesale customers (industrial
coffee toasters) require processing only in some sorting processes or in a certain sequence of these
(pneumatic sorting, optical sorting, and sift sorting). Sorting process scheduling decision is based on
(i) the size of the green coffee order and its requirement of stain percentage, and (ii) the percentage
of defective beans resulted from the physical analysis of the Parchment coffee entries necessary to
complete the wholesale customer’s order. If the requirements of the client’s order are not met, two
consequences arise. The first consists of the re-entry of the coffee lot to another sequence of sorting
processes, which generates reprocessing. The second consequence refers to an over-processing of the
coffee bean when the quality that the customer is willing to pay is exceeded, which results in the
storage of the coffee lot or its sale at a lower price.
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Figure 2. The typical demand for green coffee declines in autumn (September–December) and peaks in
spring (March–June).

3.2. General Methodology

The proposed methodology encompasses data collection and model definition, model validation,
system configurations definition, and output data analysis. The relationships between them are shown
in Figure 3.

 

Figure 3. General methodology.

The data collections refer to collect and analyze information on case study operating procedures
and control logic which is used to formulate the decision-making rules in the simulation. Once
the model is built and verified, the validation process compares simulation output with the real
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data. The agent-based simulation model is used to support the decision-making of the case study
through repeated simulations. The decision support system allows the decision-maker to iteratively
set parameters and define system configurations, run simulations, and analyze the output data in
order to generate strategies to implement the decisions.

3.3. Modeling the Green Coffee Supply Chain

From a process-oriented supply chain management approach, cross-functional business processes
are used to structure the activities between members of a SC [44]. The SC can be represented, analyzed
and configured through the application of the reference model Supply Chain Operations Reference
(SCOR) developed by the Supply Chain Council [45]. The description of supply chains is made
using these building blocks of processes, from simple to complex networks using a common set
of definitions of performance metrics, processes, best practices, and the necessary skills to carry
out the processes of the SC. The SCOR model has a sweeping overview of the SC, viewing it as
something ranging from suppliers’ suppliers to customers’ customers and incorporating the financial,
organizational and societal aspects of performance [46]. Through an exploratory study, Lockamy III and
McCormack [47] investigated the relationship between supply chain management planning practices
and SC performance based on four decision areas provided in SCOR: plan, source, make and deliver.
The authors stated that planning processes are important in all SCOR SC planning decision areas.

The SCOR comprises three levels of process detail. Level one defines both the scope and the
content for the supply network. Additionally, the competition performance targets are set. At the
second level, companies implement their specific SC operations strategy through three core business
models, namely, process categories (i) make-to-stock, (ii) make-to-order, and (iii) engineer-to-order.
At level three, companies “fine tune” their operations strategy through (i) process element definitions,
(ii) process element information inputs, and outputs, (iii) process performance metrics and iv) best
practices and system capabilities required to support best practices. For the decision support system,
the SCOR-process oriented approach is used to represent the ASC activities from an “as-is” state to a
“to-be” state [48]. To this end, a diagram of level three SCOR process is constructed.

In this section, we attempt to fit the green coffee SC activities in the frame of the SCOR model in
order to construct a diagram of level three process elements of the desired “to-be” future state, from
the analysis of the “as-is” state of the chain processes. For the green coffee SC actors, the “to-be” future
state of the current study scope covers the following processes.

For Cherry coffee producers, M1.3 Produce and test includes the activities of adding value for the
products by having the raw material pass through several activities, in this case meaning the Cherry
coffee growth yield in a coffee plantation; M1.6 Release Finished Product to Deliver relates to the
harvest process and D1 Deliver Stocked Product relates to the market demand satisfaction. For the
Parchment coffee producer, S1.2 Receive Product refers to the process and associated activities of
receiving Cherry coffee lots from the producers; in this case, M1.3 Produce and test represents the
wet benefit process in an industrial intermediary and evaluates Cherry coffee volume to determine
Parchment coffee lots according to type and percentage of defective coffee beans. The different stages
of the wet benefit process involve Cherry coffee receiving and feeding, mechanical removal of the pulp,
mechanical removal of the mucilage, coffee bean washing, coffee bean drying, and Parchment coffee
grading; and M1.6 Release Finished Product to Deliver refers to the Parchment coffee lot quality and
D1 Deliver Stocked Product relates to the market demand satisfaction.

For the green coffee producer, S1.2 Receive Product refers to the process and associated activities of
receiving Parchment coffee from the producer; the amount of received coffee is defined by S1.1 Schedule
Product Deliveries. S1.3 Verify Product relates to the process and actions required determining product
conformance to requirements and criteria, in this case, both an organoleptic evaluation and physical
revision of a coffee sample. After the coffee entry quality grading, in S1.4 Transfer Product, the accepted
coffee lot is stacked on pallets in the warehouse area designated for each coffee type.
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P3 Plan Make comprises the establishment of courses of action over specified time periods
that represent a projected appropriation of production resources to meet production requirements,
while M2.1 Schedule Production Activities has the purpose of scheduling the activities, in this case,
the processes of M2.3 Produce and Test: coffee bean pre-cleaning, coffee bean threshing, coffee bean
sorting, and green coffee customer order quality control. M2.2 Issue Material relates to the selection
of Parchment coffee entries from the warehouse. The inventory availability record will determine
the coffee lots to be issued to support the production operations. Finally, and M1.6 Release Finished
Product to Deliver refers to the gGreen coffee lot quality and D2 Deliver Make-to-order Product relates
to the market demand satisfaction.

For the industrial coffee roasters, S2.1 Schedule Product Deliveries places the green coffee order.
Figure 4 depicts the level three process elements comprising the make-to-order process at the green
coffee producer. The organizational units involved in the Parchment coffee refinement are the
Parchment coffee supplier, the internal departments of the green coffee producer and green coffee
toaster. The Parchment coffee Delivery and Parchment Procurement level one processes are related by
means of a customer-supplier connection that reflects the temporal relation between them and that the
former process has a container-element link with one instance of the D1 level process. Furthermore,
the instance of the M2 level two process, which is planned by an instance of the P3 level two process,
is comprised of four instances of level three process elements. Regarding process elements, Figure 3
shows some of the resources created and used by them; for instance, Production Plan and Customer
Reception Schedule, which are instances of the Production Schedule class. The former is created by the
instance of Establish Production Plan process element, an element of a P3 level two process, and used
by the instance of Schedule Production Activities. Each of these two processes perceives the Production
Plan resource from a different perspective; two instances of the Resource Perspective class, named
Production Orders and Production Plan. In the same way, the Delivery Orders resource perspective is
presented for the Customer Reception Schedule resource, which is created by the instance of Schedule
Production Activities, and it is used by the instance of Reserve Inventory Capacity and Determine
Delivery Date, a level three process element corresponding to the D2 level two process.
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Figure 4. Level three process elements comprising the make-to-order process at the focal company.

3.4. Agent Description

Derived from this mapping in the framework of the SCOR model, the identified agents and
activities for the green coffee SC are listed in Table 1. The simulation model implements the Parchment
coffee refinement process at the focal company that interprets historical data from 2016 to 2018 fed by
the green coffee SC actors under investigation.

Table 1. Agents and activities for the green coffee SC.

Agent Activities

Cherry-coffee producer Production Agent (CP Agent) Production
Cherry-coffee producer Delivery Agent (CD Agent) Satisfy market demand
Parchment-coffee producer Source Agent (PS Agent) Source Products

Parchment-coffee producer Delivery Agent (PD Agent) Satisfy market demand

Green-coffee producer Source Agent (GS Agent) Source Products
Verify Products

Green-coffee producer Production Agent (GP Agent) Plan Production
Production

Green -coffee producer Inventory Agent (GI Agent) Update inventory
Green-coffee producer Reschedule Agent (GR Agent) Update Plan Production

Green-coffee producer Delivery Agent (GD Agent) Satisfy market demand
Wholesale Market Agent (WM Agent) Place order

The decision support agents serve the purposes of deriving useful knowledge to accomplish the
decisions: (i) for the Cherry-coffee producer Production Agent (CP Agent), the decision regarding
the estimation of Cherry coffee yield obtained at the coffee plantation; (ii) for the Green-coffee
producer Source Agent (GS Agent), the Parchment coffee sample verification decision; (iii) for the
Green-coffee producer Production Agent (GP Agent), the production plan establishment decision,
and (iv) for the Green-coffee producer Reschedule Agent (GR Agent), the plan production update
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decision. The decision-making rule approach for the CP Agent and the GS Agent is rule-based
representation using Fuzzy Logic involving an inference engine with IF-THEN type rules. For the
GP Agent, a decision-making rule approach based upon the coupling of IF-THEN fuzzy inference
rules and equation-based representation using mixed integer programming with the aim to maximize
customer service level is used. Finally, the decision-making rule perspective used for the GR Agent is
equation-based representations using mathematical equations once the customer service level falls
below the expected level.

In this study, the decision-making rule approach using fuzzy logic is used to generate a knowledge
base for the CP Agent, the GS Agent, and the GP Agent. The diverging opinions of the experts are
represented as blurred triangular and trapezoidal numbers, which describe the coded knowledge of
the expertise of the green coffee SC actors. Accordingly, a Mamdani model codifies the decision criteria
related to (i) agricultural practices for growing Cherry coffee in coffee plantations (CP Agent); (ii)
the process of sensorial evaluation of coffee beans from which gustatory and olfactory characteristics
of the grain are evaluated for quality scoring of a Parchment coffee sample (GS Agent); and (iii)
the sorting process scheduling of Parchment coffee entries based on coffee entry quality grading,
the percentage of defective coffee beans percentage in the coffee lot (GP Agent). In the Mamdani
type model, multiple inputs and outputs represent information using Fuzzy Logic; each input and
output variable is represented through a Linguistic variable. The rule base representation is developed
according to the IF-THEN type, which constitutes the inference method based on the knowledge base
and consequent inference engine. The defuzzification process uses the centroid calculation method.

Fuzzy lLogic is used to mimic the knowledge and expertise of the agricultural field dynamics
for coffee growth. We consider variables related to five agricultural practices that are common in
any plantation, soil nutrition, control of pests, control of diseases, planting density, and pruning,
and two uncertain events that are ever-present in agricultural setting i.e., rainfall and temperature.
The consideration of agricultural practices as decision variables by considering two uncertain events
for Cherry coffee production makes scenario agricultural field modeling closer to reality, with the
simultaneous objectives of maximizing the yield of Cherry coffee obtained at the coffee plantation.
Table 2 describes the variables related to agricultural practices, and uncertain events defined in the
knowledge database for the CP Agent as Input elements (I), and the operations variables defined as
Output elements (O). The knowledge base for coffee growing yield is composed of 1620 inference rules.

Table 2. Variable codification in the knowledge base of the Mamdani type model for coffee growing yield.

Variables Definition Measurement Units

Nutrition (N) Agricultural practice related to the transfer of
nutrients to the coffee plantation Number of applications

Rainfall (R) Uncertain event that supplies water to the
coffee plantation mm/month

Control of pests (CP) Agricultural practice that controls pests that
affect yield Number of applications

Control of diseases (CD) Agricultural practice that controls the disease
that affects yield Number of applications

Planting density (PD) Operational variable related to the amount of
planted bushes in the coffee plantation m2/ha

Pruning (P)
Agricultural practice related to the cutting of
undergrowth to leave a vegetative cover and

prevent erosion
q/ha

Temperature (T) Uncertain event that supplies heat to the
coffee plantation

◦C

Yield (Y)
Linguistic expression that represents the

Cherry coffee growth yield obtained at the
coffee plantation

q/ha
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Fuzzy Logic is also used to mimic the organoleptic evaluation of the Parchment coffee sample.
This process comprises the sensorial evaluation of coffee beans, from which the gustatory and olfactory
characteristics of the grain are evaluated in order to determine a quality score for two coffee types,
Robusta and Parchment. Negative or poor flavors detract from the quality of the coffee. For quality
scoring of the Robusta coffee sample, we consider the variables ferment, sour, malodorous, earthy,
mold and old.

For quality scoring of the Parchment coffee sample, the following variables are taking into account:
aroma; flavor; acidity; body; vinous, fruity, sweetness; green, immatureness; cereal, wood, paper; dry,
old; chemical, medicinal; ferment, sour, malodorous; and earthy, mold.

Table 3 describes the variables related to the gustatory and olfactory characteristics defined in
the knowledge database for the GS Agent as Input elements (I), and the operations variables defined
as Output elements (O). The knowledge base for quality scoring of a Robusta coffee sample and
Parchment coffee sample is composed of 4096 inference rules and 96000 inference rules, respectively.

Table 3. Variable codification in the knowledge base of the Mamdani type models for quality scoring of
a coffee sample.

Variables Definition Measurement Units Status

Robusta coffee sample

Ferment (F) Operational variable related to the fermented taste that
detracts from the quality of the coffee Numerical score Input

Sour (S) Operational variable related to the sour taste that detracts
from the quality of the coffee Numerical score Input

Malodorous (M) Operational variable related to the acetic acid smell related to
the fermented taste Numerical score Input

Earthy (E) Operational variable related to the earthy taste and smell that
detract from the quality of the coffee Numerical score Input

Mold (M) Operational variable related to the mold taste that detracts
from the quality of the coffee Numerical score Input

Old (O) Operational variable related to the aged taste that detracts
from the quality of the coffee Numerical score Input

Robusta Class (RC) Linguistic expression that represents the robusta coffee class
obtained from the organoleptic evaluation Quality score Output

Parchment coffee sample

Aroma (A) Operational variable related to the aromatic impression due to
the volatile substances of coffee Numerical score Input

Flavor (F)
Operational variable related to the balanced impression due to

the combination of gustatory and olfactory attributes
perceived in coffee

Numerical score Input

Acidity (A)
Operational variable related to the gustatory impression due

to organic acids contributing to liveliness, sweetness and
fresh-fruit coffee’s character

Numerical score Input

Body (B)
Operational variable related to the feeling of fullness and

consistency in the mouth, particularly when it is perceived
between the tongue and the palate

Numerical score Input

Vinous, Fruity,
Sweetness (VFS)

Operational variable related to a pleasing fullness of flavor
due to the presence of certain carbohydrates Numerical score Input

Green,
Immatureness (GI)

Operational variable related to the astringent taste that detract
from the quality of the coffee Numerical score Input

Cereal, Wood,
Paper (CWP)

Operational variable related to the cereal taste that detract
from the quality of the coffee Numerical score Input

Dry, Old (DO) Operational variable related to the aged taste that detract from
the quality of the coffee Numerical score Input

Chemical,
Medicinal (CM)

Operational variable related to the chemical taste that detract
from the quality of the coffee Numerical score Input

Ferment, Sour,
Malodorous (FSM)

Operational variable related to the ferment taste and smell
that detract from the quality of the coffee Numerical score Input

Earthy, Mold (EM) Operational variable related to the earthy taste and smell that
detract from the quality of the coffee Numerical score Input

Parchment Class
(PC)

Linguistic expression that represents the Parchment coffee
class obtained from the organoleptic evaluation Quality score Output
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For the GP Agent, fuzzy logic is used to mimic the sorting process scheduling of coffee entries
based on coffee entry quality grading in the dry benefit process. Sorting process scheduling decision
is based on the percentage of defective beans resulted from the physical analysis of the Parchment
coffee entries necessary to complete the wholesale customer’s order. For sorting process scheduling
of not-washed Robusta coffee inputs, we consider the variables serious defects, minor defects, pellet,
green aspect, and weight. For sorting process scheduling of Robusta coffee inputs, we contemplate
the variables humidity, serious defects, minor defects, pellet, green aspect, and weight. Finally, for
sorting process scheduling of Parchment coffee inputs, humidity, serious defects, minor defects, pellet,
green aspect were taking into consideration. With regards to Output, sift sorting refers to the process
by which the coffee is classified by size and shape, pneumatic sorting comprises coffee classification
by size and weight, and optical sorting the coffee is classified by a computerized optical system that
eliminates undesirable color grains. Table 4 describes the variables related to the wet benefit process
defined in the knowledge database for the GP Agent as Input elements (I), and the operations variables
defined as Output elements (O). The knowledge base for sorting process scheduling of not-Robusta
coffee, Robusta coffee, and the Parchment coffee, is composed of 216 inference rules, 864 inference
rules, and 128 inference rules, respectively.

Table 4. Variable codification in the knowledge base of the Mamdani type models for sorting process
scheduling of coffee entries.

Variables. Definition Measurement Units Status

Serious defects (SD)
Operational variable related to the number of defective coffee beans
associated with appearance (black, white, amber, and with irregular

spots)
% of defective beans Input

Minor defects (MD) Operational variable related to the amount of malformed (shell and
ear) coffee beans % of defective beans Input

Pellet (P) Operational variable related to the number of broken coffee beans % of defective beans Input

Green aspect (GA) Operational variable related to the number of immature coffee
beans of black-Green color % of defective beans Input

Weight (W) Operational variable related to the number of kilograms entering
the process schedule kilograms Input

Humidity (H) Operational variable related to the water content of the coffee beans % of humidity Input
Not-washed Robusta coffee entry

Not-washed robusta
Schedule 1 (nrS1)

Linguistic expression that represents the process schedule: mix,
pneumatic sorting, optical sorting, and sift sorting Number of processes Output

Not-washed robusta
Schedule 2 (nrS2);

Not-washed robusta
Schedule 3 (nrS3)

Linguistic expression that represents the process schedule:
pneumatic sorting, optical sorting, and sift sorting Number of processes Output

Robusta coffee entry
Robusta Schedule 1

(rS1)
Linguistic expression that represents the process schedule: mix,

pneumatic sorting, optical sorting, sift sorting, dry, and dry little Number of processes Output

Robusta Schedule 2
(rS2); Robusta

Schedule 3 (rS3);
Robusta Schedule 4

(rS4)

Linguistic expression that represents the process schedule:
pneumatic sorting, optical sorting, sift sorting, dry, and dry little Number of processes Output

Parchment coffee entry
Parchment Schedule 1

(pS1)
Linguistic expression that represents the process schedule: mix,

pneumatic sorting, optical sorting, sift sorting, dry, and dry little Number of processes Output

Parchment Schedule 2
(pS2); Parchment
Schedule 3 (pS3);

Parchment Schedule 4
(pS4)

Linguistic expression that represents the process schedule:
pneumatic sorting, optical sorting, sift sorting, dry, and dry little Number of processes Output

In order to determine the reliability of the aforementioned fuzzy models, a paired t-test was
applied, which is used to compare the estimated values from each model to real recorded case data.
Each record has specific values for each input variable and the output result by the decision-maker.
This test produced a confidence interval that includes zero, which shows there is no significant
difference between the estimated results and real data, so it can be concluded that the Fuzzy models
are valid.
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For the GP Agent, the production plan establishment decision is supported by a decision-making
rule constructed by equation-based representation using mixed integer programming. Broadly,
production planning comprises the determination of the type and quantity of commodities to be
produced and resource allocation. The mathematical programming relies in the endeavor made
by Sawik [49]. The author proposes a mixed integer programming formulation for customer order
assignment over a planning horizon, to maximize service level. The index, parameters, and variables
of this model are shown in Tables 5–7, and the description of the problem is explained below.

Table 5. Indices.

Index Definition

i Processing stage, I ∈ I = (1, . . . , m)
j Wholesaler order, j ∈ J = (1, . . . , n)
k Coffee type, k ∈ K = (1, . . . , r)
t Planning period, t ∈ T = (1, . . . , h)

Table 6. Model parameters.

Parameter Definition

aj, dj, sj Arrival date, due date, size of order j
bj Production lot for order j
cit Processing time available in period t on each machine in stage i
mi Number of identical, parallel machines in stage i
n Number of customer orders to be scheduled
pij Processing time in stage i of each product in order j

Ji ⊆ J {j ∈ J: pij > 0} subset of wholesaler orders to be processed in stage i
J1 ⊆ J Subset of small wholesaler orders
J2 ⊆ J Subset of large wholesaler orders

Jk Subset of wholesaler orders for coffee type k

Table 7. Variables.

Variable Definition

uj 1, if order j is completed after due date; otherwise uj = 0
xjt 1, if order j is performed in period t; otherwise xjt = 0
yjt Fraction of customer order j to be processed in period t

The green coffee producer can be identified as a flexible flow production system made up of six
processing stages in series, and each stage i ∈ I = (1, . . . , m) is made up of m1 ≥ 1 parallel identical
machines (Figure 5). In the system, three types of coffee are produced in a make to- order environment
responding directly to wholesale customer-requested orders. Let J be the set of customer orders that
are known ahead of a planning horizon. Each order j ∈ J is described by a triple (aj, dj, sj), where aj is
the order arrival date, dj is the customer-requested due date, and sj is the size of order (the number
of ordered products of specified type). Each order requires processing in various processing stages;
however, some orders may bypass some stages.

80



Appl. Sci. 2019, 9, 4903

 
Figure 5. Flexible flow production system of the green coffee producer.

The processing stages are the following: pre-cleaning, threshing, sorting by sieve1, sorting by
vibration-gravity, pneumatic sorting, and optical sorting. Let pij ≥ 0 be the processing time in stage i
of each product in order j ∈ J. The orders are processed and transferred among the stages in lots of
various sizes that depend on the ordered product type and let bj be the size of production lot for order j.
The coffee beans are feed into the pre-cleaning machine, m1, and then, it goes to the threshing machine,
m2; this machine has 2 outputs, good coffee beans, and straw, the straw leaves the system and the
coffee continues its way to the next processing stage. The sorting by sieve machines in stage 3, m3 y
m4, have three outputs, (1) good coffee beans, (2) pellet and (3) straw; the good coffee beans continues
its way to enter the next machine, while the broken coffee beans and straw leave the system, separately.
The sorting by vibration-gravity machine, m5, has four outputs, (1) good coffee beans, which passes
to the next machine, or failing that, leaves the system as the final product; (2) pellet, (3) dust and (4)
dried cherries that leave the system definitively as waste. The pneumatic sorting machines, m6, m7 y
m8, have three outputs (1) good coffee beans that leave the system as final product; (2) stain coffee
beans that leave the system as waste, and (3) coffee beans that re-enter the machine to be reprocessed.
The optical sorting machines, m9, m10 y m11, have two outputs (1) good coffee beans that leave the
system as final product; (2) stain coffee beans that leave the system as waste.

The planning horizon consists of h planning periods, and L is the length of each planning period,
in this case, working hours per week. Let T = {1, . . . , h} be the set of planning periods and cit the
processing time available in period t on each machine in stage i. Customer orders are split into
production lots of fixed sizes, each to be processed as a separate job. The following two types of
customer orders are considered: (1) small customer order, where each order must be completed in two
consecutive time periods, and (2) large customer order, where each order must be completed in four
consecutive time periods. In practice, the two types of customer orders are scheduled simultaneously.
Denote by J1 ⊆ J, and J2 ⊆ J, respectively, the subset of small customer orders, and large customer orders.

The mathematical formulation for the initial production schedule for the original customer orders
known ahead of the planning horizon is as follows, where all materials are assumed to be available at
the beginning, i.e., aj = 1 for each order j ∈ J.

Maximize:
1 −
∑

(j∈J) uj/n (1)

Subject to:

xjt + x(jt + 1) + x(jt + 2) + x(jt + 3) ≤ 4, j ∈ J2, t ∈ T: aj ≤ t ≤ h−3 (2)

xjt + x(jt + 1) + x(jt + 2) ≤ 3, j ∈ J2, t ∈ T: aj ≤ t ≤ h−2 (3)

xjt + x(jt + 1) ≤ 2, j ∈ J2, t ∈ T: aj ≤ t ≤ h−1 (4)
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xjt + xjt’ ≤ 1, j ∈ J, t ∈ T, t’ ∈ T: aj ≤ t ≤ h−2, t’ ≥ t + 2 (5)

∑
(t∈T:t ≥ aj) yjt = 1, j ∈ J (6)

xjt ≥ yjt, j ∈ J, t ∈ T: t ≥ aj (7)

yjt ≥ bj xjt/sj, j ∈ J, t ∈ T: t ≥ aj (8)

uj ≥
∑

(t∈T:t > dj) yjt, j ∈ J (9)

uj ≤
∑

(t∈T:t > dj) xjt, j ∈ J (10)

∑
(j∈J) pij sj yjt ≤ cit mi, I ∈ I, t ∈ T (11)

∑
(j∈J:τ∈T:aj ≤ τ ≤ t) sj yjτ ≥

∑
(j∈J:dj≤t) sj (1 − uj), t ∈ T (12)

uj ∈ {0, 1}, j ∈ J (13)

xjt ∈ {0, 1}, j ∈ J, t ∈ T: t ≥ aj (14)

0 ≤ yjt ≤ 1, j ∈ J, t ∈ T: t ≥ aj (15)

The objective function (1) aims to maximize service level. Each large customer order must be
completed in four consecutive time periods and each small customer order must be completed in two
consecutive time periods (2)–(5). Each order must be completed (6), each order is allocated among
all the periods that are selected for its assignment (7), and the minimum portion of a divisible order
allotted to one period is not less than the batch size (8). Regarding tardy order constraints, a tardy order
is partly assigned after its due date (9)–(10). The demand for capacity at each processing stage cannot
be greater than the maximum available capacity in every period (11). The cumulative production is
not less than the cumulative demand minus the tardy demand (12).

In industrial environment agent-based solution adoption, real-time scheduling and rescheduling
are becoming increasingly important [17]. The master production schedule has to deal with seasonal
fluctuations of demand and to calculate a frame for necessary amounts of overtime, whilst short-term
production planning comprises the determination of lot-sizes according to their due dates and the
available capacity with minute accuracy [50]. There are two basic elements in this approach [51]:
(i) scheduling algorithms are used to generate initial schedules and repair obsolete schedules and (ii)
control policies are used to adjust the frequency of repairing a schedule. Considering these control
policies from the agent-based modeling and simulation approach, an adaptive agent is capable of
modifying them during a simulation based on evolving circumstances [52]. Consequently, the adaptive
control approach is based on the control of a set of performance indicators of a system by means
of a decision model that analyzes them and selects an appropriate control policy. For SC planning,
this approach relates to a partial or even the full change of a previously accepted plan triggered by a
new event such as new order arrival, a cancellation of already allocated orders, the availability of a new
resource, a failure of existing resources, or changes of the chain objectives [53]. The GR Agent monitors
the customer service level and once the indicator falls below the expected level, the Agent updated the
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production plan. Rescheduling is the process of updating an existing production schedule in response
to disruptions or other changes; This includes the machine failures, processing time delays, rush orders,
quality problems, and unavailable material [51], in this case, the disturbance relates to delay in the
arrival or shortage of materials. The mathematical formulation for the rescheduling algorithm is as
follows considering the rescheduling parameters in Table 8. Let tmod be the first planning period
immediately after the order modification.

Table 8. Rescheduling parameters.

Parameter Definition

h’ new planning horizon
E− upper limit on maximum earliness

tmod the planning period immediately following modification of orders
Jmod set of modified orders
Jold subset of orders in J remaining for completion without modification

JN
old, JS

old subset of orders in Jold, respectively non-reschedulable, reschedulable
Tnew {h + 1, . . . , h’} set of new planning periods
Told {tmod, . . . , h} subset of remaining planning periods in T

TN
old subset of periods in Told with fixed assignment of orders in Jold

Prime (‘) denotes updated parameters after modification of orders.
Step 0. Split the set Jold of orders remaining for completion into two disjoint subsets: JS

old of
reschedulable orders and JN

old of fixed, non-reschedulable orders:

JN
old = {j∈Jold:

∑
(tmod ≤ t ≤ tmod + E*max) xjt = 1} (16)

JS
old = Jold/JN

old (17)

Step 1. Set TN
old = {tmod, . . . , tmod + E−}

Step 2. Do not change the assignment of non-reschedulable orders j∈JN
old, i.e.,:

y’(j,tmod + E− +1) = y(j, tmod + E*max + 1), j ∈ JN
old ∩ J: x(j,tmod+E−) = 1 (18)

The algorithm is for rescheduling of the remaining customer orders awaiting material supplies [49].
For each order j, product-specific materials are assumed to be unavailable earlier than E− periods
ahead of the order due date dj. Therefore, each order j cannot be assigned to periods earlier than
dj − E−. In particular, in period tmod product-specific materials are not available for orders due
in periods greater than tmod + E−, and hence all such orders can be rescheduled. On the other
hand, the unmodified orders with product-specific materials supplied by period tmod are considered
non-reschedulable in the algorithm. In the algorithm, the planning horizon is progressively shifted
to take into account modifications of the customer orders (changes of order size and/or due date)
occurring during the horizon.

3.5. Model Validation

The AnyLogic® Personal Learning Edition multi-method simulation platform that supports not
only agent-based general-purpose simulations but also it supports DES modeling was used to build
the agent-based simulation model that underpins the decision support system in a HP Workstation
with an Intel Zeon CPU operating at 3.40 GHz and equipped with 8 GB RAM. The decision-making
rules for the decision support agents, IF-THEN fuzzy inference rules and mixed integer programming,
were implemented in Python through the integration AnyLogic®–Python.

To validate the simulation model and to check if it is an adequate representation of the real
system, a paired t-test was applied, which is used to compare the results from the simulation model to
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the historical data of the real system. The indicator refers to the amount of good green coffee beans
resulting from the sequence of processes, sift sorting, pneumatic sorting, and optical sorting, with an
intake of 37,740 kg of Parchment coffee. The results of 10 replicas are shown in Table 9, where Xj is
the number of kilograms of good green coffee beans resulting from the sequence of processes (1) sift
sorting, (2) pneumatic sorting, and (3) optical sorting, with an intake of 37,740 kg of Parchment coffee,
in the real system. In the same way, Yj is the number of kilograms of good green coffee beans result
from the simulation model.

Table 9. Model validation data.

Replicate Xj Yj Zj = Xj − Yj (Zj − Z−10)2

1 27,176.00 27,935.05 −759.05 360,735.09
2 27,901.00 27,811.70 89.30 61,373.56
3 27,348.00 27,734.25 −386.25 51,899.30
4 28,004.00 28,754.03 −750.03 349,980.98
5 27,733.00 27,417.09 315.91 225,007.48
6 27,914.00 28,561.69 −647.69 239,364.85
7 27,682.00 27,270.03 411.97 325,361.82
8 28,412.00 28,461.21 −49.21 11,929.89
9 27,197.00 26,779.30 417.70 331,930.58

10 27,996.00 28,223.02 −227.02 4,703.48
Sum −1,584.36 1,962,287.05

Average 27,736.30 27,894.74 −158.44

A 95% confidence interval is constructed using Equations (19)–(21):

Z−(n) =
∑n

(i = 1) Zi)/n
Z−(10) = −1584.36/10

Z−(10) = −158.43
(19)

Varˆ [Z−10 ] =
∑10

(i = 1) [(Zj − Z−10)2]/n (n − −1)
Varˆ [Z−10 ] = 1,962,287.05/10 (10 − −1)

Varˆ [Z−10 ] = 21,803.18
(20)

Z−(n) ± t(n−1,1-(1−∝)⁄2)
√

Var[̂Z−n]
−158.43 ± t9,0.975

√
21,803.18

−158.43 ± 2.26(147.65)
(−492.46,175.59)

(21)

It is observed that the confidence interval includes zero, so it is concluded, with a confidence
index of 95% that the difference between the means of the real data and the simulation results is not
statistically significant.

The optimal number of replicas of the simulation model was determined using the procedure of
estimating the mean μ = E (x) with a specific error. Table 10 shows the results of 10 independent pilot
replicas, where each replica represents the number of kilograms of good green coffee beans resulting
from the sequence of processes (1) sift sorting, (2) pneumatic sorting, and (3) optical sorting, with an
intake of 37,740 kg of Parchment coffee.
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Table 10. Simulation results of the pilot replicas.

Replicate Good Green Coffee Beans (Kilograms)

1 27,900.2004
2 27,907.4386
3 27,905.3017
4 27,889.3183
5 27,895.6686
6 27,853.6233
7 27,934.5803
8 27,896.9872
9 27,863.0423
10 27,889.3104

Average 27,894.7358
Standard deviation 24.9877

The average amount of coffee beans leaving the process, in kilograms, was estimated with an
absolute error of β = 15 kg and a 95% confidence level. The calculations for the number of replications
are shown below, where i is the number of replicas, and where the calculation performed must be less
than or equal to the absolute error (β = 15 kg), where x−n = 27,894.73, S2

n = 624.38, β = 15 and α = 0.05.

min {i ≥ 10: t(i−1,0.975)
√

(624.38/i) ≤ 15}
i = 10:2.26

√
(624.38/10) = 17.87 ≥ 15

i = 11:2.22
√

(624.38/11) = 16.78 ≥ 15
i = 12:2.20

√
(624.38/12) = 15.87 ≥ 15

i = 13:2.17
√

(624.38/13) = 15.09 ≥ 15
i = 14:2.16

√
(624.38/14) = 14.42 ≤ 15

(22)

Therefore, the optimal number of replicas is 14.

4. Results and Discussion

4.1. Simulation Results of the Demand Scenarios

The selection of the demand pattern scenarios responds to the need of the decision-maker
for production scheduling during the typical demand for green coffee that declines in the
September-December period and peaks in the March-June period. The planning horizon considered
was h = 13 weeks, with a length of each planning period of working hours per week. The following
three demand patterns were considered.

Increasing, with demand skewed towards the end of the planning horizon, 60 customer orders.
Decreasing, with demand skewed towards the beginning of the planning horizon, 84 customer

orders.
Unimodal, where demand peaks in the middle of the planning horizon and falls under the

available capacity on the first and last days of the horizon, 63 customer orders.
Figures 6–8 show the initial aggregate production schedule and the estimated production results

along with the cumulative aggregate production and cumulative aggregate demand for each case for
the increasing demand pattern, the unimodal demand pattern, and the decreasing demand pattern,
respectively. The negative values in these figures indicate the tardy demand.
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Figure 6. Initial production schedule and estimated production results for increasing demand.
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Figure 7. Initial production schedule and estimated production results for unimodal demand.
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Figure 8. Initial production schedule and estimated production results for decreasing demand.

For the initial aggregate production schedule, all materials are assumed to be available at the
beginning of the planning horizon, while for the estimated production results, delay in the arrival of
raw materials occurred.

The customer service level results for the increasing demand pattern are as follows (Figure 6): no
tardy orders for the initial production schedule, i.e., 100% service level, and two tardy orders for the
estimated production results, a 96% service level.
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Regarding the unimodal demand pattern, the results are five tardy orders for the initial production
schedule, a 92% service level, and nine tardy orders from the estimated production results, an 85%
service level. Figure 7 shows that the aggregate production is best leveled over time for the unimodal
demand pattern. The study of Sawik [54] for production scheduling in make-to-order manufacturing
systems found the aggregate production is best leveled over time for the increasing demand pattern.

4.2. Reactive Scheduling for the Decreasing Demand Scenario

For the decreasing demand pattern, the results indicated the application of the reactive aggregate
production scheduling approach in the green coffee SC. For this demand pattern: ten tardy orders for
the initial production schedule, an 88% service level, and nineteen tardy orders from the estimated
production results, a 77% service level (Figure 8). This value falls below the expected level. Consequently,
Figure 9 shows the updated aggregate production schedule with tmod = 7 and E−= 2, resulting in ten
tardy orders and an 88% service level.

Figure 9. Updated production schedule for decreasing demand and tmod = 7 and E−= 2

4.3. Discussion

We undertake the analysis of the response surfaces of these fuzzy logic-based decision-making
rules. Fuzzy logic is the decision-making rule approach used to generate a knowledge base for the CP
Agent, the GS Agent, and the GP Agent as described in Section 3.3. The CP Agent comprises the Cherry
coffee-growing yield estimation model, the hectares available for planting and the precipitation and
agricultural practices data are used as input. The GS Agent uses the Parchment coffee sample’ quality
scoring model with the gustatory and olfactory attributes of the sample as input data. The GP Agent
comprises the Parchment coffee entries sorting process scheduling model, the percentage of defective
coffee beans and the percentage of humidity of the coffee entry are used as input data. Appendix A
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describes the operating values for the fuzzy sets of the Fuzzy models of Cherry coffee-growing yield;
quality scoring of the Robusta coffee sample; quality scoring of the Parchment coffee sample; sorting
process scheduling of not-washed Robusta coffee entries; sorting process scheduling of Robusta coffee
entries; and sorting process scheduling of Parchment coffee entries.

Regarding the Cherry coffee-growing yield model, the factors that have a significant effect on
coffee yield are nutrition, pruning, and control of pests. The factors that have a significant effect from
high values are nutrition and pruning. The factor that has a significant effect from low values is control
of pests. The factors that do not have a negative effect on coffee yield are rainfall and temperature.
The study of Paulo and Furlani Jr. [55] also found that adequate nutrition along with optimal planting
density is expected to show high yield responses in coffee plantations.

For the Parchment coffee samples’ quality scoring model, ferment, sour, malodorous (FSM) is
the factor that has a significant effect on coffee samples’ quality score. For the Altura coffee, acidity,
chemical taste, flavor, aroma, and body must have high values. For the Extra prima coffee, aroma,
acidity, and body must be contained in the medium values. For the Robusta coffee samples’ quality
scoring model, the malodorous factor has a significant effect on the quality score, from medium values
the coffee can be rejected, likewise, when sour is in the high values and ferment in the medium values.
The factors that do not have a significant effect on the quality score are old and earthy. The factor that
has a significant effect from high values is mold and sour. The presence of both factors, mold and old,
has a significant effect on the quality score when they occur at high values. Through the development
of a fuzzy expert system for sensorial evaluation of coffee bean attributes to derive quality scoring,
Livio and Hodhod [38] found the ranges of the values of the attributes for the lowest and highest
quality scores considering Fragrance, flavor, aftertaste, acidity, body, uniformity, balance, clean cup,
sweetness, overall, and defects. Also from a fuzzy logic approach, the study of Flores and Pineda [39]
conducted a similar analysis with the attributes brew, aroma, taste, aftertaste, and body.

Regarding the Parchment coffee entry sorting process scheduling model, both, Serious defects
and minor defects, have a significant effect on sorting process scheduling. The green aspect factor does
not have an effect on sorting process scheduling. The pellet factor has a significant effect from low
values on sorting process scheduling. The humidity factor has a significant effect from medium to
high values and results in complex sorting sequences. For the Robusta coffee entry sorting process
scheduling model, both, serious defects and minor defects, have a significant effect from medium to
high values on sorting process scheduling. The pellet factor has a significant effect from low to medium
values on sorting process scheduling. The humidity factor has a significant effect from high values on
sorting process scheduling. According to the a review study of the green coffee processing, Ghosh and
Venkatachalapathy [42] asserted that achieving a 12% of humidity of coffee contributes to obtaining
acceptable color, size along with the removal of pests for longer safe storage.. The weight factor does
not have an effect on sorting process scheduling. Finally, for the not-washed Robusta coffee entry
sorting process scheduling model, factors, serious defects, and minor defects have a significant effect
from medium to high values on sorting process scheduling and result in complex sorting sequences.
Factors, the green aspect, and humidity do not have an effect on sorting process scheduling.

Regarding the demand pattern scenarios analyzed, Figure 10 shows the input inventory of
Parchment coffee and the output of green coffee. We noted that the input inventory and output
inventory vary similar over time for the unimodal demand pattern, not the case for both the increasing
and decreasing demand pattern. The ending input inventory level is at its highest for the increasing
demand pattern and its zero for the decreasing demand pattern.
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Figure 10. Production/Input inventory/Output inventory results for increasing, unimodal and
decreasing demand.

Computational experiments aim to explore use cases for the decision support system to investigate
different demand patterns. For the decreasing demand pattern, the results indicated the application
of the reactive aggregate production scheduling approach in the green coffee SC due to service level
value below the expected level. However, it is important to keep in mind that these results are
subject to the assumptions of the model, as well as to the selected parameters and the defined system
configurations. Decisions are based on case information, consequently, the limitations relate to this
aspect of a case-study- based research. This can lead to situations in which the selection of the
decision-making rule approach used for the decision support agents presented in this study results in
decisions that could impair the performance of the system.

5. Conclusions and Future Work

In this study, we attempt to tackle the challenge for the ASC regarding the need for logistic systems
for planning and scheduling/rescheduling within the agro-industry. To this end, an agent-based model
driven decision support system for a Mexican green coffee SC was depicted. Three scenarios of demand
patterns were considered to conduct the experiments: increasing demand, unimodal demand, and
decreasing demand. A simulation model underpins the decision support system taking into account
the use of the SCOR-process oriented approach, a hybrid modeling perspective, agent-based modeling
and DES, and an adaptive control approach. A theoretical implication of the use of the hybrid modeling
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perspective refers to its contribution to achieving model quality as a measure of how the agent-based
simulation model appropriately represents the aspects of interest in the green coffee SC, as well as
simultaneous execution of events and performance improvement through agent coordination, both
benefits of agent-based modeling and simulation with DES combination reported by Zhou et al. [56].

A general perception of the decision-makers within the focal company regarding the functionality
of the decision support system the effective response of the system to the disturbance caused by the
delay in the arrival or shortage of raw materials, which requires a change in the production schedule.
The decision support system can handle these changes while considering scenarios reflecting the
context of green coffee production, scenarios where the demand skewed towards the end of the
planning horizon, where the demand skewed towards the beginning of the planning, and where
demand peaks in the middle of the planning horizon and falls under the available capacity on the first
and last days of the horizon. The exhibition of the management process within the green coffee SC
context may help practitioners and managers interested in implementing the agent-based modeling
and simulation approach in order to increase the possibilities of successful adopting of the reactive
aggregate production scheduling.

A social implication for the Cherry coffee producers relates to the determination of the agricultural
practices that have a significant effect on coffee yield: nutrition, pruning, and control of pests. Regarding
agricultural practices in the study region, Hernández et al. [41] assert that producers generally do
not have regulations or recommendations on the use of different varieties of coffee available to
them, the culture of soil analysis is practically non-existent, and chemical fertilization is carried out
through recommendations from fellow producers, for economic convenience and in some cases, on the
recommendation of a commercial agrochemical company. Also, the authors state that there is a culture
of control of plantation density with machete, leaving vegetal cover to avoid erosion. However,
negative experiences are registered with the use of herbicides both for poisoning in the personnel
who apply the product and for the degradation of the soils with frequent use, which has generated a
posture of reserved use of the pesticide. Therefore, there are no experiences of pesticide use to control
pests or coffee diseases. In regard to the pruning of coffee trees, the practices include sanitary pruning.
Finally, the authors report that the producers do not have a multi-year management plan for plant
tissue, including renewal.

Future work may consist of including decision support regarding coffee harvesting scheduling and
coffee commercialization. The first refers to the decision to harvest ripe Cherry coffee. The cutting of
Cherry fruits in mature state results in weight gained in the scale, plus facilitates the wet benefit process,
decreases waste when Parchment coffee is processed and the coffee beans gain organoleptic quality.

The second is related to the negotiation in the coffee commercialization among the actors in the
chain. The Cherry coffee purchasing parameters include the region of the crop, height and average
annual temperature of the coffee plantation, the variety of coffee, the percentage of mature grains,
the Parchment coffee yield and the time elapsed since the cut. Parameters for trade-in Parchment
coffee include dry Cherry percentage; humidity percentage; yield to green coffee; uniformity of color;
the number of defective coffee beans with respect to the weight of the sample analyzed; coffee beans
significantly free of improper aromas; and defective beans percentage in the coffee lot.
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Appendix A

Tables A1–A6 describes the operating values for the fuzzy sets of the Fuzzy models of coffee
growing yield; quality scoring of the Robusta coffee sample; quality scoring of the Parchment coffee
sample; sorting process scheduling of not-washed Robusta coffee inputs; sorting process scheduling of
Robusta coffee inputs; and sorting process scheduling of Parchment coffee inputs.

Table A1. Fuzzy model for coffee growing yield: fuzzy sets and operating intervals.

Coffee Growing

Input
Knowledge

Base

Output

Variable
Fuzzy Set

Variable
Fuzzy Set

Definition Interval Definition Interval

Nutrition (N)

Very low [1, 1, 1]

1620
inference

rules
Yield (Y)

Very low [0, 3, 6, 10]
Low [1, 2, 2]

Appropriate [2, 3, 3]
High [3, 4, 4]

Very high [4, 5, 5]

Rainfall (R)
Low [600, 600, 820, 1450]

Low [7.5, 11, 13, 16]
Appropriate [1400, 1500, 1600, 1850]

High [1800, 1941, 2500, 2500]

Control of pests (CP) Null-minimum [0, 1, 1]
Protection [1, 2, 2]

Control of diseases (CD) Null-minimum [0, 1, 1]

Medium [15, 20, 25, 32]
Protection [1, 2, 2]

Planting density (PD)
Low [0, 1, 1]

Appropriate [1, 2, 2]
High [2, 3, 3]

Pruning (P)
Not performed [0, 0, 0.27]

High [30, 32, 40, 40]

Moderate [0.2, 0.5, 0.89]
Intense [0.75, 1, 1]

Temperature (T)
Low [10, 10, 14, 22]

Appropriate [21, 23, 24, 26]
High [26, 28, 50, 50]

Table A2. Fuzzy model for quality scoring of the Robusta coffee sample: fuzzy sets and operating
intervals.

Robusta Coffee Organoleptic Evaluation

Input
Knowledge

Base

Output

Variable
Fuzzy Set

Variable
Fuzzy Set

Definition Interval Definition Interval

Ferment (F)

Not present [0, 0, 1]

4096
inference

rules

Robusta
class (RC)

7.2 [7.2, 7.2, 7.31]

Low [0.8, 1, 2]
Medium [1.8, 2, 3]

High [2.8, 3, 4]

Sour (S)

Not present [0, 0, 1]
Low [0.8, 1, 2]

Medium [1.8, 2, 3]
High [2.8, 3, 4]

Malodorous (M)

No [0, 0, 1]

7.3 [7.3, 7.3, 7.41]

Low [0.8, 1, 2]
Medium [1.8, 2, 3]

High [2.8, 3, 4]

Earthy (E)

Not present [0, 0, 1]
Low [0.8, 1, 2]

Medium [1.8, 2, 3]
High [2.8, 3, 4]

Mold (M)

Not present [0, 0, 1]

Rejected [7.41, 7.41, 7.5]

Low [0.8, 1, 2]
Medium [1.8, 2, 3]

High [2.8, 3, 4]

Old (O)

Not present [0, 0, 1]
Low [0.8, 1, 2]

Medium [1.8, 2, 3]
High [2.8, 3, 4]
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Table A3. Fuzzy model for quality scoring of the Parchment coffee sample: fuzzy sets and operating
intervals.

Parchment Coffee Organoleptic Evaluation

Input
Knowledge

Base

Output

Variable
Fuzzy Set

Variable
Fuzzy Set

Definition Interval Definition Interval

Aroma (A)

Null-little [0, 2, 2]

96,000
inference

rules

Parchment
class (PC)

Altura [2, 2.8, 3,3]

Very low [2, 3, 3]
Low [3, 4, 4]

Medium [4, 5, 5]
High [5, 6, 6]

Flavor (F)

Null-little [0, 2, 2]
Very low [2, 3, 3]

Low [3, 4, 4]
Medium [4, 5, 5]

High [5, 6, 6]

Extra
prima [2.8, 3, 3.8, 4]

Acidity (A)

Null-little [0, 2, 2]
Very low [2, 3, 3]

Low [3, 4, 4]
Medium [4, 5, 5]

High [5, 6, 6]

Body (B)
Low [1, 2, 2]

Medium [2, 3, 3]
High [3, 4, 4]

Vinous, Fruity, Sweetness
(VFS)

Not present [0, 1, 1]

Oro [3.8, 4, 4.8, 5]

Low [1, 1, 2]
Medium [2, 2, 3]

High [3, 3, 4]

Green Immatureness (GI) Not present [0, 1, 1]
Present [1, 2, 2]

Cereal, Wood, Paper (CWP) Not present [0, 1, 1]
Present [1, 2, 2]

Dry, Old (DO) Not present [0, 1, 1]

Rejected [4.8, 5, 5.8, 6]

Present [1, 2, 2]

Chemical, Medicinal (CM) Not present [0, 1, 1]
Present [1, 2, 2]

Ferment, Sour, Malodorous
(FSM)

Not present [0, 1, 1]
Present [1, 2, 2]

Earthy, Mold (EM) Not present [0, 1, 1]
Present [1, 2, 2]

Table A4. Fuzzy model for process scheduling of not-washed Robusta coffee entries: fuzzy sets and
operating intervals.

Sorting Process Scheduling for Not-washed Robusta Coffee Entries

Input
Knowledge

Base

Output

Variable
Fuzzy Set

Variable
Fuzzy Set

Definition Interval Definition Interval

Serious defects
(SD)

Normal [−13.5, −5.58, 9.17, 10.53]

216 inference
rules

Not-washed
robusta

Schedule
1 (nwrS1)

Mix [0, 0.16, 0.33]
Regular [10.3, 10.5, 13, 13.5] Pneumatic [0.16, 0.33, 0.5]
Many [13, 13.5, 22, 22] Optical [0.33, 0.5, 0.66]

Minor defects
(MD)

Normal [−7.2, −0.8, 9, 9.2] Sift [0.5, 0.66, 0.83]
Many [9, 9.2, 20.23, 20.23]

Pellet (P)
Normal [−1.79, 0.106, 3.32, 3.5] Not-washed

robusta
Schedule
2 (nwrS2)

Pneumatic [0, 0.2, 0.4]
Regular [3.29, 3.68, 4.5] Optical [0.2, 0.4, 0.6]
Many [4.3, 4.64, 11.9, 11.9] Sift [0.4, 0.6, 0.8]

Green aspect
(GA)

Appropriate [−7.2, −0.8, 13.8, 14.9]
Low [14.7, 15.27, 15.8]

Very low [15.5, 16.4, 16.86]
Null-minimum [16.2, 17.01, 20, 20] Not-washed

robusta
Schedule
3 (nwrS3)

Pneumatic [0, 0.2, 0.4]

Weight (W)
Little [−1.7 × 104, −7400, 9080, 9180] Optical [0.2, 0.4, 0.6]

Normal [7250, 8250, 1.44 × 104, 1.45 × 104]
Sift [0.4, 0.6, 0.8]

Much [1.38 × 104, 1.48 × 104, 2.33 × 105,
2.35 × 105]
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Table A5. Fuzzy model for process scheduling of Robusta coffee entries: fuzzy sets and operating
intervals.

Sorting Process Scheduling for Robusta Coffee Entries

Input
Knowledge

Base

Output

Variable
Fuzzy Set

Variable
Fuzzy Set

Definition Interval Definition Interval

Humidity (H)

Exceeded [7.87, 9.47, 10.48, 11.4]

864 inference
rules

Robusta
Schedule

1 (rS1)

Mix [0, 0.16, 0.33]
Appropriate [10.8, 11, 12.5, 12.75] Pneumatic [0.16, 0.33, 0.5]

Low [12.5, 12.75, 13] Optical [0.33, 0.5, 0.66]
Null-little [12.75, 13, 15.7, 17.9] Sift [0.5, 0.66, 0.83]

Minor defects
(MD)

Normal [−9, −1, 9.497, 9.81] Dry [0.6, 0.83, 1]
Regular [9.5, 10, 13, 13] Dry little [0.83, 1, 1.16]
Many [12.83, 13.2, 20.5, 30]

Robusta
Schedule

2 (rS2)

Pneumatic [0, 0.2, 0.4]
Serious defects

(SD)
Normal [−7.2, −0.8, 10, 10.5] Optical [0.2, 0.4, 0.6]
Many [10, 10.5, 20.23, 20.23] Sift [0.4, 0.6, 0.8]

Pellet (P)
Normal [−4.814, −1.614, 2.286, 2.536] Dry [0.6, 0.8, 1]
Regular [2.29, 2.49, 3.49, 3.779] Dry little [0.8, 1, 1.2]
Many [3.5, 3.75, 10, 10]

Robusta
Schedule

3 (rS3)

Pneumatic [0, 0.2, 0.4]

Green aspect
(GA)

Appropriate [7.32, 8.95, 11, 12.75] Optical [0.2, 0.4, 0.6]
Low [12.5, 12.75, 13] Sift [0.4, 0.6, 0.8]

Very low [12.75, 13, 14] Dry [0.6, 0.8, 1]
Null-minimum [13, 14, 18, 18] Dry little [0.8, 1, 1.2]

Weight (W)

Little [−2988, −188, 8958, 9058]
Robusta
Schedule

4 (rS4)

Pneumatic [0, 0.2, 0.4]

Normal [8100, 9100, 8.17 × 104, 8.18 × 104]
Optical [0.2, 0.4, 0.6]

Sift [0.4, 0.6, 0.8]

Little [7.98 × 104, 8 × 104, 4.82 × 105,
4.83 × 105]

Dry [0.6, 0.8, 1]
Dry little [0.8, 1, 1.2]

Table A6. Fuzzy model for process scheduling of Parchment coffee entries: fuzzy sets and operating
intervals.

Sorting Process Scheduling for Parchment Coffee Entries

Input
Knowledge

Base

Output

Variable
Fuzzy Set

Variable
Fuzzy Set

Definition Interval Definition Interval

Humidity (H)

Exceeded [7.87, 9.47, 10.48, 11.4]

128 inference
rules

Parchment
Schedule

1 (pS1)

Mix [0, 0.16, 0.33]
Pneumatic [0.16, 0.33, 0.5]

Appropriate [10.8, 11, 12.5, 12.75] Optical [0.33, 0.5, 0.66]
Sift [0.5, 0.66, 0.83]

Low [12.5, 12.75, 13] Dry [0.6, 0.83, 1]
Dry little [0.83, 1, 1.16]

Null-little [12.75, 13, 15.7, 17.9]
Parchment
Schedule

2 (pS2)

Pneumatic [0, 0.2, 0.4]

Serious defects
(SD)

Normal [−9, −1, 2, 2.5] Optical [0.2, 0.4, 0.6]
Sift [0.4, 0.6, 0.8]

Many [2, 2.5, 20.5, 21.4] Dry [0.6, 0.8, 1]

Minor defects
(MD)

Normal [−14.4, −8.05, 2, 2.5] Dry little [0.8, 1, 1.2]

Parchment
Schedule

3 (pS3)

Pneumatic [0, 0.2, 0.4]
Many [2, 2.5, 22, 22.4] Optical [0.2, 0.4, 0.6]

Pellet (P) Normal [−3.6, −0.4, 0.5, 0.75] Sift [0.4, 0.6, 0.8]
Dry [0.6, 0.8, 1]

Many [0.5, 0.75, 11, 11] Dry little [0.8, 1, 1.2]

Green aspect
(GA)

Appropriate [7.32, 8.95, 11, 12.75] Parchment
Schedule

4 (pS4)

Pneumatic [0, 0.2, 0.4]
Optical [0.2, 0.4, 0.6]

Low [12.5, 12.75, 13] Sift [0.4, 0.6, 0.8]
Very low [12.75, 13, 14] Dry [0.6, 0.8, 1]

Null-minimum [13, 14, 18, 18] Dry little [0.8, 1, 1.2]
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Abstract: The article proposes the concept of modeling that uses multi-agent systems of mutual
interactions between city residents as well as interactions between residents and spatial objects.
Adopting this perspective means treating residents, as well as buildings or other spatial objects,
as distinct agents that exchange multifaceted packages of information in a dynamic and non-linear way.
The exchanged information may be reinforced or diminished during the process, which may result in
changing the social activity of the residents. Utilizing Latour’s actor–network theory, the authors
developed a model for studying the relationship between demographic and social factors, and the
diversified spatial arrangement and the structure of a city. This concept was used to model the level
of residents’ trust spatiotemporally and, indirectly, to study the level of social (geo)participation in a
smart city. The devised system, whose test implementation as an agent-based system was done in the
GAMA: agent-based, spatially explicit, modeling and simulation platform, was tested on both model
and real data. The results obtained for the model city and the capital of Poland, Warsaw, indicate the
significant and interdisciplinary analytical and scientific potential of the authorial methodology in
the domain of geospatial science, geospatial data models with multi-agent systems, spatial planning,
and applied social sciences.

Keywords: multi-agent systems; smart city development; spatiotemporal modeling; actor–network
theory; geoparticipation; social interactions

1. Introduction

Many different disciplines use multi-agent systems as a research tool. One of them is the analysis
of social relations in the city, as well as the interaction between residents and spatial objects (the
background of the research). The open problem to address is an analysis of various factors that
influence changes in the level of residents’ social engagement in the process of social participation;
above all, changes in the level of mutual trust amongst residents and their trust in social institutions.
The multi-agent system (in further parts of the paper, the authors use MAS abbreviation) that models
the process of changing the social engagement of residents, proposed by the authors of the article,
is the main contribution to the scientific research integrating applied social sciences, geoinformation
technologies, and multi-agent systems.

In his 2007 article [1], Michael F. Goodchild introduces the concept of social assembling of spatial
information by users identified as specific human agents. Implementing this idea brought about the
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rapid development of the so-called VGI (volunteered geographic information), manifested by, e.g.,
social (crowdsourcing) creation of Open Street Map by over 3 million active users around the world.

The purpose of this article is to develop the concept of smart cities’ residents as active urban
sensors represented by agents in the MAS. Consequently, city residents are considered elements of a
specific geospatial multi-agent system. Mutual interactions of the residents, between the residents,
as well as the impact the “human agents” have on spatial objects in the long-term influences the
activeness of the residents.

It should be emphasized that for this concept, the crucial assumption is that mutual interactions
between residents and spatial objects are characteristic of a complex multi-agent system in a smart
city. The non-linear exchange of packages of information between individual elements of the system,
under special conditions, leads to reinforcing information and “activating” residents in the process of
social participation. It is assumed that the residents (represented by agents) also interact with different
features of the city, which tend to modify their trust.

In recent decades, the crisis of participatory democracy has been particularly severe in urban
centers and areas subject to urbanization. Its outcome is the weakening of the sense that the residents
have a real impact on co-creating the vision for a city’s development, revitalization of the neglected
districts, or spatial order. When interpreting the term “the right to the city,” David Harvey [2]
emphasizes that it is not only the right to access its resources, but also the right to decide jointly on
the direction of the city’s development. A smart and sustainable city engages all of its residents in
the most critical decision-making processes, making the process of creating spatial order more social,
and encouraging the development of participatory and deliberative democracy. An increase in mutual
trust among residents and their trust in public institutions are of crucial importance to stimulating
the activity. Therefore, the goal of the authors is to model complex social interactions between the
urban residents and to establish the level of trust, sense of identity, willingness to participate in the
social (geo)participation processes, and the dynamics of changes over time. The devised model has
been tested not only on the example of the “model city,” but also on the real urban agglomeration of
Warsaw, Poland.

The authors intend to develop a concept of a multi-agent decision support system that makes
use of game theory, multi-agent systems, and market programming models to support the “weakest
link” of the asymmetric urban network’s triangle of “municipal authorities” (politics), “business”
(urban developers, industrial investments, etc.), and “residents”. So that the atomized individuals are
transformed into a cooperative urban community, it is necessary to use available means of electronic
communication, information and communication technologies (ICT), and geoinformation tools, as well
as to revive the Athenian ideas of the (urban) agora that decides on the city through the process of social
debate. Such an asymmetry is the basic rule for producing the majority of urban relations described in
Latour’s actor–network theory [3]. According to this theory, the basic element of all the networks is an
actant, meaning a factor influencing all the other factors. In this article, the social sciences’ idea of
an actant will be synonymous with an agent. This term will apply both to a “human agent” that is a
resident characterized by a vector of information specific to his/her age, education, place of residence
and work, general health condition, base level of social activity, trust, and so on, as well as a spatial
object (district, office, park, and so on) that influences the inhabitants. These factors influence each
other, forming a system of actors and networks.

On the basis of this theory, the authors of the article developed a model of interaction between
the sensors–actants (both residents and spatial objects that form the urban tissue), which enables the
simulation of social interaction processes as well as, indirectly, participatory democracy and the process
of social participation of smart cities’ residents. The critical element of this process is stimulating the
civic activity of the citizens by increasing the level of trust, both in people and institutions.

The mutual trust of residents, as well as the level of the citizens’ trust in institutions (e.g.,
municipal and security authorities, planners, educational institutions, healthcare system, and so forth),
is particularly important with regards to implementing the idea of a smart city. While technological
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development is important to ensure the effectiveness of the process, the development of social
interactions among the residents and their joint decision-making on the vision for the city’s development
is crucial. As stressed in [4], cities of tomorrow need to adopt a holistic model of sustainable urban
development. A city is smart when public issues are solved using information and communications
technology (ICT) and there is involvement of various types of stakeholders acting in partnership
with the municipal authorities (see [5]). The implementation of a smart city is strongly related to
the process of social (geo)participation—according to PAS 180: 2014 (Publicly Available Specification
under the British Standards Institution), this process means an “effective integration of physical,
digital and human systems in the built environment to deliver a sustainable, prosperous and inclusive
future for its citizens.” Also, the new urban agenda stresses the need to empower all individuals
and communities and to promote and broaden inclusive platforms that allow full and meaningful
participation in the decision-making and planning process (see [6]). A city can be considered a smart
one when it, in parallel, invests in technology and human capital to actively promote sustainable
economic development and high quality of life (e.g., it enables natural resources management through
civic participation).

The contributions of the paper are (i) development of sociological concepts: Bruno Latour’s
actor–network theory [3], Edward T. Hall’s social distances [7], Erving Goffman’s social interactions [8],
related to sensors–actants which enables the simulation of social interaction; (ii) implementation of the
model using multi-agent methodology [9] in GAMA toolset environment; (iii) spatiotemporal and
sociological development of concepts of two smart cities and their implementation in GAMA; and
(iv) an illustration of the model’s operation in typical situations occurring in cities. The use of these
approaches made it possible to model the social activity of residents in a dynamic and non-linear way,
as well as to conduct spatiotemporal analysis, and create geospatial data models.

The article consists of six sections. After a short introduction (Section 1) the authors describe
related works regarding the analyzed issue and motivate the choice of the methods used (Section 2).
Subsequently, the authors discuss the research methodology (Section 3). In this section, the authors
discuss the actor–network theory (Section 3.1), which is the basis of our model, as well as the method of
city modeling used in this article (Section 3.2), then go to the description of city modeling using agents
(Section 3.3) and interactions in which these agents participate (Section 3.4). The next section describes
in detail, validates, and calibrates the model city (Section 4). The authors use two scenarios for this
purpose: Terra incognita (Section 4.1) and Old Factory revitalization (Section 4.2). This is followed by
an analysis of the spatiotemporal model of the city of Warsaw (Section 5) and subsequent sections
analyze three scenarios: Parade Square (Section 5.1), “Mordor” on Domaniewska Street (Section 5.2),
and Miasteczko Wilanów (Section 5.3). The work ends with a discussion and conclusions (Section 6).

2. Related Works

The interdisciplinary nature of the research undertaken by the authors of this article requires
referencing numerous concepts and methods derived from urban planning, spatial planning, sociology,
spatial science, as well as mathematics or computer science.

There have been numerous attempts at developing appropriate tools using modern technologies,
e.g., geospatial multi-agent system design and integration, agent-based systems, machine learning,
data mining, augmented reality, virtual reality, or 3D models, to ensure effective participation of citizens
in urban and territorial development decision-making with a game theoretical treatment (see [10,11]).
In [12], authors predict that the widespread presence of smartphones will soon mean that citizens
will be treated as a network of sensors that the city will use for continuous development. The use
of the concept of a personal digital assistant to support a smart-city citizen, which is most often run
on smartphones, is described in the paper [13]. Authors propose a software prototype of a personal
digital assistant 2.0, which, based on soft computing methods and cognitive computing, improves
calendar and mobility management in smart cities. On the other hand, there are many publications on
the analysis of social behavior in urban environments by using multi-agent systems or agent-based
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models. Malleson, in [14], emphasizes the need to combine big data and agent-based modeling tools
to analyze a smart city. Karmakharm and Richmond, in [15], include a description of the pedestrian
behavior simulation in the event of a threat in the public space. Meanwhile, Sandhu et al., in [16],
present the implementation of a model, based on intelligent agents, for controlling streetlights in a
smart city. In their study [17], Olszewski, Pałka, and Turek analyze the problem of traffic jams in
the office district with regards to car-sharing. Their agent-based model simulates the socio-economic
behavior of the employees of the so-called Mordor of Warsaw.

Geo-sensing enables context-aware analyses of physical and social phenomena.
Moreover, context-aware analysis can potentially enable a more holistic understanding of spatio-temporal
processes [18], where authors discuss the possibilities of integrating spatiotemporal contextual information
with human and technical sensor information. Among different types of sensors used to collect such kinds
of information, they mention in situ sensors, technical remote sensors, and human agents, discussed by Sagl,
Resch, and Blaschke [19]. Resch, in [20], defines human agent data as human-generated measurements.
He distinguishes the situation in which humans generates data (subjective observations) and humans that
carry “ambient sensors” to measure external parameters. In the literature, there were also attempts made
for interpreting data acquired by a “human agent”, who uses an interactive location-based service (iLBS)
(e.g., to sense cultural-historic facts in the landscape) (see [21]).

Cellular automata (CA) can be used to simulate urban dynamics and land-use changes effectively.
Several authors performed simulations of urban development and land-use changes using GIS-based
cellular automata (see [22–25]). Li et al., in [26], indicate that using parallel computation techniques can
significantly improve the performance of the large-scale urban simulation. Agent-based models are
applied to increase the intelligence and flexibility of planning support systems. Saarloos et al., in [27],
developed a framework in which an agent organization consists of three types of agents: “interface
agents” to improve the user–system interaction; “tool agents” to support the use and management of
models; and “domain agents” to provide access to specialized knowledge.

Imottesjo and Kain, in [28], developed a prototype mobile augmented reality (MAR) tool, Urban
CoBuilder. The application facilitates participative planning of urban space to increase bottom-up and
multi-stakeholder inclusion. Yan Zhang, in [29], prototyped CityMatrix, which is an evidence-based
urban decision support system, augmented by artificial intelligence (AI) techniques, including machine
learning simulation predictions and optimization of search algorithms. Zhang investigated the strength
of these technologies to augment the ability to make better urban decisions. Allen, Regenbrecht,
and Abbott, in [30], investigated a smartphone-based augmented reality architecture as a tool for
aiding public participation in urban planning by developing a prototype system, which showed 3D
virtual representations of proposed architectural designs visualized on top of the existing real-world
architecture. The authors investigated whether using a smartphone augmented reality system increases
the willingness of the public to participate and the perceived participation in urban planning.

Jing and Hai-xing [31] built a support vector machine (SVM) model to predict the trends of
coordinated development. The authors compared the method with an artificial neural network, decision
tree, logistic regression, and naïve Bayesian classifier regarding the urban ecosystem coordinated
development prediction for the Guanzhong urban agglomeration.

Ultsch, Kretschmer, and Behnisch, in [32], used techniques of machine learning and data mining to
discover comprehensible and useful structures in the multivariate municipality data. As Behnisch and
Ultsch in [33] indicate, “Urban Data Mining represents a methodological approach that discovers logical,
mathematical and partly complex descriptions of urban patterns and regularities inside statistical data”.

In the conducted research, multi-agent systems were adopted as a tool for modeling and simulation.
It enabled the implementation of the assumptions behind the actor–network theory for modeling social
processes in the urban space of a smart city. A multi-agent system (MAS or a “self-organized system”)
is a computerized system composed of multiple interacting intelligent agents (see [9,34]). Multi-agent
systems can solve problems that are difficult or impossible for an individual agent or a monolithic
system to solve. The primary assumption of MAS is communication amongst the agents and their
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autonomy. The notion of agents, as currently used in urban simulation models, is a kind of automaton
that mimics the behavior of urban agents in a predetermined way. Portugali, in [35], describes a
CogCity (cognitive city) as an urban simulation model that explicitly incorporates in its structure the
role of three cognitive processes that typify the behavior of human agents: Information compression,
cognitive mapping, and categorization. Moreover, the model CogCity demonstrates the possibility and
usefulness of agent-based and cellular automata urban simulation model, which combines top-down
and bottom-up processes in one model. Projects from MIT’s SENSEable City Lab foster the vision of
the real-time city by providing ‘a feedback loop between people, their actions, and the city’.

The issue of public opinion formation is the subject of studies conducted by Deffuant, Amblard,
and Weisbuch in [36], and Hegselmann and Krause in [37]. These authors consider the issue of
social opinion formation through consensus, polarization, and fragmentation. The article investigates
various models for the dynamics of continuous opinions by analytical methods as well as by computer
simulations. Consequently, the rapid development of advanced technologies (IoT, wearable computing,
etc.) forces the process of connecting real-world objects like buildings, roads, household appliances,
and human bodies to the Internet via sensors and microprocessor chips that record and transmit data
such as sound waves, temperature, movement, and other variables. This supports the development of
smart citizens (see [38]).

In [39], Jacobs points to correlation between the urban form and the urban performance, e.g.,
the quality of life, vibrancy, and safety. Yan Zhang, in [29], takes it a step further and shows the
correlation between the urban form and multiple aspects the urban performance. The 17 defined
indexes represent 17 aspects of the urban performance of a city district, grouped into four high-level
indexes: Density, diversity, proximity, and energy.

Sociological theories have been a vital source of inspiration for the authors of this article.
Source studies include the theory of social impact developed by Nowak–Latané, which describes
the interaction among members of large groups and the stabilization of opinions in groups [40,41].
Nowak, Szamrej, and Latané in [42] argue that “[modeling] the change of attitudes in a population
resulting from the interactive, reciprocal, and recursive operation Bibb Latané’s theory of social impact,
which specifies principles underlying how individuals are affected by their social environment”.
Also, the dramaturgical Goffman’s theory [8] and Latour’s actor–network theory (ANT) [3] have been
of crucial importance for the conducted research.

According to Latour’s actor–network theory (ANT), an actant, an advanced sensor, is the
basic component of all networks; it is a factor influencing other factors. ANT is a theoretical and
methodological approach to social theory where everything in the social and natural worlds exists in
constantly shifting networks of relationship [3]. It posits that nothing exists outside those relationships.
All the factors involved in a social situation are on the same level, and thus, there are no external social
forces beyond what and how the network participants are interacting at present. Thus, objects, ideas,
processes, and any other relevant factors are seen as just as necessary in creating social situations as
humans. Latour distinguishes two types of ties between the actants: Active and passive. The result of
an active one is not typical and depends on the mediation between the mediators, meaning that the
result is uncertain and variable. In the case of ties between mediations, the situation is stable, and the
translation proceeds in a predictable and predetermined manner.

The authors have also been inspired by the studies that take into account the opinion formation
model with a “strong leader” (see [43,44]), meaning a leader who significantly influences the molding
and modifying of the opinions and attitudes of the residents.

3. Research Methodology

The authors of this article see the relationship between the structure of a city, spatial order, the way
residents live, and the level of their social activity. The issue of information asymmetry is of crucial
importance for modeling these relationships (see [45]).
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3.1. Actor–Network Theory

Depending on the context of the study, a given actant may be divided into a more complex
actor–network order (e.g., a city may be analyzed as a system of relations between buildings, districts,
authorities, residents, road infrastructure, and so on). The strength of the influence of individual
actants—which is a result of various factors, such as the level of mutual trust or the identification
with a given place or space—determines the strength of the relations. Furthermore, a number of
such forces may impact a single actant at a given moment, each of the forces with suitable power,
which is often asymmetrical in relation to others. This lack of symmetry, or an uneven distribution
of forces and influences, manifests itself in almost every dimension of the polysemous creation
that is a city. Starting from the right to determine, through the levels of capital (social, economic,
cultural, and symbolic) of the city’s individual users, to planning and urban solutions that may
result in, among other things, ghettoization or spatial exclusion of specific groups of residents.
However, one may assume that, firstly, an uneven flow of information between particular actants,
often conditioned by the previously mentioned level of social trust, underlies each of the urban
asymmetries. Secondly, individual asymmetries overlap and form relations with other asymmetry
systems, resulting in the production of additional, now much more intricate, networks of mutual
influences and interactions. The level of trust is crucial for the activity and social participation of
the citizens.

The underlying assumption of the authors in relation to the concept of geospatial multi-agent
system design is that modeling of social interactions is a non-linear generalized regression. It is,
therefore, assumed that:

• Only selected factors (out of an infinite number of factors) influencing the level of social activity
of residents are analyzed in the model. The advantage of this approach is the opportunity to use
quantitative models; the disadvantage is the omission of the factors described in the sociological
theories of a qualitative nature.

• Modeling the time changes of the sensor–actor system means complex and multiple interactions
of individual sensors, which requires considering the iterative approach and simulating
long-term processes.

• Following the idea of citizens as sensors, smart city residents are “human agents” that, during
multiple interactions, exchange packets of information all the while modifying the parameters that
characterize individual elements of the system (actants). According to the actor–network theory,
achieving a certain level of parameter “trust” causes the social activation of individual residents.

• Every “human agent” is an autonomous entity with individual goals and information (also
conflicting). Every agent strives to achieve its own goals, unattainable without interacting with
others. This approach is consistent with the agent programming paradigm, which provided the
basis for modeling the system using multi-agent methodology. Also, it is assumed that “human
agents” are dynamic objects as interactions change their attributes.

In their research, the authors investigate how the trust of residents change with time: Both the
level of mutual trust and the trust in social institutions, which then stimulates the growth of social
involvement and social (geo)participation. The level of trust and its changes depend on factors such
as, among others, place of residence, type of work, time spent in public transport or public facilities,
theatres, as well as the types of building development or the openness of space, and so on. Changing all
of the parameters for a population of hundreds of thousands of people requires the use of parallel
computing in multi-agent systems and numerical simulations covering millions of calculation epochs,
which model decades of a city’s functioning. The base level of the residents’ identities, the intrinsic idea
of deliberative democracy, the so-called strong leaders in the local community, as well as the specific
genius loci of the city are all crucial in the process of changing the level of trust and involvement
of residents.
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3.2. Modeling of the Smart City

The crucial element of studying the development of a city and the way the urban network works
using the (broadly defined) game theory is determining whether the knowledge of individual players
(advanced sensors) is symmetrical or if there is an informational asymmetry. Multi-agent systems are
one of the tools used for modeling the game theory and the theory of market mechanisms.

The models use elements of game theory, emergence, sociology, and multi-agent systems. The model
assumes that agents, representing the residents of a city (sensors), move around the city and interact with
each other. It takes place during every act of verbal or non-verbal communication. This process involves
mutual decoding and simultaneous interpretation of the meaning of symbols used by the other party
in communication. Interactions influence and change agent’s trust in other residents. The information
asymmetry phenomenon is easily modeled in a multi-agent system where every agent (an autonomous
software element), while making decisions based on private information and interacting with the remaining
agents, has a piece of information whose level may be varied. The simulation is divided into small time
quanta (e.g., 15 min), during which the residents interact with each other.

The city is modeled by a system of roads on which the agents move, a set of buildings, including
stand-alone and multi-family residential buildings, factories, office buildings, offices, health clinics,
schools, and museums; green areas, i.e., boulevards, parks, and water reservoirs. The city is also
divided into districts distinguished by a set of general features, which characterize both the district
and the people in the district, e.g., the office district is characterized by a significant share of office
buildings, and the people in it are blue-collar workers.

3.3. Citizen Modeling—Agents

An agent models a city resident and has a set of features that reflect its social character:

• Age, gender, marital status, and number of children.
• Trust in other residents, a number in the range <0,1> that determines to what extent a resident trusts

other people. It is not a pejorative trait; it does not mean naivety, but faith in the capabilities of others.
• Trust in institutions, a number in the range <0,1> that determines to what extent a citizen trusts

institutions; that is, governmental agencies, healthcare, or educational institutions.
• Altruism, a number in the range <0,1> that determines to what extent a person wants to work for

the society and engage in the social life for the sake of common interests.
• Education, a number in the range <0,1> that determines the degree of education.
• Life satisfaction, a number in the range <0,1> that determines to what extent a citizen is satisfied with

her/his life.
• Wealth, a number in the range <0,1> that determines the material status of a citizen.
• Identity, a number in the range <0,1> that determines the emotional connection of the citizen with

the city or district in which s/he lives.

Besides the features above, each agent is assigned to a place in which s/he lives (a residential
building) and a workplace (an office building or a factory). During the simulation, the agents are
moving around the city according to the daily rhythm. Residents navigate the city along a network of
roads; eventually, they can go to a demonstration.

Demonstrations take place in the so-called attractors—places that attract social interest and
provoke extreme emotions. One such attractor is the Palace of Culture and Science in Warsaw, as its
demolition is a continuing matter of dispute. A demonstration causes a clash of extreme emotions of
the participants and often results in a change of stance regarding the fate of a given attractor.

The devised model assumes that from Monday to Friday, each agent (human agent) leaves for
work in the morning (06:00 to 08:00). An agent stays at work for eight hours and then returns home.
Some people go to a governmental agency during work hours (10:00 to 12:00) or to a doctor (09:00 to
10:00). After work, and on the weekends, some of the agents leave the city (18:00 to 23:00). Agents meet
and interact when traveling, walking around the city, arriving at work, or places of entertainment.
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In addition to ordinary residents, there are also the so-called leaders: Social activists who want
to impact on the society so that, following the idea of Václav Havel’s “The Power of the Powerless”
essay [46], many of the weak gain influence over the molding of the urban fabric through mutual
interactions. Leaders are close to controversial events. Positive leaders are those with extreme
and affirmative trust in people; they have a beneficial influence over the social trust in others.
Negative leaders place extreme and negative trust in people, thereby lowering the trust of people with
whom they interact towards others.

3.4. Agents’ Interactions

Meetings between residents take place when they are in the same buildings and when the agents
are moving around the city. During these meetings, interactions occur, affecting the change of the
agents’ characteristics. Such interactions are a symptom of human spatial behavior, resulting from the
social distances described by Hall in [7]. Generalized Tobler’s first law serves as the starting point
for modeling the processes of urban interactions in accordance with Latour’s actor–network theory.
It states that “everything is related to everything else, but near things are more related than distant
things.” In the modeled process, objects (actors) influencing each other are actants (sensors) understood
as the residents of the city, buildings, spatial arrangement, the dominating function of a given city
district, and so on. It is important to emphasize that the “nearness” of the actants here (in this context,
the residents) can mean not only the distance in the geographical space, but also the similarity of
characteristics, shared interests and views, or social media connection. There is also an assumption
that interactions may occur through social media or online interactions, without the need for agents
to meet physically. Thus, what is taken into account is not the physical distance between the agents
(Euclidean distance in the space of a city), but the distance of the social network, which depends on the
educational or age difference. The following interactions, two of them defined by Goffman in [8], latter
proposed by the authors, are considered:

• Focused interaction: Influences an agent located in a personal distance (45 to 120 cm). It is assumed
that the residents participating in focused interaction will pursue their own goals. An interaction
occurs through observation, listening, speaking, and acting. The roles of the interaction parties
are strictly defined. The model assumes that a leader should be one of the interaction parties.

• Symbolic interaction: Influences an agent located in a personal and social distance (45 to 360 cm).
Symbolic interactionism discussed in [47,48] has also been crucial for the research. It is a
sociological perspective dealing with the study of interactions taking place as a result of symbols
and gestures. Symbolic interactionism is based on the analysis of the mutual interactions processes,
understood as the exchange of symbolic meanings. An exchange takes place between conscious
partners who are continually interpreting the situation. The interaction between individuals
consists of sending, receiving, and interpreting symbols. The devised model assumes that this
interaction occurs between all agents.

• Social media interaction: Influences an agent located in a social net distance (age difference
<0.05 or educational difference <0.05). It is a process of exchanging opinions and comments
among the users of the social network while reading posts, watching movies or images, listening
to sound recordings, and conversations.

Additionally, there is an assumption that the mere presence of a citizen in a given district or a building
affects her/his characteristics and, in particular, her/his trust in other people. Being in an office, healthcare
facility, at a workplace, school, or in an industrial or office district reduces trust (temporarily or permanently).
On the other hand, being in a park, museum, on the boulevards, or in a historic or recreational district
increases trust (temporarily or permanently). These changes are called the location influence.

The characteristic analyzed by the authors is the change in the level of mutual trust between
residents (“human agents”) resulting from the multidimensional influence of the actants. The level
of their “trust” tends to “equalize” with the interaction of agents representing individual residents,
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although it is not an immediate or rapid process. The conducted simulations aim to determine how
the long-term change of people’s trust (mutual and to institutions) over time affects the level of social
participation and, indirectly, the development of open civil society and deliberative democracy.

The model includes three groups of actants (agents) interacting with each other in the city:

1. People (residents);
2. Institutions (governmental agencies, businesses, educational facilities, healthcare);
3. Spatial objects (districts characterized by parks, monuments, rivers, and so on).

In the adopted model, the authors of the study take into account the various modifying functions
(see Figure 1) of the trust parameter in the interactions between two agents:

• The “linear” function, which is the basis for the formulation of the others. The assumption is that
this function, with the interaction of the agent i with the agent j, is as follows:

trusti
Peopletrusti
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where:

kedu—education parameter change modifier;
khap—satisfaction parameter change modifier;

kwea—wealth parameter change modifier;
kage—age parameter change modifier;
k—change modifier.

• The “reinforcing” function differs from the linear function in the manner of calculating
parameter ΔtrustPeople :

ΔtrustPeople tan
(
trustj

People − trusti
People

)
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• The “diminishing” function also differs from the linear function in the manner of calculating
parameter ΔtrustPeople :

ΔtrustPeople tgh
(
trustj

People − trusti
People

)
. (5)

• A function that uses the fan-idol relation; based on the situation that a person (fan) will imitate
another person (idol) when s/he notices a significant similarity of specific features. Then, s/he
changes the parameter (trust in people) towards the idol parameter.

• A function that uses the fan-anti-idol relation; based on the situation that a person (fan) will want
to distinguish themselves from the other (anti-idol) when s/he notices a significant difference of
specific features. Then, s/he changes the parameter (trust in people) in the opposite direction to
the anti-idol parameter.

Moreover, it is assumed that the agent’s trust that is included in the above dependencies is treated
depending on the place where he resides. The trust of the agent staying at the place of residence is
increased by 50%, while for the agent staying at the workplace, it is reduced by 20%. In addition, when
the agent is in an entertainment location, his trust counts as 10% more. At the same time, the same
trust for an agent staying at the governmental agency or health clinic is reduced by 50%. An agent
residing in an industrial area (Old Factory or Mordor) also counts as 15% smaller, while when he is in
the GreenLand or OldTown districts, it counts as 15% more.

The introduced methodology is used and validated in the following section.
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Figure 1. Linear (y = x), reinforcing (y = tan(x)), and diminishing (y = tanh(x)) functions.

4. Model City

To validate the devised model of actant interaction, the authors developed a “model city”
comprising seven hexagonal districts with a dominating type of function and structure (Table 1 and
Figure 2). One million residents inhabit the city, as illustrated by the dot distribution map (Figure 3).
Each of dots, representing 1000 inhabitants, was implemented into the system as an agent with specific
characteristics such as age, education, wealth, marital status, number of children, identity (level of
identification with the city), trust in people, and trust in institutions. The variations (standard deviation)
of the agent characteristics in each district was assumed at 20% for model data. The parameters for
agents were drawn according to the normal distribution.

The ArcGIS ESRI (ArcGIS is the name of software developed by Environmental Systems Research
Institute; GIS is abbreviation of Geographic Information System) application was used to develop the
source spatial database, enabling the preparation of a set of thematic layers (land cover, buildings,
communication routes, districts borders, distribution of residents) as shapefiles. These layers were used
to build a multi-agent system in the GAMA simulation platform (see [49,50]). GAMA is a modeling and
simulation-development environment for building spatially explicit agent-based simulations (see [50]).
It is a multiple-application domain platform using a high-level and intuitive agent-based language.
With GAMA, users can undertake most of the activities related to modeling, visualizing, and exploring
of the simulations using dedicated tools.

Table 1. Model city districts (mean values, in percent); standard deviation is equal to 20%.

No Name Population
Trust to

People (%)
Trust to

Institutions (%)
Altruism

(%)
Education

(%)
Happiness

(%)
Wealth

(%)
Identity

(%)
Age

1 Greenland 50,000 90 80 70 90 100 90 100 60
2 City Center 250,000 40 60 30 60 60 60 90 50
3 Bedroom Suburb 400,000 40 50 30 70 50 50 20 40
4 Old Town 50,000 80 60 80 80 80 80 100 70
5 Business District 100,000 50 60 20 70 50 60 20 30
6 Old Factory District 150,000 30 20 20 20 10 10 40 60
7 Unspecified Space 0
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Figure 2. Model city.

 

Figure 3. Dot distribution map (each dot represents 1000 inhabitants of the model city).

Thanks to the simulations carried out for the model city, it was possible to calibrate the multi-agent
system properly, i.e., to determine the value of individual parameters, which then enabled the use of the
devised model for a real urban agglomeration area. For example, 3650 iterations used by the authors
correspond to a period of 10 years, during which the level of trust of residents changes significantly
(and in a measurable way). The authors repeatedly modified the numerical values of particular factors
(e.g., changing the level of trust of individual actants resulting from their mutual interactions) so that
the parameterization of the model corresponds to the changes observed in the real cities. Because of the
iterative calibration of the system, it was possible to determine the parameters of the model adequate
for the research of real metropolises.

The analyses made it possible to check the spatial distribution of changes in the level of trust of the
residents of particular districts (Figures 2 and 3) in a long-term (decades-long) process. Thanks to the
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use of a multi-agent system, it was possible to simulate many years of social processes in computational
cycles lasting from several dozen minutes to several hours.

The study also examined the influence of some strong “positive” or “negative” leaders, the impact
of the adopted function modifying the traits of the agents (linear, reinforcing, diminishing), as well as
specific spatial problems in the model city. In the research, the authors adopted four analytical scenarios:

• City functioning normally;
• The problem of spatial development of the “empty” seventh district;
• The problem of revitalizing a factory going into liquidation;
• The problem of changing the development of the model city’s central square (market).

Each of the scenarios is associated with the engagement of a specific group of residents (e.g.,
the elderly, the less affluent, or the residents of a given part of the city).

Each agent is characterized by the “susceptibility” parameter, which determines the probability of
an agent taking part in the social debate, demonstration, or protest. This characteristic is determined
on the basis of the agent’s other parameters, such as age, education, family, wealth, the level of
identification with the city, and so forth. What is key, however, is a given agent’s place of residence
and the proximity (spatial or social) to the place where a problem, such as the revitalization of a
district or the demolition of a controversial town hall, occurs. “Ordinary” agents engage (with a certain
probability) in social life after work or on weekends. Only agents representing the “strong leaders”
always remain in the conflict places. These agents do not change their level of involvement or trust
during the interaction. For positive leaders, it is 1.0, while it is 0.0 for negative ones.

Making use of the devised multi-agent system and the GAMA toolset environment,
3650 computational epochs were carried out. The characteristics of individual agents changed
in each iteration because of contacts with individual actants (residents and spatial objects). Using GIS
tools, the resulting data were subjected to spatial aggregation analyzing the change in the average
level of trust of agents residing in a given district of a model city. First, the authors of the article
made calculations, the purpose of which was to check how the particular trust parameter modifying
functions works (Figures 4 and 5).

 

Figure 4. The attractor activity and the level of mutual social trust in a model city through a simulated
time of 10 years in the presence of 20 strong positive leaders.
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Figure 5. Comparison of the fan-idol and fan-anti-idol relations on the level of mutual social trust in a
model city through a simulated time of 10 years in the presence of 20 strong positive leaders.

In Figure 4, one can observe the comparison of the attractor’s activity and the level of mutual
social trust in a model city through a simulated time of 10 years in the presence of 20 strong positive
leaders. All plots rise steadily, but with slightly different slopes. Moreover, in the period of attractors’
activeness (days 1200–2400), the curves are moving away from each other. The results indicate that
there are differences between individual attractors, which results from various geospatial settings.

In Figure 5, one can observe the comparison of the fan-idol and fan-anti-idol relations on the level
of mutual social trust in a model city through a simulated time of 10 years in the presence of 20 strong
positive leaders. What is interesting is that up to the 1600-ish day of simulation (four years and four
months), the inactivity of the fan-idol and fan-anti-idol relations seems to be stronger. However, after
that, the activity of the relations begins to be stronger, and at the end, after 10 years, the mutual trust is
0.4% stronger, compared to the inactivity of the relations.

To sum up, the analysis of various attractors and various functions modifying confidence shows
us minor differences, which result from the differences characteristic for a given area, rather than
differences in the algorithm used.

The variants of analytical simulations implemented are presented below.

4.1. Terra Incognita (Unspecified Space)

Research question: Will the district be built in a “closed” way (gated communities) or (because of
the increased level of social (geo)participation and trust) in an “open” way? It is of particular interest
to the residents from three marked districts, and young, relatively wealthy, and well-educated people.

Figure 6 shows the comparison between the number of strong leaders and the level of mutual
social trust in a model city through a simulated time of 10 years, with fan-idol and fan-anti-idol relations
inactive. In the absence of strong leaders, the slope of mutual trust decreases over time and the increase
in 10 years is 1.12%. For 20 strong positive leaders, trust increases by 5.44% within the simulation,
but the slope is changing; during the manifestation, the slope slightly decreases. It can be explained by
the concentration of all the positive leaders in one district of the city. However, in the case of 20 strong
negative leaders, the authors observe a slight increase in trust in the beginning, but on the 2000-ish day
of simulation (around year 5.5), it begins to drop. Ultimately, after 10 years, trust increases by 1.12%,
which is the result of accumulating negative opinions during protests. Similar dependencies, with
accuracy to value, occur for other attractors. Finally, the existence of both 20 positive and 20 negative
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strong leaders results in a different outcome than the non-existence of strong leaders. On the contrary,
one can note that the positive leaders have more impact on mutual trust than the negative ones. For this
case, the mutual trust after 10 years of simulation increases by 2.94%.

 

Figure 6. Comparison of the number of strong leaders and the level of mutual social trust in a model
city through a simulated time of 10 years, with fan-idol and fan-anti-idol relations inactive.

In Figures 7 and 8, one can see that the changes in the level of trust differ significantly in individual
districts of the model city. These changes also have different intensity over time. This process depends
not only on the number of strong leaders, but also on the characteristics of residents of particular
districts and the level of their involvement in the problem of this attractor. Positive leaders influence a
slight increase in trust in Bedroom, while negative leaders considerably reduce the level of trust of the
residents of this district. For those who are not very interested in the spatial development of the new
district (residents of Old Town and GreenLand), the level of trust decreases both in the presence of
positive and negative leaders, although with varying intensity.

 

Figure 7. Changes in the level of mutual social trust in a model city through a simulated time of 10 years
(20 negative leaders in the “Terra incognita” attractor); iteration 0, 1200, 2400, 3650.
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Figure 8. Changes in the level of mutual social trust in a model city through a simulated time of 10 years
(20 positive leaders in the “Terra incognita” attractor); iteration 0, 1200, 2400, 3650.

4.2. Old Factory Revitalization

The revitalization of the building after the Steelworks closes down leads to gentrification—and
loft spaces for the wealthy. Conducted studies on spatial and descriptive data characterizing the model
city have shown that for the relatively poor employees of the closed down Steelworks and the residents
of this region (this district and a spatially close part of the bedroom community, center, and business
district), this problem is particularly significant (affects negatively). Figure 9 shows a zone of strong
and weak impact of the “Old Factory” attractor.

 

Figure 9. Zone of strong and weak impact of the “Old Factory” attractor.

In Figure 10, one can observe that overall increase in trust by 8% does not mean an even increase
of confidence in all districts of the model city. The revitalization of the factory and the creation of
residential lofts is especially important for the residents of this district and two neighboring ones
(business district and city center). This is also important for some residents of the city who work (or
have worked) in a liquidated factory, regardless of where they live. For the inhabitants of the bedroom
suburbs, the process of revitalization is of little importance to the wealthy inhabitants of the old town

113



Appl. Sci. 2019, 9, 2059

and green land who are not interested in this subject, it even results in lowering the level of social
activity. On account of the obtained results, it is possible to state the following:

• A multi-agent system enables simulations of long-term social processes and interactions of the
citizens as sensors (both mutual and concerning the urban tissue);

• It is relatively easy to scale the impact of individual factors on the process, which facilitates the
development of a model to be used to simulate complex, multi-parameter social processes in
real cities;

• The combined use of multi-agent systems, advanced sensors, and GIS tools makes it possible to
analyze the interaction of the actants (residents and spatial objects) as well as spatial aggregation
and visualization of the results in the form of thematic maps;

• The selection of a spatial database (a digital map of the city) and the spatial distribution of
residents and their characteristics make it possible to simulate incredibly complicated processes,
e.g., related to spatial development, revitalization, and so on.

 

Figure 10. Changes in the level of mutual social trust in a model city through a simulated time of
10 years (20 positive leaders in the “Old Factory” attractor); iteration 0, 1200, 2400, 3650.

5. Spatiotemporal Modeling of the Warsaw Area, Poland

With an appropriately calibrated model and its implementation in the form of a multi-agent
system, the authors attempted to conduct research and simulation on real data. The agglomeration of
Warsaw in Poland, with its 1,754,000 inhabitants, was the test object (Figure 11). Spatial data used in the
study come from the general geographic database, which contains data at the level of accuracy that is
equivalent to analogue maps with a scale of 1:250,000. This study was up-to-date in 2016. As with the
model city, the distribution of residents was modeled in the form of a dot distribution map (Figure 12),
where each of 1754 dots (agents) represents 1000 inhabitants. The data contain a set of characteristics
defining the demographic, social, and cultural features of individual residents (Table 2).

The research [51,52] is examining the level of trust of Poles, both in public institutions and each
other. It indicates the direct relationship between trust, civic activity, and the level of education. It turns
out that “trust increases civic activity only after reaching or exceeding the threshold of secondary
education.”. In addition, in 2015, at the request of the City Hall of Warsaw, a study was conducted on
the quality of life of the residents of Warsaw districts, in which a set of questions was devoted to trust.
Also, although the level of trust in friends and family remains at a level close to 90%, confidence in
politicians (17%), journalists (34%), and local authorities in Warsaw (35%) still remains very low.
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Analytical experiments were carried out for Warsaw by simulating long-term social processes for
three selected test areas (Figure 12):

• The central area of the capital (controversy regarding the spatial development of Parade Square);
• The so-called Mordor (with the problem of extreme street congestion during the day and its

forlornness at night);
• The so-called Miasteczko Wilanów (socially associated with a “ghetto” for young and wealthy

residents born outside of Warsaw, who have a low level of identification with the city).

Table 2. Warsaw (PL) districts (mean values, in percent); standard deviation is equal to 20%. Source: [51].

No Name Population
Trust to

people (%)
Trust to

institutions (%)
Altruism

(%)
Education

(%)
Happiness

(%)
Wealth

(%)
Identity

(%)
Age

1 Bemowo 120,000 63 83 20 39 12 30 94 60
2 Bialoleka 116,000 63 66 22 29 16 70 90 40
3 Bielany 132,000 64 80 15 33 11 70 93 70
4 Mokotow 218,000 67 79 11 26 5 80 93 100
5 Ochota 84,000 59 75 12 28 5 60 94 80
6 PragaPoludnie 178,000 64 74 19 39 17 60 88 60
7 PragaPolnoc 66,000 61 75 11 22 5 10 86 30
8 Rembertow 24,000 62 72 7 20 4 80 90 60
9 Srodmiescie 118,000 63 74 24 41 11 90 93 90

10 Targowek 124,000 65 81 19 35 10 40 86 30
11 Ursus 58,000 66 84 11 19 3 60 91 70
12 Ursynow 150,000 57 77 23 32 7 80 91 70
13 Wawer 75,000 72 79 18 31 2 60 95 70
14 Wesola 25,000 69 78 11 24 4 70 96 70
15 Wilanow 35,000 73 76 27 48 14 90 94 90
16 Wlochy 41,000 69 83 15 28 3 70 98 70
17 Wola 139,000 69 86 25 37 11 50 93 60
18 Zoliborz 51,000 67 75 17 32 16 80 94 80

 

Figure 11. Warsaw (PL) and its districts.
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Figure 12. Three attractors in Warsaw and dot distribution map.

5.1. Parade Square (Plac Defilad)

Together with the Palace of Culture and Science, Parade Square has been a source of controversy
for years. The background of this conflict is primarily generational and, thus, historical. The problem
lies not only in its development, but also in the possible ways of integrating this space into the city.

The seniors born or living in Warsaw declare low trust and distaste for this area. To this group,
this place is connected with the period of communist domination, complicated history, and the Soviet
Union. They would like to demolish this space along with the Palace of Culture and Science. This group
of people has a very high level of identification with the city and its space, especially with the city
center. For the youth and people in their prime (up to around 35 years of age), the Palace remains
a symbol of Warsaw and the location of many cultural activities, as well as a place for meetings or
dating. Young people, in particular, have been trying to revitalize this area for years. They would
like to combine the Palace of Culture and Science with space for everyone, where there is a place for
greenery, leisure, and a body of water. A manifestation of this is, for example, the so-called Central
Park (https://parkcentralny.pl/), which is a project aimed at creating the Green Heart of Warsaw.

In Figure 13, the change of average mutual trust of residents for Parade Square with 20 negative
and 20 positive strong leaders can be observed. The mutual trust decreases by 6.8%, which is the
opposite of the case of the Model City, where mutual trust grew in a similar situation (20 positive and
20 negative strong leaders). This process is caused by different demographic characteristics of Warsaw
(a real urban agglomeration) and the model city.
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Figure 13. Change in the average mutual trust of residents for Parade Square with 20 negative and
20 positive strong leaders.

5.2. “Mordor” on Domaniewska Street

In the 1990s, the process of changing this part of the city from one of industrial function to one of
a service function began. At the moment, Domaniewska Street is one of the main streets of the largest
office complex in Warsaw. The residents of the city have jokingly named it Mordor, which is the dark
land from the novels by J.R.R. Tolkien, because of its traffic-related problems.

The problem with this part of the city is the extreme intensification of office space, lack of greenery,
and a limited number of parking spaces. A thick line seems to separate the Mordor of Warsaw from
the city (for communicational and architectural reasons, but also mentally). This part of Warsaw
has always been associated with a low level of identification with the city. After its change from an
industrial area to a service one, the problem of low-level identification and trust remained (which also
applies to the attitude of officials and corporations). It is a place where one has to be (work), not where
one wants to be. Places that appear in Mordor (restaurants, cafés) are there primarily to serve the
corporations; there are no cultural or recreational places (except for fitness centers), and so on.

In this part of Warsaw, all actants have a very low level of trust in public transport and, therefore,
in officials as well (employees as well as visitors or residents). For people from the outside, Mordor
is a place of very low trust and identification (especially for those who live close to this area, e.g.,
Mokotów, Ursynów, and so on, neighboring districts). People living in the outlying districts are
somewhat indifferent to this place. On the other hand, this place “draws” newcomers who decide to
buy flats there. As a result, a sense of new urban identity arises, in a way forged as an opposition to
the inhabitants of other parts of Warsaw.

The critical problem of this part of Warsaw is the extreme congestion of streets during rush hour.
Almost all of the 100,000 employees of corporations in Mordor commute to work using the company
car. An increased mutual trust would allow the rationalization of commuting, e.g., by using carpooling
(see [17]).

In Figure 14, one can observe the change of average mutual trust of residents for Mordor with
20 strong negative leaders. The constant drop of mutual trust (−16.06%) can be observed (the drop
is more than twofold when compared to Parade Square, see Figure 13). It means that for the city of
Warsaw, in the case of strong negative leaders, the level of mutual trust is threatened by a significant
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reduction. The increase in social trust, and, thus, also the increase in social participation visibility, e.g.,
through the joint use of company cars leading to increased traffic capacity, therefore requires a strong
inspiration of “positive leaders” of social changes in this office area.

 

Figure 14. Change in the average mutual trust of residents for Mordor with 20 strong negative leaders.

5.3. Miasteczko Wilanów

This is a recently built district of the city with gated communities inhabited mainly by newcomers
with a low sense of identification with Warsaw. The inhabitants of the “old” Wilanów and other
Warsaw districts (apart from Białołęka) do not trust the residents of the “new” Wilanów. The relations
within this district are also complicated: Those who live in the prestigious buildings built in the very
beginning do not trust those who came to live in buildings of a much lower standard and intended for
the middle class (a typical class conflict).

What characterizes this place is the lack of kindergartens, schools, sports fields, and so on, as well
as the underdeveloped public transport. Also, there is no broadly understood public space or any
green areas.

An increased mutual trust and level of identification would not only facilitate the active social
participation of residents, but also improve relations between the residents of various parts of Wilanów
(the “old” and the “new) and the other districts of the city.

In Figure 15, one can observe the change of average mutual trust of residents for Wilanów with
20 strong positive leaders. In this case, the mutual trust increases steadily up to the level of 73.48% (an
increase of 8.94%). What is interesting, for an analogous number of leaders, the drop for Mordor (see
Figure 14) is nearly twice the one for Wilanów, which means that Warsaw is a city endangered by the
declining mutual trust, and it is more difficult to increase the trust than to decrease it.

118



Appl. Sci. 2019, 9, 2059

 

Figure 15. Change in the average mutual trust of residents for Wilanów with 20 strong positive leaders.

6. Conclusions and Future Work

After completing the simulations and accessing the results, it seems that, thanks to the developed
concept and the prototype of a multi-agent information system, which uses spatial data, demographic
information, and sociological, mathematical, and urban theories, performing complex geospatial big
data analyses, geospatial information extraction, and data mining is possible. Because of the idea of
“citizens as sensors” represented by “human agents”, game theory, information asymmetry, urban
morphology, and multi-agent systems, it was possible to model changes in the residents’ activity over
decades, even in the cases of agglomerations of hundreds of thousands of residents. Therefore, it is a
useful tool not only for conducting urban big data analyses in urban studies, spatial science, or applied
social science, but also for shaping the smart cities of the future. The analysis of the results for the
model city and Warsaw shows that each city has a “potential for mutual trust” that emerges from the
distribution of its buildings, road network and, of course, its inhabitants. This potential of social trust
can be substantial, causing an increase in mutual trust, as in the case of the model city. It may also
be small, as in the case of Warsaw, where it is difficult to increase mutual trust. However, thanks to
strong leaders, it is possible to shape the trust and support the process of increasing the activity of
residents—active sensors and their social participation in creating a smart city.

Therefore, the following may be stated:

• The idea of “citizens as sensors,” expanded with the elements of actor–network theory and
multi-agent systems, facilitates spatiotemporal analysis in geospatial data and spatial knowledge
acquisition. Increasing the level of mutual trust between residents and their trust in institutions,
as well as the sense of local identity results in increased social activity in the (geo)participation
process and co-deciding about the city’s development.

• Mathematical models (game theory), social theories, ICT tools, geoinformation technologies,
and multi-agent systems constitute a tool for modeling spatiotemporal geoinformation structures
and enduring social changes. Because of the use of multi-agent systems to model the asymmetry
of social relations, it is possible to analyze changes in the level of residents’ activity in the model
city and real agglomerations.

• Developing a system for a model city makes it possible to experiment with the value of the factors.
As a result, one can examine how an increase or a decrease in social trust affects civic engagement
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at a given time. Research on real data enables following the initial situation and then applying the
results from the model city to, for example, Warsaw. Consequently, one can determine the factors
that directly or indirectly influence the increase of participative activities and then strengthen
those elements that require reinforcement.

• The system enables measuring the strength of relations between individual human and non-human
agents and then, by the modification of selected elements, to reinforce or diminish them.

• The devised concept of a multi-parameter analytical system and the prototype of a
geoinformation tool facilitate not only modeling of the social changes, but also their stimulation.
Indirectly, it contributes to the development of a virtual urban agora, deliberative participatory
democracy, and the reinforcement of the social (geo)participation processes in the smart
communities of smart cities.

• The city is a structure of interdependent networks and relationships. Social trust is one of the
elements enabling the effective functioning of society. This is a variable that positively influences
the consolidation of democracy and formation of citizenship.

• The results of the research suggest that the context does play a significant role in shaping the effect
of social trust on social participation.

• The approach proposed by authors may facilitate constructing more and more holistic models
of cities.

It is also worth emphasizing that the developed model can be (after minor modifications) also
used in other applications, e.g., stimulating the residents’ activity to install photovoltaic panels [53],
real estate or multilateral negotiations for building plots in distributed multi-agent environment [54].

As future work, it is worth considering to supplement the proposed multi-agent, agent-based
model with a game theoretical treatment, in particular to identify possible social dilemmas, such as
e.g., public goods, tragedy of the commons and trust dilemma, and their potential impact on the
development of public trust in the considered urban agglomeration of groups of interacting individuals
with different interests. The authors of the article also plan to expand the model with elements of
gamification between residents to model different ways of social activity of city residents; specifically,
it is planned to model the social gamification in a smart city, which is likely to stimulate the installation
of the photovoltaic panels. A smart city, understood not as intelligent city infrastructure but as a smart,
open geoinformation society, is shaped by the “power of the powerless,” which can be reinforced.

The developed model is universal; it can be easily parameterized on the basis of any input data,
e.g., social, sociological, or economic. The model will be verified and tested in other agglomerations and
different cities. These will include cities characterized by a higher baseline level of trust (Scandinavian
cities) and culturally different areas (Singapur, Masdar City).

Data Availability: The code of the project in gaml language with included data used to support the findings of
this study have been deposited in the git repository: https://gitlab.com/PiotrPowerPalka/smartcitygrowthgama.git.
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Abstract: In many complex systems observed in nature, properties such as scalability, adaptivity, or rapid
information exchange are often accompanied by the presence of features that are scale-free, i.e., that have
no characteristic scale. Following this observation, we investigate the existence of scale-free features in
artificial collective systems using simulated robot swarms. We implement a large-scale swarm performing
the complex task of collective foraging, and demonstrate that several space and time features of the
simulated swarm—such as number of communication links or time spent in resting state—spontaneously
approach the scale-free property with moderate to strong statistical plausibility. Furthermore, we report
strong correlations between the latter observation and swarm performance in terms of the number of
retrieved items.

Keywords: agent-based collective intelligence; multi-agent complex systems; scale-free properties; power
law distribution; biologically inspired approaches and methods; collective foraging; physics-based
simulation; methodologies for agent-based systems; multi-robot simulation

1. Introduction

Advances in computation have made it possible to record, simulate, and analyze multi-agent complex
systems in nature, such as fish schools, bird flocks, locust swarms, and ant colonies. In many of these
collective systems, various attributes were found to be scale-free [1], i.e., the attributes do not have a
characteristic size or value. Examples of such scale-free features found in biological systems include,
among others, (i) asymptotically scale-free correlation lengths of starling flocks [2,3]—the term asymptotic
refers to the behavior of a variable (in this case spatial correlation) close to a limit (in this case an infinite
flock size); (ii) scale-free fluctuations of velocity and orientation correlations in moving bacterial colonies [4];
(iii) time intervals between communication calls that follow a power law—which is the mathematical
representation of a scale-free property—in pairs of zebra finches; and (iv) scale-free movement patterns
found in models of foraging primates [5] or midge swarms [6].

One of the most prominent findings is that the number of interactions appear to be scale-free in various
real-world networks of biological and social systems [7–9]. Multi-agent systems benefit from scale-free
communication because it enables scalable, fast and efficient information transfer [10–12]. An essential
aspect of scale-free networks is that they represent complex topologies in which only a few nodes (called
hubs) have a comparably high connectivity degree [7]. This small percentage of highly connected hubs
makes scale-free topologies vulnerable to targeted attacks but exceptionally robust to random failures
(which are likely to affect the vast majority of nodes that are not hubs) [13]. Furthermore, due to the high
connectivity, the network diameter is small, which means that on average, any two nodes can share their
information only over a few hops [11], resulting in fast information transfer.

Inspired by the high prevalence of scale-free features in (socio-) biological systems, the aim of the
current study is to examine whether scale-free attributes may also spontaneously emerge in artificial
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collective systems. One particularly prominent example of these systems inspired by nature is swarm
robotics, where robot collaboration is an essential prerequisite for the successful execution of tasks [14–20].
Although accurate understanding and systematic design of swarm robotic systems are considered to be
among the greatest challenges of contemporary robotics [21], swarm robotics benefits strongly from the
progress made in wireless communication technologies, system integration, machine learning and artificial
intelligence (AI). Consequently, artificial cooperative multi-agent systems gain in importance not only in
applied science and engineering but also in fundamental research, allowing the shrinkage of the reality
gap of detailed modeling and the accurate simulation of distributed biological systems.

Many natural collective behaviors were modeled using artificial collective systems, including bird
flocking [22], locust marching [23] or cockroach aggregation [24]. However, among the most prominent
challenges is the collective foraging task [18]. Extensive efforts were dedicated to the study of the foraging
task because of its remarkable prevalence. The foraging behavior is found in various species and subspecies
across the world [25,26]. In most cases, its efficient implementation is essential to group survival.

In essence, a multi-agent system performing the foraging task has the goal of collectively retrieving
information and other resources from the environment. Different to a single-agent implementation,
the benefit of a multi-agent system is its ability to share the accessed resources and information to enhance the
overall performance. However, the multi-agent foraging task exhibits a considerable degree of complexity,
making its modeling and analysis very demanding [18]. Successful collective foraging often requires a
delicate combination of several extensively studied multi-agent sub-behaviors such as deployment [27,28],
exploration [29,30], aggregation [31,32] or information sharing [33,34]. Hence, even though collective
foraging itself can be considered to be a specific task within a large class of multi-agent problems, it rightfully
receives separate attention in numerous contemporary studies [16,35–38].

Moreover, collective foraging is a promising behavior for many real-world applications such as
exploration by aerial vehicles [39], underwater monitoring [40], or optimization of electrical networks [41].
Therefore, the foraging performance of artificial multi-agent systems, potentially in combination with other
types of AI, is worthwhile investigating in depth. In particular, in robot swarms, various fundamental
questions have already been addressed such as the influence of interference [42,43], regulation of information
flow [33] or achievement of consensus [44]. Nevertheless, other relevant questions are still open to
research, including how does the distribution of individual features change in relation to the input from the
environment or social interactions? Is there a connection between particular feature distributions and the
performance of the swarm? To address these questions with respect to scale-free properties, we simulate
the foraging behavior in a robot swarm and analyze the emergence of scale-free features. For this purpose,
the complexity of the foraging task is advantageous as it offers a wide range of features that can be examined
for their statistical tendency to be scale-free.

Our goal can be split into the following: (i) investigating the existence of scale-free features in a
robot swarm performing the foraging task, (ii) studying the correlation between these features and the
swarm performance, (iii) discussing the potential role of feedback mechanisms in the emergence of such
scale-free features.

We begin with defining the robot (microscopic) and the swarm (macroscopic) behaviors in Sections 2.1
and 2.2, respectively. The link between these two levels of behaviors is formulated using statistical
distributions and elaborated on in Section 2.4. In Section 2.5, we describe the experimental setup.
Thereafter, in Section 3 we demonstrate the occurrence of scale-invariant features—such as those related
to the communication degree or times spent in foraging or resting—and their correlation with swarm
performance. Furthermore, we discuss the present feedback mechanisms that may support the emergence
of scale-free features in a sophisticated set of scenario configurations. Lastly, the paper is concluded in
Section 4.
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2. Methods

2.1. Robot Behavior

We focus on the robot’s decision-making process that is defined by the robot’s interactions and the
robot’s individual preferences. The robots are situated in an arena which consists of a nest and a foraging
area. Each robot can switch between two states: resting and exploring. In biology, similar behavior called
forager activation has been observed in harvester ants, Pogonomyrmex barbatus, and reported in several
publications [45–47]. In the exploring state, the robot moves around searching for items—which are located
only in the foraging area—to retrieve to the nest. The robot moves on a straight line until it encounters
another robot or a wall, in which case a collision avoidance maneuver is initiated. In the resting state,
the robot rests inside the nest and only in this state it is allowed to communicate with the neighbors within
its line of sight. Specifically, each robot can broadcast a message about the success or failure of its latest
exploration attempt or listen to its neighbors. Received information may either increase or decrease the
robot’s probability to switch from resting to exploring or vice versa. Probabilities are updated continuously
using fixed probability jumps—we refer to those by the term cues, as in [14]. In the following, we introduce
the different probability cues used in implementing the foraging behavior, in addition to the probabilities
determining the switch between the two robot states. We also consider two distinct communication modes
defining the duration of information exchange.

2.1.1. State Switching Probabilities

Following [14], there is a minimum duration θ for the robot to stay in a certain state. The purpose of
having such a threshold is to ensure that robots can perform the sub-tasks associated with this state for a
certain amount of time so that necessary dynamics can take place. For instance, a minimum exploring time
θe needs to be at least as long as it takes for a robot to reach the most remote items (taking into account the
constant linear speed of that robot) [16].

With this in mind, let us formulate the individual response to social and environmental cues in terms
of switching probabilities. We denote {ie, ir} ∈

{
R
+
0 ,R+

0
}

and {se, sr} ∈
{
R
+
0 ,R+

0
}

as the robot’s internal (i)
and social (s) cues to switch to exploring (e) or resting (r) state, respectively. The probability of a robot to
switch from the resting state to the exploring state is denoted by pr→e, whereas the probability to switch
from the exploring state to the resting state is denoted by pe→r.

The probabilities are updated iteratively at every simulation time step in a discrete manner as in
the following:

pr→e(t + 1) = pr→e(t) + δη(t)se + δφ(t)ie (1)

pe→r(t + 1) = pe→r(t)− δη(t)sr − δφ(t)ir, (2)

where δη(t) is the number of ‘success’ minus ‘failure’ messages received by the robot from its neighbors at
every time step spent in the resting state. Additionally, the robot’s own experience is characterized using
δφ(t). This is defined for every exploration attempt as follows:

δφ(t) =

⎧⎪⎪⎨
⎪⎪⎩
+1, at the time instance of finding an item if tse < t ≤ tse + θe

0, at all other time instances if tse < t ≤ tse + θe

−1, if t > tse + θe and the robot is still exploring

(3)

with tse as the time at which the robot started its current exploration. Moreover, δφ(t) = 0 while the
robot is resting. In case pe→r < 0 it is truncated to pe→r = 0 and when pe→r > 1 it is truncated to
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pe→r = 1; same holds for pr→e. Please note that there is a strict difference between δη(t) and δφ(t): δη(t)
may be non-zero only when the robot is resting inside the nest because it is computed based on the
information broadcast by the neighbors which can only be received in the nest (i.e., when the robot is in
the resting state). Whereas, δφ(t) may be non-zero only when the robot is exploring—it is computed based
on the robot’s own foraging experience. Table 1 lists the parameters relevant for the computation of the
switching probabilities.

Table 1. An overview of parameters defining the switching probabilities.

Description Symbol

Probability to switch from resting to exploring pr→e
Probability to switch from exploring to resting pe→r

Number of ‘success’ minus ‘failure’ messages received δη(t)
Impact of minimum exploring time θe δφ(t)

Social cues for exploring and resting, respectively se, sr
Internal cues for exploring and resting, respectively ie, ir

2.1.2. Communication Modes

We focus on the local communication between the robots and their influence on the global swarm
behavior. A common approach is to restrict robot communication only to the area within the nest.
This approach is inspired by several natural systems, in which the communication takes place mainly
inside the nest or hive, such as in the case of ants or honey bees [14,47–50]. Moreover, this approach
accommodates two relevant properties of foraging systems: (i) it is common that the foraging area is
significantly larger than the nest area, and hence, individual encountering rates outside the nest are
negligibly low; (ii) high density of individuals within the nest leads to more accurate information about
the environment due to the high encounter rate of individuals that explored different, distant parts of the
foraging area.

Regarding particular communication strategies, it is common to let robots broadcast the last
exploration result only once, namely when the robots switch to the resting state. Henceforth, we will
refer to this approach as the discontinuous communication mode (DCM), because after broadcasting the
message once, the active communication of the robot is interrupted and is limited to listening. In contrast,
we use the term continuous communication mode (CCM) to refer to the mode in which robots continue
broadcasting the result of their last foraging attempt at every time step until they switch back to the
exploring state. As we will see later, the difference between these two modes does not have substantial
impact on swarm performance. However, it has a significant impact on the statistical distribution of
various system features for which we study the scale-free property.

2.2. Swarm Behavior

At the macroscopic level, global behavior emerges as a result of complex interactions between the
robots as well as between robots and their environment. The quality of such global behavior is evaluated
with respect to quantifiable objectives. In the present study, we define the swarm performance in terms of
three quantitative measures:

1. the total number of collected items at the end of the experiment Ncoll

2. the average number of collected items per time spent in collision avoidance ωca = Ncoll
Tca

, where Tca

is the total duration of all collision avoidance events in the swarm throughout the experiment. One
collision avoidance event includes slowing down and turning around until the angle to the closest
possible obstacle is > 25◦. In essence, ωca reflects the trade-off between coordination and interference.
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3. the average number of collected items per time spent exploring ωe =
Ncoll

Te
, where Te is the aggregate

time that all individuals spent in the exploring state.

2.3. Measured Features

There is a large variety of features that could potentially have scale-free character in collective foraging.
We investigate such features categorizing them into, space and time features. An overview of the measured
features is given in Table 2. Space features are mostly related to the inter-robot communication according
to their distribution in the arena. This is a distribution that changes over time while the robots are
in motion. Among the space features, the robot’s communication degree d is the most important and
evident. It is defined as the number of communication links to neighbors within the robot’s communication
range. However, in dynamic topologies—where robots move around and neighbor lists are constantly
updated—the communication degree d changes frequently. Hence, we track additionally the change of
the communication degree Δd of a robot whenever fellow robots enter or leave its communication range.
Beside the communication degree, we analyze space features that reflect the foraging progress such as the
difference between the number of received success and failure messages, denoted by the critical degree dc,rec.
Similarly, we include features that reflect the success-degree of a particular individual by measuring the
difference of success to failure messages sent by that individual, denoted by dc,sent.

Table 2. An overview of the investigated space and time features.

Description Symbol

Space features

Degree d
Change of degree Δd

Critical degree (sent, received) dc,sent, dc,rec

Time features

Foraging time τf
Homing time τh
Resting time τr

Collision avoidance time τca

With respect to time features, we note that in swarm robotics the individuals are commonly subject to
physical interference. Robots interfere with each other or with obstacles as a result of finite-size effects
influencing the dynamics of the collective behavior [42,43,51]. Therefore, we investigate the time spent on
collision avoidance, denoted by τca. Additionally, we study time features that are related to the robot’s
exploring time τe. This time can be split into foraging time τf , i.e., the time spent on searching for items,
and homing time τh, i.e., the time spent on returning to the nest. While a long foraging time effectively
increases the probability of finding items, long homing times indicate overcrowding close to the nest.
Finally, another relevant time feature is the resting time τr that includes the duration of robot interaction
within the nest.

2.4. Data Analysis

In complex systems such as swarm robotics, the statistical analysis of relevant system properties
paves the way to mathematical modeling, useful simplifications, or inference of long-term behaviors.
Consequently, it helps in defining the link between the individual robot behavior and the emergent global
swarm behavior, referred to as the micro-macro link [52]. In our study, we focus on how the collective
foraging behavior can be related to the scale-freeness of a set of individual and global features. The main
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statistical characteristic of scale-free features is that they are distributed according to a power law [1,53].
Therefore, to identify scale-free features in our simulated swarms, it is of central importance to measure
the statistical distribution of these features and to perform a sound power law fitting procedure.

2.4.1. Power Law Fitting Procedures

To verify whether a feature is scale-free, we use a set of techniques that are described in [53–55] for
fitting its distribution by the power law distribution. The power law distribution takes the form of a straight
line on a log-log scale of p(x). However, most real-world data displays significant fluctuations due to
randomness. When fitting power law to the data, random fluctuations are considered by the statistical
value p which represents the goodness-of-fit. When p < 0.1 the power law fit can be considered to be
unreliable [54]. Furthermore, power law behavior emerges mostly only in the tail of the distribution,
i.e., for higher values of x above a statistically determined lower bound xmin [53]. Please note that this
effectively reduces data set to fit by the power law, which is important to keep in mind by considering a
ratio of the total number of data points to the points that satisfy the condition x > xmin. Finally, there are
several other statistical distributions that may resemble the characteristic straight-line tendency of a power
law on a log-log plot. Hence, for a sound statistical analysis it is important to compare the power law fit to
other statistical models [54–56]. More precisely, the power law fitting procedure can be summarized by
the following three steps:

1. Using maximum likelihood estimation, fit the data by the power law distribution

p (x, xmin, α) =
α − 1
xmin

(
x

xmin

)−α

, (4)

where α is the scaling parameter and xmin is the lower bound. In particular, α and xmin are estimated
using procedures described in [54].

2. Apply Kolmogorov-Smirnov statistic to carry out the goodness-of-fit tests and verify the above results.
Here, essentially, a large set of synthetic data is generated from a power law distribution (with α and
xmin found in 1.) and their distances to their respective fits are compared to the distance between
the empiric data and the best-fit found in step 1. The outcome of this procedure is the p-ratio which
estimates the contribution of random fluctuations. If p < 0.1 the power law fit found in step 1 is
very likely to be due to inherent randomness in the empiric data. Moreover, the p-value is unreliable
when the data set is too small. Therefore, the percentage of data points Ndata,pl that lie above xmin
should be 10% or higher.

3. Finally, even if p > 0.1, the power law fit might be not the only model that fits the data well.
Consequently, complete the above steps for a set of other potential distributions including exponential
or lognormal distributions. Then, compare the resulting best fits to the one obtained for the power
law by computing the ratio R. The latter is defined as the log likelihood of the power law over the log
likelihood of another distribution. If R > 0, power law is the statistically superior fit. Although this
last step still does not give us the certainty that the data is power law distributed, it makes the
hypothesis more plausible. For this step we used an open-access Python toolbox [56].

2.4.2. Quality Ratio ρq

Given a high quantity of empiric data sets, it is useful to find an automated way for the evaluation of
the power law fits. For the analysis of our experiments, we introduce a quality ratio ρq which we use as
a practical estimate of the plausibility of a (truncated) power law fit based on the well-known rigorous
statistical tests described above. The quality ratio ρq includes the three criteria discussed in Section 2.4.1:
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p-value, Ndata,pl and the number of likelihood-ratio tests resulting in R > 0. We account for these criteria
by defining ρq as the product of ρq,p, ρq,data and ρq,lrt:

1. First, we begin with the p-value. As mentioned above, the linear shape of the data distribution on
a log-log plot can be mainly attributed to random fluctuations if p < 0.1. Taking this into account,
we design ρq to be a binary piecewise function evaluating the goodness-of-fit in terms of the p-value:

ρq,p =

{
1.0, if p ≤ 0.1

0.0, otherwise.
(5)

This way, we take into account the possibility that random fluctuations may be present but as soon as
p > 0.1 we do not assign the precise value of p to the ranking of the fit. The reason is that random
fluctuations might be present even if the data is in fact power law distributed. In that case the
p-value could be very low even if the data is in fact power law distributed. In general, it might be
more substantial to consider the size of the fitted data set and to compare the power law fit to other
important distributions [54,56].

2. Second, ρq,data, denotes the ratio of the data which is fit by the (truncated) power law Ndata,pl to the
total number of data points Ndata,tot.

ρq,data =
Ndata,pl

Ndata,tot
, (6)

3. Third, ρq,lrt represents the fraction of likelihood-ratio-tests in which the (truncated) power law fit
proved to be statistically more plausible than other distributions. To include the quality of the
(truncated) power law fit as compared to other distributions, we count how many times nlrt,pl we
obtained R > 0 from the likelihood-ratio tests. We compare the power law fit to six distributions:
truncated power law, exponential, stretched exponential, lognormal, positive lognormal and normal; all of
them are implemented in [56] (except the normal distribution). Hence, we use the piecewise function,

ρq,lrt =

{
0, if at least one likelihood-ratio test yields R < 0
nlrt,pl+1

7 , otherwise.
(7)

where we added 1 to nlrt,pl to account for the possibility that the likelihood-ratio test yields R ≈ 0,
in which case the support for the power law fit is neither strengthened nor weakened.
Please note that in Equation (7) we set ρq,lrt = 0 if at least one distribution is a more reliable model than
the power law. However, it is important to remember that our simulated systems are meant to include
real-world attributes (e.g., finite-size effects, physical interference, line-of-sight interruptions during
communication) and therefore deviate from ideal systems. Consequently, the assumption of power
law (i.e., scale-free) distribution might be distorted and needs to be corrected. The deviation is often
particularly distinct in the heavy tail. Therefore, one common correction technique is to consider the
power law distribution with an exponential cutoff (also known as truncated power law) [57]:

p (x) =
λ (λx)−α

Γ (1 − α, xminλ)
e−λx, (8)

where λ is the scaling parameter of the exponential decay and Γ(y, z) is the upper incomplete gamma
function. While Equation (4) directly implies that the feature is scale-free, Equation (8) describes an
asymptotic scale-freeness in the limit λx → 0. This equation approaches the power law distribution
asymptotically for λx → 0 and the exponential distribution for xλ � 1, respectively. Thus, accepting
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that our systems are significantly constrained within physical boundaries we can slightly soften the
criteria given by Equation (7) in the following way:
If the truncated power law passes more likelihood-ratio tests than the power law fit, i.e., if nlrt,tpl >

nlrt,pl , we consider the success-ratio of the former. In short:

ρq,lrt =

⎧⎪⎪⎨
⎪⎪⎩

0, if at least one likelihood-ratio test yields R < 0
nlrt,tpl+1

7 , if nlrt,tpl > nlrt,pl
nlrt,pl+1

7 , otherwise.

(9)

Finally, including all the above criteria, we define the quality ratio:

ρq = ρq,p · ρq,data · ρq,lrt. (10)

Consequently, we obtain ρq = 0 if p ≤ 0.1 or R <0. Conversely, ρq = 1 in the case of p > 0.1,
Ndata,pl = Ndata,tot and nlrt = 6, which is an unlikely but nevertheless possible scenario. Using this ranking,
we can link the quality of a fit to a quantifiable value and describe the support for the (truncated) power
law as illustrated in Table 3.

Table 3. Classification of the power law fit quality with respect to the quality ratio ρq used in our study.

Support for the (Truncated) Power Law Numerical Value of ρq

No support ρq = 0
Weak 0 < ρq ≤ 0.1

7 ≈ 0.0143
Moderate 0.1

7 < ρq ≤ 0.5
7 ≈ 0.0714

Strong 0.5
7 < ρq

The denominator value represents the total number of considered distributions (i.e., the power law
and the six alternative distributions we compare it to). The lower limit of the ‘moderate’ classification
corresponds to the case with ρq,p = 1, ρq,data = 0.1 and ρq,lrt =

1
7 —i.e., at least 10% of the data is included

in the fit and none of the alternative distributions is a statistically better fit than the power law. The upper
limit considers the case with ρq,p = 1 and ρq,data · ρq,lrt =

0.5
7 —i.e., either the fit includes a high number of

data or the power law is statistically a better fit than other distributions. Please note that ρq multiplicatively
combines standard power law fitting techniques [53–56] into a quantitative estimate of the quality of the
(truncated) power law fit.

It is important to emphasize that even if the hypothesis of the data following the power law
distribution is found to be plausible using the above statistical analysis, care needs to be taken when
interpreting this observation. Firstly, there is still no guarantee that the data is in fact power law distributed
and although our rigorous analysis includes several common distributions, other non-obvious distributions
may prove to be a better fit. Secondly, the power law fit may be valid only for a small fraction of data.
However, as the power law behavior is commonly found for a subset of data, namely at the tail of
the distribution, the group that displays power law (i.e., scale-free) behavior includes individuals that
stand out from the rest of the swarm by having features with values that are significantly above average.
The way in which such individuals impact the global swarm performance remains an open question
worth investigating.

132



Appl. Sci. 2019, 9, 2667

2.4.3. Correlation Measures

To examine the presence of correlations between the support for the power law distribution (i.e.,
the value of ρq) and the swarm performance it is important to use an appropriate correlation measure.
One of the most prominent correlation measures is the Pearson correlation coefficient [58,59]. It evaluates
the quality of a linear association between two distributions. In essence, it calculates the covariance of the
mean values of two distributions, over the root of their standard deviations. It is closely related to linear
regression and does not require the data to be normally distributed. Despite its mathematical simplicity it
is an appropriate correlation measure for many distributions and, therefore, is widely used [60–63].

However, one could argue that the Pearson correlation coefficient is not ideal for skewed distributions
with strong outliers. Popular alternatives are the Spearman’s rank and the Kendall’s tau correlation
coefficients [62–65]. Both are based on generating ranked distributions by assigning a rank to each
variable with respect to its value. The correlation coefficient is then given as a measure of the association
between the two ranked distributions. Consequently, both correlation metrics are robust to outliers and
suitable for non-linear distributions.

Although both correlation measures commonly return very similar results, Kendall’s tau handles ties
(i.e., cases in which there is no difference between the ranks) in a mathematically more straightforward
way. More precisely, Kendall’s tau returns the density difference between concordant and discordant pairs.
Consider two vectors of length n, (x1, x2, ..., xn) and (y1, y2, ..., yn). Concordant pairs are pairs of data
points that satisfy sgn(xi − xj)sgn(yi − yj) > 0 (where sgn (z) is a sign-function equal to +1 if z > 0, −1 if
z < 0 and 0 if z = 0); similarly, discordant pairs satisfy sgn(xi − xj)sgn(yi − yj) < 0. Furthermore, ties
are pairs for which xi = xj or yi = yj. Hence, with nc (nd) as the number of concordant (discordant) pairs,
respectively, and nx (ny) as the number of ties in x (y), respectively, the Kendall’s tau (also known as the
Kendall’s tau-b) is given by [66]:

τKendall =
nc − nd√

nc + nd + nx
√

nc + nc + ny
, (11)

with
nc = ∑

i,j
δ
(c)
i,j , nd = ∑

i,j
δ
(d)
i,j , nx = ∑

i,j
δ
(x)
i,j , ny = ∑

i,j
δ
(y)
i,j , (12)

where

δ
(c)
i,j =

{
1, if sgn(xi − xj)sgn(yi − yj) > 0

0, else

δ
(x)
i,j =

{
1, if xi = xj

0, else

(13)

and similarly, for δ
(d)
i,j and δ

(y)
i,j .

2.5. Simulation Setup

We designed and implemented a set of physics-based simulations using the state-of-the-art simulator
for large-scale swarms, ARGoS [15]. An overview of all parameter values used in our simulations is given
in Table 4. The simulations are conducted in a square-shaped arena, which is confined within four walls,
each being of the length of 50 m. The arena is divided into two regions: (i) the nest An: it is the gray
10 × 50 m2 area in Figure 1a, and (ii) the foraging area A f : it is the white 40 × 50 m2 area in Figure 1a.
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The items are scattered uniformly over the foraging area, and keep reappearing after robots retrieve them
to the nest—as in [14]—with constant probability. This prevents the system from drifting into an absorbing
state in which there are no items left to recover.

Figure 1. Illustrations of the arena. (a) A snapshot from a simulation in ARGoS. Gray area: nest;
white area: foraging field; black dots: items; blue objects: Footbots; light-blue lines: communication
(range-and-bearing) links. (b) 3D view on the same arena. In both figures, the communication links are
formed only for resting robots inside the nest, as in our experiments moving robots neither broadcast nor
listen to any messages.

Table 4. Robot and arena parameters used for the simulation setup.

Parameter Value

Robot parameters

Type Footbot
Proximity sensor range rprox 0.1 m

Range-and-bearing sensor range rrab 1.25 m
Maximum moving speed 1 m

s
No-turn threshold αnt 10◦

Soft-turn threshold αst 30◦

Hard-turn threshold αht 90◦

se, ie, ir, sr ∈ {0.0, 0.01, 0.5, 0.9}
Arena parameters

Total area A 50 × 50 m2

Nest area An 10 × 50 m2

Foraging area A f 40 × 50 m2

Number of robots Nrobots 950
Number of items Nitems 300
Radius of an item ritem 0.2 m

Total experiment duration T 104 ts

A phototaxis behavior is used to assist the robots in leaving and re-visiting the nest. For that purpose,
light beacons are positioned equidistantly at the nest wall (yellow dots at the bottom of Figure 1a). Their
light is perceived by the robots’ light sensors. Each robot is programmed to move away from the beacons
when it needs to leave the nest and towards the beacons when it needs to return. We use a homogeneous
swarm of Footbots (see http://www.swarmanoid.org/swarmanoid_hardware.php) in our simulations,
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and the communication radius of the robots is set such that the fraction of the circular communication area
around the robot is 0.982 % of the nest area, which is close to the fraction used in [14]. For better readability,
we will limit our discussion of the robot states to only resting and exploring. While the former is distinct,
the latter is composed of further states of which only foraging and homing are relevant because they are the
most time consuming (for a detailed list of the robot states please see Supplementary Material Section 2).

At the beginning of the simulation, each robot switches from resting to exploring with a probability of
0.01. Consequently, within the first 500 time steps (ts) most robots leave the nest. After another ≈ 500 ts most
of the swarm returns, with or without an item. Although this behavior is subsequently repeated several
times, the number of simultaneously switching robots gradually decreases, and the switching rate from
resting to exploring (or vice versa) approaches a constant limit. In most cases, the system approached an
equilibrium after 5 · 103 ts (for the given arena, item density, and swarm size). Our measurements of the
system features begin from that time instance on-wards and the experiment proceeds for another T = 104 ts.

Furthermore, to conduct a solid statistical study we use large-scale swarms with Nrobots = 950 units
which is up to an order of magnitude higher than what is commonly used [14,16,36,42]. We selected the
value of Nrobots by running preliminary experiments, in which we observed for this particular swarm
size—under the given arena and item density—a maximum in swarm performance.

Finally, in our experiments, the most important means of influencing the swarm dynamics is by
adjusting the numerical values of the internal and social cues—ie, ir and se, sr, respectively—at the start
of each experiment. We consider a spectrum of 256 distinct scenario configurations, which differ by the
4-tuples a = (se, ie, ir, sr) drawn from:

Ω := {a : se, ie, ir, sr ∈ {0.0, 0.01, 0.5, 0.9}}. (14)

The rationale behind the choice of these parameter values is to include four fundamentally different
kinds of cue impact on swarm dynamics: (i) none (ii) low (iii) intermediate and (iv) high. Please note that
any additional value in the set a greatly increases the associated computational and analytic effort—as
the number of scenarios scales with dim(a)4. However, based on preliminary results, additional values
would offer potentially little informative gain (at the current stage) because the swarm dynamics would be
similar to a mix of the dynamics generated by the above values.

3. Results and Discussion

We performed simulations with all combinations of cues and communication modes. Each simulation
was repeated with 30 random seeds and the data analysis procedure was carried out as discussed in the
previous section.

3.1. Presence of Power Law Distributed Features

The analysis of our simulation data shows that in most scenarios there was only weak or no statistical
support for the (truncated) power law distribution (see Figure 2A). In particular, in roughly half of all
scenarios no power distributed features were found. This observation suggests that in the present system,
scale-free features are rare. Nevertheless, we found 245 + 71 = 316 (truncated) power law distributions
with moderate or strong statistical plausibility for different features in various scenario configurations
and for both communication modes, DCM and CCM. Thus, our findings are in line with a recent study
showing that scale-free networks may occur rarely but across different areas [55].

As the scatter plots in Figure 2 show, most of the distributions with weak or moderate support
for power law are concentrated below or close to the average values of swarm performance while the
distributions with strong support for power law are associated with above-average performance in terms
of Ncoll and ωca. Swarm performance was measured using (i) the number of items retrieved by the robots,
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Ncoll , (ii) the average number of collected items per time spent on collision avoidance ωca, and (iii) the
average number of collected items per time spent exploring ωe. Figure 3 shows the values recorded for
these three metrics under both continuous and DCMs and for the entire range of 256 scenario (cues)
configurations, respectively. Repeating performance patterns can be observed over different sets of
configurations. The regions over which these patterns emerge are (from left to right): (i) all scenarios
with se = 0 and ie = 0, i.e., constant pr→e (blue region with a left tilted mesh in Figure 3), (ii) all scenarios
with se = 0 and ie > 0, i.e., no social and only internal influence on pr→e. This region is henceforth
referred to as NSe (shown in orange, no mesh), (iii) all scenarios with se = 0.01, i.e., low social impact on
pr→e (green region with vertical mesh, henceforth denoted as LSe), and (iv) all scenarios with se = 0.5
or se = 0.9, i.e., high social influence on pr→e (red region with right tilted mesh, henceforth denoted as
HSe). Please note that in all four regions pe→r is altered in the same way, i.e., for sr and ir all values from
{0.0, 0.01, 0.5, 0.9} are included. The best swarm performance in terms of Ncoll and ωca emerges when
the influence of internal cues on the swarm dynamics is negligible compared to social cues, i.e., when
se ∑t |δη(t)| � ie ∑t |δφ(t)| and sr ∑t |δη(t)| � ir ∑t |δφ(t)|.

Figure 2. (a) Feature data sets obtained from simulations, sorted by the type of statistical support for a
corresponding power law fit. The classifications follow Table 3. (b–d) Log-linear scatter plots relating
the power law fit quality ratio ρq to the swarm performance in terms of Ncoll , ωca and ωe, respectively.
The vertical dashed lines indicate the mean performance values while the horizontal dashed lines
separate the quality categorizations taken from Table 3.
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Figure 3. Swarm performance in terms of (a,b) Ncoll ; (c,d) ωca and (e,f) ωe, respectively. For each
performance measure, 256 scenario configurations were implemented (i.e., with all cue values from
Equation (14)), using one of two communication modes: DCM (left) and CCM (right). The x-axis
represents the IDs of the scenario configurations. The colors and the mesh patterns highlight regions
that display different dynamics. Apart from (f), in all plots the red dots mark the scenarios in which
the feature mentioned in the inset demonstrated a high value of ρq, i.e., there was a strong support
for the distribution to be power law. In (f), the red dots mark the scenarios with moderate support.
See Supplementary Material Section 3 for combined plots of Ncoll and d distribution in CCM over the
complete set of 256 scenario configurations.
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The best performance levels in terms of Ncoll and ωca were reached over the LSe region. For instance,
the maxima of Ncoll and ωca correspond to the scenario configurations in which se = 0.01, ir = 0 and
sr ≥ 0.5. For the same configurations, (truncated) power law distributions of space features were found
in the CCM (examples shown in Figure 4). Contrary to CCM, in the DCM the robot interactions are
interrupted. These interruptions may explain why, in DCM, space features such as communication degree
tend to not follow a power law distribution (weak overall support for the presence of a power law
behavior). Nevertheless, we found fits with moderate to strong support for (truncated) power law to time
features, such as τr and τca, demonstrated in Figure 5. The best power law fits of the DCM correspond to
the peaks in swarm performance in terms of Ncoll and ωca over the HSe regions.

Figure 4. Log-log scale plots of the degree d (top) and the critical degree dc,rec (bottom) distributions
in CCM. The black lines represent the corresponding truncated power law fits. The insets show the
fit parameters as well as the scenario configurations. The plots (a) and (b) differ by the scenario
configurations shown in the insets; similarly for (c) and (d). These scenarios are among the top five
swarm performances with respect to Ncoll . Please note that λxmin is relatively small, i.e., power law is
a good fit for x close to xmin. See Supplementary Material Section 3 for plots of d in CCM over all 256
scenario configurations.
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Figure 5. Log-log scale plots of the resting time τr (top) and the collision avoidance time τca (bottom)
distributions in DCM. The black lines represent the corresponding truncated power law fits. The insets
show the fit parameters as well as the scenario configurations. The plots (a,b) differ by the scenario
configurations shown in the insets; similarly for (c,d). These scenarios belong to a subset of the best
swarm performance with respect to ωca. Please note that λ = 0 for the fits of τca, indicating better
support for the power law fit than for truncated power law.

The third performance measure, i.e., ωe, reached its best values over the NSe region. Its maxima
correspond to cases where se = 0 and sr = 0. Interestingly, for these scenario configurations we found fits
with moderate to strong support for (truncated) power law to the data of Δd, i.e., the change of the average
communication degree of the robot (examples shown in Figure 6). This is an interesting finding because it
indicates that a communication feature may be power law distributed also in those scenarios in which
the swarm tries to minimize the number of foraging robots and maximize the number of resting ones.
Moreover, in most Δd distributions with strong or moderate support for the power law, the fit includes
only 10–20% of data points. The reason for the relatively low ratio of power law fitted data is that the
tail of the distribution is likely to represent by the fraction of robots that rest or move close to the border
between the nest and the foraging area.

In general, the findings suggest that internal cues (in the absence of social cues) keep robots at the
edge of minimal activity while social cues (in the absence of internal cues) drive the robots towards
maximal activity.
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Figure 6. Log-log scale plots of Δd per 100 ts in CCM. The black lines represent the corresponding
truncated power law fits. The insets show the fit parameters as well as the scenario configurations. The
plots (a,b) differ by the scenario configurations shown in the insets. These scenarios are among the best
swarm performances with respect to ωe.

3.2. Correlation with Swarm Performance

In the previous section we have illustrated that swarm performance is likely to reach its peaks over
cue configurations that include asymptotically scale-free space or time features (see Figure 3). In this
section, we analyze this observation statistically, using correlation measures such as the Pearson and
Kendall’s tau rank correlation coefficients introduced in Section 2.4.3. However, note that both correlation
measures have strengths and shortcomings. On the one hand, while the Pearson correlation coefficient is
widely used and has an elegant mathematical form, it is sensible to outliers and may not be appropriate
for non-linear distributions. On the other hand, Kendall’s tau is suitable for non-linear distributions as
well as robust to outliers. Nevertheless, reducing the values to ranks may disregard the significance of the
variable’s value being far from the average. In particular, replacing the real value of the quality ratio ρq by
its rank leads to loss of information about the extent to which ρq represents the quality of the power law
distribution. Moreover, following the definition of Kendall’s tau in Equations (11)–(15), each difference
between data point pairs is assigned the same weight which may not always be appropriate. For instance,
consider the ranked swarm performance in terms of Ncoll and the corresponding distribution of ρq in
CCM for d in Figure 7a and for dc,sent in Figure 7b, respectively. In both cases, Kendall’s tau defined by
Equations (11)–(15) returns values indicating no correlation (i.e., τKendall = 0.02 and τKendall = −0.04,
respectively). However, as evident in Figure 7, both cases show different dynamics, with ρq for d following
Ncoll more closely than for dc,sent. The main reason is that the dominant fluctuations of ρq close to zero
are assigned the same weight (i.e., rank step 1) as the more permanent increase of ρq for high values of
Ncoll . Similar considerations hold for the other features and the DCM. To account for this type of behavior,
we use a generalization of Equation (15) that weights the ranking steps by a parameter κ, which is relative
to the average change, such that:

δ
(c)
i,j =

{
κ, if sgn(xi − xj)sgn(yi − yj) > 0

0, else

δ
(x)
i,j =

{
κ, if xi = xj

0, else

(15)
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and similarly, for δ
(d)
i,j and δ

(y)
i,j . The weight parameter κ is given by

κ =
1
2

( |xi − xj|
μx

+
|yi − yj|

μy

)
, (16)

where μx and μy are averages over all |xi − xj| and |yi − yj|, respectively. For each i, j pair, Equation (16)
considers the data distances of both distributions, normalized by their respective mean distances.
Consequently, κ does not favor any distribution and weights each ranking step relative to other distances.
Please note that in general, there is no correlation metric that is perfectly adequate for all types of studies
and data distributions; it is thus common to consider appropriate modifications [67–70]. In the present
case, for κ = 1 we obtain the standard Kendall’s tau rank correlation coefficient described in Section 2.4.3.
However, by implementing Equation (16), the correlation coefficient is less sensitive to fluctuations than
the standard Kendall’s tau, while still being more robust to outliers and non-linearity than the Pearson
correlation measure. Therefore, in the following we will use this modified Kendall’s tau rank correlation
coefficient to investigate the presence of correlations between ρq and swarm performance.

Figure 7. Ranked distribution of Ncoll (dark red, left y-axis). For the same cue configurations, the CCM
distributions of ρq (right y-axis) for (a) d and (b) dc,sent are shown in blue, respectively. The insets
depict the corresponding scatter plots with data points representing weak (circles), moderate (triangles)
and strong (squares) support for power law distribution; gray lines indicate the onsets of the different
support classifications (similar to Figure 2).

The correlations are shown for all features in Table 5 between the three measures of the swarm
performance and the feature ’scale-freeness’ quantified by ρq. We found strong correlations of the scale-free
property of various features with the swarm performance. In particular, high correlations exist for τca, τr,
Δd in DCM; and, additionally, for d, dc,rec in CCM. Remarkably, for those features for which we found
moderate or high correlation values (highlighted in blue in Table 5), most high-quality power law fits
appear in the same scenarios as the highest swarm performance peaks. The red dots in Figure 3 illustrate
this finding by highlighting the scenarios in which the quality ratio is ρq > 0.5

7 . Moreover, the swarm tends
to demonstrate low performance with respect to Ncoll and ωca for those scenarios in which ωe is highest,
the latter being well correlated with Δd.
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Table 5. Correlation coefficients quantifying correlations of ρq with Ncoll , ωca or ωe.

Property Correlation with Ncoll Correlation with ωca Correlation with ωe

Discontinuous communication mode (DCM)

d 0.11 0.17 −0.03
Δd −0.19 −0.33 0.64

dc,sent 0.03 −0.05 −0.03
dc,rec 0.14 0.29 −0.51
τca 0.76 0.80 0.06
τr 0.74 0.77 0.08
τf 0.27 0.26 −0.20
τh 0.22 0.28 −0.44
all 0.40 0.42 0.02

Continuous communication mode (CCM)
d 0.50 0.56 0.10

Δd −0.02 −0.16 0.51
dc,sent −0.15 −0.39 0.54
dc,rec 0.44 0.44 0.15
τca 0.75 0.80 −0.13
τr 0.59 0.67 −0.02
τf 0.26 0.29 −0.24
τh 0.11 0.17 −0.27
all 0.40 0.41 0.05

A high correlation coefficient means: the better the quality of (truncated) power law distribution, the higher the
likelihood that the swarm performed well. Cells highlighted in blue show moderate or strong correlations.

The correlation coefficients confirm the observation, supported by the data shown in Figures 2 and 3,
that most power law distributions with strong support (i.e., high ρq) appear in scenarios with peak swarm
performance. To further examine this observation, we consider the correlations of the swarm performance
with different ρq support classifications (based on Table 3). As Table 6 shows, there are moderate and
strong positive correlations between features with strong support for power law distribution and swarm
performance in terms of Ncoll and ωca for both communication modes. This suggests that the observation
of scale-free features is more likely in scenarios in which the agents are more successful in retrieving a
high number of food items.

Table 6. Correlation coefficients between ρq and Ncoll, ωca or ωe for different power law support classifications.

Support for pl Correlation with Ncoll Correlation with ωca Correlation with ωe

Discontinuous communication mode (DCM)

weak 0.18 0.18 −0.16
moderate 0.10 0.08 0.21

strong 0.31 0.40 −0.14
moderate + strong 0.50 0.53 0.22

Continuous communication mode (CCM)

weak 0.10 0.11 0.03
moderate 0.37 0.33 0.03

strong 0.66 0.63 −0.25
moderate + strong 0.74 0.76 −0.02

Correlation of the swarm performance with different categories of power law distribution support.
Cells highlighted in blue show moderate or strong correlation values.

142



Appl. Sci. 2019, 9, 2667

3.3. The Role of Feedback Mechanisms in the Emergence of Scale-Free Features

An attribute of complex systems that is widely known to support the emergence of scale-free
characteristics is the presence of (positive and negative) feedback loops [1,53,71]. We specify the feedback
effect to be positive or negative based on the individual response to the information input from its
neighborhood. Hence, we refer to the feedback mechanism as positive feedback if it pushes the individuals
to the same state as the state of the majority, whereas negative feedback pushes them away from it.

Most scale-free features were found in scenarios in which (i) the robot behavior was dominated by
social interactions, (ii) the swarm attempted to balance positive and negative feedback and (iii) the swarm
displayed a tendency towards active exploration. In particular, in CCM, the first 17 scenarios sorted by
ρq in descending order were found over the LSe region and with ir = 0. Similarly, in DCM, the first 28
scenarios were found over the HSe region and with ir = 0. To understand this, it is necessary to consider
in more detail the impact of each cue on swarm dynamics and the feedback mechanisms.

For conciseness, we focus our system analysis on CCM and its most relevant set of parameter
configurations. Similar conclusions hold for DCM. In particular, we can simplify our analysis based on the
repeating patterns of swarm performance (see Figure 3) and the following observations: (i) The swarm
performance is qualitatively very similar between the cue values 0.5 and 0.9 (for all four cues). Thus,
we focus, in the following, on {a : se, ie, ir, sr ∈ {0.0, 0.01, 0.5}}. (ii) The cue ie has a negligible impact on
the foraging dynamics when se > 0. By neglecting scenarios in which ie �= 0, except those with se = 0,
we can further shorten the set of relevant scenarios. Finally, (iii) there are significant differences in the
dynamics between scenario configurations with ir = 0 and those with ir > 0 but negligible differences
between ir = 0.01 and ir = 0.5, 0.9. Thus, we focus, in the following, only on scenarios with either ir = 0 or
ir = 0.01. Figure 8 shows the final set of 24 scenarios relevant to the discussion below.

Figure 8. Number of collected items for a selected set of 24 scenario configurations a in CCM. The data
labels show the corresponding cue values of a = (se, ie, ir, sr).

Please note that (ii) and (iii) are consequences of the internal cues ie and ir acting only on exploring
robots. In the exploring state, the crucial parameter is pe→r because it defines the probability to stop
exploring and change to resting. A non-zero value of the internal cue ir has a substantial impact on
dynamics as it alters pe→r after each exploration attempt. As the likelihood of finding and retrieving a
food item is low, ir mostly reduces pe→r. The more pe→r is lowered by ir, the less likely the robot is to find
a food item during the next exploration attempt. Thus, ir has a strong inhibitory influence on the swarm’s
exploration activity. Consequently, there is a significant difference in swarm performance between the
scenario configurations with ir = 0 and those with ir > 0. As the swarm actively attempts to explore
the environment and collect food items, the influence of ir > 0 can be considered an important driver of
negative feedback. In contrast, pr→e acts only on resting robots. Consequently, any change of pr→e through
ie is easily distorted by se, i.e., the social interactions with the neighborhood of the resting robot. Hence,
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only when se = 0 there is an inhibitory impact of ie on swarm dynamics (similar to ir, due to the scarcity
of food items), otherwise ie is negligible. In short, when the probability of finding a food item is low,
with ir = 0 and se > 0 enabling the swarm to significantly damp the feedback mechanisms that drive the
swarm towards inactivity.

Next, we consider the particular contributions of social cues se and sr. Social interactions represent a
direct form of feedback loops, enabling the swarm to drift towards an absorbing state (e.g., uninterrupted
resting or exploring) or maintain a balance between positive and negative feedback. In general, note
that high values of se often lead to pr→e = 0 due to the high probability of encountering a robot with
a failed exploration (due to the low density of food items). With such relatively high values of se, pr→e

can be reduced to zero within a few time steps. By contrast, with se = 0.01, pr→e does not fluctuate as
strongly. Similar considerations hold for sr and pe→r. In terms of active exploration, i.e., long exploration
times and high number of retrieved items, it is beneficial for the swarm to have robots with pr→e = 1 and
pe→r = 0. Indeed, in the present system we observe that the swarm approaches such behavior for sr = 0.5
and se = 0.01 (i.e., over the LSe region). More importantly, such balance of sr and se allows positive and
negative feedback loops to coexist with the positive feedback being slightly more dominant. Due to this
feedback coexistence, a robot that happened to be surrounded by unsuccessful neighbors will tend to have
low pr→e and high pe→r, i.e., its resting time τr will increase (together with its d or dc,rec) and vice versa.
Over time, such dynamics will result in robots that are increasingly inactive (with increasingly higher
τr, d or dc,rec) and robots that are increasingly active (with increasingly lower τr, d or dc,rec). When the
majority tends towards active exploration, the inactive group of robots experiences negative feedback and
while the active group is subject to positive feedback. The prevalence of the positive feedback decreases
the number of consistently resting robots significantly below the number of consistently exploring ones.
Ultimately, this leads to skewed or heavy tailed distributions, such as the power law and, consequently,
to the emergence of scale-free features. Similar considerations apply to the DCM over the HSe region.
The difference is that in DCM each robot can broadcast its exploration result only once. Thus, se needs to
have high values for dynamics similar to CCM to emerge.

To illustrate the above considerations, let us examine the scenario configuration of CCM with se = 0.01,
ie = 0.9, ir = 0.0, and sr = 0.5 (see Figure 4a), in which a high performance value of Ncoll was observed (i.e.,
this scenario is similar to the peak in Figure 8). The value of sr has a high impact on pe→r (the probability
to transition to resting). For example, if a robot receives at least two ‘success’ messages more than ‘failure’
messages—i.e., if δη(tr) ≥ 2 in Equation (2)—its pe→r drops to zero. When pe→r = 0 and ir = 0.0, the robot
will stop exploring only if it finds an item. During the subsequent resting, this robot is likely to cause one of
its neighbors to reach pe→r = 0, which repeats an analogous cycle of events. The corresponding dynamics
can be translated in terms of the positive feedback pushing the robots out of the nest and increasing the
number of robots in the foraging area (i.e., in the exploring state). In the long term, due to the positive
feedback, the swarm drifts towards the absorbing state in which all robots have pe→r = 0 and pr→e = 1.0.
In the short term, while most robots is exploring, some robots remain in the nest, e.g., due to crowding at
the entrance of the nest. Those robots have a higher number of neighbors because the nest is significantly
smaller than the foraging area. Therefore, during this crowding behavior, the swarm experiences the
coexistence of positive and negative feedback loops. A specific balance between these feedback loops
may lead to the emergence of scale-free features such as the space feature d (for which, indeed, the above
mentioned scenario configuration has one of the best truncated power law fits with ρq ≈ 0.23, shown
in Figure 4a). Similar considerations hold for other CCM examples presented in Figure 4 or the DCM
examples in Figure 5.

The above example demonstrates positive feedback regarding the exploring state. However,
under some configurations, positive feedback can also be observed around the resting state. For example,
during the crowding behavior in the nest, a robot which is surrounded by a high number of resting
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neighbors is likely to get ‘stuck’ and be unable to leave the nest. This robot will eventually switch to the
resting state and broadcast a ‘failure’ message. Neighbors that receive this message will decrease their
probability to explore pr→e, and, through physical interference, lower the neighboring robots’ chances
to leave the nest. Consequently, positive feedback at the resting state may lead, in the long term, to an
increase of the average communication degree of the resting robots and the emergence of power law
distributed features, alongside the occurrence of outstanding robots whose features such as Δd (examples
shown in Figure 6), τr or τca exhibit exceptionally above-average values.

4. Conclusions

In this paper, we have investigated the interplay between scale-free features and swarm dynamics of
a foraging swarm. Our results demonstrate that in the studied system (i) several space and time features
tend to be asymptotically scale-free for multiple parameter configurations; (ii) the emergence of scale-free
features can be attributed to the presence of positive/negative feedback mechanisms. Furthermore, (iii) in
several cases the swarm performance is moderately or strongly correlated with the tendency of space
and time features to follow the power law distribution—which is the mathematical backbone of the
scale-free property.

This study serves as a first step towards a better understanding of the interplay between the presence
of scale-free features and the swarm behavior in terms of collective performance. Although our results do
not indicate a causal relationship, we found conclusive evidence for a close connection between scale-free
features and swarm performance. Moreover, our analysis of power law distributed features shows a strong
link between the microscopic behavior of robots determined by specific cues and the macroscopic behavior
of the entire swarm exhibiting peak performance. However, care needs to be taken when considering
cases where the power law fit includes only a small fraction of data, as focusing on a small subgroup that
plausibly displays scale-free features may disregard a significant piece of information about the global
swarm behavior.

Please note that the presented exploratory study was conducted with an emphasis on whether
scale-free features may emerge autonomously in artificial multi-agent systems, without focusing on
why they do so. Hence, more sophisticated work is needed to precisely understand the exact causes
for the emergent scale-free characteristics in our systems. For instance, strong feedback mechanisms
may push the system close to a critical point at which a phase-transition occurs. In case of a continuous
phase-transition, the latter is known to be associated with the emergence of scale-free features [1,53]. In fact,
using approximations (such as the assumption of a well-mixed system) it could be shown analytically
that the social or internal cues can be used as control parameters, moving the system between its phases
(e.g., phases in which the number of resting robots is minimized or maximized). However, if the system
approaching a phase-transition is the cause for the emergence of scale-free features in our experiments,
we expect to find a correlation length (i.e., the distance over which one robot influences another, directly
or indirectly) that is longer than the size of the system (e.g., the length of the nest). In contrast, our
preliminary analysis indicated the opposite behavior: as we approached those scenarios in which scale-free
characteristics were observed, the correlation length decreased below the system size. In general, a detailed
finite-size-scaling analysis is necessary to explain our findings more thoroughly as well as reveal which
(physical) boundaries are most relevant and what impact they have on the system dynamics.

The canonical foraging task continues drawing scientific attention due its importance and prevalence
in nature as well as artificial systems. In addition, the complexity of collective foraging as a combination
of several sub-behaviors allows the modeling and analysis of a large number of scenarios and examine
various features. For these reasons, we focused exclusively on the foraging behavior. However, it would
be interesting to extend the scope and investigate other multi-agent tasks, such as aggregation or flocking,
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from the same perspective as in our study thereby broadening the understanding of scale-free phenomena
in artificial collective systems.
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Featured Application: The present paper introduces a methodology based on situated psychological

agents that can be fruitfully applied to design and implement educational games, as it permits to

represent the flows inside the game on the educational, psychological, and pedagogical level while

detailing agents’ features at a psychological level.

Abstract: In recent years, the ever-increasing need for valid and effective training to acquire
competences in multiform contexts has led to a wide diffusion of educational games (EG). In spite
of their diffusion, there is still a need to reflect on the design process that should embed the games’
pedagogical potential and the instructional process in the entertainment scope. Moreover, as building
EG, especially in digital environments, is an enterprise that involves specialists with different expertise,
it can be useful to have a shared methodology that is easily understandable and usable by many users.
In this paper, we propose to use situated psychological agents (SPA) as a methodology to design
and build effective EG and show how to represent games in terms of SPA and their interactions by
diagrams and describe different examples of how this approach has been applied.

Keywords: educational games; game design; situated psychological agents; education; competences

1. Introduction

Education is a key step and challenge in every society as successfully preparing future citizens
in terms of knowledge, skills, and competences strongly affects the competitiveness at an individual
and collective level. Not by chance, European Commission is tracing indications to strengthen human
capital [1] so that everyone may have a key set of competencies that allow personal fulfillment and
include transversal skills, such as digital competence and entrepreneurship competence.

Competences are more easily acquired through pedagogical models that favor the active
involvement of the learner in the acquisition process [2–4] thus, opening the way to innovative
educational strategies, including educational games (EG) [5–8]. Moreover, the introduction of
information and communication technologies has led to a revolution in education concerning different
aspects, for example, the tools that can be used for education, the places where education can happen,
the possibility to interact with an incomparable higher amount of learning resources and educational
figures. ICT has brought to the evolution of new approaches such as technology-enhanced learning
and game-based learning [9,10].

It means, for example, that a learner, child or adult, can now access not only books, one of the
most used learning sources for a very long time, but also additional multimedia contents, simulations,
and social media to obtain information. The world where education takes place is no more limited
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to the physical classroom but is expanded to cover potentially an unlimited world, in terms of space
and time, that is totally or partially virtual. If we consider the tools that have been introduced in the
educational context, it seems that, in spite of their wide diffusion, there is still a need to reflect on the
methodology to design, implement, and use them in a learning scenario.

In more detail, it can be a useful reflection on the methodology to design and implement
educational games, as an effective methodology should permit to have a shared formal representation
of the main game elements, of their connections and their interactions.

In what follows, we will propose a methodology that meets this requirement, which is based on
the situated psychological agents (SPA) approach, connecting it to the EG design process.

2. Educational and Serious Games: The Design Process

Serious games are games that educate, train, and inform, to use the title of the highly cited paper by
Michael and Chen [5]. Since the first book by Abt [11], which referred to card and board games, serious
games have become digital and have strongly affirmed their educational potentials [12,13]. This fact
forces to critically reflect on this kind of games, as they intervene in the learning process in a way that
has not been faced yet in traditional learning theory and typical game theory as well. Many remarkable
theoretical frameworks have been proposed, also recently, to satisfy this need. Among these, it is
useful to cite the learning mechanics-game mechanics model [14], which draws a set of pre-defined
game mechanics and pedagogical elements abstracted from the literature and connects them to identify
the main pedagogical and entertainment features of a game. This work highlights the fundamental
game mechanics and how they are translated into learning mechanics. Also noteworthy is the activity
theory-based model of serious games [15] that provides a useful representation of EG, with game
elements, their connections and their contribution to pedagogical goals achievement. These works
have the value of trying to answer the question of how the concrete components of the game should be
structured to support learning and which elements are crucial to address the design process.

The design process, indeed, is extremely important in determining EG success.
The starting point of each designing enterprise is to clarify what is the goal to be reached. In the

case of games, the questions are “What is the goal of the game? What the player can do?”. In the case
of entertainment games, some typical objectives are:

Erase: The player must “eliminate” the opponent, such as chess and checkers game;
Solve: The player must find a solution to a puzzle or answer a question: Examples are Cluedo or
Trivial Pursuit;
Chase: The player runs towards or away from someone or something. One famous example is
the video game Super Mario Bros;
Build: The player has to build something: A house, a city, an empire, as in The Sims, Civilization,
and Age of Empires.

On the other hand, if our goal is to build EG, where the educational aspect is crucial, the designers
have to specify also “What is the learning goal of the game? How it can be achieved by actively
involving the player?” In this case, help can come from learning theory. For example, Bloom’s updated
taxonomy [16,17], which is commonly used to describe learning goals and includes remembering,
understanding, applying, analyzing, evaluating, and creating, can help focalize what the EG aims
at leading the player to. After the learning and game objectives are defined, the design must define
three fundamental and interconnected levels: The shell level, the core level, and the educational
level. It represents a multi-level approach for design, where there are two concentric levels, the shell,
and core level and a ubiquitous one, the educational level, also named evaluation and tutoring level [2].
The level interconnections are represented in Figure 1.

152



Appl. Sci. 2019, 9, 4887

Figure 1. A multi-level approach for game design with shell, core, and educational level. Shell and core
levels can be found in every kind of game, whereas the educational level characterizes educational games.

2.1. The Shell (Game Narrative) and Core (Game Mechanics) Levels

The shell and the core levels are present in every game, and in almost every cultural product
as well. The shell level represents the visible content that is immediately accessible to the player.
It frames the game dynamics within the core level. The educational level, even if it is present in many
entertainment games, is explicitly characterized in educational and serious games, as it allows, on the
teacher’s side, to understand if and how the player/learner has acquired the concepts conveyed by the
EG and, in some cases, directly intervenes in the learning process.

At the shell level, superficial and visible, we find the game narrative. EGs, like many other
cultural products, are expressed through a narrative metaphor. It is, therefore, important to define who
are the characters, what actions they can perform, what interactions are possible between characters,
and the environment within which those actions take place. If we adopt a theatrical jargon, the plot,
the scenario, the roles, the setting are aspects to be defined.

It is widely recognized that narration is a key aspect in human cognition [18], and it is, therefore,
possible to find it in a wide variety of cultural products, such as fairy tales, movies, news, to cite some.
Games, as cultural products, share this feature and then narration is present in games too [19]. As an
example, the characters can be two armies in the chess game, the scenario can be a futuristic world in a
videogame, the plot can be an interaction between relatives in a role-playing game. In the well-known
game of Monopoly, for example, a pair of dice are rolled to move a player’s piece around the board.
Buying and trading properties mean to represent real estate trading that strongly helps to engage the
player in the negotiation. The shell level, where narrative resides, keeps a hidden level with specific
mechanisms and rules: This hidden level is called the core. Adopting a term that is commonly used in
the context of videogame creation and development, this deep level is the game engine [20]. The game
engine allows implementing core functionalities related to game dynamics, for example, related to
physics, animation, artificial intelligence, etc.

These levels interact: One level can have strong effects on the other. The narrative provides a
framework where the hidden content lives, as it was in a shell, as suggested by the name.

In the context of EG, the shell level is essential to provide a semantic context to the educational
activities, whereas the core level is related to skills, abilities, competences to be transferred, and to the
relevant learning objectives. It is interesting to note, as hinted at before, that the concepts of core and
shell levels are present in every kind of game, not just in educational games.

153



Appl. Sci. 2019, 9, 4887

2.2. The Educational Level

In EG, a relevant role is played by the educational level, which includes evaluation and tutoring
activities, with the explicit educational goal to allow students to accomplish specific learning outcomes.
It is, therefore, important to pay attention to the design process of such a key function. Together with
this, all design decisions at all levels should be harmonized in order to provide a meaningful learning
tool, as shown in Figure 1.

At the educational level, the evaluation function analyzes players’ game performances relative to
the specified training objectives and provides the players and the trainer with important information
and data about the learning process. At this level, we find learning analytics, which is the measurement,
collection, analysis, and reporting of data about learners, intending to improve the learning process as
well as the environment in which it occurs. Despite some challenges that can derive from the effort of
introducing learning analytics in EG, nonetheless, studies report that this effort can be useful to achieve
greater effectiveness and measurements of progress in learning [21–23]. Paraphrasing Siemens’s
words [24], learning analytics is the use of intelligent, learner produced data, and analysis models to
discover information and social connections for predicting and advising people’s learning. From the
teacher’s perspective, this level is fundamental because it supplies specific tools and functions to
support the training process.

3. Agents in EG and the SPA Approach

The ubiquitous presence of interacting artificial and real actors at each level, together with the
importance of the narrative, recalls the theatrical metaphor already presented for the shell level.
From the educational point of view, this metaphor is extremely powerful to represent interactions
between the various actors of the educational process in EG. However, the theatrical metaphor
effectively applies to all kinds of educational games only when agent’s conception and design is based
and inspired to psychological models, as they ultimately make choices, take decisions, and act within
the environment they live in [2].

Indeed, the various actors populating the different stages of an EG, at the shell level (users,
learners), core level (interactions between actors), and educational level (trainers, educators, tutors)
can be represented as agents with different features and functions. If we think of EG, it is evident that
the people involved in the learning process are a key element both on the educational and game side.
Almost every educational situation is characterized by interactions between the learner, at the center,
and the people involved in the whole educational processes, both in formal (teachers, educational
designers, tutors etc.) [25] and informal contexts (parents, peers, etc.) [26–28]. Nevertheless, the kinds
of interactions that specify the educational settings can be varied and show specific nuance that every
methodology aiming at modeling the educational process should take into account.

By looking at Figures 2 and 3 we can see two different implementations of an educational process.
The first one is usually observable in children who learn with a teacher through multisensory experience.
It is characterized by well structured educational materials [29–31], e.g., a Montessori-inspired
classroom [32] and a well-structured environment. In this case, the teacher can be modeled as an agent
that we can call generically trainer and directly affects learners’ activities. In this view, the environment
within which the learner acts as the playground of the learning process. The trainer provides external
guidance and support during the play, thus allowing a full understanding at the cognitive level.
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Figure 2. Learning interactions in a Montessori-type environment.

Figure 3. Moreno role-playing games.

The second situation comes from Moreno’s role-playing games [33] where the learner acts exactly
as an actor, by evolving the scene on the stage according to a given script.

Role-playing games simulate a social situation in which users are asked to cover and interpret
specific roles to develop a certain competence, such as effective communication or negotiation [34–38].
Here, learners, as actors, according to a specific script, perform and develop their actions on a stage.
In this way, the stage represents the playground where the learning takes place [29]. Behind the stage,
the psychologist, the trainer, or the observers, which all can be seen as agents interacting with the
learner, can provide guidance and support, affecting the learning environment, though not directly
intervening on the playground.

These interactions always happen inside the game and can be partially or completely virtual if the
agents are ruled by artificial intelligence [39–41].

However, the relevant elements of these learning situations are useful to define a more general
methodology:

The playground: A space (physical and/or conceptual) that delimitates the actions of one or more
learners. The playground is defined by the narrative structure. It can contain objects (physical
and/or conceptual) that can be manipulated by the learner.
Learners: The learners can act in the playground, changing its state directly. They can be
considered agents that are situated, immersed, in a scene of the play, and can select autonomously
the actions that modify the playground in the function of their psychology, including cognition,
emotion, etc.
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Trainers: Teachers or people who have educational, training, or assessment functions affect
directly or indirectly the learners but cannot modify the playground state.

In the design process of EG, it is, therefore, necessary to keep in mind the following elements:

(1) definition of the narrative structure with the necessary agents;
(2) definition of the actions and interactions modalities of the agents;
(3) definition of the agents’ control system, whether human-controlled or guided by a set of rules or

AI systems.

Learners and other characters present at the shell level, and therefore, belonging to the narrative
of the game, can be called on-stage agents (OSA), as they directly interact and affect the core level
according to their specific endowment. The BSA can interact with the game indirectly, by affecting
OSA actions and are mainly present at the educational level. This distinction was firstly introduced by
Dell’Aquila and colleagues [2] and Ponticorvo and colleagues [29]. Moreover, it can be also adopted
at two different levels: 1) The first, related to the educational material (in EG interacting elements
can be conceptualized in the form of agents), 2) and the second, to the learning scenario, where
learners are conceived as agents interacting with other agents (real or artificial), thus defining the
educational environment.

Taken together, the description of the design process and the focus on interacting agents and
playground, are the main elements of the SPA approach for educational games, which allows addressing
the EG design both at a high level of abstraction and at a high level of detail.

Therefore, the SPA are agents with different characteristics: OSA can directly act on the playground
or BSA if they externally interact with the OSAs within a well-defined educational process. They are
situated, as they are present and somehow “immersed” in the educational process, being in the
playground or in the overall narrative structure. They are psychological, as they are endowed with
cognitive and emotional features: In the case of human agents, it is automatic that agents have a
psychological characterization. In the case of AI-controlled agents, it is possible to take inspiration
from psychological theories and models to define their psychological characteristic and behaviors. It is
useful to underline that the agents share the same context. Thus, there is a shared meaning between
the actors involved in the learning situation.

The SPA approach, at the shell level, identifies the game characters, their characteristics,
and interactions. At the core level, each agent is accurately defined as to its sensory and action
endowments, i.e., what the agent perceives and what action it can perform. These actions must follow
the game rules that are defined both by setting constraints and by the agent actions defined in the core
level itself.

SPA can be useful for EG design because all the interacting entities within the game can be
represented as agents, some immersed in the playground, and some not. Both the players and the roles
that guide the learning process from backstage (psychologists, teachers, or trainers) can be conceived
as agents. Players become OSA, and contour figures become agents with specific functions, from
supervision or score recording to observation, tutoring, advising or mentoring. Considering the
different levels described in Section 2, we can say that, at the shell level, an EG is a mise-en-scene of a
plot by one or more agents interacting in a well and formally defined setting. On the core level, actions
performed by OSA directly modify the game state, whereas BSA supports OSA at the educational
level. It is possible to identify a clear separation between the shell level and the core one: The visible
dimension can be conceived through traditional narrative techniques, and the core level, expressed in
terms of SPA, implies the formal definition of the various game components that we have introduced.

The Educational Level in the SPA Approach

In this section, we will focus on the educational level in the SPA approach. BSA are the main
characters at the educational level: They may have the function to support the learners involved in
EG, mainly as OSA. BSA does not intervene directly in the playground but provides what is required
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to enhance the learning process. These agents cover specific roles, functional to the achievement of
educational goals. Educational or learning goals are inspired by a specific learning theory, such as the
already cited work by Bloom or Kolb [42] who emphasized concrete experience, active experimentation,
reflective observation, and abstract conceptualization. A meaningful learning process is characterized
by the presence of feedback, as giving (and receiving) feedback is essential to understand how close
learners are to the defined learning goals. Feedback, together with debriefing are regarded as the
most important element for maximizing the learning process [43], as they guide learners through a
reflective process about their learning [44], offer a space for giving personal meaning to the learning
experience [45], and help to relate this learning experience to real-life contexts. In the SPA approach,
feedback is provided by BSA, and in the case of digital games, it can come both from real or artificial
tutors. In digital games, their role is essential to provide learners with short feedback cycles through
which they can get continuous and immediate information regarding the effect of their actions on the
game interactions. Conversely, in traditional educational approaches where teachers generally have
to mark students’ work using conventional means (i.e., manually), there is a significant delay until
students can receive the appropriate information regarding some aspects of their task. Digital EG
can help to reduce such delays almost to zero. Moreover, feedback is offered throughout the full
game session. A very important moment for delivering feedback is at the end of the game, during the
debriefing phase, when the learners receive feedback about the overall performance. It is also a process
which gives the opportunity to analyze what dynamics occurred during the game, what went wrong,
and was achieved, and share experiences with other people, making it possible to compare different
perspectives from other players or from other people involved in the learning process, such as tutors.

The SPA approach to developing EG opens a way to adopt software based on artificial intelligence
systems to model the interactions between OSA and BSA and allows to conceive these complex
interactions between agents as finalized to a meaningful learning process through feedback and
debriefing activities. The tutor can be a human being, but also a virtual entity, thanks to artificial
intelligence. In both cases, it is crucial that the tutor observes and traces behaviors, actions, reactions of
learners during the game, similarly to what happens when a student performs a task or takes a test in
face to face situations to create a learner’s profile. To create such a profile, educational games can rely
on a wide amount of data available, even more than in real life-oriented tasks. Digital games offer a
system able to record every single action performed by the players, the time required by each action,
as well as not effective choices made. Thanks to all this information, both real and virtual tutors can
operate various analyses, to understand the cognitive state of the learner, thus implementing learning
analytics. It is reasonable to hypothesize that real and virtual tutors can be even more effective when
they jointly operate, as the virtual tutor can record a significant amount of data and provide immediate
feedback, which is impossible to achieve from a human tutor, and the human tutor can supervise and
actively guide the learning process in such a way that is, at the moment, very difficult, if not impossible,
to achieve by a virtual agent.

The tutoring agents, both human or artificial, carry out various roles in different moments and at
a different level. At the beginning they can select and decide which roles of the game will be played by
each actor, also according to learning objectives and to previous results achieved. During the game,
the OSA interacts with the narrative at the shell level and the game space level, while a BSA can help
to maintain a high interaction level. At the end of the game, the tutor can build an individualized
report regarding the overall interactions that occurred, record achievements and failures together with
a preferred way to act, react and interact to build a detailed user profile. This report can also be useful
to further customize the game/player interaction.

In the next section, we will introduce some examples of EG and present the design process that
led to them by means of diagrams with formal notation.
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4. SPA Applications to EG

In this section, we will report three relevant examples of how the SPA approach can be applied
to EG design with particular attention to the formal representation of game elements. To this end
we will use the following notation: The playground is represented as an empty rectangle, the circle
represents OSA, and the square represents BSA. If the boundary is a full line, the agent is real, and if
it is represented by a dashed line, the agent is artificial. The interactions are represented as lines: A
continuous line represents a direct interaction, whereas the dashed line represents an indirect one, arcs
represent feedback.

4.1. Block Magic

Block Magic [46,47] is an educational platform that exploits augmented reality based on RFID/NFC
technology that allows building custom educational games with both physical and digital components.
It consists of a set of magic blocks, a magic board/tablet device, and specific software (Figure 4).
Magic blocks are an augmented version of traditional logic blocks, widespread structured materials,
classically used in education. The technologies employed to augment are RFID/NFC sensors that
allow to unite the manipulative approach, stimulated by logic blocks, and touch-screen technologies.
An RFID system consists of an antenna and a transceiver, which can read the radio frequency and
transfer the information to a device, and a small and low-cost tag, which is an integrated circuit
containing the RF circuitry and information to be transmitted.

Figure 4. The Block Magic kit.

This configuration permits to a PC or a table, with BM software installed on, to connect with BM
Magic Table, another relevant BM material. The Magic Table has a hidden antenna that recognizes each
block, sends a signal to the PC/tablets, and produces feedback coherently with pupils learning path.

Each augmented magic block had an integrated/attached passive RFID sensor for wireless
identification of every single block. A specially designed wireless RFID reader device, an active board,
is used, which can read the RFID of a block and transmit the result to the BM software engine.

On the software side, the BM augmented blocks together with the Magic Table are complemented
with software that includes a series of already-developed exercises and an authoring tool to build
new ones.

The BM software engine is mainly formed by two parts: The first one is devoted to receiving
input from the active board and generating an "action" (aural and visual). These actions implement
the direct feedback the user can receive interacting with the system. This feedback is regulated by an
embedded intelligent tutoring system [48,49] that ensures autonomous interaction between the user
and the system, receiving active support, corrective indications, feedback, and positive reinforcement
from the digital assistant on the outcome of the actions performed.
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The second software component is devoted to customization, and it is dedicated to teachers,
educators, etc., allowing them to build their exercises to be proposed to the child, focusing the attention
on the skills the child needs to train more.

In BM, the narrative comprises the plot, the scenario, the characters, the setting and has the task of
attracting the player and filling the game experience with meaning. The appropriate narrative allows
to attract the child, so to immerse him/her in a completely different environment, that is relevant in
every educational context. The narrative level exercises a framing effect on the core level.

The core is configured as an interaction between the player, the human OSA (or the players in
a collective scenario), the teacher, another human OSA, and the artificial BSA. The interactions are
mediated by physical materials: The Magic blocks.

Block Magic Representation in SPA Terms

From BM general description, we can move to BM description in terms of the SPA approach.
As represented in Figure 5, in this case, we have two human OSA interacting: A learner and a teacher.
Many important functions are played by the BSA, which is artificial. It provides feedback to the player
(arc on the left) during the game, it affects the human OSA teacher proposing existing exercises and
recording learner’s interaction, it has an indirect effect on the learner OSA through the trainer OSA.
The BSA is built according to adaptive tutoring systems theories [46,47].

Figure 5. Block Magic represented in the SPA notation (the playground is represented as an empty
rectangle, circles represent on-stage agents (OSA), and the square represents the BSA. Full-lined
boundary indicates a real agent, dashed line indicates an artificial agent. A continuous line represents a
direct interaction, a dashed line represents an indirect one, arcs represent feedback).

To validate the SPA approach, some data were collected with BM users. During the BM project
(www.blockmagic.eu), trials were run in four schools in European Countries and involved about
250 students and 10 teachers of primary school and kindergarten. The teachers used pre-defined
exercises but could also build their ones using the BM authoring tool, which is based on the SPA
approach. After this process, researchers administered to teachers a structured questionnaire with
10 questions on a five-point Likert scale (5 indicating the most positive attitude) about the design
process with SPA.

Results indicate that the design was facilitated by the SPA: In particular, it was appreciated for
the possibility to quickly define interactions in the exercise (average = 4.30, st. dev. = 0,48; the point
5 in the scale corresponds to the most positive evaluation), to define the functions, especially the
educational one, in the game in terms of agents (average = 4.10, st. dev. = 0,74) and to share in an easy
and manageable way the idea with other professionals involved in the process (average = 4.40, st. dev.
= 0.52). More details are reported in [46].
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4.2. Enact: An EG to teach negotiation

Another example of SPA used to develop EGs is represented by Enact, implemented on a platform,
based on recent psychological modeling through the application of current ICT research such as
e-learning, mobility, internet, artificial intelligence [50,51].

The platform facilitates “learning by doing” experiences as the training scenarios that can be
developed through EG can simulate real-life situations, and due to their verisimilitude, can enable
the transfer of what has been learned to similar real-life contexts [52,53], developing the specific
negotiation competence.

It is a single-player game designed to train users on effective communication and negotiation
skills. A training scenario is populated by two 3D avatars, one controlled by the user and the other by
the computer (the BOT), both able to express a range of communication aspects and elements by using
verbal cues (e.g., vocal tone, shape of the speech bubble, and structure of the sentence), and non-verbal
indicators (e.g., body posture, facial expression, eye contact, and gestures). These patterns of
behavioral indicators have been identified in the communication model of assertiveness, passivity,
and aggression [54].

On-stage agents within Enact are both the learner and the artificial agent with which the user
interacts with during the game (see Section 4.2.1). OSAs perform their roles and interact with each other
according to the theoretical principles of the five styles of handling interpersonal conflict proposed
by Rahim and Bonoma [55] and Rahim [56] the psychological model adopted and underpinning the
Enact game.

In other words, the main principles of the two theoretical psychological models of negotiation by
Rahim and communication by Dryden and Constantinou underpinning the game, represent the rules
defined in the core level that determine the OSAs’ psychological and physical features. Rahim model
differentiated five different styles of handling conflict on two basic dimensions: Concern for self and
concern for others. The first dimension explains the degree (high or low) to which a person attempts to
satisfy his or her own concern, while the second explains the degree (high or low) to which a person
attempts to satisfy the concern of others. The combination of the two dimensions results in five styles
of handling interpersonal conflict: Integrating, obliging, compromising, avoiding, dominating.

The five styles of handling interpersonal conflicts are described, as follows:
Avoiding (low concern for self and others) has been associated with withdrawal, buck-passing,

or sidestepping situations.
Obliging (low concern for self and high concern for others) is associated with attempting to play

down the differences and emphasize commonalities to satisfy the concern of the other party.
Dominating (high concern for self and low concern for others) has been identified with a win-lose

orientation or with forcing behavior to win one’s position.
Compromising (intermediate in concern for self and others) involves give-and-take where both

parties give up something to make a mutually acceptable decision.
Integrating (high concern for self and others) involves openness, exchange of information and

examination of differences to reach an effective solution acceptable to both parties.
Moreover the conflicting scenarios have been designed according to a series of variables which

combination resulted in 25 different conflicting scenarios animated by 24 different characters, such as
type of conflict (if based on divergence or convergence), gender (if player and agent have the same or
opposite gender, so that the interactions can result as male-male (or female-female) and male-female (or
female-male), and ethnic variables (to allow a user-avatar interaction covering different ethnic groups).

The user is introduced to the game with a scene explaining the conflicting situation, the role
assigned to the user and her goal within the given scenario (shell level). Each exchange between the
user and BOT is organized in a five-state scene (one for each of Rahim’s styles of handling conflicts),
which includes one turn of speech for each party. Each exchange is related to a gesture and/or facial
expression that shows the way the sentence will be communicated to the BOT (core level).
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After the user’s answer, the BOT computes it according to the embedded psychological models,
that is, for example, a dominating BOT will show predominantly aggressive and authoritative
behaviors. Conversely, an obliging BOT will show an overall passive and submissive attitude towards
the negotiation (Figure 6).

Figure 6. OSAs interacting at the shell level at the beginning of Enact. Introduction to the different OSAs.

The user starts the game by pressing the “play” button that brings the player on the game scene:
The user’s avatar is presented in a small window at the left upper corner of the screen, while the BOT
represents the main character focused on by the camera.

The user’s five possible choices are shown below the small avatar window, while the responses of
the BOT are shown in the text bubble appearing over its head.

When the mouse is over one of the five user sentences (on the left-hand side of the screen),
the animation (non-verbal behavior) related to that sentence is shown in the top-left window.

The innovative aspect of the Enact game is represented by its assessment feature that complements
the training aspect. It implements soft skills measurements with an innovative rigorous psychometric
approach, that offers the users the opportunity to assess her/his handling conflict styles, along with her
negotiation and communication skills.

The assessment within Enact corresponds to the core of what we have defined as evaluation/tutoring
level and represents the playful way through which the user can be assessed in a standardized manner
according to the abovementioned Rahim’s model.

The assessment of the player is based on the preferred negotiation styles used during a series of
negotiation scenarios, given the description of the five styles provided by Rahim, and “pen and pencil”
ROCI II instrument developed by the author. ROCI II is designed to measure the five independent
dimensions of the styles of handling interpersonal conflict (integrating, obliging, dominating, avoiding,
and compromising). The instrument contains three Forms A, B, and C to measure how a person
handles her (his) conflict with her (his) supervisor, subordinates, and peers, respectively.

The Enact assessment is also fundamental for the automatic elaboration of a training
strategy tailored to the specific development areas of the player, to create an effective
learner-centered environment, where the user activity is focused on the areas of behavior that
mostly require improvements.

Enact profiles resulted from user’s game experiences are correlated with those obtained by the
users through the administration of the ROCI ROCI-II (Rahim organizational conflict inventory-II).
For this reason, the Enact tool has been designed to return a score directly comparable with the ROCI-II
to produce scores for each of the five styles of handling conflict contemplated in Rahim’s model:
Collaborating, accommodating, dominating, avoiding, and compromising. In addition to the ROCI-II
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form C, the other four psychological tests have been administered: (a) A short version of BIG five
personality inventory, (b) assertive efficacy test, (c) self-efficacy test, and (d) coping test. The aim was
also to investigate possible relationships between high scores of self-efficacy and relevant personality
traits with the styles adopted by the Enact users and related positive effects on negotiation processes
observed within the game sessions.

All the test takers had to play Enact and fill in the electronic form containing the five psychological
tools in a row, in random order so to avoid bias related to the order of presentation. The users were
asked to negotiate with an avatar in 10 different scenarios. The assessment took about one hour.

The system collects the data about the user’s behavior and choices and creates a model of the player
that will then be used for generating tailored information to be used in the training session. The score
and profile of the player’s negotiation skills are actually calculated by summing the independent
concern for self and concern for other variables gathered during interactions, which are represented
within every sentence that the user can choose.

In the assessment session, the artificial agent’s behavior is static, not adaptive, and reflects a
specific negotiation style for each of the scenarios.

The tutoring system is available only after the assessment has been completed. Thus, it will
intervene during the training scenarios and at the end of the game session in order to provide useful
information to the user about his or her performance related to the BOT he or she is currently interacting
with and to his or her general behavior when managing conflicting situations.

The user is given a profile based on the Rahim model related to the specific situations he or she
played, together with advice about how to improve the efficacy of his or her communication and the
changes achieved since the assessment profiling.

The profile emerges mainly through a comparison of the behavior of the user and the style of the
artificial agent she interacted with.

Furthermore, we have highlighted the importance of offering the user with immediate feedback
about his/her performances. An example of immediate feedback is provided in the Enact game session
by the on-stage agent (Figure 7).

Figure 7. Examples of verbal and nonverbal indicators expressed by OSAs during the
conflicting interaction.

The BOT, which the user interacts with, displays immediateness of the interaction with an
aggressive, assertive, obligingness facial expressions and body posture (non-verbal communication)
and gives verbal feedback through the text (Figure 7).

4.2.1. Enact Representation in SPA Terms

In the Enact game, as shown in Figure 8, there are two on-stage agents: The learner who plays the
game and the artificial agent with which the user interacts in the scenario. The human OSA performs
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his/her role according to his/her negotiation style, whereas the artificial OSA acts according to the
implementation of Rahim’s principles. The OSAs interact directly with the other with questions and
answers. In this case, there is a BSA, a tutor who is artificial and interacts directly with the artificial
OSA and indirectly with the human OSA. It is outside the playground but affects directly the artificial
OSA and indirectly the human OSA.

Figure 8. Enact game represented in the SPA approach (the playground is represented as an empty
rectangle, circle represent OSA and square represent BSA. Full-lined boundary indicates a real agent,
dashed line indicates an artificial agent. A continuous line represents a direct interaction, a dashed line
represents an indirect one, arcs represent feedback).

At the end of the game, it also provides human OSA with relevant feedback.
During the Enact project, also the effectiveness of the SPA approach was investigated.

Indeed, the Enact game was pre-validated in two iterations: The first one allowed to collect feedback
by the means of a questionnaire on the quality of the interface and the BOT. The questionnaire was
composed of eight questions on a five-point Likert scale. The complete results are reported in [2–53].

Data showed that the overall feedback was extremely positive. The second iteration involved the
participants playing with different scenarios, and then a questionnaire of 13 questions on a Likert scale
was administered. Additionally, in this case, the feedback provided by users was positive.

On the qualitative side, the people involved in the design and implementation of the Enact game,
using the SPA was useful and allowed them to efficiently collaborate with other professionals involved
in the game development.

4.3. Eutopia

4.3.1. Eutopia: EG to Train Soft Skills Based on Role-playing Mechanisms

Eutopia represents a specific application of SPA to develop EGs, as it is not just a game but rather
a platform with which it is possible to create an unlimited number of role-playing games.

Eutopia platform can acknowledge many years of experience underpinning several European
projects, such as Sisine, Sinapsi, Eutopia-Mt, Proactive, and S-cube project. Eutopia has been used
and tested in different contexts and by different group targets (university, training institutions and
agencies, MEs and SMEs, public administration, as well as non-governmental organizations and social
enterprises) and for the development of various kinds of competencies (negotiation, international
mediation, negotiation, communication, leadership, team building, time management, motivation,
decision making, and problem solving).
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Eutopia takes inspiration from the technology used in multiplayer games and embeds role-play
methodology as a psycho-pedagogical approach.

The underpinning learning approach is based on open dynamics so that there is not an exclusive
way to achieve the desired learning objectives.

The technological dimension allows a virtual extension of traditional face-to-face role-playing
activity that is transposed it into a digital setting. This enhances the potential of the training experience
in which learners are involved. Eutopia recreates a graphical word populated by virtual actors (avatar)
controlled by real users.

While role-playing methodology that derives from psychodrama and sociodrama [33] has learning
purposes, role-playing videogames are created for recreational purposes and take inspiration from
pen-and-paper role-playing games. Indeed, role-play [30] has extensively been recognized as a
powerful technique for enhancing the traditional training practice, boosting participants’ learning
experience, facilitating knowledge, and promoting skills, competencies, and group, as well as personal
development, in face to face activities [57–60].

Since its origins, role-play technique has been variously adapted and applied to different settings
and contexts, for different purposes and to many disciplines (e.g., psychology, organizational change,
sociology, and pedagogy) for intensifying and accelerating learning and for developing new ways of
understanding of concepts and knowledge.

Role-plays can be adopted to deal with personal (psychodrama) or collective (sociodrama) issues
and used to exercise a variety of specific skills (learning simulations).

Moreover, role-play games can be considered as learning strategies that can be enhanced through
technology by extending learning through added dimensions that may be impossible to conduct
in face-to-face situations [61]. Among them, the so-called massive multiplayer online role-playing
games (MMORPGs) and multi-user virtual environments (MUVEs) as, for example, Second Life
(http://secondlife.com/education/) and Active Worlds (http://www.activeworlds.com/edu/).

MMORPGs derive from role-playing video games, which in turn take their origins from
pen-and-paper role-playing games (e.g., Dungeons and Dragons) and use much of the same terminology,
settings, and game mechanics.

Regarding the technological dimension, Eutopia, in addition to the functions normally provided
in MMORPGs and MUVEs, offers specific features designed to facilitate its use in distance learning.
In particular, it has been used to develop a variety of role-playing games for the development of
different soft skills.

In summary, the platform is based on a client/server architecture, which comprises three different
software pieces for users:

• Editor—for trainers, allowing the design of personalized storyboards and role-play
learning scenarios

• Client—for both trainees and trainers, allowing them to interact with the 3D environments and
with each other through text chat messages and non-verbal modalities

• Viewer—for visualizing recorded group interactions and sessions along with text-based exchanges.

Trainers through and within Eutopia assume potentially different roles. They can act as a
playwright by writing storyboards, as a screenwriter by personalizing training scenarios, as a casting
director by assigning roles to be played out, as a movie director by monitoring and guiding participants’
actions and behaviors, a as director of photography by selecting relevant dynamics to be recorded, a as
film critic by giving actors personalized feedback (debriefing phase).

Trainers by creating storyboards can define properties of training scenarios along with
psychological and physical features of the different roles to be played by participants (Figure 9).
They also act as a guide for using the learning platform features at their best to explore the learning
potential of available tools.
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Figure 9. Script definition.

The use of feedback and debriefing systems allows the exploitation of all the potential of trainers’
guide, facilitation, and support.

The Eutopia virtual environment provides an avatar-based system of communication, mediated
by the artificial agents representing both human being trainer and the learners, respectively BSA
and OSA.

By using the Eutopia Editor, trainers can write the storyboard for online multiplayer games.
Its design requires an accurate definition of learning goals, narrative, and roles to be enacted and of the
physical and psychological features of avatars (Figure 10).

Learners act out their roles interacting in a virtual, navigable environment provided by the system,
through controlling virtual alter egos, the avatars.

These represent what we have defines as OSAs, as they directly act and interact in the virtual
environment by influencing the dynamics of the game and impacting on its process.

Learners can communicate via short text messages, which appear in bubble cartoons over their
avatars’ heads.

They can also interact by using various forms of para- and non-verbal communication (expressed
by emoticons and facial expressions that can be assumed by avatars).

For example, players can decide the loudness (shown by the font size of the text in the bubble)
and emotional tone (shown by the shape and color of the bubble) of a message.

Players can control the gestures and body movements of avatars, for example, by making the
avatar wave goodbye, point at someone, or hug someone.

They can “whisper” messages to each other, that is, send messages are that are visible only to
players directly involved in the conversation and to the trainer.

Finally, they can communicate with the trainer and raise any questions to receive guidance
or clarification. Trainers after scripting and starting the role-playing session can intervene during
interaction among learners in two possible ways.

The first is to act as an invisible stage director that is to behave as a back-stage agent by using a
variety of features to observe interactions among players. The second is by directly intervening in
the game. For example, she can take the role of a character in the scenario and play the game like
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other players. However, they can also activate events to change the dynamics of actual interactions.
These represent cases in which the role of BSAs coincides with that of OSAs.

When the game is concluded, they can provide players with personalized feedback assessing
whether the group and individual goals have been achieved and to what extent, encourage group
discussion and examine the most significant aspects and dynamics emerged, as well as the main
strategies adopted by players.

Indeed, an embedded tutoring tool enables to record training sessions, and replay role-play
session interactions for tutors to provide feedback to significant interactions between participants to
encourage the communication process, mutual sharing, self-reflection, and self-discovery and help in
identifying potential areas of personal development. Feedback can be provided immediately after role
play or in a later feedback session

Figure 10. Avatar control as a way to explore an online session.

4.3.2. Eutopia Representation in SPA Terms

In the Eutopia platform, as shown in Figure 11, there are many on-stage agents that interact
virtually: They are human OSA. They perform their role following the defined script and following the
trainer (BSA indications). In this case, all the agents interact both directly and indirectly.
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Figure 11. Eutopia platform represented with SPA notation (the playground is represented as an empty
rectangle, circles represent OSA and squares represent BSA. Full-lined boundary indicates a real agent,
dashed line represents an artificial agent. A continuous line represents a direct interaction, a dashed
line represents an indirect one, arcs represent feedback).

At the end of the interaction, the BSA offers to OSA feedback and reflections on the
different interactions.

Eutopia has been used and tested in different contexts and by different group targets (university,
training institutions and agencies, MEs and SMEs, public administration, as well as non-governmental
organizations) and for the development of various kinds of soft skills within different research
projects, such as Sisine, Sinapsi, Eutopia-Mt, Proactive, S-cube (more information at www.nac.unina.it).
In particular, to study the attitude towards the SPA approach, the perception of 18 experienced
professionals (educators, trainers, psychologists, and educationalists adopting role-playing activities
in traditional settings) on the use of role-playing games in educational and training contexts, with a
specific focus on the Eutopia platform was investigated.

They completed a questionnaire on their perception of how online role play can encourage and
foster meaningful learning experiences among participants. More details are reported in [2].

With regard to the methodological effectiveness of online role-play via SPA agents, we can affirm
that it is generally considered as effective. A large consensus amongst the professionals was found on
the role of the trainer, both virtual and real as conceived in the SPA approach.

5. Discussion and Conclusions

In this paper, we have introduced the SPA approach to developing EG. This approach presents
various advantages. It opens the way to adopting automatic control systems and software based on
artificial intelligence systems to model OSA and BSA behavior, as shown in the application section.
By these means, it is possible to delegate both on-stage and backstage functionalities to intelligent and
autonomous artificial agents, making it possible to run EG with mixed teams composed of human
and artificial agents. It is, in fact, easier to build artificial agents to support the educational enterprise
rather than model separately educational functions and features. Moreover, SPA allows to reproduce,
model, and feed the dialogic interaction offering a formal representation of the people involved in the
learning/teaching dynamic.

SPA offers an effective methodology to build up games moving on the shell and core level as well
as the educational one. This means, that the same core level can be combined with different shell levels
so as to be adapted to different contexts and allow to compare various populations (i.e., children and
adolescents) and various areas of application (i.e., education, training or assessment).
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Last but not least, it proposes a comprehensive framework that can be easily understood by
specialists with different expertise. In EG design and development, education specialists, teachers,
trainers are involved as well as computer scientists, software engineers, etc. These specialists can share
their knowledge through this framework in a very effective way.

However, a possible shortcoming of this approach comes from the consideration that there are
games, as well as educational software, for which there might be no need to define the rules of
interaction in terms of psychological agents.

It is possible to summarize that the strongest point of the approach used within SPA to develop
EGs is related mainly to the educational aspect allowing users to foster transversal skills through
innovative approaches to teaching, learning, and assessment. The EGs proposed are based on two
different educational approaches reflected in the implementation of the SPAs. Form a technological
perspective is possible to distinguish EGs more cantered on allowing a virtual extension of traditional
face-to-face psychodramatic mechanism and experiences (e.g., Eutopia), and those that instead
reproduce “artificial” worlds based on computer-simulated, formal models about specific phenomena
or theories to investigate (Enact and BM). From an educational and user-centered perspective, it is
possible to identify two main categories. One category can represent the extent to which, while
playing the game, the user has to express herself through behavioral acts that involve her body or
other forms of interactions, such as an actor would do on stage. Those elements correspond to the
traditional behavioral domain that plays a prominent role in psychodrama as we have highlighted for
Eutopia and Enact, though with a different grade of involvement and immersion. Situations like BM in
which the user is asked to perform abstract and strategic forms of decision-making are different from
and yet complementary to these kinds of games. Here, the user’s logical and reasoning aspects are
prominently highlighted. The educational approach underpinning Eutopia is based on open dynamics.
Therefore, there is no unique way to achieve the desired learning objectives. The technological
dimension enhances the potential of the training experience because it makes a virtual extension of
traditional face-to-face role-playing activity possible, transposing it into a digital setting. What emerges
is that the figure of the trainer simultaneously represents a source of strength and weakness. On the
one hand, it is undeniable that a real BSA trainer can enrich game performance by providing facilitation
and adaptable performance feedback. On the other hand, the study presented shows that the need for
fully skilled trainers may increase the cost and time of training.

Moreover, the dynamics resulting from the gameplay depend on learners, rather than on any
form of artificial intelligence. This means that participants are offered a far richer, more open, learning
experience than would have been possible if they had to interact with artificial OSAs and BSAs.
However, the disadvantages of this method are represented by high cost and time consumption in
organizing and managing the complexity of the virtual learning scenarios, as well as interactions
among participants. Indeed, the critical element that emerged is related to the trainers/teachers’ role
in managing the online role-plays, and their need to be skilled in mastering different competencies
at once.

Those limits have induced the authors to consider the advantages of introducing game technologies
less dependent on the supervision of real BSAs, such as Enact.

In this case, although the system allows users to dramatize and enact role-plays, the complexity
of the dynamics between OSAs is limited by the rule of the game to a certain number of actions,
and the responsibility of the BSA is certainly reduced. Therefore, the assessment and observation
of learning experience is less subjected to the influence and interpretation of many other potential
interfering variables.

While Eutopia and Enact allow users to experience direct involvement with the learning objectives
through a personal dramatization by acting out roles, BM points instead more on the logical and
reasoning aspects involved in the gameplay. In this case, a set of formal rules and interactions
embedded in the game needs to be followed for learners to achieve the relevant learning objectives.
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This brings us to another aspect of our experience that is the appropriateness of the use of EGs.
The decision on which game to use depend largely on the skills to be developed, as well as the resources
and the time allocated for achieving the learning objectives. For instance, if a learning objective regards
training from the cognitive domain, and the priority is making players learn and assess specific skills
or behaviors (e.g., problem-solving requiring a quick response), the ideal methodology is more likely
to be based on more structured games, as BM. Indeed, the educational resources and learning path that
learners have to follow is easily accessible from learners at any time from anywhere. However, the set
of formal rules and interactions to be followed to achieve the relevant learning objectives are embedded
in the software and do not require a constant presence of experienced real external guidance as BSA.
BM and Enact can drive the player to a stable training outcome more rapidly than in open dynamic
situations, like Eutopia. Therefore, the advantage of this method lies in the fact that it is very low
cost, as after an initial phase to familiarize users with the system, and it can be used without the
guidance of a trainer, as the system is self-regulated and enables learners to achieve objectives rapidly.
Conversely, if the competencies that are meant to develop are more related to aspects of emotional
awareness, self-assessment, and self-confidence, we think that a situation methodologically such
Eutopia, closer to the traditional role-play technique, might be the most appropriated. For all the EGs
presented, we can acknowledge that the strength of providing the software with authoring systems
has been a valued an extremely beneficial aspect as it allows trainers to rapidly develop their scenarios,
personalizing their work for specific target populations with specific learning needs. In this light, there
are many possible and potential areas of application.

The strongest points of the approach used within EGs are related mainly to the central role assigned
to the player in the training or assessment processes developed within the software. The users can
enhance their attitudes towards different skills, improve their capabilities, understanding, and practice
with the support of the tutoring system provided, and following customized training sessions.

The experiences of the EU projects confirmed the value of using information technology as a tool
placed in the hands of a trainer for the development of controlled ad hoc learning exercises, rather
than being considered a simple replacement for trainers and learners.

The SPA approach presents a novel element of flexibility, both in delivery and practice of different
skills and competencies training, where users can broaden the practice of different skills outside
the traditional classroom approach by leveraging Internet technologies. However, what is even
more interesting, professionals can be in total control of the model implemented, the training and
the assessment processes. Furthermore, every skill or competence that requires the exploitations of
people’s interactions could benefit from such realization of an SPA to develop EGs.

The reason is that, whatever skills need to be transferred in the digital role-play, the educational
technological level represented within the software enables modification both of the narratives and the
educational models underlining the training requirements.
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Abstract: In the research and development of multiagent systems (MAS), one of the central issues
is how to conciliate the autonomy of the agents with a desirable and stable behavior of the MAS
as a whole. Agent organizations have been proposed as a suitable metaphor for engineering social
order in MAS. However, this emphasis has led to several proposals of organizational models for MAS
design, thus creating an organizational interoperability problem: How to ensure that agents, possibly
designed to work with different organizational models, could interact and collectively solve problems?
In this paper, we have adopted techniques from Model Driven Engineering to handle this problem.
In particular, we propose an abstract and integrated view of the main concepts that have been used
to specify agent organizations, based on several organizational models present in the literature.
We apply this integrated view to design MAORI, a model-based architecture for organizational
interoperability. We present a MAORI application example that has shown that our approach is
computationally feasible, enabling agents endowed with heterogeneous organizational models to
cooperatively solve a problem.

Keywords: interoperability; multiagent systems; organizational models

1. Introduction

In the research and development of multiagent systems (MAS), one of the central issues is how to
conciliate the autonomy of the agents with a desirable and stable behavior of the MAS as a whole.
Borrowing ideas from the Social Sciences, some authors have named this issue the problem of social
order: “How to obtain from local design and programming, and from local actions, interests, and views,
some desirable and relatively predictable/stable emergent result” [1]. A closely related issue is the
problem of social consensus often characterized as how to reach agreement with regard to some aspect or
quantity of interest in a network of agents by combining the local preferences or states of individual
agents [2,3]. Both social order and social consensus are fundamental problems in the design of MAS.
While social order stresses the idea that agent behaviors must be coherent with the MAS global purpose,
social consensus highlights the need of agreement among agents working together for a global purpose.

Faced with these problems, especially in the context of open MAS (i.e., systems formed by
a dynamical population of agents provided by different developers), several researchers have argued
in favour of using the human organizations as a proper metaphor for engineering MAS [4–7]. Human
organizations, whose typical examples are firms, clubs, corporations, etc., are collectivities pursuing
specific goals and exhibiting formalized social structures [8]. Goals are specific to the extent that they
are explicitly and clearly defined. Social structures are formalized in such a way that patterns of
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structuring and behaving (such as roles, role relations, procedures, protocols, norms, etc.) are precisely
specified regardless of personal traits and relations of any individual part of the organization. Thus,
by conceiving a MAS as an organization—or more generally as a bigger system formed by several
organizations, hereafter called agent organizations—the basic idea is to promote social order and
consensus in a top-down fashion. The idea is to have the agents’ actions and interactions governed by
formalized “social structures”, defined above the agents level, in order to enable the MAS (seen as
a collective entity) to achieve definite global goals.

This emphasis on organizations as a suitable metaphor for engineering social order has led
to several proposals of organizational models for MAS design [4]. From the perspective of software
development, most of these organizational models can be characterized as domain specific modeling
languages [9]. That is, they provide a specialized conceptual structure (metamodel) embodied in some
concrete syntax (notation) by means of which the designer can write formal representations of the social
structure of agent organizations. Such representations, called organizational specifications, are then used
as specification artifacts driving the development of agents and MAS.

On the one hand, the existence of many organizational models favours the organizational design
of MAS since, with various proposals, experience and best practices are accumulated. On the other
hand, a great variety of organizational models introduces heterogeneity in the development of MAS.
As a direct consequence of this heterogeneity, mainly in the case of open MAS, a new and important
interoperability issue arises: If to enter and fully work in an organization the agents should be designed
to “understand” and comply with an organizational specification of a given kind (i.e., conforming
to some organizational model), then, in addition to the communication language and the domain
ontology, the organizational model is something that the agents are supposed to share in order to
properly work together. In other words, how can we provide means for a set of agents, immersed in
a common environment, to evolve, reason, decide and interact with each other based on organizational
concepts, since their organizational models may differ? In this paper, we call this issue the organizational
interoperability problem.

We can think about four basic approaches to solve the organizational interoperability problem:
Standardization, universal agents, delegation and adaptation. Standardization consists in providing
interoperability by eliminating the root of the problem, the diversity, by means of a standard model
that has to be accepted and used by all developers [10]. The universal agents approach implies the
creation of agents which are able to deal with several different organizational models [11]. Delegation
means creating specialized services in middleware layers (like proxies [12] and governors [13]) to
whom agents may delegate reasoning and decision mechanisms related to organizational issues.
Adaptation, by its turn, is a solution based on the possibility of defining mappings between models [14].
From these mappings, an adapter is created, a component that converts specifications from a model to
another model [15,16].

Each of these approaches have their pros and cons. Standardization fully eliminates the problem
but it is politically and economically difficult to achieve and lets aside legacy systems. Universal agents
must be updated every time a new model is created or changed. Delegation practically vanishes the
agents organizational autonomy. Adaptation deals with legacy systems but it is technically difficult to
achieve, if not impossible, when there are no meaningful mappings between the models.

Motivated by the organizational interoperability problem and the basic approaches to it,
all of which presuppose an integrated knowledge of the organizational models used to engineer
agent organizations, the objective of this paper is to analyze the conceptual structures of several
organizational models present in the literature and, based on this analysis, to propose an abstract and
integrated view of the main concepts that have been used to specify agent organizations. We believe
that the abstract view of organizational models we put forward can be used both as basis for defining
essential mappings and for future standardization efforts of organizational models.

This work is based on a previous work [17] in which we did a review of several prominent
organizational models to answer the questions: How are the conceptual structures of the models
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related? Are there basic similarities? What are they? The answers we have given to these
questions, in terms of modeling dimensions, are summarized in Section 2. The idea of modeling
dimensions describes the organizational models basic similarities in broad terms. It characterizes the
macrostructure of organizational models.

In this paper we deepen our analysis by further exploring the conceptual structure within each
modeling dimension. In this sense, we seek to characterize the common concepts and their relations
found in existing organizational models along the modeling dimensions. The specific questions
we propose to answer in this paper are: Inside each modeling dimension, what are the recurring
modeling concepts? Is it possible to combine these recurring concepts into a coherent whole? How this
can be used in a solution to the organizational interoperability problem? In approaching these
questions, we have used techniques from Model Driven Engineering (MDE) [18]. Specifically, we think
of organizational models as domain specific modeling languages whose conceptual structures are
represented by means of metamodels. Thus, to address the questions systematically, we propose
an iterative integration method, described in Section 3, aiming at building an integrated metamodel
out of particular metamodels.

A central step in the integration method is the identification of correspondences between the
conceptual structure of organizational models represented by metamodels. To assist this identification,
in Section 4, we analyze the recurring concepts of existing organizational models along the modeling
dimensions. The result is an abstract conceptual structure formed by the union of conceptual patterns found
by comparing the organizational models. Relying on this abstract conceptual structure and using the
proposed integration method, in Section 5 we show how to effectively integrate (part of) three existing
organizational models. To put into perspective the integration of organizational models, we then
discuss in Section 6 a solution based on adaptation for the organizational interoperability problem.
In this solution, named MAORI (Model-based Architecture for ORganizational Interoperability) [19],
the mappings between organizational models are defined indirectly by using the integration we
have proposed.

In Section 7, we compare our proposal to related work in the literature. To the best of our
knowledge, the systematic integrated analysis of organizational models we propose is novel,
constituting the main contribution of the paper. Its importance, as already hinted, lies on serving as
a common ground for aligning organizational models and as a starting point towards standardization.
The MDE approach we apply is also a contribution and advancement in the state of the art. Looking at
the literature, we found that few organizational models are defined in terms of explicit metamodels.
Then, our representation of existing organizational models and their integration by means of formal
metamodels helps in further the understanding of their features and limitations. Finally, in Section 8,
we present our conclusions and future work.

2. Organizational Models for MAS

This section presents organizational models for multiagent systems by classifying their content
in modeling dimensions that were adopted to define a method for the integration of organizational
models. As a result of using the method, we build an abstract conceptual structure to deal with the
organizational interoperability problem within MAS.

2.1. Modeling Dimensions

After a detailed analysis of a significant part of the existing organizational models, we have noted
a lot of similarities and complementary issues regarding their conceptual structures. The common
points identified were classified into some recurring themes we have called modeling dimensions for
agent organizations [17]. In what follows, we discuss the modeling dimensions identified. Then we
move to a short overview of the various organizational models analyzed. Ending the section, we show
a comparative table summarizing the models analyzed along the modeling dimensions identified.
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2.1.1. Fundamental Aspects of Systems

In general, designed systems exhibit some fundamental aspects that, from an engineering
standpoint, are natural candidates for modeling. Firstly, there is the functional behavior of the
system—the input (stimulus) to output (response) relations that couple the system to external elements
composing the environment in which the system is situated. In modeling this aspect, the system is
commonly depicted as a black box whose internal constitution, at first, does not matter. What really
matters is that the environment imposes functional requirements, such as operations or tasks, that the
system as a whole is supposed to perform. Further, these functional requirements may be subdivided
in a recursive way until reaching atomic operations or tasks arranged in a given ordering (dependency
graph). Later, when the innards are determined, the actual execution of the atomic operations or
tasks can be associated with specific components of the system and their interactions. Modeling the
functional behavior is a common practice both in developing computer systems and in representing
organizational processes. Modeling techniques such as DFD (Data Flow Diagram) [20], and the activity
diagrams of UML (Unified Modeling Language) [21] are typical examples of that.

Another fundamental aspect is the internal structure of the system. In contrast, to model the
internal structure of a system means to represent it as a transparent box. It means to represent the
break down of the system in its constituent parts (components and subsystems) and the relations
interconnecting these parts. Like functional modeling, modeling the internal structure of a system
is a recurring theme in system design. In software development, for example, the class diagrams
and the component diagrams of UML serve to this purpose. In the case of human organizations,
a traditional form of structural modeling is the creation of organograms describing the divisions,
roles and hierarchical relationships existing inside an organization.

A third candidate for modeling is the structural behavior of the system. Roughly, it consists of the
“movement” of the internal structure of a system towards the realization of some desired functional
behavior. Thus, when modeling the structural behavior, we also see the system as a transparent box.
What we try to represent is the ordering of interactions occurring over time among the constituent
parts of a system. These interactions make the system work, i.e., perform some expected task or
operation in its environment. Examples of this type of modeling are the sequence and collaboration
diagrams of UML.

2.1.2. Primary Modeling Dimensions

From the premise that designed systems in general, not only agent organizations, exhibit these
three fundamental aspects as natural modeling concerns, we have used them as a first classification
scheme for separating the modeling concepts of organizational models into cohesive categories.
Consequently, we define:

• The functional dimension, in which we place the modeling concepts used to represent the functional
behavior of agent organizations;

• the structural dimension, composed by modeling concepts used to represent the internal structure
of agent organizations; and

• the interactive or dialogical dimension, grouping the modeling concepts relative to the representation
of the structural behavior of agent organizations.

2.1.3. Social Systems and the Normative Dimension

While the functional, structural and interactive dimensions can be justified by analysing the
modeling of systems in general, they are not sufficient to classify all modeling concepts appearing in
organizational models.

According to [22], three basic types of systems and corresponding models can be identified:
Deterministic, i.e., systems and models in which neither the parts nor the whole are purposeful; animated,
i.e., systems and models in which the whole is purposeful but the parts are not; and social, i.e., systems
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and models in which both the whole and the parts are purposeful. A fourth type is also considered,
ecological, i.e., systems and models in which the parts are purposeful but the whole is not. Given this
classification, we can say that traditional software systems are deterministic, autonomous agents are
animated, and agent organizations are social. Bigger and more encompassing MAS aggregating agents
and agent organizations form ecological systems.

Being deterministic, traditional software systems tend to have an architecture in which the
functional behavior, the internal structure and the structural behavior are foreseen in detail.
Their components are not conceived as purposeful entities with autonomous behaviors. On the
contrary, they are designed to obey rigidly what is fixed in the architectural specification of the system.

Regarding agent organizations characterized as social systems, the idea of agents obeying rigidly
the prescriptions of functional, structural and interactive specifications is not realistic. Agents are
conceived as self interested components, especially in open MAS. Therefore, neither the functional,
structural and interactive specifications can be very detailed to the point of precisely determining the
minutiae of the joint structuring and behaving of the agents, nor one can assume benevolence from the
agents with respect to the organizational goals.

In this context our analysis is that the specification of norms (permissions, prohibitions, obligations,
etc.), as occurs in human organizations design, are also expected to show up in organizational models.
They will work as a complementary mechanism helping to couple more flexibly the agents to the
organization. On the one hand, norms provide explicit means to capture interdependencies among the
functional, structural and interactive aspects (e.g., agent playing a given role in the internal structure is
obliged to behave functionally or structurally in a given way). On the other hand, norms can be used
to explicitly regulate sanctions or penalties to deviant behavior.

Accordingly we define a fourth and last category for the analysis of organizational
modeling concepts:

• The normative dimension, characterized by modeling concepts to further restrict, regulate and
interrelate elements from the other modeling dimensions, given the expected autonomous behavior
of the agents.

2.2. Models Review

Now we pass to a quick description of concrete organizational models taking into account how
they cover the four dimensions of modeling identified. We describe six models—TAEMS [23], AGR [5],
STEAM [24], MOISE+ [25], ISLANDER [26] and OPERA [27]. We think of these as good exemplars
showing how models have evolved towards a full coverage of the organizational modeling dimensions.
Other models are mentioned at the end of the review.

2.2.1. TAEMS

In TAEMS (Task Analysis, Environment Modeling, and Simulation) the basic modeling concept
is the notion of task. In essence, by using TAEMS we can specify tasks structures composed by the
definition of tasks, resources, tasks relationships, and task groups. A task group is an independent collection
of interrelated tasks. There are two kinds of task relationships: Subtask and non-local effects relationships.
The subtask relationship links a parent task to child task explicitly defining a task decomposition tree.
Individual tasks that do not have child tasks are called methods. Methods are primitive tasks that
agents should be able to perform. Non-local effects are task relationships that have positive or negative
effects in the quality, costs or duration of the related tasks. Examples of possible non-local effects are:
Facilitates, enables, hinders, limits, etc.

TAEMS is a model specialized exclusively in the specification of the functional behavior of agent
organizations. A TEAMS specification, the task structure, only represents what should be done by
the agents alone (method definitions) or in groups (task groups). It tells nothing about the internal
structuring or explicit interactions to realize the specified tasks.
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2.2.2. ARG

AGR (Agent, Group, Role) is the evolution of the AALAADIN model [28]. In AGR agent, group
and role are the primitive modeling concepts. An agent is an active, communicating entity playing one
or more roles within one or more groups. No constraints are placed upon the architecture of an agent
or about its mental capabilities. A group is a set of agents sharing some common characteristics.
A group is the context for a pattern of activities and is used for partitioning organizations. An agent
can participate at the same time in one or more groups. Agents may communicate if and only if they
belong to the same group. A role is the abstract representation of a functional position of an agent in
a group. Roles are local to groups, and a role must be requested by an agent.

AGR is a model providing a minimalist structural view of organizations. There is no concepts for
modeling functional behavior. The specification of an organization, called organizational structure, is in
essence the depiction of the internal structure of the organization in terms of roles, roles constraints and
group structures. AGR also says that agents can have their joint behavior orchestrated by interaction
protocols, but the nature and the primitives to describe such protocols are left open.

2.2.3. STEAM

STEAM (a Shell for TEAMwork) is a model whose focus is teamwork. In STEAM an agent
organization is conceived as an agent team. Two separate hierarchies are used to specify the internal
structure and functional behavior of a team: A subteam and roles hierarchy (or organization hierarchy),
and a hierarchy of joint activities (or operator hierarchy). The subteam and roles hierarchy is a tree in
which the root represents a team, the internal nodes the possible subteams and the leaves the individual
agent roles. The joint activity hierarchy is also a tree whose nodes are called operators. Leaf operators
represent atomic activities. Internal operators represent a reactive plan, i.e., the decomposition of an
activity into interrelated subactivities. For each individual role or subteam, it is assigned one or more
operators from the activity hierarchy.

With STEAM we see a first model that combines the structural (subteams and role hierarchy) and
functional modeling dimensions (operator hierarchy).

2.2.4. MOISE+

MOISE+ (Model of Organization for multI-agent SystEms) is a model that explicitly divides
the specification of an agent organization in three parts: The structural, the functional and the deontic
specifications. The structural specification defines the internal structuring of agents through the
notions of roles, roles relations and group specifications. A role defines a set of constraints the agent has
to accept to enter in a group. Role relations are links (communication, acquaintance and authority) and
compatibilities from a source role to a target role. A group specification consists in role definitions,
subgroup definitions (group decomposition), links and compatibilities definitions, role cardinalities
and subgroup cardinalities. The functional specification describes how an agent organization usually
achieves its global goals, i.e., how these goals are decomposed (by plans) and distributed to the agents
(by missions). Global goals, plans and missions are specified by means of a social scheme. A social
scheme can be seen as a goal decomposition tree where the root is a global goal, the internal nodes are
plan operators (sequence, choice, parallel) to decompose goals into subgoals, and the leaves are atomic
goals that can be achieved by an individual agent. Missions are coherent sets of goals; hence, an agent
that is committed to a mission is responsible for the satisfaction of all its component goals. Finally,
the deontic specification associates roles to missions by means of permissions and obligations.

Like STEAM, MOISE+ addresses both the functional and structural dimensions of modeling.
However, MOISE+ goes further and provides concepts for modeling normative aspects (deontic
specification). The deontic concepts allow a flexible coupling between the functional and structural
specifications that is not seen in STEAM.
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2.2.5. ISLANDER

ISLANDER is a declarative language for specifying electronic institutions. According to ([26] p. 348),
“Institutions establish how interactions of a certain sort will and must be structured within
an organization”. In ISLANDER, an electronic institution is composed of four basic elements: A dialogic
framework, scenes definitions, a performative structure, and norms definitions. In the dialogic framework
it is defined the participating roles and their relationships. Each role defines a pattern of behavior
within the institution and any agent within an institution is required to adopt some of them. A scene
is a collection of agents playing different roles in interaction with each other in order to realize
a given activity. Every scene follows a well-defined communication protocol. The performative structure
establishes relationships among scenes. The idea is to specify a network of scenes that characterizes
more complex activities. The norms component of an electronic institution defines the commitments,
obligations and rights of participating roles.

With ISLANDER we perceive a change of focus from functional to structural behavior. Unlike the
previous models, there is no concepts for explicitly modeling goals and plans (goal decompositions).
All behavior is specified by means of direct interactions between roles (dialogs) and regulated by the
definitions of norms.

2.2.6. OPERA

In OperA (Organizations per Agents) an agent organization is specified in terms of four structures:
The social, the interaction, the normative and the communicative structures. In the social structure are
defined roles, objectives, groups and role dependencies. Roles identify activities and services necessary to
achieve social objectives. Groups provide means to collectively refer to a set of roles. Role dependencies
describe how the roles are related in terms of objective realization. The interaction structure defines
how the main activity of an agent organization is supposed to happen. This definition is done in
terms of scenes, scene scripts, scene transitions and role evolution relations. Scenes are representations of
specific interactions. A scene script is described by its players (roles or groups), scene norms (expected
behavior of actors in a scene) and a desired interaction pattern. Scene transitions are used to coordinate
scenes by defining the ordering and synchronization of the scenes. Role evolution relations specify
the constraints that hold for the role-enacting agents as they move from scene to scene respecting
the defined transitions. The normative structure gathers all the norms that are defined during the
specification of roles, groups, and scene scripts. Norms are specified as formal logical expressions.
Finally, the communicative structure describes the set of performatives and the domain concepts used
in the interaction structure by the role enacting agents.

OPERA is a model that addresses all the identified modeling dimensions. Nevertheless, we note
that the functional and structural modeling of OPERA is less developed than the others models,
the interactive modeling is comparable to what is found in ISLANDER, and the normative modeling is
the most elaborated of all models analysed. In OPERA norms are expressed in a formalism called LCR
(Logic for Contract Representation).

2.2.7. Other Models

The literature on organizational models is vast. For reasons of space and scope, we briefly mention
other models below:

• ODML—Organizational Design Modeling Language [29]—a minimalist organizational model that
provides elements to model and evaluate structural aspects of organizations.

• AGRE—Agent, Group, Role, Environment [30]—an extension of AGR that takes into account
physical and social environments. The main idea is that agents are situated in domains called
spaces. The spaces can be physical (areas) or social (groups).
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• MOISEInst [31]—an extension of MOISE+ that allows for Contextual Specifications (contexts
and transitions between contexts) and Normative Specifications (norms set) in the modeling of
an MAS organization.

• OMNI—Organizational Model for Normative Institutions [32]—an unification of two other models:
the OperA and the HarmonIA framework [33].

• MAS-ML—MAS Modeling Language [34]—a modeling language that extends UML with
elements of the TAO conceptual framework [35]. Regarding organizational modeling, one of
the distinguishing features of MAS-ML is that organization technically are an extension of
an AgentClass classifier. This means that organizations are conceived as kinds of agents.

• MACODO [36] is an organizational model for context-driven dynamic agent organizations
where organization, agent, role and context are abstract concepts related to the system structure;
capabilities, role positions and role contracts are related to the system functioning and there are
laws for governing inter-organizational (merge law) or intra-organizational (join law) interactions.
MACODO also provide a middleware that allows the implementation and execution of systems
modeled following the MACODO model.

In addition to these, we also find in the literature on agent oriented software engineering (AOSE)
methodologies a strong concern about organization modeling during the analysis and design of MAS.
The Gaia [37] and Tropos [38] are some examples of AOSE methodologies that incorporate the concept
of organization in their metamodels.

2.3. Models Comparison

More than large differences, we perceive several similarities and complementarity among the
conceptual structures of the organizational models analysed, as we show in Table 1. The commonalities
occur in two levels. In a first macro level, they occur as the dimensions of organizational modeling
that were identified. For example, all models except TAEMS present concepts to represent the internal
structure of organizations (structural dimension). All models except AGR and ISLANDER promote the
functional behavior modeling (functional dimension). ISLANDER and OPERA present very similar
concepts for representing the structural behavior of organizations (dialogical dimension). Normative
concepts appear in MOISE+, ISLANDER and OPERA (normative dimension).

Table 1. Organizational models comparison.

Model Functional Structural Dialogical Normative

TAEMS method, task, none none none
subtask relation,
non-local effect

AGR none role, group, interaction protocol none
role relation

STEAM operator, plan, team, individual role none none
dependency

MOISE+ goal, plan, mission role, group, role relations none deontic relations

ISLANDER none roles, role relations scene, transition, obligation
interaction protocols

OPERA objective, subobjective role, group, scene, transition, obligation
dependency interaction patterns

On a more detailed level of analyses, one can still identify various modeling patterns within each
dimension. In the next section, we propose an iterative integration method that rely on these patterns,
whose formal description is presented in Section 4.
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3. Method for the Integration of Organizational Models

We advocate that modeling dimensions for agent organizations are useful not only to analyse and
compare organizational models, but also they serve as a starting point for the conceptual integration
of organizational models. As we have mentioned in the Introduction, when the objective is to
provide organizational interoperability, a consistent conceptual integration of organizational models is
a fundamental and necessary element. In order to systematically perform such integration (having in
mind the problem of organizational interoperability), we have defined an iterative integration method
that is discussed in this section.

3.1. General Process

Let OM1, OM2, . . . , OMn be n organizational models to be integrated. In broad lines,
we understand by a conceptual integration of OM1, . . . , OMn the process of representing, correlating
and joining the conceptual structure (i.e., the modeling concepts and their interrelationships) of each
OMi obtaining as the final result an integrated metamodel MMint whose conceptual structure subsumes
the structure of all OMi. This idea of conceptual integration, as an iterative process, is depicted in
Figure 1.

Figure 1. General conceptual integration method.

More specifically, for n models we have n − 1 iterations. In the first one, three sequencial steps are
performed for OM1 and OM2:

1. Analysis and representation of the conceptual structure of OM1 and OM2 as metamodels MM1

and MM2, respectively. In the representation it is used a common metamodeling language.
2. Comparison of MM1 and MM2, and identification of correspondences between the conceptual

structure expressed in both metamodels. Such correspondences represent semantic overlapping
areas between MM1 and MM2, i.e., modeling concepts and concept relationships that are assumed
to have equivalent or similar interpretations. In general, the identified correspondences are
explicitly expressed as articulations art(MM1, MM2) between MM1 and MM2, as described next.

3. From MM1, MM2 and art(MM1, MM2), we produce an integrated metamodel MMint
#1 that (i) is as

expressive as both MM1 and MM2 (in the sense of retaining all concepts, relations and restrictions
found in both MM1 and MM2); and (ii) avoids unnecessary replication of elements which were
declared equivalent or similar by means of the correspondences between MM1 and MM2.

From the second iteration onward, the same three steps are performed for each OM3≤i≤n with the
following differences: (1) Instead of MM1 and MM2 we have MMi and MMint

#(i−2), respectively; MMi
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is the metamodel representing OMi and MMint
#(i−2) is the integrated metamodel from the previous

iteration; (2) in the place of art(MM1, MM2) we have art(MMi, MMint
#(i−2)) which is the articulation

between MMi and MMint
#(i−2); and (3) instead of MMint

#1 we produce MMint
#(i−1), i.e., the integrated

metamodel resulting from joining MMi to MMint
#(i−2).

3.2. Metamodel Representation

In the first step, we assume a metamodel based representation of the organizational models.
In this sense, our method adopts the way by which special purpose modeling languages are defined
in the area of Model-Driven Engineering. Given this assumption, there are several metamodeling
languages available for expressing the conceptual structure of the organizational models. Some of
these languages are KM3 [39], MOF/OCL [40,41], XMF [42] and Ecore [43]; this last is used in this
work, as illustrated in Sections 4 and 5.

3.3. Metamodel Alignment

In the second step, the definition of correspondences between modeling concepts is an inherently
heuristic process. One possible heuristic is to use the modeling dimensions identified in Section 2.
The basic idea is to divide the work along the modeling dimensions. For each model, we start by
classifying its modeling constructs in one or more dimensions. Then, for each dimension covered by
the models, we identify the corresponding modeling constructs. In this way, the functional modeling
concepts of one model are put into correspondence with the functional concepts of the other model,
the structural concepts of one model with the structural concepts of the other, and so on.

Another heuristic we put forward for aligning the conceptual structure of organizational models is
to take into account some basic conceptual patterns found in the models. These patterns are described
in Section 4 in the form of an abstract organizational model.

3.4. Metamodel Merging

Unlike the alignment, the merging of metamodels is a more deterministic process that can be fully
automated by using several algorithms reported in the literature [44–46]. In general, these proposals
for (meta)model merging can be described as merging based on graphs and morphisms. In this case,
the metamodels are abstractly conceived as graphs and the correspondences between two metamodels
assume the form of an articulation between graphs. If MM1 and MM2 are two metamodels viewed as
graphs, then an articulation art(MM1, MM2) between them is a triple composed of a graph Gart and
two morphisms m1 : Gart → MM1 and m2 : Gart → MM2:

art(MM1, MM2) =< Gart, m1, m2 >

Intuitively, the idea is that Gart is a representation of the common concepts and relations found in
M1 and M2, and the morphisms m1 and m2 are the links mapping this common concepts and relations
to their counterpart in both MM1 and MM2.

Once characterized as graphs, the merging of two metamodels MM1 and MM2 is in essence an
amalgamated sum (or pushout) of MM1 and MM2, modulo art(MM1, MM2):

merge(MM1, MM2) = MM1 ⊕art(MM1,MM2)
MM2 =< MMint, m′

1, m′
2 >

where MMint is the resulting integrated metamodel at the end of the iteration and m′
1 and m′

2
are morphisms m′

1 : MM1 → Gint, m′
2 : MM2 → Gint. The integrated metamodel MMint

consists of the union of the nodes (concepts) and edges (concept relationships) of MM1 and MM2,
where correspondent elements as described via art(MM1, MM2) are treated as only one element [44,46].
In this way MMint retains all non-duplicate information in MM1 and MM2 collapsing the elements
that art(MM1, MM2) declares redundant. The morphisms m′

1 : MM1 → Gint and m′
2 : MM2 → Gint
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describe how translating from the particular to the integrated metamodel. The inverse, translating
from the integrated to the particular metamodels, is performed via Gart, m1 and m2.

4. Abstract Conceptual Structure of Organizational Models

In this section we compare in detail the conceptual structure of the organization models discussed
in Section 2. With this comparison, we intend to explicitly show two main findings: (i) We can identify
patterns in the conceptual structure of organizational models inside each modeling dimension, if we
homogenize the terminology used and abstract some particularities of each model; and (ii) the patterns
identified can be consistently combined into a single conceptual structure (metamodel) that represents
in an essential and integrated way the conceptual structures of organizational models. In the next
subsections, we detail the basic patterns that emerge when one look more closely to the conceptual
structures of the organizational models proposed in the literature. Each subsection focus on a modeling
dimension previously discussed in Section 2. At the end, we combine the conceptual patterns obtaining
in this way the abstract organizational metamodel.

4.1. Functional Dimension

In the functional dimension, we found concepts for the specification of the functional behavior
of an agent organization, i.e., the collective behavior of agents when the internal structure of their
organization is not taken into account. Looking at Table 1, we can see that this dimension occurs in
TAEMS, STEAM, MOISE+ and OPERA. In these models, the functional specifications follow a general
pattern which is illustrated in Figure 2.

4.1.1. Graphs of Hierarchical Plans and Goal Relationships

In essence, the general pattern can be characterized as directed graphs where:

• The nodes correspond to goals (in MOISE+), operators (in STEAM), objectives (in OPERA) or tasks
(in TAEMS), to be achieved or done by the agents in an organization;

• the edges represent:
– Either the acyclic decomposition of a goal (operator, objective or task) into subgoals (suboperators,

subobjectives or subtasks), giving rise to the notion of hierarchical plans,
– or binary relationships between goals (operators, objectives or tasks), like the depends relation in

STEAM or the non-local effects in TAEMS.

Further, in each graph there is one root node that corresponds to a primary goal whose planning
and future achievement is prescribed by the structure of the graph. Such graphs of hierarchical plans
and goal relationships receive the names of “task group” in TAEMS, “operator hierarchy” in STEAM,
“social scheme” in MOISE+ and “role objective definition” in OPERA.

In Figure 2, the conceptual pattern identified in the functional dimension is represented by means
of an Ecore metamodel. The classes and references composing the metamodel are described in Table 2.
Additional contextual constraints are presented in Table 3. These are written in OCL and formalize the
static semantics of the metamodel (conceptual pattern).
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Figure 2. Similar functional specifications written in TAEMS, OPERA, STEAM and MOISE+,
which prescribe how an agent is supposed to proceed for buying a product in an electronic market
(example taken from [47]). The class diagram (Ecore metamodel) in the center of the figure represents
the conceptual pattern identifiable in the various approaches of functional modeling. The dotted
arrows detail what concepts are captured by what classes of the metamodel.
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Table 2. Functional specification pattern: Classes description.

Class Description

FSpec Represents the concept of functional specification, i.e., an organizational specification
restricted to the functional dimension.

GoalDef Part of a functional specification that represents the definition of a goal. Abstracts the concepts
of task in TAEMS, operator in STEAM, goal in MOISE+, or objective in OPERA.

HPlanDef Part of a functional specification that represents the definition of a graph of hierarchical plans
and goal relationships. HPlanDef is characterized by a unique root goal (the GoalDef referenced
by HPlanDef::rootGoal), one or more goal decompositions (referenced by HPlanDef::goalDec)
and zero or more goal relationships (referenced by HPlanDef::goalRel). Abstracts the concepts of
task group in TAEMS, operator hierarchy in STEAM, social scheme in MOISE+ and role objective
definition in OPERA.

GoalDec Part of a HPlanDef graph that represents the general concept of goal decomposition, i.e., the
decomposition of one major goal(GoalDec::goal reference) into one or more minor direct
subgoals(GoalDec::subGoal reference). Abstracts the relationship of subtasks or local effects
in TAEMS, the concept of plan in STEAM and MOISE+, and the subobjective definitions in
OPERA.

GoalRel Part of a HPlanDef graph that represents goal relationships directed from one source goal)
GoalRel::source reference) to one target goal (GoalRel::target reference. Abstracts the
concept of non-local effects (facilitates, enables, etc.) in TAEMS and the depends relation in STEAM.
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Table 3. Functional specification pattern: Contextual constraints.

Class Auxiliary Definitions

HPlanDef ::getAllSubGoal(goal:GoalDef) : Set(GoalDef), a query that returns the set of all subgoals in
which a given goal is direct or indirectly decomposed in the context of a HPlanDef graph, via
goal decomposition referenced by HPlanDef::goalDec

In OCL:
context HPlanDef

def: getAllSubGoal(goal : GoalDef) : Set(GoalDef)

= getSubGoal(goal) -> union(

getSubGoal(goal) -> collect (sg | getAllSubGoal(sg)));

def: getSubGoal(goal : GoalDef) : Set(GoalDef)

= getGoalDec(goal) -> collect (gd | gd.subGoal);

def: getGoalDec(goal : GoalDef) : Set(GoalDec)

= goalDec(goal) -> serlect (gd | gd.goal = goal);

Contextual Constraints

(1) In the context of a HPlanDef graph, all decompositions of a goal into subgoals must be
reachable from the root goal. In other words, each goal decomposed in subgoals in a
HPlanDef graph is either the root goal itself or a direct or indirect subgoal of the root goal.
In OCL:

context HPlanDef

inv: goalDec -> forAll (gd |

root.Goal = gd.goal or

getAllSubGoal(rootGoal) -> includes(gd.goal) )

(2) In the context of a HPlanDef graph, the source and target goals of all goal relationships
must pertain to the collection of subgoals of the root goal of the graph. In other words,
each goal relationship must connect only subgoals of the root goal of a HPlanDef graph.
In OCL:

context HPlanDef

inv: getAllSubGoal(rootGoal) -> includesAll(

goalRel -> collect (gr | Set(gr.source, gr.target)))

(3) Restricted to goal decomposition, all HPlanDef graphs must be acyclic. In other words,
in the context of a HPlanDef graph, no goal can be, direct or indirectly, a subgoal of itself.
In OCL:

context HPlanDef

inv: not getAllSubGoal(rootGoal) -> includes(rootGoal)

and getAllSubGoal(rootGoal) -> forallAll( sg |

not getAllSubGoal(sg) -> includes(sg) )

4.1.2. Particularities

Besides the common aspects represented in the functional specification pattern (Tables 2 and 3),
there are some particular aspects in the organizational models that should be highlighted.

In TAEMS, there are the concepts of resources and non-local effects between tasks and resources.
These concepts were not considered as part of the functional specification pattern presented because
they occur only in TAEMS.

In MOISE+, there is no notion of binary relationships between goals. There is, however, the particular
notions of mission and preferences among missions, which do not occur in the other organization models
analysed, but only in MOISE+. Thus, like the concepts of resources and resource non-local effects of
TAEMS, the notions of mission and mission preferences also do not appear in the functional specification
pattern presented.

In OPERA, the functional modeling is done implicitly as part of a role definition (structural
modeling). In this way, we have a functional modeling with little resources when compared to what
can be found in TAEMS, STEAM and MOISE+. Quoting [27], a role definition is done specifying one or
more role objectives γ and
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“[each] role objective γ can be further described by specifying a set of subobjectives that must
hold in order to achieve objective γ. Subobjectives give an indication of how an objective
should be achieved, that is, describe the states that must be part of any plan that an agent
enacting the role will specify to achieve that objective. However, subobjectives abstract from
any temporal issues that must be present in a plan, and as such must not be equated with
plans.” (pp. 60–61)

From this passage, we conclude that there is no explicit notion of hierarchical plans in OPERA.
Even so, the general notion of goal decomposition can be identified in OPERA, as we have done in the
previous subsection, by making it to correspond to the notion of subobjectives specification in OPERA
(see Figure 2).

Lastly, we note that the abstract concepts of goal decomposition and goal relationships admit concrete
subtypes of various kinds in the organizational models analysed. For instance, in TAEMS, the kinds
of goal decomposition are denominated quality accumulation functions (qafs) and the kinds of goal
relationships are named non-local effects (nles): Examples of qafs are q_seq_last (all subtasks must
be completed in order, and overall quality is the quality of last task), q_sum_all (all subtasks must
be completed in no specific order, and overall quality is the aggregate quality of all subtasks) and
q_exactly_one (only one subtask may be performed, and overall quality is the quality of the single task
performed); regarding specific nles, two of them are facilitates (when information from one task reduces
or changes the search space making some other task easier to solve) and enables (when information
from one task is a prerequisite for doing another task). In STEAM, there are two basic concrete subtypes
of goal decomposition: AND (when all suboperators must be done to realize a given operator), and OR
(when at least one suboperator must be done to realize a given operator), which are complemented
by the depends relationship (that establishes a partial order for doing operators). Finally, in MOISE+,
there is not the concept of goal relationship, only three subtypes of goal decomposition: Sequence
(when subgoals must be achieved in some order to achieve a given goal), choice (when only one subgoal
must be achieve to fulfill a given goal), and parallelism (when all subgoals can be pursued at the same
time in order to achieve a given goal).

4.2. Structural Dimension

Forming the structural dimension, we have modeling concepts used to specify the internal
structure of an agent organization in which the agents must engage to become an active member of
the organization. From Table 1, five organizational models provide concepts for creating structural
specifications. They are: AGR, TAEMS, MOISE+, ISLANDER and OPERA. Looking carefully at the
structural specifications one is able to produce using these models, like the ones shown in Figure 3,
we realize that the structural dimension of organizational modeling can also be characterized by
an abstract conceptual pattern.

4.2.1. Graphs of Roles and Groups

In the structural dimension, the organizational models present three fundamental concepts:
Role, group and role relationships. The instantiation of these three interrelated concepts forms the
specification of the internal structure of agent organizations.

In essence, structural specifications can be characterized directed graphs where:

• The nodes correspond
– either to the definition of groups (in AGR, MOISE+ and OPERA) or teams (in STEAMS),
– or to the definition of roles (in all models);

• the edges represent
– either the decomposition of a group in subgroups (or a team in subteams), forming a group

(team) hierarchy,
– or binary relationships between roles,
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– or links from a role to a group (or subteam) in which the role can be played by agents.
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Figure 3. Similar structural specifications written in STEAM, AGR, OPERA, MOISE+ and ISLANDER,
for a team of agents part of a simulated soccer game (example taken from [24,25]). The team is composed
of eleven players (one goalkeeper, three backs, five mid-filders and three attackers) and one coach, and is
divided in three groups: Defense, midfield and attack. The class diagram (Ecore metamodel) in the center
of the figure represents the conceptual pattern identifiable in the various approaches of structural
modeling. The dotted arrows detail what concepts are captured by what classes of the metamodel.

With regard to the group (team) hierarchy, there are two situations present in the models. On the
one hand, we have a unique root group that represents the organization as a whole (the hierarchy is
a rooted tree), what occurs in STEAM, MOISE+ and OPERA. On the other hand, there is no explicit
root group, or even the decomposition of groups in subgroups, what is the case of AGR. Regarding the
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binary relationships between roles, in general they are directed and, in the models AGR, MOISE+ and
ISLANDER they are subdivided in various kinds with diverse interpretations.

Such graphs of roles and groups receive the names of “organization hierarchy” in STEAM,
“organizational structure” in AGR, “structural specification” in MOISE+. In ISLANDER, they are part
of the definition of a “dialogic framework”. In OPERA, they form the “social structure”.

In Figure 3, the conceptual pattern identified in the structural dimension is represented by means
of an Ecore metamodel. This metamodel is presented in more detail in Table 4.

Table 4. Structural specification pattern.

Class Description

SSpec Represents the concept of structural specification, i.e., organizational specifications restricted
to the structural dimension.

GroupDef Part of a structural specification that represents a group definition. Each group definition is
characterized by the declaration of the roles that agents can play in the group (the RoleDef

referenced by GroupDef::rootDef), and by possible subgroup definitions (referenced by
GroupDef::subGroup). Abstracts the concepts of group structure in AGR, subteam role in
STEAM, group specification in MOISE+, and group definition in OPERA.

RoleDef Part of a structural specification that represents a role definition. Abstracts the concepts of
role in AGR, MOISE+, ISLANDER and OPERA, and individual role in STAEMS.

RoleRel Part of a structural specification that represents a direct relationship between two roles:
a source role referenced by RoleRel::source, and a target role referenced by RoleRel::target.
Abstracts the concept of role constraints in AGR, role relations and inheritance in MOISE+,
static separation of duties (ssd) and subroles in ISLANDER.

Auxiliary definitions

GroupDef ::getAllSubGroup() : Set(GroupDef), a query that returns the set of all group
definitions that, direct or indirectly, are subgroups of a given GroupDef via
the GroupDef::subGroup reference. In OCL:

context GroupDef

def: getAllSubGroup( ) : Set(GroupDef)

= subGroup(goal) -> union(

subGroup -> collect (sg | sg.getAllSubGroup()));

Contextual Constraints

(1) All group definition shall reference at least one role definition or one subgroup definition, or both.
In OCL:

context GroupDef

inv: roleDef -> notEmpty() or subGroup -> notEmpty()

(2) No group definition can be, direct or indirectly, a subgroup of itself, i.e., the group definitions shall
form an acyclic directed graph.
In OCL:

context GroupDef

inv: not self.getAllSubGroup() -> includes(self)
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4.2.2. Particularities

Besides the similarities that give rise to the structural specification pattern, the organizational
models also differ in some particular points. Four of these points deserve mention.

The first one is related to the definition of subgroups. In STEAM and MOISE+, the definition
of subgroups forms a real hierarchy, i.e., an non cyclic graph. On the other hand, in AGR and
OPERA, there is no explicit subgroup relationships between group definitions. From structural
specification pattern perspective, this fact can be expressed in the following way: In AGR and
OPERA, for each group definition g (instance of GroupDef), the collection of its subgroups is empty,
i.e., g.subGroup = {}. On the other hand, in STEAM and MOISE+, there exist group definitions g

such that g.subGroup �= {}.
The second point is the notion of cardinality that is found in AGR and MOISE+ but not in the other

models. Cardinalities can be defined for roles or subgroups. In the case of roles, cardinalities indicate
a maximum and a minimum number of agents allowed per role in the context of a group. Regarding
cardinalities of groups, they determine how many subgroups of a given type can be created in the
context of a group. In AGR, cardinalities are attributes of role and group. In MOISE+, they are attributes
of the association between role and group, or group and subgroup. For this reason, and observing
that they are not an explicitly feature of the majority of the models, we have chosen not to explicitly
represent cardinalities in the structural specification pattern.

As third point, we observe that the abstract notion of structural relationships between roles
(class RoleRel, Table 4) admits diverse concrete subtypes, analogously to what happens with the
notion of goal relationships (class RoleRel, Table 2). In AGR, for instance, there exist two subtypes:
Correspondence (which states that agents playing one role will automatically play another one) and
dependency (which rules out the possibility of an agent to play one role if it is not playing another role).
In MOISE+, three subtypes: Links (which declare the possible relationships of communication, authority
and acquaintance between roles), compatibility (which determines that two roles can be played at the
same time by the same agent) and inheritance (which states that one role, besides its own features,
also has all the features, like links and compatibilities, of another role). In ISLANDER, two subtypes:
The concept of subroles (which is similar to the concept of inheritance in MOISE+), and the concept of
static separation of duties (which means the opposite of the concept of compatibility in MOISE+).

In OPERA, there is only one type of binary directed relationship between roles: The dependency.
Nevertheless, differently from the other organizational models, the concept of dependency between roles
in OPERA is not properly a structural but rather a functional relationship. In other words, in OPERA,
the dependency relationship reflects directly the decomposition of a goal into subgoals, elements of the
functional dimension. When one of the subgoals defined in the scope of a role is a goal of another role,
then there exist the dependency relationship between the two roles in OPERA. Such idea is different
from the structural dependency present in AGR, which indicates that the fact of playing a given role is
a prerequisite for playing another role.

The last point that should be mentioned concerns the nature of the group definitions. In all
analysed models, except MOISE+, agents playing any roles in the same group may, in principle,
exchange messages. Further, in the absence of explicit constraints, such as incompatibilities or
dependencies, the agents are free to play the roles they wish in a given group. In MOISE+, we have
the opposite situation. If there is no explicitly stated communications links or compatibility relations
between roles, the agents are not allowed to exchange messages or play more than one role in the
same group. Moreover, in MOISE+, communication links or compatibility relations are not limited
to a single group, but can be specified between roles defined in different groups leading to possible
inter-group collaborations. In other models, such as AGR, this inter-group collaboration can also be
achieved by means explicitly defined correspondence links between two roles in different groups.
In this way, an agent playing one of the roles automatically plays the other role and can participate in
more than one group at the same time.
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4.3. Dialogical Dimension

The dialogical dimension is characterized by concepts to prescribe (or describe) the direct
interaction by means of message exchanging that occurs between role playing agents in order to achieve
organizational goals. Among the organizational models considered in this work, only ISLANDER and
OPERA offer explicit concepts for dialogical modeling (see Table 1). In these two models, the dialogical
specifications are written according to approximate conceptual structures, as can be seen in Figure 4.
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Figure 4. Similar dialogical specifications written in OPERA and ISLANDER for an agent based
conference management system (example taken from [27] chapter 3). The class diagram (Ecore
metamodel) in the center represents the conceptual pattern identifiable in the two approaches of dialogical
modeling. The dotted arrows detail what concepts are captured by what classes of the metamodel.
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4.3.1. Hypergraphs of Scenes

On a macro level, both in ISLANDER and in OPERA, the direct interactions by message
exchanging are partitioned into scenes. Scenes are structured and coordinated by means of directed
hypergraphs (directed graphs where some edges, called hyperedges, can connect any number of sources
and target nodes)in which:

• Nodes correspond to the definitions of scenes;
• hiperedges represent partial ordering and/or synchronization relationships from many source

scenes to many target scenes, giving rise to the concept of scene transitions.

In a well formed hypergraph of scenes, there is:

• An initial scene, i.e., the node from which agents playing roles have access to the other scenes of
the hypergraph. Starting in the initial scene and following the transitions, all the scenes that make
up a hypergraph should be achievable;

• a final scene, i.e., the node in which the dialogic participation of agents within an organization
ends successfully. As the dual of the initial scene, the final scene has to be achievable from any
scene in a hypergraph, otherwise the hypergraph of scenes is not well formed.

In ISLANDER, the hypergraphs of scenes are named “performance structures”, and in OPERA
they are called “interaction structures”.

On a micro level, the interactions within each scene are governed by one or more predefined
dialogue scripts. These scripts correspond to the concepts of scene protocol in ISLANDER and interaction
pattern in OPERA. Dialogue scripts are not detailed in Figure 4. The reason is that the intra-scene
(micro level) dialogical specifications have distinct natures both in ISLANDER and in OPERA, as will
be discussed in the sequel.

In Figure 4, the conceptual pattern identified in the dialogical specifications of ISLANDER and
OPERA is captured by means of an Ecore metamodel. This metamodel is described in details in
Tables 5 and 6.

4.3.2. Particularities

In both ISLANDER and OPERA, the dialogical specification consists in a network of scenes in
which all possible or desirable episodes of direct interaction within an organization are planned and
orchestrated. As mentioned earlier, this common structure takes place at the macro level. This means
that the joint activity characteristic of agent organization, under a broad point of view, is ruled by the
presented hypergraphs of scenes.

The main difference between ISLANDER and OPERA occurs at the micro level. In other words,
restricting the point of view to each particular scene, instead of the network of scenes, the models
analyzed have different ways to specify how agents can or should interact.

On the one hand, in ISLANDER, there is the notion of scene protocol. In a scene protocol,
one represents in detail a communication protocol in which are specified all the involved roles, and the
sequencing of all possible message exchanges (illocution schemes), in On the other hand, in OPERA,
there is the notion of interaction pattern. Unlike scene protocols, an interaction pattern does not
determine in detail the exchange of messages in a given scene. Instead, it delimits a partial order
between scene states (landmarks) towards achieving the objectives related to the scene. Any detailed
communication protocol used in a scene should respect the established interaction pattern.
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4.4. Normative Dimension

The normative modeling dimension is characterized by the general concept of norm (permissions,
obligations, etc.). Norms occur in organizational specifications as a mechanism that interrelates and
complements the functional, structural and dialogical specifications. Three organizational models we
have analyzed present concepts to create normative specifications. They are: MOISE+, ISLANDER
and OPERA (see Table 1).

4.4.1. The Concept of Norm

In the organizational models analyzed, unlike the other dimensions, the normative specifications
are not created as graph like structures. Instead, they assume the form of textual normative expressions.
This general pattern is expressed in Table 7.

Table 5. Dialogical specification pattern: Classes description.

Class Description

DSpec Represents the concept of dialogical specification, i.e., an organizational specification
restricted to the dialogical dimension.

SceneGraph Part of a dialogical specification that represents the definition of a hypergraph of scenes.
SceneGraph is characterized by one or more scene definitions (referenced by
SceneGraph::sceneDef), and several scene relationships (referenced by SceneGraph::sceneRel).
Among the scenes, there are one initial scene (referenced by SceneGraph::initial) and one
final scene (referenced by SceneGraph:: final). Abstracts the concepts of performance
structure in ISLANDER and interaction structure in OPERA.

SceneDef Part of a hypergraph of scenes that represents the definition of a scene. Each scene definition
is characterized by the declaration of a dialogue script, via reference SceneDef::dialogDef.
Abstracts the concepts of scene definition in ISLANDER and in OPERA.

SceneRel Part of a hypergraph scene that represents a directed relationship from one or more source
scenes (referenced by SceneRel::source), to one or more target scenes (referenced by
SceneRel::target). Abstracts the concepts of scene transitions in OPERA and in ISLANDER.

DialogDef Part of of a dialogical specification that represents the definition of a dialogue script. Abstracts
the concepts of scene protocol in ISLANDER, and interaction pattern in OPERA.
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Table 6. Dialogical specification pattern: Contextual constraints.

Class Auxiliary Definitions

SceneGraph OCL queries that return immediate predecessors and successors of a scene definition
in the context of a hypergraph of scenes.

context SceneGraph

def: getSourceSceneDef(sceneDef : SceneDef): Set(SceneDef)

= getSceneRelHavingTarget(sceneDef) -> collect(sr | sr.source);

def: getTargetSceneDef(sceneDef : SceneDef): Set(SceneDef)

= getSceneRelHavingSource(sceneDef) -> collect(sr | sr.target);

def: getSceneRelHavingTarget(sceneDef : SceneDef): Set(SceneRel)

= sceneRel) -> select(sr | sr.target -> includes(sceneDef));

def: getSceneRelHavingSource(sceneDef : SceneDef): Set(SceneRel)

= sceneRel) -> select(sr | sr.source -> includes(sceneDef));

Contextual Constraints

(1) The initial and final scenes are scenes defined in the context of the same SceneGraph.
In OCL:

context SceneGraph

inv: sceneDef-> includes(initial) and

inv: sceneDef-> includes(final)

(2) In a SceneGraph, there should be no relationships arriving at the initial scene or departing
from the final scene. In OCL:

inv: getSceneRelHavingTarget(initial)-> isEmpty() and

inv: getSceneRelHavingSource(final)-> isEmpty()

(3) In a SceneGraph, all scene definitions must directly or indirectly be reachable from the
initial scene as well as lead to the final scene, via the scene relationships. In OCL:

context SceneGraph

inv: sceneDef-> forAll(sd |

getTargetClosure(Set{initial} -> includes(sd) and

getSourceClosure(Set{final} -> includes(sd))

def: getTargetClosure(sceneSet : Set(SceneDef)): Set(SceneDef)

= let newSceneSet = sceneSet-> collect(scene |

getTargetSceneDef(scene) -> including(scene)

) in

if sceneSet -> includesAll(newSceneSet)

sceneSet

else

getTargetClosure(newSceneSet)

endif;

def: getSourceClosure( sceneSet : Set(SceneDef)): Set(SceneDef)

= let newSceneSet = sceneSet-> collect(scene |

getSourceSceneDef(scene) -> including(scene)

) in

if sceneSet -> includesAll(newSceneSet)

sceneSet

else

getSourceClosure(newSceneSet)

endif;

(4) Every scene relationship must only involve scenes defined within the context of the same
SceneGraph. In OCL:

context SceneGraph

inv: sceneRel-> forAll(sr |

sceneDef -> includesAll(sr.source) and

sceneDef -> includesAll(sr.target))
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4.4.2. Particularities

In ISLANDER, norms are written as logical expressions in accordance with the format:
(s1, γ1) ∧ ... ∧ (sm, γm) ∧ e1 ∧ ... ∧ en ∧ ¬((sm+1, γm+1) ∧ ... ∧ (sm+n, γm+n)) → obl1 ∧ ... ∧ oblp

where (s1, γ1), ..., (sm+n, γm+n) are pairs of scenes and illocution schemes, e1, ..., en are boolean expressions
over illocution scheme variables, ¬ is a defeasible negation, and obl1, ..., oblp are obligations. “The meaning
of these rules is that if the illocutions (s1, γ1), ..., (sm+n, γm+n) have been uttered, the expressions
e1, ..., en are satisfied and the illocutions (sm+1, γm+1), ..., (sm+n, γm+n) have not been uttered,
the obligations obl1, ..., oblp hold” ([48] p. 38).

In OPERA, norms are specified using logical expressions written in a formalism called
LCR (Logic for Contract Representation). There are three types of norms: Obligations, permissions
and prohibitions. The following excerpt from ([27] p. 149) summarizes the syntax for writing
these modalities.

<Norm>::= OBLIGED(<id>,<Norm-Form>)|PERMITTED(<id>,<Norm-Form>)|

FORBIDDEN(<id>,<Norm-Form>)

OBLIGED(<id >,<Norm-Form>) represents an obligation of the agent playing the role referenced
by <id> in achieving the state <Norm-Form> described as an LCR formula ([27] chapter 4). Based on
the notion of obligation, the concepts of permission and prohibition are defined. A permission
PERMITTED<id>,<Norm-Form>) is an abbreviation for ¬OBLIGED(<id>,¬<Norm-Form>). In turn,
a prohibition FORBIDDEN(<id>,<Norm-Form>) means the same as OBLIGED(<id>, ¬<Norm-Form>).

Table 7. Normative specification pattern: Class description.

Class Description

NSpec Represents the concept of normative specification, i.e., organizational specifications restricted to the
normative dimension.

NormDef Central part of a normative specification. Represents the definition of a norm. In general, norm
definitions are characterized by a normative expression (attribute NormDef::normExp) that refers to
elements found in the structural, functional and dialogical dimensions. The form and meaning of
the normative expression vary considerably in the organizational models analyzed. Abstracts the
concepts of deontic relation found in MOISE +, and the particular concepts of norm found in
ISLANDER and OPERA.

Finally, in MOISE+, the general concept of norm is translated into the notion of deontic relations
that link roles to missions. There are two types of deontic relations, permissions and obligations:

“A permission per(ρ, m, tc) states that an agent within the role ρ may be committed to
the mission m. Temporal constraints (tc) are established for the permission, that is, they
determine a set of time periods when the permission is valid ... An obligation obl(ρ, m, tc)
states that an agent within the role ρ is required to commit to the mission m in the time
periods determined by tc.” ([49] pp. 46–47)

In this case, the normative expressions per(ρ, m, tc) and obl(ρ, m, tc) are less comprehensive than
what is found in OPERA and ISLANDER.
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4.5. Abstract Organizational Metamodel

All the patterns identified in the organizational modeling dimensions, and previously discussed
in Sections 4.1–4.4, can be combined to form an abstract organizational metamodel. This abstract
metamodel, as shown in Figure 5, characterizes the common conceptual structure of the organizational
models analyzed.

OSpec

DSpecNSpec

SSpec

GroupDef

RoleDef RoleRel

* roleDef

* subGroup

1

target

1source

DialogDef

SceneDef

SceneGraph

SceneRel

* sceneRel

1..*

target

1..* source

1..*dialogDef

1 initial 1 final

*

sceneDef

FSpec

GoalDec GoalDef GoalRel

HPlanDef

1 rootGoal1..*goalDec * goalRel

1 goal 1 source

1

target

1..*

subGoal

Functional Dimension

Dialogical Dimension

Structural Dimension

Organizational
Specification

Internal
Organizational Structure

Organizational Behavior
Dialogical Viewpoint

Organizational Behavior
Functional Viewpoint 

normExp: String

NormDef

 
Interrelates

and/or
Regulates

 
Complementary

Viewpoints

Figure 5. Abstract organizational metamodel.

By means of this abstract organization metamodel, we can see that the normative dimension
works as a glue among the three others. It interrelates and/or regulates the organization behavior (be it
functional or dialogical) and the organizational internal structure (in the sense of allowing or forcing
the association of certain functional and/or dialogical elements with certain structural elements). Last,
but not least, it makes it clear that structuring of organizational modeling dimensions greatly helps in
making the notions independent and self-contained, while linked via normative bonds.
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5. Integration Method Application

In this section we present an application of the integration method described in Section 3, guided
by conceptual patterns identified in Section 4. We show how to apply the method to integrate the AGR,
STEAM and MOISE+ models. Since a complete description of the integration process involve many
details, we will restrict the discussion to the structural dimension.

As shown in Figure 1, we need to perform two iterations of the method to integrate three models.
First we merge AGR and STEAM. Then, we merge MOISE+ to the result of the previous iteration.

5.1. First Iteration

The representation of AGR and STEAM as Ecore/OCL metamodels is shown in Figure 6. Below,
on the left side, we have the AGR metamodel; on the right side, the STEAM metamodel (both restricted
to the structural dimension). Above, mediating the alignment of the metamodels, we see the conceptual
pattern of Section 4.2.

Figure 6. Alignment between AGR and STEAM.

In the alignment, the organizational structure of AGR and the organization hierarchy of STEAM are
identified as similar specifications. The concepts of group (AGR) and subteam (STEAM) are declared
similar concepts, both identified with the general concept of group definition. The same happens with
the concepts of role (AGR) and role (STEAM), both identified with the general concept of role definition.

Intuitively, when we take into account only the terms used, these basic correspondences between
AGR and STEAM are reasonable. However, when we look more closely to the specific relationships
among the concepts, it is possible to see that there is a stronger coupling between subteam and
role in STEAM than the one that exists between the correspondent concepts of group and role
in AGR. In STEAM, the notion of role is abstract, being materialized both in the specification of
activities for groups of agents as a whole and in the specification of activities for individual agents
(individual role). This notion is represented in the metamodel as an abstract class STEAM::Role with two
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concrete subtypes STEAM::SubTeam and STEAM::IndividualRole. As a consequence, every instance
of STEAM::SubTeam besides corresponding to a group definition is also a kind of role definition.

This coupling between the concepts of group and role definitions is absent in AGR and is not foreseen
in the structural pattern of Section 4.2. To easy the merging of these different views regarding the nature
of the concepts, one possibility is to interpret the generalization relation between STEAM::SubTeam

and STEAM::Role as a composition relationship, similar to the application of the “replace inheritance
with delegation” refactoring, as proposed in [50]. When this is done we posit a derived reference
from STEAM::SubTeam to STEAM::Role named supRoleDef. This derived reference when used in the
place of the original generalization decouples the concepts of group definition and role definition while
permitting to represent the same information in a slightly different way.

In Figure 6 there are two other derived references: roleDef and subGroup; both extracted from
the original reference role between STEAM::SubTeam and STEAM::Role. The rationale for these is to
make explicit that, in reality, not only role definitions but also group definitions can be associated with
a subteam via the reference role. Once these derived references become explicit, we can do a more fine
grained matching between the STEAM metamodel and the corresponding abstract concepts of group
and role definition.

Ending the comparison between the metamodels, we note that in AGR the group definitions cannot
be decomposed into sub groups and there is the concept of role relation materialized as role constraints
(dependencies and correspondences). In STEAM, there is no explicit role relations and no explicit role
cardinality. In the case of individual role there is an implicit cardinality of min=1 and max=1.

Finally, concluding the iteration, we merge the metamodels taking into account the correspondences
identified. The resultant integrated metamodel MMint

#1 is shown in Figure 7, where we retain the
terminology of the abstract structural pattern of Section 4.2. See online version for colors. The elements
added to the structural pattern from the specific metamodels are depicted in blue. The elements
marked in red in the STEAM metamodel (Figure 6) are not included in the integrated metamodel,
being replaced by derived references aforementioned. Essentially, MMint

#1 is an almagamated sum of the
AGR and STEAM metamodels (viewed as graphs) modulo the alignment (articulation) between AGR
and STEAM, as describe in Section 3.4. For simplicity, the morphisms from MMint

#1 to the AGR and
STEAM metamodels are omitted.

5.2. Second Iteration

In the second iteration, we integrate the MOISE+ metamodel (structural dimension) to the
resulting metamodel MMint

#1 obtained in the previous iteration. The MOISE+ metamodel is shown
on the left side of Figure 8. On the right side, we have MMint

#1 (from Figure 7) augmented with
derived classes and relationships. On the middle, there is the articulation graph between MOISE+ and
MMint

#1 metamodels. Since the articulation graph preserves the class and reference names from MMint
#1 ,

for simplicity we have omitted the morphism m2 : Gart → MMint
#1 .

In MMint
#1 there are three classes GroupDef, RoleDef and RoleRel which represent the main

concepts for the structural specification of agent organizations. In MOISE+, the correspondent classes
are GroupSpecification, Role and RoleRelation, respectively. Similar to class MMint

#1 ::GroupDef,
class MOISE+::GroupSpecification represents the definition of a group in which it is possible to
specify roles and subgroups. Like MMint

#1 ::RoleDef, the class MOISE+::Role denotes a role definition
associated with group definitions. Both MMint

#1 ::RoleRel and MOISE+::RoleRelation characterize role
relationships from a target to a source role definition.

Apart from this basic agreement, there are some particularities regarding how these concepts
occur in MOISE+ that leads to an extension of MMint

#1 . One first particularity is the way in which
group definitions are linked to role definitions and subgroups. In the integration of AGR and STEAM,
group definitions are linked to role definitions and to subgroups by means of the roleDef and subGroup

references, respectively. In the MOISE+ metamodel the correspondent links are not represented by
references but by the classes GroupRole and SubGroup, respectively.
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Figure 7. Integrated metamodel MMint
#1 .

By means of MOISE+::GroupRole and MOISE+::SubGroup, the same role definition or subgroup
can have different cardinalities, one for each group definition in which the definition is referenced.
The cardinalities are represented by the attributes max (for the maximum number of agents per role,
or subgroups in a group) and min (for the minimum number).

In MMint
#1 this flexibility is not possible as long as the cardinalities are declared directly as

attributes of the role definition, and not as attributes of the relation between a group definition and role
or subgroup definition. In this way, we note that the information about role and group cardinalities
of MOISE+ can not always be expressed in the current integration of ARG and STEAM. However,
the converse is always possible, as it can be shown by means of the derived classes MMint

#1 ::RoleRef

and MMint
#1 ::GroupRef in the upper right of Figure 8.

The derived class MMint
#1 ::RoleRef is the implict correspondent of MOISE+::GroupRole. Similar

to class MOISE+::GroupRole, class MMint
#1 ::RoleRef has attributes max and min and makes reference

a single role definition. In the context of MMint
#1 ::GroupDef the derivation of MMint

#1 ::RoleRef is
specified by the invariant GD2 shown in the bottom right of Figure 8. This invariant establishes
that for each instance rd of MMint

#1 ::RoleDef (referenced by roleDef), there must exist (be created)
an instance rr of MMint

#1 ::RoleRef that points to rd and has the attributes rr.min = rd.min and
rr.max = rd.max.

By its turn, the class MMint
#1 ::GroupRef is the derived correspondent of MOISE+::SubGroup.

In the context of MMint
#1 ::GroupDef the derivation of MMint

#1 ::GroupRef is specified by the invariant
GD3 shown in the bottom right of Figure 8. The invariant establishes that for each instance sg

of MMint
#1 ::GroupDef (referenced by subGroup), there must exist (be created) an instance gr of

MMint
#1 ::GroupRef pointing at sg and having the attributes gr.min = sg.supRoleDef.min and

gr.max = sg.supRoleDef.max.
As long as they are more expressive, the classes RoleRef and GroupRef are used in the articulation

graph replacing the references roleDef and subGroup present in MMint
#1 . Therefore the replaced

references are marked to be left out during the merge step at the end of the iteration. In addition,
the attributes max and min in the class MMint

#1 ::RoleDef are marked once the same information is now
represented as attributes of RoleRef and GroupRef in the articulation graph.
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A second peculiarity of MOISE+ concerns the possibility of defining links and compatibilities
between roles as part of a group specification. In this regard, there are two observation to be made. Firstly,
links and compatibilities are new kinds of role relation, not present in MMint

#1 . In fact, we observe that
the link and compatibility concepts, in essence, differ from the dependency and correspondence concepts
found in AGR. On the one hand, in MOISE+, a link enable the acquaintance, communication, or authority
between roles; and a compatibility indicates that an agent playing a role can also play another role.
On the other hand, in AGR, a dependency indicates that an agent only can play a role if it previously
commits itself to another one; and a correspondence means that to play a role automatically implies to
play another role.

The second observation is about the nature of the group definition concept behind the notions of
links and compatibilities. By default, a group definition in MOISE+ does not enable the compatibility or
any link between roles. In other words, if not stated explicitly, an agent playing a role do not have
permission to play another role, or even to interact with agents playing another role, neither in the
same nor in other groups. If compatibilities and links are needed, this must be explicitly specified in the
group definition.

Conversely, in AGR and STEAM a group definition does not implies a priori any restriction regarding
compatibility and link among the roles. With the exception of explicit dependencies relationships and
cardinality restrictions, in AGR and STEAM specifications the agents are free to play the roles they
want and are not blocked with respect to interacting with any agent playing some other role.

In the articulation presented in Figure 8, these observations are made explicit by means of
the derived attributes allowsComm, allowsAcqu and allowsComp in the context group definitions.
For MOISE+::GroupSpecification, these attributes have the value false. This represents respectively
the communication, acquaintance and compatibility restrictions existing in MOISE+. On the other side,
for MMint

#1 ::GroupDef the three attributes assume the value true indicating the absence of the
respective restrictions in AGR and STEAM.

Despite their opposite nature, we note that AGR and STEAM group definitions can be expressed
in MOISE+. To this end, one has to explicitly define communication, acquaintance, and compatibilities
relationships between all roles in a group definition. However, the converse is not always possible
without losing information.

Ending the comparison, in MOISE+ there is a third form of role relationship: the inheritance.
In MOISE+ metamodel this relationship is represented by the reference superRole involving instances
of the class MOISE+::Role. In the articulation between MOISE+ and MMint

#1 , an alternative form of
representing inheritance could be as a subclass of RoleRel. As the inheritance relation does not
have a direct effect on the behavior of the agents as the other role relations, being only a way of
simplifying role definitions in MOISE+, we have opted to preserve the representation of this relation
as the reference superRole rather than defining a new subclass for RoleRel.

Finally, concluding the iteration, we merge the metamodels taking into account the identified
correspondences. The result is show in Figure 9.
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Figure 9. Integrated metamodel MMint
#2 .

6. Organizational Interoperability Approach

Adopting an organization-centered perspective [4], the engineering of MAS can be described
as a process that starts with the creation of an organizational specification written in conformance to
an organizational model. This specification is a prescription of the desired patterns of joint activity that
should occur inside the MAS towards some desired purpose. Once the organizational specification
is done, it is used as the input to an organizational infrastructure. In general, what we mean by
organizational infrastructure is some kind of middleware supposed to interpret the specification
and reify the organization of the MAS outside the agents. In this respect, it should maintain
an internal organizational state and offer to the agents an interface for accessing and modifying this
state. The information maintained in the organizational state contains a list of the members of the
organization, what roles they are playing, what groups are active in the organization, among others.
Finally, with the organizational infrastructure materializing the desired agent organization, it is time
to develop application domain agents (not necessarily by the same designer of the organization
specification) that can enter and interact inside it by accessing the available organizational interface.

Regarding organizational infrastructures there are several approaches for the engineering of (open)
agent organizations [12,13,36,47,51–54]. On the one hand, the availability of a wide range of diverse
models and infrastructures has made the development of agent organizations feasible. On the other
hand, such a diversity introduced an important new interoperability challenge for agent designers:
How to deal with heterogeneous organizational models and infrastructures? Whenever an agent is
build to enter some MAS it has to be able to interact with the other participants using a particular agent
communication language as well as to understand received messages against a given domain ontology.
Besides this, if the MAS was designed as an agent organization, the entering agent has also to be able to
access a particular organizational infrastructure and to interpret its underlying organizational model.
In this way, the agent design can become tailored to a particular organizational approach.

For instance, suppose that several e-business applications designed as open agent organizations
are available on the Internet. In addition, assume that these applications are heterogeneous regarding
the organizational technology applied to build them. To put it in more concrete terms, let us suppose
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two agents organizations: One built upon the S-MOISE+ [53] organizational middleware, based on the
MOISE+ model, and the other by using MADKIT [54] platform, based on ARG model. In this setup
(and assuming a shared common agent communication language and domain ontology), the agent
designers face the following problem: The native S-MOISE+ agents do not interoperate with the
MADKIT platform, and vice-versa. Thus, it is not directly possible, for instance, to write an agent code
that enter both e-business agent organizations in the search of products and/or services on behalf of
its users. Such fact limits the range of applicability of S-MOISE+ and MADKIT agents which, in turn,
limits the idea of open MAS.

As mentioned in the Introduction, four basic approaches can be envisioned for this organizational
interoperability problem. One of them is to bridge the interface between the external agents and the
agent organization by means of model mapping (Adaptation). By using such mappings it is possible
to provide adapted copies of the specification and state of a given organizational model/infrastructure
“understood” by the external agents.

In what follows we describe MAORI—a Model-based Architecture for ORganizational Interoperability [19].
MAORI is an experimental framework for providing organizational interoperability following the line of
adaptation. Its main objective is to show how the integration of organizational models presented in this
paper can possibly be used in a solution for the problem of organizational interoperability.

6.1. MAORI Overview

MAORI is structured along three layers, as it may be seen in Figure 10:

• In the bottom, there is the Model Integration (M2M) layer—the purpose of this layer is to
provide an integrated view and transformations between the organizational models represented
as metamodels;

• in the middle, there is the Organizational Interoperability (ORI) layer—this layer is formed by components
that use the M2M layer to translate and adapt the specification and state of agent organizations from
one source organizational infrastructure to one or more target organizational infrastructures;

• in the top, there is the Organizational Infrastructure (MAS) layer—this layer corresponds to the
available infrastructures for implementing organization-centered MAS.

6.2. Model Integration Layer

M2M layer is composed of metamodels and transformations. For each organizational model OMi,
there is a corresponding metamodel MMi. The metamodel MMint is the conceptual integration of all
MMi, as described in Section 5.

The transformations are functions that implement the morphisms between the integrated
metamodel MMint and the particular metamodels MMi (Section 3.4). There are two types of
transformations. One type is transf( f rom : MMi) : MMint, which converts from MMi to MMint.
The other type is transf( f rom : MMint) : MMi, which converts from MMint to MMi. In this way,
M2M main functionality is to provide transformations that can be combined to translate specifications
and states between organizational models/infrastructures.

6.3. Organizational Interoperability Layer

ORI layer works as an extension of organizational infrastructures. In order to enable heterogeneous
agents in the same organization, ORI adds two basic components to the organizational infrastructures:
providers and adapters.

Providers are responsible for exporting the organizational specification/state of agent
organizations. In this case, to export means to use transf( f rom : MMi) : MMint to convert the
specification/state from from a source MMi to the integrated metamodel MMint. Adapters are
responsible for importing the organizational specification/state that was exported by a provider.
The import is done by using transf( f rom : MMint) : MMi.
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Imagine a scenario where an agent functions on a given organizational infrastructure and consider
an agent organization implemented on a different organizational infrastructure. If the agent wants to
participate in the organization, an adapter has to be instantiated in the organizational infrastructure
of the entering agent. Initially, the responsibility of the adapter is to locate the appropriate provider,
establish a connection with it, ask for the organizational specification/state and finally translate this
specification/state to the target organizational infrastructure of the entering agent. In this way, for each
heterogeneous agent organization there will be an organizational provider. Connected to this provider,
there will be several organizational adapters, one for each organizational infrastructure in which there
could be external heterogeneous agents.

Figure 10. MAORI framework (redesigned from [19]).

6.4. MAORI Implementation

MAORI was implemented in the Java programming language. The metamodels in M2M layer
were coded using the Eclipse Modeling Framework (EMF) [55]. Regarding the transformations,
there were first prototyped in the Atlas Transformation Language (ATL) [56] and then ported to Java
for performance reasons. An implementation was developed as a proof of concept of the ORI layer
considering the MADKIT and S-MOISE+ organizational infrastructures.

To evaluate MAORI, some agent organizations were developed. One is the example of a group
of agents that wants to write a paper and use for this purpose an explicit organization to help
them to collaborate. The organization consists in a group composed of: One agent in the role of
coordinator (who controls the process and writes the introduction and conclusion of the paper), one to
five agents in the role of collaborator (who writes the paper sections) and one agent in the role of
librarian (who compiles the bibliography). Taking this simple example, some experiments were
performed. One of them considered an organization composed of five agents—one coordinator (Eric),
three collaborators (Greg, Joel and Mark) and one librarian (Carol). Initially the organization was
started in the MADKIT platform. In addition, in MADKIT, the agents Eric and Carol were started and,
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after that, in the S-MOISE+ platform an organizational adapter was started to import the organization
state. The three remaining agents (Greg, Joel and Carol) are started in S-MOISE+. They perceived
and enter the organization by requesting the role of collaborator. At this point, the interaction begins:
The agents in S-MOISE+ are now members of an organization running in MADKIT. More details about
MAORI may be found in [19].

7. Related Work

The proposition of abstract structures, such as patterns, and integrated metamodel to enable
interoperability among organization-centered multiagent systems is somehow new. Therefore, related
work must be considered in several areas from business to services, including multiagent systems.
In the following we contextualize our work within this broad scenario.

In the multiagent systems area, Pechoucek and Marik [57] adopted a model-driven approach
to propose a general metamodel for developing multiagent systems. The metamodel is defined
as a Platform Independent Model (PIM) considering the MDA abstraction levels definition [18].
In order to identify a unified metamodel to support the development of agent-based systems,
they considered seven views: Multiagent view; Agent view; Behavioural view; Organization view;
Role view; Interaction view and Environment view. They adopted the top down approach to develop
the metamodels that represent each of the views aforementioned after analysing some existing
agent-oriented modeling languages, methodologies and programming languages. Moreover, it was
conceived to be used independently of the agent-oriented methodology, modeling and programming
languages. Nevertheless, their main purpose was to support the development of MAS using
a model-driven approach than providing means for interoperability among MAS. Our work presents
some similarities with theirs since the proposed integrated metamodel could be used independently of
the Organization Model adopted to design and implement an organization-centered MAS. In addition,
the abstract structures where defined based on organization-centered multiagent systems dimensions,
in a similar approach of theirs when stating their metamodel concerning some views. Nevertheless,
although using a model driven approach, we adopted it to define the way integration occurs using the
bottom-up approach to define the integrated metamodel, based on existing Agent Organization Models
and their underlying metamodels. By doing that we foster interoperability to organization-centered
MAS during design time, by providing means of transforming the design of a MAS with an underlying
organization model into another one, or during execution time, as presented in Section 6.

Muramatsu and colleagues [58] provided organizational interoperability by using organizational
artifacts within the environment where the MAS is situated. They adopted a normative language
to describe the organizational structure in artifacts. In this sense, their work is similar to ours
while adopting a common language (in our case a common metamodel) to describe several
organizational models.

Isern and colleagues [59] classified organizational structures according to organizational
paradigms, such as (i) hierarchy, (ii) holarchy, (iii) coalition, (iv) team, (v) congregation, (vi) society,
(vii) federation and (viii) market, to support the design of MAS using existing agent-oriented
methodologies and organizational models. The main purpose of their work is to provide information
for MAS developers that would like to adopt an organization approach to develop MAS and did not
know what Organization Model or agent-oriented methodology to choose. Their work is related to
ours in the sense they adopted metamodels’ characteristics of existing organizational models and
existing agent-oriented methodologies to classify such organizational structures as patterns.

Karaenke et al. [60] proposed an inter-organizational interoperability architecture based on
multiagent systems, web services and semantic web technologies. In their work, the MAS did not
present an underlying organizational model and agents adopt the “head body” paradigm to include
web services technologies to provide interoperability among enterprise information systems. Therefore,
interoperability is focused on system-to-system communication using web services technologies,
which limits the kind of systems that may participate in such communication. Our proposition is
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broader in the sense that it provides a solution for interoperability among open organization-centered
MAS independently of their underlying organizational Model.

A template description for agent-oriented patterns was given by Oluyomi and colleagues [61].
Based on a classification scheme, they organized agent technology concepts into categories and then
identified agent-oriented pattern description templates for each category. Eight agent-oriented pattern
templates were described to support the modeling of multiagent systems. Examples of the conformity
between the proposed templates and their adoption during the design phase of existing agent-oriented
methodologies were provided. Comparing with our proposition, their work adopts a similar approach
when considering categories (in our case we adopted dimensions) to guide the patterns definition.
In addition, their work is situated in the model level instead of the metamodel level as ours, since
their objective is to improve communication among AOSE developers. Nevertheless, the adoption of
an integrated metamodel obtained via model driven transformations combined with organizational
dimensions give to our patterns high level of formality whenever compared with theirs.

Chella et al. [62] defined agent-oriented patterns to develop multiagent system to support robot
programming. The proposed patterns were created based on an existing layered architecture for
programming robots [63]. Patterns are described considering three aspects: The problem description;
the definition of the solution in terms of MAS models and the description of the solution in terms
of implementation. They just define some patterns for an specific domain based on the templates
proposed by [61]. The only relation between their work and our is that pattern definition is based on
some criteria that can be classified as dimension or category.

Organizational interoperability and integration issues are not new concerns for the administrative
practice and research, specially after the wide acceptance and use of Information and Commmunication
Technologies in their business models [64]. Several frameworks to provide organization interoperability
were defined and even in this domain some dimensions were considered to define such frameworks.

8. Conclusions and Future Work

The research reported in this work has consisted in the use Model Driven Engineering techniques
to address the organizational interoperability problem: How can we provide means for a set of agents,
immersed in a common environment, to evolve, reason, decide and interact with each other based
on organizational concepts, since their organizational models may differ? In order to achieve this
goal, we have proposed an abstract and integrated view of the main concepts that have been used
to specify agent organizations, based on the analysis of several organizational models present in the
literature. In this model, we captured the recurring modeling concepts, that were coherently combined
into an abstract conceptual structure. We have then presented an adaptation-based solution for the
organizational interoperability problem, when we have defined the mappings between different
organizational models, by using this abstract conceptual structure. We have built our abstract
conceptual structure based on six organizational models (STEAM, MOISE+, AGR, OPERA, TEAMS,
ISLANDER), presented in Section 2. For brevity, in Section 5 we illustrated the application of our
integration method using three of these models (MOISE+, AGR, STEAM), and concerning exclusively
the structural dimension.

A first extension of this work would be to build an integrated metamodel that could cope with
OPERA and TEAMS. Moreover, we could evaluate how the other organizational models mentioned
in Section 2.2.7 would affect our abstract conceptual structure. Concerning the MAORI framework,
described in Section 6, we have tested its use by interoperating two organizational infrastructures,
S-MOISE+ and MADKIT. A second extension of this work would be to test the franework with other
organizational infrastructures, like AMELI [13] and ORA4MAS [52]. Finally, we would like to test
our model driven approach to solve other MAS interoperability problems, like the ones mentioned
in Section 1.
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Abstract: Multi-Agent Systems (MASs) are often used to optimize the use of the resources available
in an environment. A flaw during the modelling phase or an unanticipated scenario during their
execution, however, can make the agents behave not as planned. As a consequence, the resources can
be poorly utilized and operate sub-optimized, but it can also bring the resources into an unexpected
state. Such problems can be mitigated if there is a controlled environment to test the agents’ behaviour
before deployment. To this end, a simulated environment provides not only a way to test the agents’
behaviour under different common scenarios but test them as well in adverse and rare state conditions.
With this in mind, we have developed ARPS, an open-source framework that can be used to design
computational agents, evaluate them in a simulated environment modelled after a real one, and then
deploy and manage them seamlessly in the actual environment when the results of their evaluation
are satisfactory.

Keywords: multi-agent systems; discrete event simulator; interoperability; agent and multi-
agent applications

1. Introduction

In environments where resource management is critical, software agents can be employed to
optimize those resources. When the task to accomplish this is too complex to be carried out by a single
agent, multiple interacting agents can be used to achieve effectiveness. The Multi-Agent System (MAS)
approach has been successfully applied in many domains, including: helping controllers in Air Traffic
Control for making decisions based on the aircrafts’ fuel availability, flight plan, weather, and any
other relevant data [1]; optimizing distributed generators in smart grids for energy production, storage,
and distribution [2]; or finding better arrangements for the components in manufacturing plants to
increase the throughput and optimize material usage [3].

Many frameworks and toolkits enable the implementation of a MAS. They are not designed to
provide seamless means of evaluation of the outcome of the agents in the system under certain scenarios
before deployment. A flaw during the design and implementation of the agents, or an unpredicted
state of the environment where they are acting, can not only interfere with the achievement of their
goals, but can also bring the environment into a unexpected situation with unforeseen consequences.

Some work with MASs has made use of simulations to aid deployed agents to update their plans
according to the current state of the environment. This means that the simulation is used as a planner
tool, meant to help the agent to make a decision under a specified near future scenario rather than
using the simulation in the process of designing the agent behaviour before deployment. This strategy
has been applied to the field of multiple Unmanned Aerial Vehicles (UAV) [4], where communication
is required for coordination and failures related to it can make the entities unreachable. The system
simulates possible scenarios where communication is unavailable and an action by the UAV is expected.
Another example is the simulation component used to detect conflicts and inconsistencies of resource
allocation during the high-level planning in a manufacturing plant [5].
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There is no general purpose MAS framework, to the best of our knowledge, that integrates the
process of validation of the agents in a simulated environment before their deployment. To address
this, we have developed ARPS, an open-source framework available at https://gitlab.com/arps/arps/
under MIT LICENSE [6], to seamlessly design, implement, assess the agents, and deploy the MAS
after the results meet established criteria. ARPS stands for some of the core properties of agents:
autonomy, reactivity, proactivity, and social ability. We use the management of resources of a data
centre to illustrate our approach and how it can be used in other domains.

In Section 2 we cover related work. Following this, Section 3 describes the background and
architecture of the framework. The process of the implementation of the MAS to manage an
experimental scenario is shown in Section 4. In Section 5 we discuss the findings, limitations,
and future directions.

2. Related Work

There are multiple toolkits, platforms, and frameworks available for creating a MAS. In this
section, we will describe a few of them. The works here by no means represent the only alternatives
for creating MASs. For other options, refer to surveys on this topic, such as the one presented in [7].

The works reviewed here implement common aspects of a MAS to work in an actual environment,
such as communication, interoperability, storage, security, and resource discovery. Therefore, the users
can focus on the definition of the agents and their behaviour, how they are organized, and how they
interact to solve a problem.

Among the popular MAS frameworks, JADE (also known as Java Agent Development
Framework) [8] was created to address the problem of interoperability and provide an environment
for the development of agents. It has no domain dependent requirement as seen in the other solutions.
According to the authors, such dependencies were obstacles for the adoption of MAS technologies
at the time of its conception. JADE simplifies the implementation of multi-agent systems through a
middleware compliant with the FIPA (Foundation for Intelligent Physical Agents) specifications [9],
a standard proposed for interoperability of agents. The JADE authors argue that is industry-driven and
currently the most known FIPA-compliant agent platform in the academic and industrial community.

The A-Globe platform [10] is designed for testing experimental scenarios featuring agents’ position
that requires a Geographical Information System (GIS, though agents may suffer from communication
inaccessibility either because of the spatial distance of the agents or by broken links. Because it is a
closed-environment, interoperability is not one of the concerns of this platform. Hence, it is not fully
compliant with the FIPA-specifications on inter-platform communication, albeit it provides compliance
with the Agent Communication Language (ACL), a structure for composing messages exchanged
by agents.

Based on the fulfillment of requirements such as robustness, security, and the ability to ensure
that a partial solution can be executed when an optimized one is not found due to constraints,
DARPA funded a project called Cougaar [11] (Cognitive Agent Architecture). This agent platform
was created to offer specialized support for logistics-related problems. This platform is also not
FIPA-compliant. It aims to facilitate the development of agent-based applications that are complex,
large scale and distributed.

Other solutions offer more components built on top of the existing agent-based platforms.
The Jadex BDI Agent System [12] follows the Belief Desire Intention (BDI) model [13] and
facilitates intelligent agent construction over other middleware such as JADE. It has been used to
build applications in different domains, such as simulation, scheduling, and mobile computing.
The programming model of Jadex allows for designing an application as hierarchical decomposition of
components interacting via services and thus helps to make complexity manageable. These components
can be used in concurrent and dynamic distributed systems. Another example is JaCaMo [14]. It is
an interpreter for an extended version of AgentSpeak, a BDI agent-oriented logic programming
language [15]. It is a platform that integrates three projects with different MAS-related paradigm
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models for development: Jason [16] for agent development; Moise [17] for agent organization;
and CArtAgO [18] for environment-oriented programming.

Lastly, the MadKit [19] offers a modular and scalable multiagent platform. Its central aspect is
the ability to organize agents in groups and roles aiming at the development of artificial societies.
It is closely related to our approach in the sense that has a simulator component. Nonetheless,
the simulation and evaluation are not seamless in the workflow, leaving the responsibility of this
integration to the user.

Previous work has often presented MAS tools that provide a base infrastructure to implement
agents. These approaches also looked to help address other specific problems, such as interoperability
by defining standards, robustness and security. In some cases, the work sought to introduce approaches
to enrich the design process, provide clear definition of how agents are organized and what their roles
are. However, these solutions lack a component that would allow a developer to assess the behaviour
of the agents in a simulated environment before actual deployment. Further, this step should be
as seamless as possible, i.e., it should take no or few modifications to alter agents in the simulated
environment in order to make them run in the actual environment. This is the gap that ARPS fills.

Agent-Based Modelling (ABM)

One of the main solutions available to simulate complex systems is known as Agent-based
modelling (ABM). It is employed in domains such as social sciences, biology, ecology, engineering,
and economics. There are many platforms to implement ABM [20,21]. Among them, we list
a few widely adopted examples. The Swarm package [22] provides object-oriented libraries of
reusable components for building models and analyzing, displaying, and controlling experiments
on those models. NetLogo [23] is a software that provides packages to simulate multi-agent in
environments. It has a significant user community, it is highly documented, and they provide many
demos. MASON [24] is a discrete event multi-agent simulation toolkit. It was designed to serve as the
basis for a wide range of multi-agent simulation tasks ranging from swarm robotics to machine learning
to social complexity environments. The Repast platform, initially developed as a tool to be used in
social sciences, is a family of agent-based modelling and simulation platforms. Currently, not only does
it provide a package to be used in regular environments, such as desktops, and laptops [25], but also
has an advanced version to be used in HPC environments [26] to simulate more demanding scenarios.

The ABM and MAS concepts are closely related to each other since both are agent-based.
The difference is that the modelling in ABM aims to gain insight about emergent properties in complex
adaptive systems while MAS focus on actual agents [27,28].

Our framework aims to provide an environment to combine ABM properties, such as the ability to
model agents in a simulated environment and observe their behaviour, with MAS’s ability to implement
and deploy the agents evaluated during the simulation in the action environment. The integration
of both approaches can yield positive results. The framework in [29], features this combination.
It enables mobile agents to work simultaneously both in the actual and virtualized agent platform
to enable large-scale simulation to observe unknown emergence behaviour. This is accomplished by
having the agents in the actual environment collecting data in real-time, and improving the simulation,
which in turn can have its outcome used in decision making. In our case, we need a separate simulator
component to enable the study of the agents’ behaviour without disrupting the environment before
their deployment. This then enables a developer to leverage the construction of reliable physical agents
by evaluating their interactions and the effects of their actions. Because simulation can involve the
compression of time, it is possible to simulate many different scenarios efficiently. Also, during the
simulation, it is possible to create unexpected scenarios to see how the agents perform. This can be
desirable in areas that already employ ABM for resource management during a disaster, such as [30],
that could be extended to have software agents that could direct resources where it is necessary. We are
aiming to combine the characteristics of both simulation and development to offer an alternative for
creating solutions in resource management using MAS.
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Figure 1 illustrates our workflow to achieve this integration. A user/admin can create the
environment, its resources, and the agents’ models, and define how they are organized. The MAS
environment is generated, and the user can simulate a scenario. After analyzing the simulation
results, the user can decide to refine the models or apply the agents’ models to the actual environment.
The output of this environment can also be used as feedback to improve the existing models and create
a more reliable simulation.

As we have discussed, none of the previoius MAS frameworks have a simulator component that
allows this workflow without having to reimplement the concepts defined during the simulation into
the actual environment.

Figure 1. Workflow for MAS conception, evaluation, and deployment.

3. Our Approach

Below we describe the background of the framework, our design choices, and present
the architecture.

3.1. Background

Data centres present complex dynamic environments where many resources are allocated to
provide guaranteed, reliable services. These resources are not only related directly to the computer
systems, such as processing power, storage capacity, and network, but also to the supporting equipment
and environmental control. Data centre administrators face a daunting task in trying to manage them
optimally. There are impacts when these resources are misconfigured or overallocated on the total cost
of ownership because of excess power consumption or idle resources. Data centre operators can also
incur financial penalties due to the broken guarantees related to service delivery.

One proposed way to tackle this problem is the adoption of autonomic computing architectures
and strategies. An autonomic approach aims to embody the idea of self-management, which in
turn can be realized by decomposing it into other sub-properties, such as self-configuration,
self-healing, self-optimization, and self-protection [31]. This separation of concerns can be managed
by decentralized autonomous agents that may interact with each other, optimizing local resources
to achieve global optimization, as exemplified in [32], where a MAS manages the number of hosts
available to process workloads depending on the demand.

One problem faced in the employment of MASs in data centres is the impracticality of having
an actual data centre available to evaluate the effectiveness of the policies governing agents due to
costs and security concerns. In some cases, data centre simulators, such as that described in [33],
have been developed to evaluate the possible impacts of the autonomic agents policies in the data
centre before implementing and deploying them in the real environment. Even so, there is a gap,
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however, in the development between the simulation step and the implementation and deployment of
the actual agents. To address this problem, a framework was developed using initially the concepts of
the aforementioned simulator with the additional feature of employing the assessed policies during
the simulation to drive the software agents that will manage the actual resources in the environment.

Contrary to most of the works related to MAS platforms presented in the previous sections,
our approach was first developed to solve a domain-specific problem focused on self-management of
resources. During the development, the generic components were extracted to allow more flexibility
during the implementation and the test of the proposed solutions. This resulted in the general purpose
ARPS framework to enable MAS.

The generalization of the scenarios where our MAS framework can apply, although it is not
limited by, is illustrated in Figure 2. As can be seen, there is a complex system with resources (Rn),
grouped by environments (Environmentm), that are affected by external events (E). The events occur
at a variable or fixed interval in this system. Without any management, these resources can be in a
suboptimal state. To overcome this problem, agents (Ai), driven by policies, are employed to monitor
resources or modify them using available touchpoints. The agents can be reactive, proactive. They can
act in isolation, or they can communicate with each other for cooperation, coordination, or negotiation.

Figure 2. Scenario for resources being modified by external events while agents manage them.

The framework is being currently developed in Python 3, a high-level multiplatform language that
can be deployed in myriad host platforms, including Internet of Things (IoT) devices [34,35]. The users
can install the framework from source code or as a Python package, available at https://pypi.org/
project/arps/. This means that, when implementing the agents for a specific domain, the user needs
to implement all the components using Python. Albeit there is no single programming language that
can be applied in every domain effectively, Python has been suggested as an alternative for a general
programming language to be adopted by the scientific community and it has been used by researchers
in areas not related to technology or engineering, such as psychology and astronomy [36,37].

3.2. Architecture

The ARPS framework is composed of four main components: agent manager, agents, discovery
service/yellow pages service and Discrete Event Simulator (DES). The architecture and relationship of
the first three are illustrated in Figure 3. The agent manager has three main aspects: the management
of the availability of resources and policies related to an environment, agent life-cycle, and simulation
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when it is running for this purpose. It acts as a container for the agents. This container groups resources
logically by some criteria, like resource similarity, or accessibility. Agent managers can be distributed
across systems. The agent is an entity driven by policies that will manage one or more resources. It can
interact with all other agents available by the discovery service. Since each agent manager can be
deployed in distributed manner, the discovery service is a directory where its agents are registered
when created and their location is made available to be discovered by other requesters, so the agent
from one agent manager can exchange messages with agents from others agent managers. Lastly,
the DES is a component available for the evaluation of the agents, and its integration with the others
will be explained in the following sections.

Figure 3. Architecture of the ARPS framework.

3.2.1. Interoperability

The agent manager, agents, and discovery service implement the RESTful architecture style for
interoperability. This is done using HTTP methods, and the payload is in JSON format. This RESTful
API employs uniform resource access using the format http://hostname:port/resource/, where the
hostname:port are the host name and listening port to access the API respectively, and the resource is
a web resource. The HTTP methods (GET, POST, PUT, and DELETE) are available for the clients.
The payload of the POST and PUT methods, as well as the possible HTTP response codes, were omitted
for simplification purposes. Their descriptions are available at https://gitlab.com/arps/arps/wikis/
home. Below we present the API to perform the requisitions.

The agent manager API is intended to fulfill requests by the user. The summary in Table 1 shows
how the policies that can be used to drive agents’ behaviour can be listed, the agents that are currently
running in its environment, the touchpoints that agents can monitor/control, and, when there are
agents created just for the purpose of monitoring resources, a timestamped log containing the state of
the resources can be retrieved.

The life-cycle of the agents is controlled by creation, modification, inspection, and termination
methods, as seen in Table 2.
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Table 1. REST API for environment.

HTTP Method URI Description

GET /list_agents show agents in the environment
GET /list_policies show policies available for agent

creation/modification
GET /list_touchpoints show sensors and actuators available in the

system for monitoring
GET /monitor_logs retrieve the state of the sensor and

actuators monitored by the agents created to
this end

Table 2. Agent Manager API for agent life-cycle.

HTTP Method URI Description

POST /agents Creates an agent; policies and the
fixed interval is specified in the
JSON body of the message

PUT /agents/[agent_id] Modify the agent’s policies or relationship
with other agents

GET /agents/[agent_id]?[params=values] Retrieve the internal state of the agent;
parameters are used to specify the type
of the content returned

DELETE /agents/[agent_id] Terminate the agent

Lastly, the REST API is available only when the agent manager is created to run the simulator is
seen in Table 3.

Table 3. Agent Manager API in simulator mode.

HTTP Method URI Description

GET /sim/run Run simulation
GET /sim/stop Stop simulation
GET /sim/status Retrieve current status
GET /sim/result Retrieve result of the simulation in CSV format
GET /sim/save Retrieve the organization of the system

The agents have their API described in Table 4. It is not only accessed with the intent of message
exchange among the agents, but it can also be called by users or other applications.

Table 4. Agent API.

HTTP Method URI Description

PUT /policy Add or remove a policy accordingly to the
content of the message body

PUT /meta_agent Establishes or removes the relationship
between two agents

PUT /action Requests a user defined action to be executed by
the agent accordingly to the content
of the message body

GET /info Request information regarding the agent, such
as current policies, touchpoints, and
relationships

GET /sensors Request current state of the sensors
available to the agent

GET /actuators Request current state of the actuators
available to the agent

The API provided by the discovery service, shown in Table 5, is used to register, unregister,
and list the running agents in the system.
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Table 5. Discovery Service.

HTTP Method URI Description

GET /agents List all agents
PUT /agents/[agent_id] Register the agent
GET /agents/[agent_id] Retrieve the location of the agent: hostname and port

DELETE /agents/[agent_id] Unregister the agent

We are aware of the existence of FIPA-HTTP to make compliant FIPA agents using HTTP [38].
This standard, however, only supports the POST method with the semantics of the message embedded
in a multi-part content sent in the body of the message. This defeats the purpose of the semantics
presented by the HTTP methods, and the already available HTTP status codes related to each HTTP
method. Some studies that support this view of interoperability in MAS, using Resource Oriented
Architecture (ROA), can be found in [39–41],

There are many advantages of using RESTful architecture style for interoperability. The system is
open, so applications that the system designers did not take into account a priori can be integrated
into the existing system since the web resources are accessed uniformly. Secure communication
can be implemented over HTTPS. A cache can be used to save bandwidth and to optimize system
communication. Visualization through different devices can be easily implemented by third-party
entities across different devices. The support of the MAS for the REST API can also be used to extend
the API and make it compliant with FIPA-HTTP if required.

3.2.2. Agent Model

The intelligent agent model, as described by Russel & Norvig [42], is used to define the agent.
Thus, besides the conventional definition of the agent, as an entity perceiving the environment through
sensors and modifying it through actuators, it has also the components to achieve reasoning. To this
end, the agent’s behaviour is driven by a set of policies that are executed by its control loop. A policy
can be activated either by interaction with other agents, or internally by a fixed interval. Each policy
has access to the touchpoints available in the environment provided by the agent during its creation.
Another characteristic is that policies can be dynamically added or removed.

The policies can be reactive or proactive. The reactive policy follows the Event Condition Action
(ECA) rule. This model is used to create simple reflex agents. Thus, the agent monitors the environment,
and, when the current state matches a condition, a predefined action is performed. Alternatively,
the agents can optimize the environment continuously. In this case, their behaviour can be defined in
terms of proactive policies. To this end, the user can extend the interface to implement goal-based or
utility-based policies.

Another characteristic is related to how agents are organized. The framework defines that an
agent has a unidirectional relationship with other agents. This relationship is also dynamic and
can be created or removed during the agent lifetime. Since this model does not impose any form
of organization and agents communicate using a peer-to-peer architecture, they can be organized
hierarchically, or horizontally. Agents can have a relationship established with any other agent
available through the yellow pages service. Currently, there is no support to enforce groups or roles.

3.2.3. Simulation

During the simulation, only a single instance of an agent manager is necessary since it will act
as the gateway to all other virtual agent managers that would be available in the system, as seen
in Figure 4a. Similarly to the actual environment, the format used by the API is http://hostname:
port/agent_manager/resource/, where agent_manager antecedes resource to identify the virtual agent
manager that will perform the requisition.

In the actual environment, the transport system used to exchange messages between agents
is implemented using the HTTP protocol, as seen previously. It relies on the physical network to
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function. During the simulation, however, this protocol is substituted by a global bus that will serve
as a discovery service and communication layer at the same time. The content sent from one agent
is put directly into the queue of messages of the receiver agent. The difference between real and
simulated communication is seen in Figure 4b. This has the advantage of removing the overhead
of communication. Additionally, it gives the freedom to the user to apply models into this layer to
improve the reliability of the agents to evaluate them under intermittent communication, increased
latency, or corrupted messages.

The resource is another component that has to be overridden by the models that describe how
they behave in the real environment. For example, in our case, we can model the behaviour of the
computational resources to have a certain load accordingly to the task that arrived in the system.
As well, our model supports resources that affect other resources indirectly. Revisiting the previous
example, we can create a model that increases the energy consumption based on the load in the system
when the computational resources are utilized.

The main component of the DES is the events generator. It supports both deterministic and
stochastic models. The former uses a log file containing the events—when the last event is completed
the simulation is terminated—while the latter uses a stochastic generator implemented by the user—the
termination needs to be invoked explicitly. Each event has two actions. The main action that is
executed every step while the event is still unfinished, and a post-action, when the event exits the
system. Figure 4c showing the resource being modified by an event during the simulation and in
Figure 4d showing the queue of deterministic events illustrates the DES component working along
with the agents

Figure 4. Agent Manager in Simulator Mode.

When finished, the results of the simulation are made available in the CSV format. We have
chosen this format since it is supported by a myriad of statistical tools, such as Pandas (https://
pandas.pydata.org/), R (https://www.r-project.org/), or spreadsheet-like apps such as LibreOffice
(https://www.libreoffice.org/). We believe these third-party tools are better equipped to fulfill the
needs of the user.

4. Demonstration of the Framework

In this section, we will illustrate how the ARPS framework can be used to solve the problem of
resource management. In the next section, we describe the components needed to be implement to
enable the MAS. Following this, we present an example in a specific domain: management of resources
in data centres.
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4.1. ARPS Framework Usage

The modelling of the MAS for resource management can be accomplished by following the steps:

1. Collect data about the resources in the environment using the available sensors.
2. Create a model of the environment, construct the resources behaviour, their relationship with

each other.
3. Create the actuators and the policies to drive the agents based on the available resources.
4. Create a model of the events that will modify the environment.
5. Run the simulation, take a snapshot of the environment containing the agents deployed along

with their policies, and collect the results in the CSV format.
6. Use more suitable external tools to evaluate the results.
7. Use a snapshot to deploy the agent managers and their agents in the real environment.
8. Modify the environment model, the policies, or the events and re-run step 4 to improve the agents

in the actual environment.

The usage of the framework can be summarized as the implementation of some interfaces, and the
creation of the configuration files needed by the agent managers and agents.

We have created the abstraction of the resources that provides the touchpoints to be accessed by
sensors and actuators, seen in Figure 5.

Starting with the sensors and a minimal set of the configuration files (files that will be described
in detail later in this section), it is possible to execute the agents in the actual environment to collect
data since a set of monitoring policies related to the implemented resources are made available
automatically. Therefore, it is possible to initially create agents with the only the purpose of gathering
data periodically. This data provides insight about the actual resources . This will be essential during
the modelling of the environment used by the simulator. This model can be later updated when
comparing the simulated environment with the actual environment.

Figure 5. Resources, Sensors, and Actuators structure diagrams.

Once the resources and sensors are implemented, the next step is the implementation of the
actuators. The actuators are used by the policies that drive the behaviour of the agents. These policies
can be created by implementing the Policy interface, illustrated by a reflex policy in Figure 6.
Since our approach is based on autonomic computing concepts [43], other types of policies, employing
utility functions, or goal-based approaches can be implemented. The method condition(event) can
be implemented to use optimization algorithms, defined by the user, that will compute the ideal
parameters and then use the results to modify the resources through their actuators. Goal-based
approaches would require the user to model the states and use the method condition(event) to search
for the best action to perform to achieve a better state. Both policies would be executed as periodic
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policies, so the event is just a time event indicating that it is time for the policy to evaluate the current
state and executes its actions based on the perceived environment.

Figure 6. Policy structure diagram.

Since the policies encapsulate the perception and modification of the resources, and these resources
can be modified by external events, the next step is the modelling of the these events. The events arrival
in the system can be stochastic or deterministic and it can be created by implementing the interface
EventQueueLoader. The events are encapsulated in the SimEvent class, which in turn contains the
SimTask that will be executed during the simulation. The SimTask main method should provide the
behaviour that will modify a resource, while the pos method will contain all the finalization process
to be executed, like resource release, after the task is finished. The relationship between the DES
components is illustrated in Figure 7.

Figure 7. Simulator structure diagram.

Given the structure present in Figure 8, the final step before running the MAS in the actual
or simulated environment is the creation of the configuration files, in JSON format, containing the
implemented files previously described in this section. Both configuration files are similar in their
structure. The file simulation.conf contains the paths of the files related to the fake resources, and the
DES component classes, while the file real.conf contains only the actual resources. The remaining
classes, like policies, sensors, and actuators, remain the same for both configuration files. Therefore, the
transition of the agents from the simulated environment to the real environment can be done seamlessly.

After the instantiation of the agent manager in simulation mode, using the simulation.conf
configuration file, the REST API presented in the previous section can be used to create the agents,
organize them, and run, stop, and collect the result of the simulation.

Based on the result, only the policies classes need to be modified. Then, using the real.conf
configuration file, the agents can be deployed in the actual environment. According to the behaviour
observed in the actual environment, improvements can be made in models used by the simulated
environment. Thus, it is only necessary to modify existing fake resources, simulation tasks and policies.
Incrementally, new resources, touchpoints, and policies can be added into the MAS to improve
the system.
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Figure 8. The minimal structure required.

4.2. Example: Data Centre Management

As previously discussed in Section 3, we are researching ways to address the problems in trying
to optimize energy efficiency in the data centre while ensuring that other performance metrics are met
using MAS. To illustrate this, we provide a minimal example to cover the basic setup of the ARPS
framework. The source code is available at https://gitlab.com/arps/arps/tree/main/arps/examples/
computational_resources_management.

This example by no means provides an in-depth analysis of resource management in data centres
and only serves to illustrate how the MAS can be realized. To keep this example simple, we will
manage only two resources from a single host: the CPU and the Energy Monitor. Additional resources,
such as temperature sensors of the environment, cooling system, and multiple hosts, can be added
iteratively as the need for better understanding the system arises.

The CPU provides means to both read its current utilization or modify its frequency. It is driven by
two governors: performance and powersave. This enables dynamic frequency scaling. The maximum
frequency is 2.9 GHz in each one of its four cores and when in performance mode, the frequency is
adjusted dynamically. Conversely, in powersave mode, the frequency stays closer to the minimum
frequency available. The Energy Monitor only provides an interface to read the estimated power
consumption in watts using the tool PowerTOP [44]. This tool was developed by Intel, and provides
estimates on power consumption.

To understand how energy consumption is affected when the CPU has a certain workload,
we collected the data using the sensors. As described in the previous section, when a resource is
implemented, a monitor policy related to it is made available by the Agent Manager. In this case,
it is possible to create agents executing the CPUMonitorPolicy and EnergyMonitorPolicy policies
periodically. The collected data were summarized into two charts, where the Y-axis represents
the normalized value of the CPU workload and the estimated power. The X-axis is the time in
seconds. In Figure 9, the CPU is using a performance governor, while in Figure 10 the CPU is using
powersave governor. As expected, there is a correlation between workload and energy consumption
in performance mode since the CPU adjusts its frequency during the execution. The same does not
apply in the powersave mode, where the energy consumption almost never goes over a certain value.
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Figure 9. Correlation of energy consumption and CPU workload using performance governor.

Figure 10. Correlation of energy consumption and CPU workload using powersave governor.

To reduce energy consumption, for example, we can use reactive policies implementing the
method condition(event) of the Policy interface to evaluate the workload in the CPU. The action
performed by the policy can be the adjustment of the CPU’s frequency to a lower level. In this
example, we considered two different strategies for saving energy. The strategies involve three policies;
these policies are presented in Figure 11. The first adjusts the CPU to powersave mode when the
utilization is over 80% while in the second sets the CPU to powersave mode when the utilization is over
50%. The third returns the CPU to performance mode when the utilization is under 50. The first strategy
is composed of policies PowersaveDynamicScalingPolicy1 and PerformanceDynamicScalingPolicy;
strategy two uses PowersaveDynamicScalingPolicy2.

We have chosen batch jobs to represent the external tasks that modify the environment to evaluate
how the agents will manage energy consumption. In this case, we opted to use the deterministic model
of the job arrival using an external file of events, where each row represents one event arriving in the
system containing the arrival time, duration of the task, and workload. The SimTask main method,
seen in Figure 12, allocates the CPU resource, and consequently causes additional power consumption
proportionately to the workload when the CPU is performance mode and more steady when the CPU
is in powersave mode, as mentioned previously. The SimTask pos method would release the resource
as soon as the task is completed.
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class PowersaveDynamicScal ingPol icy1 ( Po l i cy ) :
def cond i t i on ( s e l f , event ) :

return s e l f . cpu . read ( ) > 80

def ac t i on ( s e l f ) :
s e l f . cpu f r eq . set ( governor=’ powersave ’ , max frequency =0.9)

class PowersaveDynamicScal ingPol icy2 ( Po l i cy ) :
def cond i t i on ( s e l f , event ) :

return s e l f . cpu . read ( ) > 50

def ac t i on ( s e l f ) :
s e l f . cpu f r eq . set ( governor=’ powersave ’ , max frequency =0.9)

class PerformanceDynamicScal ingPol icy ( Po l i cy ) :
def cond i t i on ( s e l f , event ) :

return s e l f . cpu . read ( ) <= 50

def ac t i on ( ) :
s e l f . cpu f r eq . set ( governor=’ performance ’ , max frequency=2.9)

Figure 11. Example of implementation of a reactive policy.

class CPUTask( SimTask ) :
def main ( s e l f ) :

i f not s e l f . acqu i red :
s e l f . acqu i red = True
s e l f . cpu . va lue += s e l f . wordload

i f s e l f . cpu . f requency == ’ powersave ’ :
e s t imate = s e l f . powersave est imate ( s e l f . cpu . va lue )

e l i f s e l f . cpu . f requency == ’ performance ’ :
e s t imate = s e l f . pe r fo rmance es t imate ( s e l f . cpu . va lue )

s e l f . energy monitor . va lue = est imate

def pos ( s e l f ) :
s e l f . cpu . va lue −= s e l f . wordload

Figure 12. Example implementation of a task to update the energy monitor based on CPU workload.

The first analysis suggests that the average energy consumption with the first strategy is 9 Watts
while for the second one it is 7.57 Watts. Without taking any other resources correlated to energy
consumption and CPU, we can infer that the second one is better. However, other resources or metrics,
such as a metric on Quality of Service (QoS), can be affected by the CPU dynamic frequency scaling of
strategy two; these could be included in the model for further investigation.

When comparing the policies in the real environment, a similar behaviour is observed.
The average energy consumption in the first policy is 13.75 Watts while in the second one is 12.34 Watts.
These results come from a very limited set of experiments and comparisons and so no significance can
be determined. Again, this was meant as example to illustrate how the ARPS framework can be used.

5. Discussion

We presented ARPS, a framework to enable evaluation of a MAS before deployment in an actual
environment. This framework is the result of a general purpose MAS solution developed to be as
flexible as possible to provide management of a data centre. It has proven useful in a specific domain,
and we believe that others in the MAS community can benefit from this additional option when
developing solutions to their problems. To this end, we illustrated how it could be applied using our
specific case.

Due to the decision of using the RESTful architecture style, agents can be deployed manually by
a user in an environment that would contain a single agent, without the need of an agent manager.
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This unintended feature is possible because agents are self-contained and all the operations are made
available through the API. The interaction can be done using web clients widely available on the
Internet. The only requirement is that the platform can run Python applications. Thus, a user can
instantiate an agent to control an autonomous robot developed in a platform such as a RaspberryPI,
or it can deploy an agent in devices of an IoT environment.

We have identified other features that could enrich this framework. The inclusion of a Policy
Management Tool can ease the process of creating new policies dynamically using a high-level language.
Also, new resources and their touchpoints could be made available on the fly or dynamically removing
unavailable resources. This could improve the integration of simulation and deployment even more.
We plan to add a learning component to make agents more robust to complex adaptive environments.
Further, reliability characteristics, such as fault tolerance, and security concerns, are being addressed
and will be included in future versions.

Currently, the framework has some limitations related to features that were set aside due to low
priorities. The framework does not come with a visualization component. Thus, it is not possible
to visualize the running agents both during the simulation or within the real environment. Also,
because we were aiming to have actual agents, we did not evaluate the usage of this framework
applied to problems entailing only agent-based modelling simulation (ABMS). Since ABMS and MAS
concepts overlaps, this MAS framework could be adapted to be used as ABMS tool. We do not know,
however, how it performs when millions of agents are deployed in the environment. The framework
does include statistical tools to analyze the results of the simulation or to assess the system in the
actual environment since we believe that each user has their own needs and preference for tools.
As mentioned, all the data gathered via the framework is made available in CSV format and so other
applications that can provide more suitable tools can be used to extract insightful information from
the data. Lastly, the framework is not FIPA compliant yet.
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Inaccessibility and Mobility Support. In Software Agent-Based Applications, Platforms and Development Kits;
Springer: Birkhäuser Basel, 2005; pp. 21–46. doi:10.1007/3-7643-7348-2_2. [CrossRef]

11. Helsinger, A.; Thome, M.; Wright, T. Cougaar: A scalable, distributed multi-agent architecture.
In Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat.
No.04CH37583), The Hague, The Netherlands, 10–13 October 2004. doi:10.1109/icsmc.2004.1399959.
[CrossRef]

12. Pokahr, A.; Braubach, L.; Lamersdorf, W. Jadex: A BDI Reasoning Engine. In Multi-Agent Programming;
Springer: Boston, MA, USA, 2005; pp. 149–174. doi:10.1007/0-387-26350-0_6. [CrossRef]

13. Rao, A.S.; Georgeff, M.P.; BDI Agents: From Theory to Practice. In Proceedings of the ICMAS: International
Conference on Multi-Agent Systems, San Francisco, CA, USA, 1995, Volume 95, pp. 312–319.

14. Boissier, O.; Bordini, R.H.; Hübner, J.F.; Ricci, A.; Santi, A. Multi-Agent Oriented Programming with Jacamo.
Sci. Comput. Program. 2013, 78, 747–761. doi:10.1016/j.scico.2011.10.004. [CrossRef]

15. Rao, A.S. AgentSpeak(L): BDI agents speak out in a logical computable language. In Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 1996; pp. 42–55. doi:10.1007/bfb0031845. [CrossRef]

16. Bordini, R.H.; Hübner, J.F.; Wooldridge, M. Programming multi-agent systems in AgentSpeak using Jason; John
Wiley & Sons: Chichester, WS, UK, 2007; Volume 8.

17. Hübner, J.F.; Boissier, O.; Kitio, R.; Ricci, A. Instrumenting Multi-Agent Organisations with Organisational
Artifacts and Agents. Auton. Agents Multi-Agent Syst. 2009, 20, 369–400. doi:10.1007/s10458-009-9084-y.
[CrossRef]

18. Ricci, A.; Piunti, M.; Viroli, M.; Omicini, A. Environment Programming in CArtAgO. In Multi-Agent
Programming; Springer: Boston, MA, USA, 2009; pp. 259–288. doi:10.1007/978-0-387-89299-3_8. [CrossRef]

19. Gutknecht, O.; Ferber, J. MadKit. In Proceedings of the Fourth International Conference on Autonomous
Agents—AGENTS ’00, Barcelona, Spain, 3–7 June 2000; pp. 78–79. doi:10.1145/336595.337048. [CrossRef]

20. Allan, R.J. Survey of Agent Based Modelling and Simulation Tools; Technical Report, DL-TR-2010-007;
Computational Science and Engineering Department, STFC Daresbury Laboratory: Daresbury, Warrington,
England, 2010.

21. Railsback, S.F.; Lytinen, S.L.; Jackson, S.K. Agent-Based Simulation Platforms: Review and Development
Recommendations. Simulation 2006, 82, 609–623. doi:10.1177/0037549706073695. [CrossRef]

22. Minar, N.; Burkhart, R.; Langton, C.; Askenazi, M. The Swarm Simulation System: A Toolkit for Building
Multi-Agent Simulations; Working Papers 96-06-042; Santa Fe Institute: Santa Fe, NM, USA, 1996.

23. Sklar, E. Netlogo, a Multi-Agent Simulation Environment. Artif. Life 2007, 13, 303–311.
doi:10.1162/artl.2007.13.3.303. [CrossRef] [PubMed]

24. Luke, S.; Cioffi-Revilla, C.; Panait, L.; Sullivan, K.; Balan, G. Mason: A Multiagent Simulation Environment.
Simulation 2005, 81, 517–527. doi:10.1177/0037549705058073. [CrossRef]

25. North, M.J.; Collier, N.T.; Ozik, J.; Tatara, E.R.; Macal, C.M.; Bragen, M.; Sydelko, P. Complex
Adaptive Systems Modeling With Repast Simphony. Complex Adapt. Syst. Modeling 2013, 1, 3.
doi:10.1186/2194-3206-1-3. [CrossRef]

26. Collier, N.; North, M. Parallel Agent-Based Simulation with Repast for High Performance Computing.
Simulation 2012, 89, 1215–1235. doi:10.1177/0037549712462620. [CrossRef]

27. Niazi, M.; Hussain, A. Agent-Based Computing from Multi-Agent Systems to Agent-Based Models: A Visual
Survey. Scientometrics 2011, 89, 479–499. doi:10.1007/s11192-011-0468-9. [CrossRef]

28. Drogoul, A.; Vanbergue, D.; Meurisse, T. Multi-agent Based Simulation: Where Are the Agents?
In Multi-Agent-Based Simulation II; Springer: Berlin/Heidelberg, Germany, 2003; pp. 1–15.
doi:10.1007/3-540-36483-8_1. [CrossRef]

29. Bosse, S.; Engel, U. Augmented Virtual Reality: Combining Crowd Sensing and Social Data Mining
with Large-Scale Simulation Using Mobile Agents for Future Smart Cities. In Proceedings of the 5th
International Electronic Conference on Sensors and Applications, Canary Islands, Tenerife, 25–27 September
2019; Volume 4, p. 49.

226



Appl. Sci. 2019, 9, 4483

30. Azimi, S.; Delavar, M.; Rajabifard, A. Multi-agent simulation of allocating and routing ambulances under
condition of street blockage after natural disaster. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42,
325–332. [CrossRef]

31. Kephart, J.; Chess, D. The Vision of Autonomic Computing. Computer 2003, 36, 41–50.
doi:10.1109/mc.2003.1160055. [CrossRef]

32. Tesauro, G.; Chess, D.M.; Walsh, W.E.; Das, R.; Segal, A.; Whalley, I.; Kephart, J.O.; White, S.R. A multi-agent
systems approach to autonomic computing. In Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, New York, NY, USA, 19–23 July 2004; Volume 1, pp. 464–471.

33. Norouzi, F.; Bauer, M. Autonomic Management for Energy Efficient Data Centers. In Proceedings of the
Sixth International Conference on Cloud Computing, GRIDs, and Virtualization (Cloud Computing 2015),
Nice, France, 22 March 2015; pp. 138–146.

34. Schraven, M.; Guarnieri, C.; Baranski, M.; Müller, D.; Monti, A. Designing a Development Board for Research
on IoT Applications in Building Automation Systems. In Proceedings of the International Symposium
on Automation and Robotics in Construction (ISARC), Banff, AB, Canada, 2019; Volume 36, pp. 82–90.
doi:10.22260/ISARC2019/0012. [CrossRef]
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Abstract: In recent years, the formation control of multi-mobile robots has been widely investigated
by researchers. With increasing numbers of robots in the formation, distributed formation control
has become the development trend of multi-mobile robot formation control, and the consensus
problem is the most basic problem in the distributed multi-mobile robot control algorithm. Therefore,
it is very important to analyze the consensus of multi-mobile robot systems. There are already
mature and sophisticated strategies solving the consensus problem in ideal environments. However,
in practical applications, uncertain factors like communication noise, communication delay and
measurement errors will still lead to many problems in multi-robot formation control. In this paper,
the consensus problem of second-order multi-robot systems with multiple time delays and noises
is analyzed. The characteristic equation of the system is transformed into a quadratic polynomial
of pure imaginary eigenvalues using the frequency domain analysis method, and then the critical
stability state of the maximum time delay under noisy conditions is obtained. When all robot delays
are less than the maximum time delay, the system can be stabilized and achieve consensus. Compared
with the traditional Lyapunov method, this algorithm has lower conservativeness, and it is easier to
extend the results to higher-order multi-robot systems. Finally, the results are verified by numerical
simulation using MATLAB/Simulink. At the same time, a multi-mobile robot platform is built, and
the proposed algorithm is applied to an actual multi-robot system. The experimental results show
that the proposed algorithm is finally able to achieve the consensus of the second-order multi-robot
system under delay and noise interference.

Keywords: multi-robot; consensus problem; formation control; noise; time delay

1. Introduction

In recent years, with the continuous development of computer science, complex network theory
and control theory, autonomous mobile robots have received more and more attention [1]. Compared to
single mobile robots, multi-mobile robot systems have better stability, higher fault tolerance and higher
work efficiency. As a result, they have better application prospects and higher research value in the
fields of reconnaissance, patrol, rescue and environmental survey. Formation control of multi-mobile
robots is the basis of multi-mobile robot systems, and has become a hotspot in the field of robotics [2].

As part of the design process of multi-robot formation control algorithm, many problems need
to be considered, including robot model, external environmental interference, sensor measurement
noise, algorithm control precision, and the controllability of different formations [3]. The existing
formation control algorithms for multi-robots mainly include the leader-follower algorithm [4], the
behavior-based algorithm [5], the graph theory-based method [6], the virtual structure method [7],
and the artificial potential field method. The leader-follower algorithm has flexible motion strategy
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and scalability, but the algorithm cannot form stable and reliable feedback between the follower
and the leader. Therefore, the control error of the follower will increase with interference from the
environment. In particular, when the leader fails, it can cause the entire multi-robot system to crash.
The behavior-based algorithm can effectively reduce the complexity of the entire formation control
algorithm, but it has higher requirements in terms of sensor sensing ability and communication ability
between robots, and cannot accurately quantify the behavior of robots during operation. Thus, it is
difficult to guarantee the system’s robustness using the behavior-based algorithm. The virtual structure
method is convenient for designing the formation behavior of multi-robot systems, while due to the
constraints of rigid structures, it lacks flexibility with respect to obstacle avoidance and formation
transformation. The artificial potential field algorithm has a simple structure and can effectively avoid
collisions and obstacles, but it is susceptible to interference when maintaining the formation, and it is
difficult to perform precise formation control. Moreover, the potential energy function needs to be
reset if the formation transformation is performed, leading to a lack of flexibility.

In view of the shortcomings of the traditional formation control algorithm, considering the
increase in the number of robots in the multi-robot system and the continuous improvement of
the data processing capability of a single robot, the distributed multi-robot control algorithm has
attracted the attention of researchers. The distributed multi-robot system can make full use of the data
processing resources of the robot and share the pressure of the central processing machine, which has
great advantages in terms of flexibility and fault tolerance [8,9]. In addition, solving the consensus
problem is the core of the distributed multi-robot control algorithm [10]. There are already mature and
sophisticated strategies for solving the consensus problem in ideal environments [11,12]. However,
in practical applications, uncertain factors like communication noise, communication delay and
measurement error will still lead to many problems in multi-robot formation control. Some algorithms
have considered some practical problems. Reference [13] studied the conditions of the system reaching
consensus under uniform delay, when the communication structures of second-order multi-robot
systems were a directed graph with spanning tree or a strongly connected graph, respectively. However,
that paper does not consider the noise condition or consensus under different delay conditions.
Reference [14] studied the consensus problem of second-order multi-robot systems under noisy
conditions. A control protocol based on distributed sampling data was proposed to achieve system
consensus, but the delay condition was not taken into account in the algorithm. Reference [15]
studied the consensus of second-order multi-robot systems under non-uniform and multi-time delays
using the frequency domain analysis method. Compared with the Lyapunov method, it has lower
conservativeness, and the results were extended to higher-order multi-robot systems. However, it
did not take noise into consideration, which is unavoidable in practical environments. Reference [16]
studied the consensus of second-order multi-robot systems under uniform time delay and noise
environments, and designed different control protocols for different types of noise, thus achieving the
consensus of the system. These algorithms provide some basic solutions to the second-order system
consensus problem, but the problems encountered by multi-robots in practical applications are far
more varied than these. On the basis of these algorithms, this paper performs a more in-depth analysis,
especially considering the consensus of the second-order system in which there are many different
time delays and multiplicative noises in the system, laying the foundations for a formation control
algorithm for second-order multi-robot systems that can be truly implemented in real robot systems.

In summary, this paper analyzes the consensus problem of second-order multi-robot systems
under various delay and noise conditions. The system character equations are transformed into
quadratic polynomials of pure imaginary eigenvalues based on frequency domain analysis, and then
solved. Finally, its critical steady state is obtained and verified using Matlab numerical simulation.
Compared with existing algorithms, this algorithm has lower conservativeness, and it is easier to
extend the results to higher-order multi-robot systems. Since the omnidirectional mobile robot is
a fully driven robot, and the horizontal and vertical directions can be separately controlled, it can
be constructed as two one-dimensional second-order multi-robot systems. Therefore, experiments
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were carried out on a multi-omnidirectional mobile robot platform built in the laboratory using the
proposed algorithm [17,18], which verifies the effectiveness of the proposed algorithm.

2. Pre-Preparation and Problem Description

2.1. Graph Theory

G = {V, E} represents the communication topology between robots, in which each robot
represents a node. V is a set of nodes. E is a set of edges, representing the connection state between
robots. The topology map is represented by a Laplacian matrix, which is L = D − A. D is the degree
matrix, which represents how many nodes are adjacent to each node. A = [aij] is the adjacent matrix
and i, j ∈ V. Ni represents all sets of nodes adjacent to the i node. If node j is adjacent to node i, then
aij > 0. If aij = aji for any i, j ∈ V, the graph is an undirected graph; otherwise, it is a directed graph.
If there is a directed path on any two nodes in the graph, the directed graph G is strongly connected.
If there is a directed path to a node in the graph to any other node, then the directed graph G contains
a spanning tree. If the undirected graph G is strongly connected, it is called a connected graph. When
the undirected graph G is a connected graph, its Laplacian L matrix contains a zero root, and the other
eigenvalues are positive real numbers. When a directed graph G contains a spanning tree, its Laplacian
L matrix contains a zero root, and the rest eigenvalue’s real part are positive.

2.2. Problem Description

Suppose the system consists of n omnidirectional robots. The dynamic characteristics of the
omnidirectional robot in the x direction are:{ .

xi(t) = vi(t)
.
vi(t) = ui(t)

(1)

where xi(t) is position, vi(t) is velocity and ui(t) is input control. If any i robot and j robot in the
multi-robot system satisfy the identities as follows:

lim
t→+∞

[xi(t)− xj(t)] = 0 (2)

lim
t→+∞

[vi(t)− vj(t)] = 0 (3)

then the multi-robot system (1) has achieved consensus under the control protocol ui(t) Let the state
vector of the i robot be δi(t) = [xi(t), vi(t)]

T , then the multi-robot system state vector is S(t) =

[δ1(t), δ2(t), δ3(t), . . . , δn(t)]. Rewrite system (1) as:

.
S(t) = ΨS(t) (4)

where Ψ = I ⊗ A − L ⊗ B, A =

[
0 1
0 0

]
, B =

[
0 0
k1 k2

]
, ⊗ is Kronecker. When ideally without

noise and delay, the control protocol designed in [13] is as follows:

ui(t) = ∑
j∈Ni

aij
{

k1[xi(t)− xj(t)] + k2[vi(t)− vj(t)]
}

(5)

where aij > 0 is the topology weight of the communication between robot i and robot j, k1 is the
position scale factor that needs to be designed, k2 is the velocity scale factor that needs to be designed.
Lemmas 1 and 2 give the conditions that the coefficient matrix Ψ of control protocol (5) must satisfy
when the communication topology of system (4) is undirected graph and directed graph, respectively.
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Lemma 1. When the communication topology of multi-robot system (4) is connected graph, the coefficient
matrix Ψ has a double zero root, and the real part of other eigenvalues is negative.

Proof. Let there be an orthogonal matrix Q, such that:

QTLQ = diag{0, λ2, λ3, . . . , λn} (6)

where 0, λ2, λ3, . . . , λn is the eigenvalue of the Laplacian matrix L, and λi > 0 (i = 2, 3, . . . , n).
Formula (7) is obtained from Formula (6):

(Q ⊗ I2)
TΨ(Q ⊗ I2) = diag{A, A − λ2B, A − λ3B, . . . , A − λnB} (7)

The determinant of Formula (7) is obtained:

|diag{A, A − λ2B, A − λ3B, . . . , A − λnB}| = s2
n

∏
2

s2 + λik2s + λik1 = 0 (8)

Because there is s2 in Formula (8), there must be a double zero root in the eigenvalue. By solving
polynomial equation s2 + λik2s + λik1 = 0, we can get:

s1 =
−λik2 +

√
(λik2)

2 − 4λik1

2

s2 =
−λik2 −

√
(λik2)

2 − 4λik1

2

Based on this analysis, when (λik2)
2 > 4λik1, obviously −λik2 ±

√
(λik2)

2 − 4λik1 < 0, so the

eigenvalues s1 and s2 are negative. When (λik2)
2 < 4λik1, because λik2 > 0, so −λik2 < 0, the eigenvalues

s1 and s2 have negative real parts. Lemma 1 is proved. �

Lemma 2. When the communication topology of multi-robot system (4) is directed graph and contains spanning
tree, k1 ∈ (0, k0k2

2) the coefficient matrix Ψ has a double zero root, and the real part of other eigenvalues is

negative. Where k0 = min
‖λi‖�=0

{
‖λi‖2real(λi)

imag(λi)

}
.

Proof. The characteristic determinant of system (4) is obtained by Formula (8), assuming that there are
polynomial equations:

s2 + s(a + bj) + k(a + bj) = 0 (9)

where a > 0, k, a, b ∈ R. Let s = jw:

− w2 − bw + ka + (aw + kb)j = 0 (10)

Solving Formula (10), we can get:

{
−w2 − bw + ka = 0
aw + kb = 0

(11)

Thus, solved: {
k1 = 0

k2 = a(a2+b2)
b2

(12)
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Document [13] proves that when 0 < k < a(a2+b2)
b2 , the roots of Formula (9) are all on the left open

half plane. Formula (8) is modified according to Formula (9):

s2
n

∏
2

s2 + λik2s + λi
k1

k2
k2 = 0 (13)

The analysis shows that when k0 = min
‖λi‖�=0

{
‖λi‖2real(λi)

imag(λi)

}
, k1 ∈ (0, k0k2

2), the coefficient matrix Ψ

has a double zero root, and the real part of other eigenvalues is negative. Lemma 2 is proved. �

3. Consensus Analysis of Multi-Robot with Various Delays and Noise Conditions

In the previous section, we analyzed the conditions under which second-order systems achieve
consensus in an ideal environment. However, in real environments, due to noise interference and
communication differences between different robotic hardware, the above control protocols need to be
improved. Assuming that there are D kinds of different delays in the system, the multi-agent system
(4) can be changed to:

.
S(t) = (I ⊗ A)·S(t)−

D

∑
d=1

(Ld ⊗ B)·ζ(t)·S(t − τd) (14)

where ζ(t) is the communication noise or measurement noise between robots, τij is the transmission
delay, which represents the time taken by i robot to receive and process information transmitted by j
robot, Ld is the Laplacian matrix corresponding to the sub-topological graph of the robot node when

the delay is τd, and
D
∑

d=1
Ld = L.

Theorem 1. If system (14) is a connected graph, the system can achieve consensus when the system delay τd is
less than τmax under the action of noise ζ(t). Among them:

⎧⎪⎨
⎪⎩

τmax =
[
arctan

(
k2
k1

wmax

)]
/wmax

wmax =

√
λ2

maxk2
2ζ2(t)+ζ(t)

√
ζ2(t)(λ2

maxk2
2)

2
+4λ2

maxk2
1

2

(15)

Proof. Using the frequency domain analysis method for analysis, the Laplace transform of Equation (14)
can be obtained:

S(s) = (sI2n − (In ⊗ A) +
D

∑
d=1

(Ld ⊗ B)ζ(t)e−τds)−1S(0) (16)

Let Gτ(s) = sI2n − (In ⊗A) +
D
∑

d=1
(Ld ⊗ B)ζ(t)e−τds, so the eigenvalues of the determinant |Gτ(s)|

are the eigenvalues of the system. Lemma 1 proves that multi-robot system (4) achieves the conditions
of consensus. According to Lemma 1, how can the eigenvalues of system (14) be kept in the negative
half-plane under the interference of time delay τ and noise ζ(t) relative to the system (4)? Because the
measurement noise and communication noise are uncertainties in real environments, it is impossible
to carry out accurate quantitative analysis. Therefore, only when the system delay τ increases to a
value under the action of noise ζ(t) does a non-zero eigenvalue of the system appear on the virtual
axis for the first time, while the time delay τ is the critical value for the system to maintain stability.
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Assuming that the eigenvalue of the system is on the imaginary axis, let s = jw be the eigenvalue;
then α = α1 ⊗ [1, 0]T + α2 ⊗ [0, 1]T is the eigenvector corresponding to the eigenvalue, and if ‖α‖ = 1,
α1, α2 ∈ Cn, then: [

jwI2n − (In ⊗ A) +
D

∑
d=1

(Ld ⊗ B)ζ(t)e−jwτd

]
α = 0 (17)

The imaginary eigenvalues of the system appear in pairs in conjugate form. This paper only
analyzes the case where w > 0. Formula (17) left multiplied by αH is:

αH

[
jwI2n − (In ⊗ A) +

D

∑
d=1

(Ld ⊗ B)ζ(t)e−jwτd

]
α = 0 (18)

Because each line of the left matrix of Formula (17) is zero, so jwα1 = α2, and substituting it into
Formula (18):

D

∑
d=1

βdζ(t)e−jwτd =
w2

k1 + jwk2
(19)

where βd = αH(Ld⊗I2)α
αHα

. Replace A with B in Formula (19):

F(w) =
D

∑
d=1

βdζ(t)ejwτd =
w2

k1 − jwk2
(20)

Take module operation on both sides of the upper equal sign:

‖F(w)‖ = ‖
D

∑
d=1

βdζ(t)e−jwτd‖ < ‖
D

∑
d=1

βdζ(t)‖ =
αH(L ⊗ I2)α

αHα
ζ(t) ≤ λmaxζ(t) (21)

Let wmax =

√
λ2

maxk2
2ζ2(t)+ζ(t)

√
ζ2(t)(λ2

maxk2
2)

2
+4λ2

maxk2
1

2 get w ≤ wmax, upper formula establishment.
From Formula (20):

θ(w) = argz[F(w)] = arctan(
k2

k1
w) (22)

where θ(w) ∈ [0, 2π). Let τ(w) = θ(w)
w , a = k2

k1
, deriving for τ(w), we can obtain:

M1(w) =
dτ(w)

dw
=

1
w2 M2(w) =

1
w2

[
aw

a2w2 + 1
− arctan(aw)

]
(23)

Deriving for M2(w) we can obtain:

dM2(w)

dw
= − 2a3w2

(a2w2 + 1)2 < 0 (24)

M2(w) is decreasing, so when w > 0, M2(w) < M2(0) = 0, so M1(w) < 0; that is, τ(w) is also
decreasing. So τ(w) ≥ τ(wmax) = τmax. When τd < τmax, when τd < τmax, we can get:

τ(w) =
θ(w)

w
=

argz
(

D
∑

d=1
βdζ(t)ejwτd

)
w

≤ max[wτd]

w
<

wτmax

w
< τmax (25)

That is to say, it contradicts τ(w) ≥ τ(wmax). Therefore, when τd < τmax, the eigenvalues of the
system can be maintained in the left half plane, and the consensus of system (14) can be achieved.
Theorem 1 is proved. �
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Theorem 2. If system (14) is a directed graph and there is a spanning tree, the system can achieve consensus when
the system delay τd is smaller than the τmax under the action of noise ζ(t), and k1 ∈ (0, k0k2

2). Among them:

⎧⎪⎨
⎪⎩

τmax = min
‖λi‖�=0

[[
arctan

(
k2
k1

wi

)
− argz(λi)

]
/wi

]

wi =

√
λ2

i k2
2ζ2(t)+ζ(t)

√
ζ2(t)(λ2

i k2
2)

2
+4λ2

i k2
1

2

(26)

where argz(λi) ∈ (−π
2 , π

2 ).

Proof. Lemma 2 proved that, when the communication topology of multi-robot system (4) is directed
graph and contains spanning tree, k1 ∈ (0, k0k2

2), the coefficient matrix Ψ has a double zero root, and
the real part of the other eigenvalues is negative. The same analysis is performed using the frequency
domain analysis method. Similar to the proof of Theorem 1, only when the system delay τ increases to
the value under the action of noise ζ(t) does a non-zero eigenvalue of the system first appear on the
imaginary axis, while the delay τ is the critical value for the system to maintain stability. Take modulo
operation on Formula (20):

‖F(w)‖ = ‖ w2

k1 − jwk2
‖ (27)

Let w be a function of ‖F(w)‖; then the above formula can be written as follows:

w =

√√√√‖F(w)‖2k2
2 +

√
(‖F(w)‖2k2

2)
2
+ 4‖F(w)‖2k2

1
2

(28)

Then we can get that w is an incremental function about ‖F(w)‖. From Formula (20):
⎧⎪⎨
⎪⎩

argz[F(w)] = arctan( k2
k1

w)

argz[F(w)] ≤ argz(
D
∑

d=1
βd) + max(wτm)

(29)

So:

arctan(
k2

k1
w)− argz(

D

∑
d=1

βd) ≤ max(wτm) (30)

Because βd = αH(Ld⊗I2)α
αHα

, so
D
∑

d=1
βd = λi,where λi is the non-zero eigenvalue of Laplace matrix L.

So ‖F(w)‖ ≤ ‖ζ(t)λi‖. Because w is an incremental function about ‖F(w)‖, so:

w(‖F(w)‖) ≤ w(‖ζ(t)λi‖) = wi =

√√√√λ2
i k2

2ζ2(t) + ζ(t)
√

ζ2(t)(λ2
i k2

2)
2
+ 4λ2

i k2
1

2
(31)

When τd < τmax, we can get:

max(wτd) < wiτmax = min
[[

arctan( k2
k1

wi)− argz(
D
∑

d=1
βd)

]
/wi

]
wi

≤ arctan( k2
k1

w)− argz(
D
∑

d=1
βd)

(32)

We can find that this contradicts Formula (30), so when τd < τmax, the eigenvalue of the system
can be maintained in the left half plane, and the consensus of system (14) can be achieved. Theorem 2
is proved. �
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4. Simulation Verification

In this section, two sets of Matlab/Simulink numerical simulation experiments are carried out to
verify the consensus of the system described in Theorems 1 and 2 when the communication topology
is undirected graph and directed graph under the conditions of noise and various delays.

Experiment 1. Let system (14) consist of four robots whose communication topology is shown in Figure 1.

τ

τ

ττ

Figure 1. Experiment 1 system communication topology.

As can be seen from Figure 1, the time delay between robots 1 and 2 is τ1, between robot 2 and
robot 3 it is τ2, between robot 3 and robot 4 it is τ1, between robot 4 and robot 1 it is τ2. If the adjacent
communication weight aij is 1, then the Laplace matrix L is:

L =

⎛
⎜⎜⎜⎝

2 −1 −1
−1 2 −1

−1 2 −1
−1 −1 2

⎞
⎟⎟⎟⎠ (33)

We can get λmax = 4. Assume that the communication noise or measurement noise is white noise
with a maximum amplitude of two. According to Theorem 1, τmax = 0.226.

In the first group of Experiment 1, set τ1 = 0.21, τ2 = 0.22, and the initial posture is assumed to
be (1,0), (2,0), (3,0), (4,0). The simulation results are shown in Figure 2.

To verify Theorem 1 and compare with the first group of experiments, in the second group of
experiments, set τ1 = 0.23, τ2 = 0.24 under the same conditions. The simulation results are shown in
Figure 3.

According to Experiment 1, system (14) satisfying lemma 1 can achieve consensus when all τd are
less than τmax, and the system will diverge when all τd are greater than τmax, which cannot achieve
consensus; thus Theorem 1 is verified.
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(a) 

 
(b) 

Figure 2. Experiment 1 Group 1 simulation results; x is position, v is velocity. (a) Trajectory of x
changing with time; (b) Trajectory of v changing with time.

(a) 

Figure 3. Cont.
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(b) 

Figure 3. Experiment 1 Group 2 simulation results; x is position, v is velocity. (a) Trajectory of x
changing with time; (b) Trajectory of v changing with time.

Experiment 2. Let system (14) consist of four robots whose communication topology is shown in Figure 4.

τ

τ

τ

τ

Figure 4. Experiment 2 system communication topology.

The time delay from Robot 1 to Robot 2 is τ1, from Robot 2 to Robot 3 it is τ2, from Robot 3 to
Robot 4 it is τ3, from Robot 4 to Robot 1 it is τ4. If the adjacent communication weight aij is 1, then the
Laplace matrix L is:

L =

⎛
⎜⎜⎜⎝

2 −1
−1 1 −1

−1 2
−1 −1 1

⎞
⎟⎟⎟⎠ (34)

Then k0 = min
‖λi‖�=0

{
‖λi‖2real(λi)

imag(λi)

}
= 5×2

1 = 10, so k1 ∈ (0, 10k2
2). Assume that the communication

noise or measurement noise is white noise with a maximum amplitude of two. Set k1 = 1, k2 = 1,
according to Theorem 2, τmax = 0.137.

In the first group of experiment 2, set τ1 = 0.13, τ2 = 0.12, τ3 = 0.11, τ4 = 0.1, and the initial
posture is assumed to be (1,0), (2,0), (3,0), (4,0). The simulation results are shown in Figure 5.

To verify Theorem 2 and compare with the first group of experiments, in the second group
of experiments, set τ1 = 0.14, τ2 = 0.141, τ3 = 0.142, τ4 = 0.143 under the same conditions.
The simulation results are shown in Figure 6.
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(a) 

 
(b) 

Figure 5. Experiment 2 Group 1 simulation results; x is position, v is velocity. (a) Trajectory of x
changing with time; (b) Trajectory of v changing with time.

 
(a) 

Figure 6. Cont.
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(b) 

Figure 6. Experiment 2 Group 2 simulation results;x is position, v is velocity. (a) Trajectory of x
changing with time; (b) Trajectory of v changing with time.

According to experiment 2, system (14) satisfying Lemma 2 can achieve consensus when all τd are
less than τmax, and the system will diverge when all τd are greater than τmax, which cannot achieve
consensus; thus Theorem 2 is verified.

5. Physical Experiment Verification

To verify the proposed formation control algorithm, we did the experiment based on a
pre-constructed multi-mobile robot research platform built by our laboratory, which was constructed
with a self-designed three-wheeled omnidirectional robot carrying an UWB (Ultra-Wide Band) ranging
module. The system is shown in Figure 7, the omnidirectional robot is shown in Figure 8, and the
performance parameters are shown in Table 1. Because the consensus of the second-order system
is analyzed in the theoretical analysis part, the speed and position are consistent, and while the
omnidirectional robot is a fully driven robot, the horizontal and vertical directions can be controlled
separately. Because the velocity control in a given direction is a second-order system, therefore,
multi-omni-directional mobile robots can be decomposed into two one-dimensional second-order
multi-robot systems. Therefore, omni-directional robots are used to verify the proposed algorithm.
In the experiment, it is possible to determine whether the algorithm is valid based on whether the
speed and the position of the robot after final stabilization are consistent. In the data acquisition part,
the external positioning data of the robot are collected by the UWB positioning system built by myself,
and the speed of the robot itself is collected by the encoder on the wheel of the robot and transmitted to
the central processing computer via Wi-Fi for processing. The ranging error between the UWB ranging
modules used in the experiment is 7 cm. Experiments were carried out in an indoor environment with
length × width of 4 m × 5 m in order to verify the effectiveness of the proposed algorithm.

Table 1. Omnidirectional robot parameters.

Parameter Name Value

weight 1.5 Kg
diameter 235 mm

Maximum linear velocity 1.2 m/s
Maximum angular velocity 6.6 rad/s

Battery capacity 2800 mah
No-load Maximum Standby Time 2 h

Maximum Load Weight 3 Kg
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Figure 7. Multi-robot research platform.

  
(a) (b) 

Figure 8. Omnidirectional robots. (a) Top view; (b) Side view.

It should be pointed out that when the proposed algorithm is applied to a practical multi-robot
system, it is necessary to first determine the maximum communication delay between robots and the
maximum amplitude of the noise environment, and then design k1 and k2 based on this. At the same
time, it should be noted that this experiment mainly focuses on verifying whether the system can
achieve consensus under the control law. The collision avoidance behavior of the multi-robot system
is not the emphasis in this research. Therefore, the collision avoidance algorithm program is written
in the bottom control program of the robot in this experiment. When the robot is about to collide,
the formation algorithm program will be interrupted, and the collision avoidance behavior will be
executed. When a safe distance between the robots has been reached, the formation algorithm program
will continue to be executed [17,18].

The communication topology used in the experiment is shown in Figure 4. The adjacent
communication weight aij is 1, so k1 ∈ (0, 10k2

2). The central processor logs on each robot remotely
through SSH, and obtains the communication delay between two robots whose communication weight
A is not zero by PING command. The time delay between robots in the actual communication
environment is time-varying, so take its maximum delay. We get τa1 = 0.56s, τa2 = 0.043s, τa3 = 0.047s,
τa4 = 0.061s. The time taken for each robot to receive data and process them is τb1 = 0.021s,
τb2 = 0.02s, τb3 = 0.021s, τb4 = 0.021s. Therefore, the time delay between robots is τ1 = 0.077s,

241



Appl. Sci. 2019, 9, 1004

τ2 = 0.063s, τ3 = 0.068s, τ4 = 0.082s. Because this experiment is being performed in a laboratory
environment, it is assumed that the communication noise is white noise with a maximum amplitude
of 2. According to Formula (26) and the moving speed of omnidirectional robot, set k1 = 1, k2 = 1.4.
Four omnidirectional robots were placed in arbitrary positions, (0.83,2.20,0), (0.35,1.74,0), (0.67,0.88,0),
(0.56,0.48,0), respectively. In the practicality experiment, the robot cannot converge to one point, so
Formula (2) is changed to:

lim
t→+∞

[xi(t)− xj(t)− Fp] = 0 (35)

where Fp is the formation parameters and p = 1, 2, . . . , n. Since the system only installs a UWB ranging
sensor to provide positioning for the robot, the robot will perform pose determination before the
experiment starts, and the robot’s body coordinate system will be consistent with the global coordinate
system. The experimental results are shown in Figure 9. The experimental video address can be found
in reference [19].

  
(a) (b) 

  
(c) (d) 

Figure 9. Experiment process screenshots. (a) T = 0 s; (b) T = 15 s; (c) T = 25 s; (d) T = 30 s.

The experimental data collected by the UWB positioning system are shown in Figure 10.
The experiments show that the multi-robot system can eventually achieve consensus and form a

formation in a variety of time-delay and noise environments, which verifies the effectiveness of the
proposed algorithm.
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Figure 10. Experiment 1 data of UWB positioning system.

6. Conclusions

Aiming at the consensus of multi-mobile robots under uncertain conditions such as
communication delay, communication noise and measurement noise, we used the frequency domain
analysis method, transformed the characteristic equation into the quadratic polynomial of the pure
imaginary eigenvalue, and then obtained the conditions for achieving consensus under various time
delay and noise conditions for a second-order multi-robot system. That is, when the time delays of all
robots are less than the maximum time delays, the system can achieve consensus. In this paper, based
on two aspects of system communication topology—directed graph and undirected graph—the results
were verified by numerical simulation using MATLAB/Simulink, verifying the correctness of the
theoretical derivation of the proposed algorithm. Finally, a multi-robot research platform was built, and
formation control experiments were carried out in a real laboratory environment. The experimental
results showed that the proposed algorithm could effectively make the second-order multi-mobile
robot systems consistent. This paper only analyzes the consensus problem of second-order systems,
while most existing multi-mobile robot systems are higher-order systems. Therefore, the consensus
analysis of higher-order systems under noise and time delay conditions will be the focus of our
next research.
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Abstract: The modeling and design of multi-agent systems is imperative for applications in the
evolving intelligence of unmanned systems. In this paper, we propose a multi-agent system design
that is used to build a system for training a team of unmanned surface vehicles (USVs) where no
historical data concerning the behavior is available. In this approach, agents are built as the physical
controller of each USV and their cooperative decisions used for the USVs’ group coordination.
To make our multi-agent system intelligently coordinate USVs, we built a multi-agent-based learning
system. First, an agent-based data collection platform is deployed to gather competition data from
agents’ observation for on-line learning tasks. Second, we design a genetic-based fuzzy rule training
algorithm that is capable of optimizing agents’ coordination decisions in an accumulated manner.
The simulation results of this study demonstrate that our proposed training approach is feasible
and able to converge to a stable action selection policy towards efficient multi-USVs’ cooperative
decision making.

Keywords: unmanned surface vehicles; multi-agent system; training system; genetic-based fuzzy
rule learning; intelligent autonomous control; modeling and simulation

1. Introduction

The modeling and design of multi-agent systems for applications in the evolving intelligence
of unmanned systems is interesting and promising [1–4], especially in situations where traditional
methods can be costly, dangerous, or even impossible to realize. Several applications can be found
in a very broad range of domains such as energy [5–7], security [8], robotics [9], and resource
management [10]. A multi-agent system consists of autonomous agents that interact in an environment
to achieve specific goals [11]. An autonomous agent, in this sense, is able to perceive its environment
and perform actions using actuators.

Over the years, there have been several studies that have proposed principles for designing
multi-agent systems, as well as approaches to coordinate the individual behavior of agents [12–16].
In most multi-agent application domains, a priori specification of the optimal agents’ behavior is
difficult due to the complexity and/or dynamics of the environment [11]. In such environments, it is
natural for agents to adapt or learn optimal actions that maximize performance on-line. However,
one of the key challenges is the need to build a simulation platform that can be used for fast training
so as to gather enough training data to promote the intelligent development process.

In the context of multi-surface vehicles’ modeling and design [17–19], an unmanned surface
vehicles (USVs) system is one of the development trends of modern weapon equipment [20].
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The unmanned surface vehicle system has become an important means of information confrontation,
precision strikes, and special combat tasks in future war [21]. Over the years, unmanned
surface vehicles have long been applied to varying kinds of military applications in the real
world. Some of the application domains include anti-mine warfare, submarine warfare, reconnaissance,
and surveillance [22–24]. Due to the open and complex dynamic combat environment, the USV
combat system must develop in the direction of autonomy and synergy, and the future surface
unmanned combat should have a strong autonomous capacity, be able to be controlled autonomously,
and complete complex and diverse combat tasks independently or collaboratively in a complex
uncertain environment [25]. However, human knowledge is difficult to apply directly to the
coordination of USVs.

We propose a multi-agent-based intelligent training system for unmanned surface vehicles
(USVs). We focus on the problem of training agents of a multi-agent-based unmanned surface
vehicles system where no historic data concerning the agent behavior is available. Using the team
learning framework, we provide approaches for learning the rule base for multi-agent systems,
designing the learning environment for simulating cooperative and competitive agents’ behavior,
and gathering competition data from agents’ observation for off-line learning tasks. To this end,
this paper first presents a decentralized coordination platform and simulator design based on a
multi-agent architecture. Secondly, a USV-based agent model is presented. The paper also proposes
a data collection platform for agent learning and USV training. Lastly, a fast learning and training
algorithm design based on the agents’ rule base is presented.

To evaluate our approach, we used an island-conquering scenario where two teams of unmanned
surface vehicles compete to conquer islands in an environment. We model this case study as a
partially-observable stochastic game where one team has to learn the behavior that maximizes their
returns against a human-controlled team. Our empirical evaluations show that our approach to
learning the knowledge base of a multi-USV system, when applied to the trained team, was able to
find a knowledge base (KB) to achieve better performance.

We first present the problem this study seeks to address in Section 2. Section 3 discusses the
multi-surface vehicle training system design. Finally, in Section 4, we discuss our experiments and
analysis of the simulation results followed by the conclusion of our study in Section 5.

2. Multi-Agent-Based USVs’ Training Problem

We first discuss the multi-agent-based intelligent training system learning problem of this study.
In general, a stochastic game is an extension of the Markov decision process (MDP) to the

multi-agent context. In such a game, agents may have conflicting goals, and their joint actions
determine rewards and transition between states. Stochastic games usually assume agents as having a
complete view of their states, whereas the partial observation case is discussed under the more general
partially-observable stochastic games (POSGs) domain. Our study is performed under the POSG case.

Theorem 1. A POSG is a tuple < X, U1...Un, O1...On, f , R1...Rn > where:

• n is the number of agents
• X is the finite set of states
• Ui, i = 1, ..., n is the finite set of actions available to the agents, which form the joint action set

U = U1 × ... × Un

• Oi, i = 1, ..., n is the finite set of observations of the agents. The joint observation is denoted as
o = {o1, ..., on}

• f : X ×U×X → [0, 1] is the Markovian state transition function where f (x′|x, u) denotes the probability
of reaching state x′ after the joint action u in state x. The joint action of all agents u at a stage t is denoted
as ut = [u1,t, ..., un,t]� ut ∈ U, ui,t ∈ Ui

• Ri : X × U × X → R, i = 1, ..., n are the reward functions of the agents.
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In this study, we consider a team of multiple unmanned surface vehicles that must be trained to
perform a given mission m in a mission space D ⊂ Rn consisting of opposite forces. Let H(m) be the
objective function dependent on the mission. Given that a team T consists of N USVs, the dynamics of
the ith USV is given by:

ẋi = fi(xi(t), ui(t))

i = 1, 2, 3..., N
(1)

where xi(t) ∈ Rn and ui(t) ∈ Rm are the state and control inputs (available actions) of the USV,
respectively, at time t. Depending on the USV model and mission type, a set of constraints (such as
obstacle avoidance and the physical limitations of the USV) on the state xi(t) of a USV are imposed.
The control inputs of a USV are bounded according to the limits of the USV’s actuators |ui(t)| < umax.

The reward of an USV i after taking action ui,t ∈ Ui in stage t is denoted as ri,t+1. The individual
policies hi : X × Ui → [0, 1] of the USVs in a team form the joint policy h. In the case of team learning,
the joint policy is defined by the single learner. Since the reward of each USV in a team depends on the
joint action, the respective USV rewards depend on the joint policy:

Rh
i (x) = E

{ T

∑
t=0

γtri,t+1|x0 = x, h

}
(2)

where γ is the discounting factor and T is the length of the horizon. The training objective for the
intelligent training system is to find a policy that maximizes Equation (2) such that the trained
team of USVs can outperform its rival USVs, while adapting to the changing dynamics of it’s
operating environment.

3. Multi-Agent-Based Training System Design

In this section, we discuss the multi-agent-based training system design of our study, as well as
the ideas involved in training the agents. To start with, the section first presents the architecture of the
multi-agent-based intelligent training system. Next, we present the USV agent model for cooperative
training and competition. Finally, the section presents the agent data collection platform for gathering
competition for the agent information sharing and learning algorithm.

3.1. System Architecture

The architecture of the system used in this study is presented in Figure 1. We decouple the agents’
control from the main environment in order to allow different implementations of controllers. In this
case, we consider the multi-agent simulation platform as a server, and any attached controller becomes
a client. Each USV agent selects its action based on the observed information from the environment.
Based on the data visualization model of the USV, the data collection platform forms and mounts the
corresponding resource tree structure of the USV. Historical data are provided to the upper machine
learning algorithm by the data collection platform after data fusion. The obtained algorithm controller
is then loaded into the USV.

The multi-agent cooperative reasoner component serves as the policy used to select an action
for a controlled agent using the agent’s local observation. In this study, we model the reasoner as an
FISdecomposed into a genetic fuzzy trees (GFT). Thus, the reasoner maintains a KB, which is used for
the mapping fuzzy values of the observation of an agent to an action for execution in the POSG.

The learner component of the intelligent control model facilitates KB learning, tuning,
or optimizing. It seeks to find the policy that exhibits the designed behavior of the controlled team as
specified by the reward function. Thus, gradient-based approaches such as neural networks (NN) [26],
as well as non-gradient-based approaches can be employed for this purpose. As already indicated in
our usage of GFT for the reasoner component, we use the GA in this study to learn the fuzzy rules
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and tune the MFsof a GFT. Each candidate KB is applied to the control problem for the whole of
a simulation episode (we use round and episode interchangeably) as found in the Pittsburgh approach.
Hence, the rewards that are received each time step are aggregated and assigned as the fitness value of
the candidate KB used at the end of the round/episode.

MAS Cooperation 
Reasoner

MAS Cooperation 
Learner

Figure 1. The architecture of the multi-agent based intelligent training system.

3.2. Agent Design

The USV agent model that is used by the intelligent training system for cooperative training and
competition is equipped with a radar and weapon system. The radar of a USV can detect a hostile
threat within it’s detection range. In this work, the weapon system of a USV consists of a calibrated
gun with limited forward turning angle and firing range. A USV can turn in both directions (left or
right) and with limited speed and turning radius r. In this study, only surge, sway, and yaw are used
to describe the USV’s movement at sea, as shown Figure 2). Therefore, the kinematic relationship
between the USV position in the global inertial frame XYZ and the boat body-fixed frame xyz can be
defined as:

x = u cos(ψ)− v sin(ψ)

y = v sin(ψ) + v cos(ψ)

ψ = λ

(3)

The location and orientation of USVs in the coordinates of the environment are represented by
(x, y) and ψ in the Earth-fixed reference frame, while u, v, and λ represent the velocity of surge, sway,
and yaw in the body-fixed reference frame, respectively.
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Figure 2. Schematic diagram of the USV model and planar motion where XEOEYE is the Earth-fixed
reference frame and XBOBYB denotes the body-fixed reference frame.

3.3. Data Collection Model

Agents’ observation can persist in the course of training to enable off-line operations.
Data collected during training can be useful for agents’ cooperative decision making. Furthermore,
the gathering of training data means that different agents’ learning algorithm can be employed both
on-line and off-line for agents’ performance improvement. Moreover, the data can be organized to
enable communication between agents. The gathered domain data (in resource forms) can be used for
purposes such as improving agents’ performance using state-of-the-art deep reinforcement learning
(DRL) algorithms. Hence, the data collector component is not only necessary, but also can extend the
scope of learning algorithms that can be employed for intelligent training.

The data collection model is designed using a training and control platform consisting of
loosely-coupled components and a common resource model. One such paradigm for implementing
modular services is the Future Airborne Capability Environment’s (FACE (http://www.opengroup.
org/face)) common operating environment approach. In Figure 3, we show the components of FACE
with regards to our study. Their descriptions, in the context of our study, are as follows:

• Historical training data level (HTDL): The HTDL layer consists of the entities involved in
learning the KB or agents’ policies for a POSG. In situations where the reasoner or policy output
corresponds to composite tasks, planning and agent scheduling services may be implemented
as modular components in this layer. This layer contains the historical resource data that are
leveraged by the underlying learning algorithm to learn the KB.

• Cooperative decision data level: This level consists of entities that handle individual agent-level
data for agent decision making. Data at this level are real-time data and observations from
the agent.

• Individual agent decision model (IADM): A resource management service for hosting agents’
observations composes this layer. Such a service exposes a uniform set of APIs that can be
consumed by the training and control platform or the agents for reasoning or cooperation
operations. Modeling the observations as resource data enables the data elements to be uniquely
addressed through the APIs.

• Data collection services: Services in this layer receive data from the agents in their raw form and
then perform adaptation to a common resource model for use in the training and control platform.
Thus, they abstract the heterogeneous forms that agents may report from their local observation.
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Figure 3. The architecture of the agent data collection platform based on Future Airborne Capability
Environment (FACE) components.

3.4. Multi-Agent-Based USV Training Algorithm Design

The intelligent control model, as depicted in Figure 4, is responsible for performing learning and
reasoning. It controls a team of agents in the simulation environment by sending agent actions to
the environment every time step. Thus, at time step t, it sends the joint actions ut to the environment
for execution where the action for agent i, i ≤ n, is ui,t ∈ ut. The intelligent control model consists of
a learner and a reasoner that employs fuzzy logic and genetic algorithms (GA) known as genetic fuzzy
systems (GFS) [27]. In this technique, GA is used to learn and tune the rule base and membership
function of an FIS, respectively. To do this, an initial population of solutions, or strings, is created to
encode the rule base and membership functions.

Classical approaches such as Michigan [28], Pittsburgh [29], and iterative rule learning [30] are
mostly used to derive GFS fuzzy rules. We give an instance to illustrate how the rule base is encoded in
this study using the Pittsburgh approach. Suppose X1 and X2 are input variables each with linguistic
terms {term1, term2} and output variable Y with terms {a1, a2} with an arbitrary rule base of an FIS
as follows:

1. IF X1 IS term1 AND X2 IS term1 THEN Y IS a1
2. IF X1 IS term1 AND X2 IS term2 THEN Y IS a2
3. IF X1 IS term2 AND X2 IS term1 THEN Y IS a2
4. IF X1 IS term2 AND X2 IS term2 THEN Y IS a1
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Assume we assign codes zero and one to a1 and a2 respectively. The chromosome 0110 is obtained.
This approach can represent an if-then rule in a single digit. This implies that each chromosome
encodes possible outputs of a set of rules.

Similarly to tuning membership functions, each digit in the string corresponds to some endpoint
of a membership function. GA can then be used to tune the parameters as part of the evolution process;
such as found in [31], where initial parameters of a triangular MF T (α, β, γ) are tuned using:

αi+1 ← (αi + δi)− ηi (4)

βi+1 ← (βi + δi) (5)

γi+1 ← (γi + δi)− ηi (6)

where δ and η are the tuning coefficients, whereas α, β and γ parameterize T. δ shifts the MF to the
right or left, whereas η shrinks or expands the MF. Therefore, every MF has two tuning parameters
that can be optimized using GA.

Figure 4. The architecture of the multi-agent-based intelligent training system. KB, knowledge base.
GFT, genetic fuzzy trees.

Although a GFS can be used to find KBs that optimize the fitness function, it is inefficient to
use a single GFS for a complex control problem. In such a case, there is an increase in GA search
space complexity, the tendency to have redundant rules, and KB size. Therefore, using genetic fuzzy
trees (GFT) in [2] helps to mitigate this problem. A GFT is, essentially, an ensemble of GFSs arranged
in a tree structure according to a logical and conditional sequence of execution. A GFT enables the
decomposition of a complex fuzzy control system (FCS) or GFS into logical sections with each node in
the tree focusing on an aspect of the control problem. Each GFS in a GFT defines its own KB. Hence,
the KB of a GFT consisting of m ∈ R GFSs G = {g f s1, g f s2, ..., g f sm} may have the genetic structure
(represented as a concatenated string) g f srb

1 g f srb
2 ...g f srb

n g f sm f
1 g f sm f

2 ...g f sm f
n where g f srb

i and g f sm f
i ,

i ≤ m, denote the RB and MF string/genome, respectively, of a given GFS. This structure can be seen
in Figure 5.
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gfs1
rb ... gfsm

rb gfs1
mf ... gfsm

mf

Membership Function segmentRule Base segment

Genetic Fuzzy Tree Knowledge Base Structure

Figure 5. The knowledge base genetic structure of a genetic fuzzy tree. Each chromosome or member
of the GA population takes this form.

Algorithm 1 shows how beginning with an initial population, the KB of a GFT can be
learned/optimized using the GA process. In Line 2, the initial population of the GFT KB is generated
as the current population. This can be based on a predefined KB set or randomly generated. In Lines
3–4, the current population is passed on to the the FIS to be used for the control task. After all these
KBs have taken turns performing the control task and have been evaluated, they are then subjected
to the GA operators (Lines 6–17). This operation continues till the termination condition is reached.
The resulting candidate KBs are returned as the best performing or most suitable of the KBs.

Algorithm 1 Procedure: GFS procedure.

Input: GA hyperparameters
Output: Best set of GFT KBs

1: Initialize t = 0
2: Generate initial population as P0
3: Set current population Ct := P0
4: Run the fuzzy control system using Ct
5: Evaluate the members of Ct
6: while Not termination condition do

7: Pt := selection(Ct)
8: Ot := crossover(Pt)
9: Ctemp := mutate(Ot)

10: if elitism then

11: Ctemp := applyElitism(Ctemp) //keeps a percentage of previous chromosomes
12: end if
13: t := t + 1
14: Ct := Ctemp
15: Run the fuzzy control system using Ct
16: Evaluate the members of Ct
17: end while
18: Return best-performing candidate solutions

Non-stationarity is an inherent problem in the multiple learning agents’ environment. In this
section, we present an approach for incorporating agent-induced non-stationarity awareness into a
GFT based on the framework of [32].

Since the root of the GFT has the strongest impact on the learning process or action selection,
we consider it to be the main component for addressing this problem. Unlike the other GFSs in the
GFT, which can be modeled to address specific aspects of a control problem (domain dependent),
we consider the root GFS to be a special case.

We regard the sub-trees that are formed under the root GFS as the elements of the BR function
co-domain. Thus, a BR function, in the GFT case, selects a sub-policy to be used for selecting an action
for the agent. The influence function is also represented as an FIS (or GFS in our case, since GA is
applied to learn the KB), which takes PGFsas input variables and a BF as output the variable. This is
motivated by the idea that an influence function maps beliefs to possible best responses and can be
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designed to use deductive reasoning. These are properties that an FIS exhibits due to fuzzy logic. Thus,
the root of the GFT takes incomplete/partial observations and produces its belief of another agent’s
policy. This connotes that the terms of the output variables then serve as possible opponent strategies
as perceived by the reasoning agent.

In the case of the PGFs that serve as input variables to the GFT root FIS, the history of observations
concerning the opponent or another agent is maintained and used by each PGF variable to produce an
input value. This PGF input value can then be fuzzified and used in the inference process. The problem
that arises is then how to design a PGF to capture the adaptation dynamics of another agent. In the
work of [33], an agent i estimated the model of agent j as:

σ̂i
j (uj) =

Ci
j(uj)

∑ū∈Uj
Ci

j(ūj)
(7)

where Ci
j(uj) is the frequency that agent i observed agent j taking action uj. Therefore, given the

history of observations, Equation (7) can be extended to include the observation of agent i as:

σ̂i
j (oi, uj) =

Ci
j(oi, uj)

∑ū∈Uj
Ci

j(oi, ūj)
(8)

where Ci
j(oi, uj) is the frequency that agent i observed agent j taking action uj when its local observation

was oi. σ̂i
j (oi, uj) becomes the input value of agent i’s PGF for monitoring a specific action uj of agent j.

With the input variables (PGFs) and output variable (BF) determined for the root FIS, GA can be used
to find the best response for agent-induced non-stationarity and thereby stabilize learning in the POSG.

4. Multi-Agent-Based Simulator Design

The simulator used for the experiment was developed using the Java programming language.
The fuzzy control library [34] was extended for the design and encoding of fuzzy rules for learning
purposes as implemented by the intelligent control model of our architecture. In this section, we present
the experiment conducted for this study and follow it up with the analysis of the simulation results.

4.1. Environment Setup

To evaluate the effectiveness of the proposed learning system, a scenario of multiple boats
competing for conquering more islands while engaging in combat was adopted. In this scenario,
the environment set in a maritime setting consisted of N islands and two teams of unmanned surface
vehicles (boats) referred to as blue and red forces. The boats were equipped with radar and guns
for detecting and shooting enemies, respectively. The guns were set to have a fixed left-to-right
traversal angle and shooting range, as shown in Figure 6. Since both teams had conflicting goals,
a team achieved its goal by contending with opponent boats. Each team had information of the location
and number of islands and their states, whether conquered or unconquered by the team. An island
is said to be conquered by a team if a member of the team moves to the coordinate of the island and
stays there for that time step or no opponent boats move to that particular island conquered by the
team. If two opponent boats occupy an island at the same time, the island is not awarded to any
team for the elapsed time steps. For our experiment, we implemented two controllers for both teams.
The controller for the blue force was made to use fixed rules provided by humans, whereas the red
force controller, which we sought to train, had to learn the best rules that maximized their performance.
At the beginning of each time step, the simulation environment received a batch of commands from
the (ally and enemy) controllers of both teams and updated the environment.
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Figure 6. A snapshot of the island-conquering scenario. In the middle are the 5 islands to be conquered
by both teams. The circles around the boats are their detection ranges, and the forward looking arc is
the the firing regions of the boats.

The possible actions of each agent are also explained below:

• retreat: the agent moves towards its base.
• left: turn left and move.
• right: turn right and move.
• straight: move forward at the current heading.
• stop: stop moving.
• assist: move to help a teammate that is under enemy fire; a boat can assist a random or the closest

teammate.
• units: causes a boat to team up with other ally boats to conquer an island.
• closest: the boat conquers an unconquered island that is closest to it.

4.2. Competition Objective

The goal of each team was to conquer all islands and destroy opponents, while staying alive.
The performance of each team was evaluated after each time step using the function:

R f
t = A f

t × p + I f
t − D f ′

t × p (9)

where A f
t is the destruction suffered by the opponent team f ′ as a result of attacks from team f in time

step t, I f
t the conquered island points received by team f , D f

t the damaged caused by the opponent f ′

to the team being assessed f , and p the points awarded for boat attacks/destruction. The winner of an
encounter is decided after the end of the episode. The team with the highest score is declared a winner
of that encounter.

4.3. Data Collector for Training and Learning

As mentioned earlier, gathering of training data is useful in a number ways. The cooperation
of agents can be enhanced when agents share their observation. Furthermore, data gathered during
training can be used later by other learning algorithms such as deep learning methods for analysis and
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performance improvement. The resource model shown in Figure 7 is used for on-line data gathering
during training. The data that are sent to a controller as feedback take this form. The main components
are as follows:

• Simulation information: This node provides general information about the simulation for a given
time step.

• Observation: This provides the observation made by all agents in the team. Each agent also
reports opponents that have been detected, as well as the observable properties of each detected
opponent.

• System data: All miscellaneous data concerning the simulation platform (e.g., time,
CPU consumption, memory usage, etc.) may be provided under this resource element.

Figure 7. The simulation feedback resource structure of the island-conquering case study.

4.4. Training and Learning Algorithm

In order to provide a realistic virtual environment and opponent for the red force to train against,
the blue force control algorithm uses human-defined rules. Table 1 shows an example encoding rules
used for the blue force task selection during simulation. The GFT of the red force control algorithm is
illustrated in Figure 8. The details of each of the GFSs of the GFT can also be seen in Table 2.

Table 1. Example encoded task selection rules used by the enemy team.

Unconquered DetectedEnemies TaskOutput

None None Retreat
None Moderate Intercept
None Many Intercept

Moderate None Conquer
Moderate Moderate Conquer
Moderate None Conquer
Moderate Many Intercept

Many Many Intercept
Many Moderate Conquer
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Figure 8. The genetic fuzzy tree structure used for training the ally team. The rectangles are FISs,
whiles the circles represent predefined actions in the simulation.

Table 2. Details of the GFSsthat constitute the GFT used for training the ally team.

GFS Input Variables Output Variable
Output Variable

Terms
RBSize

No. of MF
Tuning

Parameters

Task

UnconquredIslands

BeliefFunction conquering
Intercepting 243 30

PGF_attacked
PGF_moved

PGF_conquered
PGF_retreated

Intercept DetectedEnemies InterceptOutput Assist
Operation 6 6InEnemyFiringRange

Assist DetectedEnemies InterceptOutput assistClosest
assistRandom 9 12FactionDetectedEnemies

Operation StayingPower OperationOutput track
retreat 9 12DetectedEnemies

Track DistanceToEnemy TrackOutput left, right
stop, straight 21 20HeadingDifference

Conquer UnconqueredIslands UnconqueredIslands
conquer in units
conquer closest 3 6

The Assignment GFS was designed to consider opponent-induced non-stationarity with the
following PGFs:

• PGF_attacked: reports the confidence level that the detected enemy boats are attacking
• PGF_moved: reports the confidence level that the detected enemy boats are moving towards

an island or the agent whose local observations are being used for reasoning
• PGF_conquered: computes the confidence level that the detected enemies are conquering

an island
• PGF_retreated: evaluates the confidence level that the detected enemies are withdrawing to their

initial positions or base.
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The linguistic terms of each PGF are low, moderate, and high. Each PGF first computes the
action probabilities for each detected agent. A softmax is then computed over the reported action
probabilities, and the maximum is selected as the PGF input value. The belief function output variable
selects the perceived opponent strategy in each IF-THEN rule. The other input variables are:

• UnconqueredIslands: The number of islands not conquered by the team to which a boat belongs.
• DetectedEnemies: The number of detected enemies by a boat.
• FactionDetectedEnemies: The number of detected enemies by a team.
• InEnemyFiringRange: Returns 1 if this boat is in the enemies’ firing range, and 0 otherwise.
• HeadingDifference: The difference in heading between this boat and the target boat.
• DistanceToEnemy: The distance between this boat and the target boat.
• StayingPower: The current strength of a boat to sustain enemy attacks.
• TeammatesUnderFire: Reports the number of teammates a boat has observed to be under attack

by opponent boats.

Triangular MFs are used to define the semantics of the fuzzy rules. The initial MF tuning
parameters were sampled uniformly from [−1.5, 1.5] for each input variable MF. The GA parameters
we set for training the ally team controller are presented in Table 3.

Table 3. The GA parameters used for training the ally team.

Parameter Value

Population size 20
Number of generations 101 (initial population included)
Crossover probability 0.7
Mutation probability 0.1

Mutation decay Schedule Exponential decay (decay rate = 0.15)
Crossover operator BLXcrossover (alpha = 0.15)
Mutation operator Adaptive non-uniform mutation (b = 5)
Selection operator Tournament selection

As indicated in Table 3, we combined a mutation probability schedule with an adaptive
non-uniform mutation to control exploration and exploitation. The ally team learner was set to
maintain the last 5 observations of each detected enemy boat.

4.5. Experiment Results and Validation Analysis

We have evaluated our intelligent training system using four distinct scenarios of the island
conquering case study. The parameters used in Scenario 1 for both team are shown in Table 4.
Furthermore, in Scenario 1, sinking an opponent and conquering islands were both worth two points
each. In Scenario 2, the number of USVs in a team was reduced to three, and sinking an opponent
point was reduced to one. The simulation for Scenarios 1 and 2 was run concurrently on two different
machines for 2020 from 20 randomly-generated chromosomes as the initial rules for the blue force
against the enemy team, which used a human-sampled rules sets. Figure 9 shows the snapshots of the
competition as simulation progresses.

If the blue force began an episode knowing exactly what to do in the environment and the red
force was yet to learn, then the blue force should perform better than the red force in the initial stages
of the simulation. However, as the simulation progresses, the performance of the red force should be
improving since the red force learns, while the blue force uses the static rule. Furthermore, if the blue
blue force is using a different set of rules even though a static set of rules, then there is a tendency for a
dynamic rise and fall in the performance measure by the strength of a simulating rule set.
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Table 4. The fixed simulation parameters.

Parameter Value

Number of boats per team 6
Number of islands 5

Simulation steps per episode 30
Time per step 3 s
Radar radius 140

Forward firing angle 20
Boat’s velocity 4/system iteration
Firing range 100

(a) Best-performing rules of the red team
after the first generation

(b) Best-performing rules of the red team
after the fifth generation

(c) Best-performing rules of the red team
after the 50th generation

(d) Performance of the final rules set

Figure 9. Illustration of the best-performing rules as training progresses. At the initial stages,
the blue team had total control over the red team. However, during the final stages of the training,
the performance of the red surpasses that of the blue.
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The observed simulation results of both teams during training are presented in Figure 10. As can be
seen in Figure 10a,c, the blue force was performing better than the red force during the first generation
of rules. However, after 10 and 13 generations, respectively, the red force began to outperform the blue
force in the environment, and this is what caused the red force performance to rise in Figure 10a,c.
In Figure 10b,d, we compare the highest score attained by both teams in each generation. Furthermore,
the same analogy can be drawn from this graph, as in the the initial generations, the blue force seemed
to be scoring high as compared to the counterpart red force.

(a) Performance of teams during training
of six boats.

(b) Best performance of teams per generations
of rules of six boats

(c) team size = 3 boats; sinking an enemy
= 1 pts; island = 2 pt.

(d) Generational performance of three
boats

(e) Team size = 10, firing range, detection
range, and firing angle = 80% of that of
the enemy, respectively

(f) High score per generation of 10 boats

Figure 10. Cont.
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(g) boats = 15; sinking an enemy = 3 pts;
island = 1 pt, ally firing range = 80% of
enemy firing range

(h) High scores per generation of
15 boats

Figure 10. Illustration of the performance of the red and blue teams over 2020 (100 generations)
episodes during training. Both series of the episodic performances are averages over 20 different
sequences of episodes.

In the third simulation, the capabilities of the red force was constrained below that of its
counterpart blue force. With each team consisting of 10 boats, the firing range, detection range,
and firing radius of the ally team was set to 80% of the opponent team, respectively. Furthermore,
we set the initial population of rules to that of the rule base of Simulation 1. Figure 10e,f shows the
performance graphs of both teams.

Finally, a simulation of 15 boats with the objective of destroying more opponent boats while still
countering islands was conducted. To this end, we assigned three points for destroying opponent boats
and a point for conquering an island. All other parameters were reset to the initial fixed parameters
with the exception of the firing range, which was maintained as 80% of the opponents’ firing range.
The initial population of rules in this scenario was the final population rules’ set from the scenario.
The performance graph is shown in Figure 10g,h.

The observed performance of these KBs run over one hundred episodes against the enemy team
is presented in Figure 11. The blue line in Figure 11a represents the best performance of the enemy
team in the three cases against the ally team’s performances in all cases. In Figure 11b, the average
scores over 100 episodes with increasing number of boats in a team is illustrated. The blue bar is the
average scores of the the enemy teams, while the rest of the bars represent the performance of the ally
team with varied team size and point allocation.

Whilst the blue force’s performance degraded, the red force’s reasoner was able to maintain a set
of KBs that achieved relatively high performance for most parts of the entire simulation of all training
scenarios. Comparing the corresponding episode scores of the final KB of the red force against the blue
force rule base used during training revealed that the trained red force was better in at least 82% of all
cases, as can be seen in Figure 11. The simulation results demonstrate the feasibility of our approach
for multi-agent KB learning and the ability to converge to a stable action selection.
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(a) Performance of the learned sets of KBs
with increasing team size.

(b) Performance of the learned set of KBs
with varying rewards for islands and
enemy sinking.

Figure 11. Performance validation of the best-performing rules of the red force after training.
Blue represents the highest performance of the blue force. The red is the performance when two
points are assigned to destroying enemy boats and a point for conquering an island. The green is the
scores obtained when the value of an island is two points and the destroying opponent boat fetches a
point; while the light blue is the case when both conquering an island and destroying the opponent is
worth a point.

5. Conclusions and Future Work

In this study, we have presented an unmanned multi-surface vehicle training approach for complex
control. We used team learning where a central learner controls the agents in an environment modeled
as a partially-observable stochastic game. We modeled the control problem as a decomposed FIS and
have provided practical ways for constructing and learning the FIS KB. Our proposed framework
enables the usage of different FIS decompositions for a complex control problem with minimal or
no modification to the reasoner implementation. It also enables the incorporation of agent-induced
non-stationarity awareness in the learning process and a resource model for gathering agents’ local
observations for off-line learning tasks. Our contributions enable multi-agent control to be performed
in domains where no historic data are unavailable for training, but the desired system behavior can be
specified as a function of the agents’ performance. The multi-surface vehicle island-conquering case
study demonstrates the feasibility and convergence properties of this study. Our future works will
focus on improving the performance of our approach using multi-agent deep reinforcement learning
techniques with the gathered agents’ observations.
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