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Abstract—In this work, we present a procedure to auto-
matically generate an high-quality training dataset of cable-
like objects for semantic segmentation. The proposed method
is explained in detail using the recognition of electric wires
as a use case. These particular objects are commonly used
in an extremely wide set of industrial applications, since they
are of information and communication infrastructures, they
are used in construction, industrial manufacturing and power
distribution. The proposed approach uses an image of the target
object placed in front of a monochromatic background. By
employing the chroma-key technique, we can easily obtain the
training masks of the target object and replace the background
to produce a domain-independent dataset. How to reduce the
reality gap is also investigated in this work by correctly choosing
the backgrounds, augmenting the foreground images exploiting
masks. The produced dataset is experimentally validated by
training two algorithms and testing them on a real image set.
Moreover, they are compared to a baseline algorithm specifically
designed to recognise deformable linear objects.

Keywords—Image Segmentation, Dataset Labeling, De-
formable Objects, Chroma-key, Domain Randomization.

I. INTRODUCTION

The availability of big public datasets [1]–[3] has promoted
advances of deep learning algorithms in computer vision
applications, such as image classification, object detection
and semantic segmentation. Thus, the key issue in modern
computer vision deals more and more with gathering and la-
beling big amounts of data. Usually, the process of segmenting
and annotating the training images is performed manually,
and it is notoriously tedious, inaccurate and time consuming.
Moreover, the more complex the visual perception task is,
the slower becomes the required annotation procedure. For
instance, labeling a single image for 2D semantic segmentation
can take several hours per image. Innovative companies, like
Scale.ai, Superannotate.ai, Segments.ai and many others, are
basing their business on advanced image labeling pipeline that
can speed-up and lighten the burden. These solutions often
exploit a superpixel algorithm which helps the user to quickly
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select large portions of the image instead of individual pixels.
Other new approaches rely on weakly supervised learning [4]
as Segments.ai that iterates between image labeling and model
training in order to provide the user with initial – coarse –
labels for each new image instead of having it labeled from
scratch.

The aforementioned big public datasets [1]–[3] usually
concern general classes (e.g. person, car, tree, cat, dog, etc.)
that may not suit the needs of a specific task. Robotic
applications, especially in industrial settings, typically require
the detection or segmentation with very high success rate
of small but very specific set of object instances captured
from different viewpoints in highly-cluttered scenes. Electric
wires, more than other objects, have some peculiarities that
bring to some interesting challenges on segmentation tasks: 1)
they are deformable objects, which means that they are not
characterized by a specific shape; 2) they are very lacking in
features; 3) they aren’t characterized by any particular color.
Since a cable can feature a wide variety of shapes and colors,
to train a segmentation model, the generation of a large scale
dataset to cover such great variability is necessary.

This article is motivated by the lack of simple and effective
solutions to generate big image dataset for training, specifically
in the field of cable-like objects. We present here a method,
developed within the Horizon 2020 REMODEL project, which
relies on the chroma-key technique and enables to easily label
a given object on an entire video sequence. As the REMODEL
project aims at automatizing the wiring procedure, image
segmentation is a key point to address sub-tasks like cable
grasp, terminal insertion and wire routing. Therefore, in this
paper we focus mainly on electric wires, even thought we
show also the applicability of the proposed method to other
object typologies. To generate large datasets, a novel labeling
pipeline demanding a minimal human intervention despite the
volume of produced labeled data is implemented in this work.
First, a video sequence of the target object is taken with a
proper background which should be homogeneous and easy to
be distinguished from the target. Then, the user does not have
to manually label the acquired images, but, instead: a) he/she
has simply to tune 1 (possibly 3) parameter once per video
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sequence; b) the target object will be automatically segmented
in the entire sequence, by producing a superimposed pixels
mask for each frame, by exploiting chroma key (a well known
technique used to compose two images); c) the original video
sequence backgrounds can, therefore, be replaced to increase
the domain randomization. The main contributions of this
work can be summarized as follows:

• The first chroma key approach for data labeling;
• An easy and reliable procedure to automatically generate

large training datasets of specific items for semantic
segmentation;

• A high-quality public dataset of electric wires for
semantic segmentation in general purpose applica-
tions (available online https://www.kaggle.com/zanellar/
electric-wires-image-segmentation);

• Tests and comparisons of different state-of-the-art algo-
rithms on this dataset.

II. RELATED WORKS

The annotation processes for semantic segmentation is
labor-intensive using traditional methods [3], [5]. A lot of
research effort have been spent on investigating alternative
strategies to help the human operator in this task [6]. Advanced
solutions like weakly or semi-supervised segmentation have
been proposed.

Weakly supervised learning studies attempt to construct
predictive models by learning with incomplete, inexact or
inaccurate supervision [4]. Weakly supervised learning for
semantic segmentation employs different levels of supervi-
sion, like labeling only few pixels (e.g. interactive methods
[7]), grouping images containing common objects (e.g. co-
segmentation [8]) or providing only image-level labels [9].
In interactive segmentation frameworks [7] small portions of
target objects are roughly highlighted by human operators
through markers, called seeds. These seeds are used for a
training stage that will produce some rough labels for all other
images. The user can then produce more seeds and repeat the
procedure until the desired quality level is reached.

Object co-segmentation [8] aims to detect and segment the
semantically similar objects from a set of images. It gives
very weak prior that the images contain the same objects for
automatic object segmentation. Although there is a certain gap
between models trained by weak/semi-supervision and models
trained by full supervision, many researchers are making
efforts to reduce the gap.

Several approaches for creating datasets have been devel-
oped also within the robotics research community. A semi-
automatic method to create labeled datasets for object detec-
tion is presented in [10]. The system leverages on moving a
2D camera by means of a robot and an augmented reality pen
to define initial object bounding box. Zeng et al. [11] present
a 6D pose estimation system for Amazon Picking Challenge,
where they segment and label the set of target objects placed
on the shelf from depth and multi-view information. This
work, not only requires depth information, but is also strongly

tailor-made on the task’s domain. Besides the robotic commu-
nity, another popular approach to speed-up creation of training
datasets consists in the use of synthetic rendered images [12]–
[16]. However, obtaining a dataset of realistic images requires
hours of highly specialized human work to design suitable syn-
thetic scenes along with high-performance graphical hardware.
In these cases, a non-photorealistic scene (i.e. a simple CAD
model rendered on random background) can cause a well-
known problem called domain shift [17]. In order to reduce
this shift, and avoid spending time on photorealism, several
domain adaptation techniques are applied [18]–[20]. Recent
works [18], [21], [22] focus on developing ad-hoc adaptation
techniques to close the performance gap between training and
test distribution. Unfortunately, the performance achievable is
still quite far from those obtainable training on real data or
fine-tuning on few annotated samples.

In this paper we propose a method to automatically create
a training dataset for semantic segmentation from real images
and we validate it on electric wires by training different
segmentation algorithms. To the best of our knowledge this
is the first public dataset for semantic wire segmentation,
moreover we are the first presenting this method for generating
high-quality datasets from real images with minimal human
intervention.

Visual perception of Deformable Linear Objects (DLOs),
e.g. wires, cables, ropes, etc., has been typically addressed
in fairly simple settings. In [23] Augmented Reality markers
are deployed to track end-points, while in other works, like
[24], detection relies on background removal. Yan at al. [25]
developed a more sophisticated method that relies on Gaussian
Mixture Models, but it requires the assumption of having a
good color contrast between object and background (which has
to be homogeneous). The state-of-the-art solution for DLOs
detection is presented in [26]. This algorithm, called Ariadne,
is based on biased random walks over the Region Adjacency
Graph built on a super-pixel over-segmentation of the source
image. Unfortunately, this approach has some weakness: it
requires an external detector to localize cable terminals; the
prediction is intrinsically quite slow due to the exploration
process; it can easily fail due to perspective effects or when
cables are adjacent.

III. AUTOMATIC DATASET GENERATION

In section I we underlined the importance of a smart solution
to collect training data for data-driven models that requires
less human intervention possible. In this section, we detail
our method and we present a dataset generated for semantic
segmentation of electric wires. The proposed strategy employs
chroma key to firstly label a set of images and then replacing
the background to randomize the domain and enlarge the
dataset.

A. Auto-labeling with Chroma Key

The Chroma Key (CK) is a technique widely used in
film and motion picture industries to combine two images
together (usually foreground and background). It requires a



foreground image Ifg containing a target object that we want to
overlap to a background image Ibg. The target must be placed
in front of a monochromatic panel, called screen (usually
green or blue). The technique consists of a chroma-separation
phase, where we isolate the target object (foreground) from
the monochromatic panel (original background) and then an
image-overlay phase, where we compose the foreground and a
new background. In the chroma-separation phase, we choose
a specific hue range which contains solely the color of the
screen (e.g. green) and exclude any other color belonging to
the foreground. Then, by finding the pixels within that range,
we obtain a mask for the target Imt and a complementary
mask for the monochromatic background Ims. Thus, creating
a dataset with this technique is really straightforward and it
can be done in 2 steps:

1) record an high quality video of the target object on a
green screen, from which we gather the input images;

2) find the chroma range of the pixels belonging to the
monochromatic background and create the corespondent
mask with chroma separation.

In our dataset, while gathering the images, we hold the
electric wire by its extremities and we move it within the
frame composing different shapes. To generalize more we also
change the light setups, the wire color and the number of wire
in the scene. From a random video frame we easily find the
hue levels for the specific screen color we are using (green or
blue). These levels, once found for one image, remain valid
for any other image taken with the same light temperature
setting and white balance. Hence, known the chroma range of
the screen we immediately obtain the mask for the wire from
each frame in the video.

B. Domain Randomization

The labeling procedure with chroma separation automat-
ically generates labeled data ready to be used for training,
but with a low variability. In fact, in the gathering phase we
need to randomize the scene featuring target object in the
following aspects: number of instances, color, size, position
and shape. Nevertheless, the background is always uniform
and monochromatic. The performance of a segmentation al-
gorithm trained with images in homogeneous backgrounds
would be significantly degraded when working in a complex
and chaotic environment. Clutter background in fact easily
confuses the algorithm, due to possible similarities between
the target and the background, especially if it has never seen
them in training. This weakness can be readily overcome by
replacing the background in the input images (image-overlay
phase). In fact, by using the masks, we can combine the
foreground with a random background that replaces the green
screen. This process, known as domain randomization [13],
[20], aims to provide enough synthetic variability in training
data such that at test time the model is able to generalize to
real-world data. Hence, the choice of the background images is
a key point for generalizing well to multiple real-world target
domains without the need of accessing any target scenario data
in training.

The backgrounds that we propose for a domain-independent
dataset can be divided in 3 categories: (1) lowly textured
images with shadows and lights; (2) highly textured images
with color gradients and regular or geometric shapes; (3)
highly textured images with chaotic and irregular shapes.
These backgrounds introduce high variance in the environment
properties that should be ignored in the learning task. For
instance, in our task the segmentation algorithm will ignore
shadows and cubic or spherical objects, while it should focus
more in cylindrical shapes, hence we chose the set of back-
grounds in Figure 2 according to these considerations.

The presented method introduces two main difficulties that
must be faced. The first evident issues of CK concerns the
color of the target object. In fact, the color histogram of the
object should be well far enough to the range reserved for
the screen, or in other words we can not have green wires on
a green screen. This implies that the segmentation algorithm
never sees green wires in training, thus if it encounters a
green wire in a real scene, it would likely produce some
false negative. The solution to this issue are two: we can
use a different background for the green objects (e.g. a blue
screen) or, as we actually do in our dataset, we can randomize
the hue of the wire trying to cover also the missing color
range (i.e. green). Another issues is caused by the background
replacement, which introduces a discontinuity in the synthetic
image generated. This may be problematic for the learning,
especially in our case with the wires, since the algorithm will
probably focus on that sharp feature to segment the object,
compromising the prediction in a real image, devoid of the
learnt discontinuity. To overcome this issue, the output image
Iout is obtained according to the following formula

Iout = IGmtIfg + (1h×w − IGmt)Ibg. (1)

i.e. as a linear combination of the foreground Ifg and back-
ground Ibg images weighted respectively by the target mask
processed by a Gaussian filter IGmt = G(Imt) and its comple-
ment (1h×w−IGmt), where 1h×w is a unit matrix with the same
size of the mask.

C. Electric Wire Dataset

The strategy presented in this section has been employed
to generate a dataset of 28584 RGB images 720 × 1280 for
semantic segmentation of electric wires. The raw dataset has
3176 images and it includes blue, red, yellow, white and
black wires, with different light setups and shapes. To improve
the screen and wire separation, besides the hue, we also use
the saturation and value channels. For each raw image, a
background image (4000 × 2248) is randomly picked among
the 15 shown in Figure 2 and 8 new synthetic images are
created, as visible in Figure 1. In each new image, foreground
and background are separately augmented (by using the mask)
before the merging. In particular, the background is ran-
domly flipped, shifted, scaled and rotated (all with probability
p = 0.5). Then, it is processed with motion blur and elastic
transformation (p = 0.2), and in the end it is randomly cropped
at 1280×720 (p = 1). The foreground, instead, is transformed



Raw image
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Background
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Fig. 1: Schematic process to generate the 8 synthetic images by background-foreground separated augmentation and image-
overlay.

Fig. 2: Images used to replace the background in the output
dataset.

only by shuffling the channels (p = 0.5), converting to grey
(p = 0.1) and randomizing the hue in the range of [−100, 100]
(p = 0.5).

D. Final Considerations on the Output Dataset

The dataset produced by our method contains mainly syn-
thetic images produced by chroma-key overlay. However,
the reality gap in the resulting dataset is considerably small
compared to those that might be obtained from rendering
or simulation. In fact, the main visual discrepancy between
real and output images is the object’s contour, which has
already been smoothed with the combination in eq. (1). To
further reduce the gap, we add to the dataset also the input
images with the original background, and to avoid over-fitting
on green background we randomize the hue and shuffle the
channels in training.

The types of background that we suggest to use are intended
to make the dataset general purpose and domain-independent.
In fact, in the next section we are going to experimentally

validate our wires dataset on several scenarios, empirically
proving that a set of abstract backgrounds is sufficient to
obtain highly satisfactory predictions also in real environments
never seen in training. Clearly, to improve the results on a
specific real domain, fine-tuning can be also performed. We
point out that there are actually two ways to do so. The first is
the traditional fine-tuning on a small set of manually labeled
images. The second consists in creating a dataset using photos
of the specific task environment as backgrounds.

IV. SEMANTIC SEGMENTATION

Two deep learning networks are exploited to perform the
training and testing needed to validate our work, namely
DeeplabV3+ [27] and HRNet [28].

DeepLabV3+ [27] is an encoder-decoder network which is
at the state of the art in deep learning semantic segmentation.
It is the last iteration of the famous DeepLab family models.
It employes the encoder-decoder structure combined with
atrous spacial pyramid pooling (ASPP). As encoder module,
DeepLabV3 is used. It is able to encode multi-scale contextual
information. The presence of atrous convolutions, instead of
the common convolutions, allows the explicitly control the
resolution of features computed (via the output stride param-
eter). For the semantic segmentation task, an output stride of
16 (or 8) is used for denser features. Concerning the decoder,
it consists of a simple yet effective module which refines the
segmentation results along object boundaries. Here, the low-
level features are concatenated to the bi-linearly upsampled
(4x) high-level features coming from the decoder. Several
convolutions are performed to refine the features and a final
upsampling (4x) is performed. Compared to a straightforward
one bi-linearly 16x upsampling, the presented decoder module
performs much better.

High-Resolution Network (HRNet) [28] is the state of
the art in diverse fields such as human pose estimation,
semantic segmentation and object detection. It maintains high-
resolution representations through the whole network layers
by connecting the high-to-low resolution convolution streams
in parallel and by repeatedly exchange the information across



TABLE I: The average Dice Coefficient computed for each
algorithm, across the images of each test set (C1, C3, C4,
C2) and the union (Tot). In all the tests the predictions are
thresholded at 0.5.

Algorithm C1 C2 C3 C4 Tot.

DeepLabV3+ 0.928 0.934 0.943 0.935 0.935
HRNet 0.923 0.939 0.911 0.926 0.925
Ariadne 0.655 0.512 0.632 0.595 0.598

resolutions. The benefit of such structure consists in having a
representation semantically richer and spatially more precise.

A. Training and Test

We train DeepLabV3+ with a ResNet-101 backbone for
200 epochs, with batch size 10, output stride 16, separable
convolutions, using Adam for the optimization and employing
a polynomial learning rate adjustment policy starting from
10−6 to a minimum of 10−9, with power 0.95. HRNet is
instead initialized with a pretrained model on ImageNet. The
network is then trained for 270 epochs, with batch size 6,
using SGD for the optimization, weight decay 5 × 10−4,
momentum 0.9, initial learning rate of 1×10−5. The learning
rate adjustment policy is polynomial with a power of 0.9.
The early stopping in both the training is configured to end
the process when the validation loss does not decrease for 5
epochs in a row. Both the models are implemented in PyTorch
1.4.0 and trained with an NVIDIA GeForce GTX 2080 Ti
on an Intel Core i9-9900K CPU clocked at 3.60GHz. The
data augmentation scheme include hue randomization, channel
shuffling, flipping and finally resizing (360× 640).

The training dataset is obtained from 90% of the original
dataset auto-generated as in section III, while the validation
is done on the remaining 10%. To test the algorithms, we
use another dataset of 60 manually labeled images collected
in different real scenarios. The test dataset is composed by 4
categories of 15 images each:

C1: scenes with only the target wires laying on a surface
and no other disturbing objects. The difficulties in this
scenes are the high contrast shadows of the wires,
possible chroma similarities between the wires and the
background, the dense crosses of wires, the light settings
and the perspective distortions.

C2: scenes with the target wires only on a highly-featured
and complex background and no other disturbing objects.
Here the challenge for the algorithms is to extract the
correct features belonging to the wires in a cluttered
scene.

C3: scenes with the target wires in a realistic industrial setting
like an electric panel. These can be considered as an
example of an application setting, where the difficulties
may be given by metallic surface reflecting the wires and
other disturbing objects like commercial electromechan-
ical components characteristic of these panels.

C4: scenes with the target wires in other generic realistic
settings among other objects of different nature. The
difficulties in these scenes are several and a combination
of those found before.

Each algorithm produces a mask Mp which corresponds to
the the predicted semantic segmentation of the wire. We
evaluate and compare the outputs by means of the Dice
coefficient Dice = 2

|Mp∩Mgt|
|Mp|+|Mgt| , where Mgt is the ground

truth. Table I resumes the average Dice obtained in the test
dataset by DeepLabV3+, HRNet and Ariadne [26], state-of-
the-art algorithm for DLO segmentation. Ariadne yields a b-
spline model for each wire which is here used as predicted
mask Mp. In order to make the the comparison with Ariadne
more meaningful, we tuned the parameters specifically for the
given test dataset and we manually found for each wire the
b-spline thickness best fitting with the target. In Figure 3 are
visible few example of test images for each category and the
outputs of both DeepLabV3+ and HRNet, where true positive
(Mp ∩ Mgt), false positive (Mp − Mgt) and false negative
(Mgt −Mp) are shown in yellow, red and green respectively.

From these tests we can conclude that the auto-generated
dataset reaches an high level of reliability (Dice > 0.9) for
both HRNet and DeepLabV3+ in any scenario without any
fine-tuning. More in detail, with reference to Figure 3, we can
observe that prospective distortions (C1-Sample5, C2-Sample
4), color similarities with the background (C1-Sample3, C1-
Sample4), multiple-wire dense intersections (C1-Sample2, C2-
Sample5), wire reflections in metallic surfaces (C3-Sample3)
and strong shadows (C1-Sample2) are all correctly solved
using both the algorithms. Moreover, the hue randomization
trick used in the foreground images enables the algorithms to
correctly recognize also green wires (C3-Sample4); whereas
the selection of background images allows to effectively
segment electric wires in settings never seen in training, very
confusing and also with other objects that might look similar
to them, such as the table border in C4-Sample5 or the handle
of the pliers in C4-Sample1.

The quantitative results of Table I show that DeepLabV3+
performs on average slightly better than HRNet. In fact, from
the qualitative comparison of Figure 3, we observe that the
predictions of HRNet are on average a little less confident
and sharp at the edges (C1-Sample2, C1-Sample3). This might
be due to an higher sensitivity of HRNet to the reality gap,
already discussed in subsection III-B, that we tried to reduce
by introducing the Gaussian blur on the mask in eq. (1). How-
ever, even thought the predictions of DeepLabv3+ are more
precise, it produces evident false negative (like those in C2-
Sample3) more frequently than HRNet. Table I revels also that
both DeepLabV3+ and HRNet trained on our dataset obtain
significantly higher performance than the baseline Ariadne.

V. CONCLUSIONS

In this paper, we address the problem of recognising and
segmenting electric wires from images, which are deformable
objects very common in many applications but also lacking
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Fig. 3: Qualitative evaluation of DeepLabV3+ and HRNet using 20 sample images from the test set (5 images from each 
category). The yellow areas are the true positives, the red areas the false positive and green areas the false negative.

 



Fig. 4: Sample images from other hypothetical dataset auto-
generated with the proposed CK-based technique.

of visual features. A novel strategy to automatically gen-
erate a domain-independent dataset has been presented and
experimentally validated by training and testing two algo-
rithms, namely HRNet and DeepLabv3+. The experimental
results show the effectiveness of the dataset, that enables
the segmentation algorithms to correctly recognize the wires
in different settings never seen in training with an Average
Dice index greater than 0.92. We underline that the presented
approach to create the electric-wire dataset can be applied
to any other object small enough to be placed and moved
in front of a monochromatic panel, like those in Figure 4.
In future works, we will formally extend this method to
generic objects, then we will also further reduce the human
intervention in the chroma-separation phase by employing a
learning-based methods and improve the image-composition
phase by reducing the reality gap in the edges.
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