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Using Low-Power, Low-Cost IoT Processors in

Clinical Biosignal Research: an In-depth
Feasibility Check

Victor Kartsch, Fiorenzo Artoni, Simone Benatti, Silvestro Micera and Luca Benini

Abstract—Research on biosignal (ExG) analysis is usually
performed with expensive systems requiring connection with ex-
ternal computers for data processing. Consumer-grade low-cost
wearable systems for bio-potential monitoring and embedded
processing have been presented recently, but are not considered
suitable for medical-grade analyses. This work presents a de-
tailed quantitative comparative analysis of a recently presented
fully-wearable low-power and low-cost platform (BioWolf) for
ExG acquisition and embedded processing with two research-
grade acquisition systems, namely, ANTNeuro (EEG) and the
Noraxon DTS (EMG). Our preliminary results demonstrate that
BioWolf offers competitive performance in terms of electrical
properties and classification accuracy. This paper also highlights
distinctive features of BioWolf, such as real-time embedded
processing, improved wearability, and energy-efficiency, which
allows devising new types of experiments and usage scenarios
for medical-grade biosignal processing in research and future
clinical studies.

I. INTRODUCTION

Embedded wearable systems have gained a tremendous
boost in popularity, prompted by the rise of unintrusive digital
systems. In this trend, biopotential monitoring has profited
significantly as newer portable devices allow extracting signal
features, even in complex environments. Among the plethora
of information available from the human body, neural activity
in the form of Electroencephalography (EEG) continuously
draws attention since it holds the promise to provide a direct
brain-computer link [1]. Likewise, Electromyography (EMG)
gesture recognition is a critical element to enable natural
and advanced ways of communication and to monitor and
diagnose muscular disease.

In the trend of extracting EEG and EMG biomarkers,
several low-cost platforms (<2k EUR), such as Emotiv In-
sight and EPOC+, Neurosky MindWave, and OpenBClI, have
recently emerged [2]. For instance, Emotive offers a range of
headset devices from 2 to 32 channels to automatically detect
some events such as facial expressions, emotional states,
and mental commands. OpenBCI is a low-cost open-source
platform that offers solutions for biosensing. It has recently
gained great popularity as it provides hardware-software
solutions while allowing access to raw data directly without
extra costs. However, the research community still relies
heavily on widely validated devices to ensure trustworthy
results and to retain academic confidence.

From the companies providing research devices, g.tec,
ANTNeuro, and Noraxon have a notable share in research
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usage. For instance, Nautilus from g.tec consists of a wear-
able headset (8-32 dry/wet EEG electrodes @ 24bit/S00SPS)
to record brain activity in clinical environments for up to 10
hours. eego™mylab from ANTNeuro (EEG) has also been
included in several research projects with notable results [3],
[4]. Tt is available in four different versions and can be cas-
caded to obtain up to 256 channels to allow high-density EEG
analysis. When streaming data, it offers a battery life of up to
5 hours. Likewise, Noraxon DTS is used in EMG research
with considerable success [5], [6]. The system consists of
several EMG nodes connected wirelessly to a base station,
which reduces the intrusiveness of the system considerably.
The lead of the previously introduced devices is commonly
associated with two factors, including the excellent electrical
characteristics of the equipment and the overall robustness
of the headsets. Nevertheless, these systems do not provide
highly embedded hardware, that might limit the portability
and wearability for out-of-the lab experiments. Furthermore,
they are highly expensive (then of thousand of EUR), which
severely limits research opportunities.

In previous work, BioWolf has been recently introduced
[7] as a highly-wearable platform for BCIs and medical-
grade IoT applications, which addresses not only raw data
streaming but also the in-situ digital processing challenge.
The device includes a commercial 8-channel analog-front-
end (AFE) for medical-grade ExG signal acquisition and
a programmable parallel ultra-low-power processor for ad-
vanced DSP [8]. The system aims at “extremely wearable”,
smaller-than-watch scenarios (e.g., patches, behind the ear
setups, rings, buttons). Thus, besides providing state-of-the-
art (SoA) performance for HMI and biosignal sensing [9], this
device offers many other features while also being portable
and inexpensive!.

The goal of this paper is thus to present a quantitative
analysis of the signal acquisition and processing of BioWolf
(ExG) and two research-grade acquisition systems, namely,
ANTNeuro (EEG) and the Noraxon DTS (EMG). Specifi-
cally, in this paper, we present an electrical characterization
of all three systems, and additionally, we offer a systemic
comparison through a quantitative analysis of EMG and EEG
(SSVEP) classification.

The preliminary results presented in this paper demonstrate
that BioWolf not only meets the International Federation
of Clinical Neurophysiology (IFCN) standards [10] but also
provides electrical characteristics in line with the research
devices included in this study. In terms of EMG classifica-
tion performance, our tests performed with a single subject
suggest that BioWolf and Noraxon DTS perform almost iden-
tically (97-98% accuracy). When comparing EEG the clas-
sification performance, initial results indicate that BioWolf
provides a classification accuracy improvement of 11% to

I'Without considering Mr. Wolf SoC, the device estimated volume price is
about 200 EUR. A commercial PULP chip fabricated in similar technology
as Biowolf (with less advanced features) adds 1-5 EUR.
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Fig. 1. BioWolf block diagram including the PCB implementation and an
usage example.

eego™mylab. Finally, this paper also explores the benefits
of the onboard, real-time processing by implementing the
processing chains (EMG and EEG) on Mr. Wolf, which
allows for up to 2.4x in energy savings to raw data streaming.

These first results show that BioWolf delivers research-
grade performance while in a robust, energy-efficient, and
unintrusive platform that can potentially open the prospect of
implementing biosignal monitoring even in more challenging
scenarios while achieving SoA performance.

The paper is organized as follows. Section II introduces the
material and methods. In section III, we introduce the results
of the electrical characterization of all the devices and the
classification performance obtained. In this section, we also
showcase the benefits of the onboard and embedded process-
ing through Mr. Wolf. Finally, in sections IV and V, we offer
a discussion and draw some conclusions, respectively.

II. MATERIAL AND METHODS
A. Devices under test (DUT)

1) BioWolf: BioWolf features three main components, a
parallel ultra-low-power System-on-Chip (SoC) microcon-
troller unit (MCU) for signal processing, a Nordic ARM-SoC
MCU for Bluetooth Low Energy (BLE) communications and
system management, and an AFE for bio-signal acquisition.
The system also incorporates a nano-power buck-boost regu-
lator for energy harvesting, a fuel gauge to check the battery
state, and an electrode impedance tracker subsystem to check
the quality of the electrode contact.

The biosignal acquisition subsystem is based on the
ADS1298, a commercial AFE from Texas Instruments, cur-
rently considered a standard for biopotential acquisition plat-
forms due to its favorable trade-off between performance and
power consumption. The AFE allows simultaneous sampling
of up to eight bipolar channels, at up to 32 kbps sampling
rate and 24-bit resolution. The computational core is based
on Mr. Wolf, a multi-core programmable SoC implemented
in TSMC 40 nm CMOS technology, combining nine RISC-
V processors and a complete set of peripherals (JTAG,
SPI, UART, and GPIOs). Fig. 1 shows a block diagram
of the complete system, the PCB implementation, and an
application for SSVEP-based BCI.

2) Noraxon Acquisition System: The Noraxon acquisition
system includes two main modules, i.e., the wireless EMG
probes, and the receiver (Desktop DTS). The probes can
sample data at various rates (1-4SPS) at a resolution of
16bits. Signal gain can be adjusted from 200 to 500x.
The node weight is about 14gr and provides up to eight
hours of continuous acquisition. All available raw data is

transmitted wirelessly to the Desktop DTS (receiver), where
all the channels are synchronized (up to eight). Data can be
visualized in real-time during experimentation through a USB
connection to a PC.

3) ANTNeuro eego™mylab: eego™mylab is a multichan-
nel EEG acquisition system featuring 32 to 256 EEG chan-
nels (in cascade mode) at a resolution of 24bits that can be
sampled at up to 16kHz. The system also allows for a trigger
input and programmable gain. The system is fully portable,
being powered by both external DC and battery. When
battery-powered, the system provides up to Shs of continuous
operation. The amplifier has a dimension of 160x205x22mm
and weights <500gr. The acquired data is available through
a USB output interface. Table I shows a summary of the
features of all DUTs.

B. Electrical Tests

To asses the performance of the devices from the electrical
standpoint, in this work, we have focused on three main
IFCN parameters, including the Input-referred noise (IRN),
Common Mode Rejection Ratio (CMRR), and, Channel
Interference (CI). IRN, measured on the 0.5-100Hz band-
width, is calculated by applying a short circuit between the
positive and reference electrodes. These are also connected
to an external circuit simulating the skin-electrode contact
impedance (51 kOhm||47nF). The CMRR is measured by
injecting a sinusoidal signal to both positive and reference
channels to measure the rejection ration of the OA. The
frequencies employed are 40Hz, 80Hz, and 120Hz. The
channel interference is measured by injecting a signal to a
given channel and measuring the interference introduced to
an adjacent channel.

C. Classification tests

To provide a complete evaluation of the performance of the
systems for a specific application, we have also studied the
performance obtained through the classification of EMG and
EEG signals using the classification mechanisms presented
in the following.

1) EMG classification: The processing chain of a pattern
recognition algorithm typically requires feature extraction
and classification [11]. In this work, feature extraction com-
prises extracting the Waveform Length (WL) of the signal
and the gesture classification relies on SVM, a classification
algorithm that leverages optimal accuracy with low complex-
ity, essential for a real-time embedded application [12]. Our
SVM implementation is based on [13], a widely used library
that supports multi-class classification.

2) EEG classification: To evaluate the performance of
the EEG classification, we have targeted the classification of
SSVEP signals, which consist of brain response to periodic
stimuli. The signal processing and classification is based on
the canonical correlation analysis (CCA) [7], which calcu-
lates the canonical coefficients, i.e., the maximal correlation

TABLE I
ADVERTISED FEATURES OF THE DUTS
Characteristics Noraxon eego mylab Mr. Wolf
Signal Target EMG EEG ExG!
N. Channels 8 32-256 8
Portable yes yes yes
Resolution 16bits 24bits 24bits
Battery life2 8 5 9
Size 34x24 160x205 40x20
Gain 200-500 NS 12
Connectivity Wireless? USB Wireless (BLE)

1 Commonly used for EEG, EMG and ECG.
2 When streaming raw data.
3 Protocol not specified.



between to sets of multidimensional variables. Classification
is performed using a threshold over the result obtained from
computing the Euclidean norm of the canonical coefficients.
As a complementary experiment, we have also measured,
using Power Spectral Density (PSD), the alpha waves re-
sponse during the closure of the eyes. Fig. 2 summarizes the
DSP chain for both EMG and EEG classification. All tests
performed in this work have been approved by the bioethics
committee of the University of Bologna.

D. Real-time embedded processing with BioWolf

The systems presented previously allow only for data
sampling, visualization, and logging for offline data analy-
sis. BioWolf, on the other hand, allows onboard and real-
time DSP. To showcase the performance of the system, we
included two performance parameters, computational com-
plexity, and battery life, measured through the embedded
implementation for the EMG and SSVEP classification. The
computational complexity is measured as the number of CPU
cycles required to finish a classification task. Battery life,
measured in hours, provides the overall efficiency of the
system, which can be affected by several factors, including
latency, computational complexity, firmware optimizations,
and SoC technology.

III. RESULTS
A. Electrical Comparison

All DUT have been analyzed in terms of the electrical
test introduced in II-B. Table II summarizes all the results
of the electrical tests. The results in IRN denote that all
systems generate noise above 6uVpp. In terms of Viass,
eego™Mmylab provides the lowest noise, closely followed by
BioWolf. CMRR for all devices is above the recommended
120dB, with the ANTNeuro eego™mylab producing the
highest CMRR (>160dB). It is noticeable that the results
remained stable for all tested frequencies. Finally, the CI for
all DUTs is above 150dB, with the Noraxon DTS denoting
the highest values (161dB).

B. EMG Gesture Recognition: BioWolf vs Noraxon

Aside from testing the electrical parameters of the DUTs,
we have also performed a comparison between BioWolf with
the Noraxon DTS for EMG gesture recognition, allowing us
to provide a more systemic comparison between the devices.
For this, a single subject using eight-bipolar electrodes placed
at the forearm in a ring configuration, performed nine (8 +
rest) typical hand gestures compatible with HMI. Since the
signal acquisition was not performed simultaneously, three
trials ware carried to reduce the bias of the experiment. The
signal processing employed to classify the signals is denoted
in section II-C1.
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Fig. 3. Gesture recognition classification output

Fig. 3 presents the classification output of a complete trial,
indicating in blue lines, the original data label and in red
the SVM classification points. It is noticeable that there is a
steady classification for both devices (similar for all trials),
which is confirmed by the classification accuracy measured
(average) in 98% for BioWolf and 97% for Noraxon DTS.

C. EEG tests: BioWolf vs eego™mylab

To asses the performance of BioWolf to eego™mylab, two
tests were performed. The first, an alpha wave test, performed
using a single electrode, located around the forehead (Fpz),
with reference and GND at Al and A2, respectively. On
a 2-trial session, a single subject was instructed to close
the eyes to elicit alpha waves. Fig. 5 show the results
obtained, where two details are evident. First, the magnitude
(linear) is up to 2.5x bigger for BioWolf, and second, the
overall noise outside the band is lower BioWolf, which
results in an SNR improvement of 4dB. The second test
involves experimentation with SSVEPs. The testing included
four frequencies ([5 6.2 7.4 8.6]) presented for 10s each
through a computer screen employing the sampled sinusoidal
stimulation method [14]. The experimental setup consists of
a single electrode located at Pz, with reference and GND
at Al and A2, respectively. The DSP of the elicited EEG
signals is detailed in section II-C2. Fig. 4 depicts the CCA
response for the different target frequencies, where it is
noticeable that BioWolf provides higher correlation values
for each stimulus, which is confirmed when evaluating the
classification performance. Using a mean-based threshold
for classification, the EEG from BioWolf provides up to
72% in classification to 61% from eego™mylab, an 11%
performance increase.

D. Embedded classification with BioWolf

To fully showcase all the features of BioWolf, we have
also implemented the complete processing chain of the EMG

5.0 Hz 6.2 Hz 7.4 Hz 8.6 Hz|

BioWolf

Correlation (1/100)

a 10 20 30 40 50 60
Time (s)

Fig. 4. SSVEP classification output for BioWolf and eego™ mylab



TABLE I
ELECTRICAL TEST RESULTS

IRN CMRR(dB)

DUT Peak-to-Peak(uVpp) RMS@uV) 40Hz 80Hz 120Hz C!(dB)
BioWolf (G=12) 3.90 0.40 127 127 127 151
Noraxon DTS 597 0.69 144 143 144 161
eego ™mylab 3.95 0.36 166 165 165 152

and SSVEP processing presented in section II-C. Thanks to
the Mr. Wolf SoC that enables parallel processing of the
operations, the EMG gesture recognition can be completed in
74k cycles, with a latency of 25ms/classification, allowing for
up to 23h of battery life. The processing and classification of
the SSVEPs require 94k cycles, which provides a battery life
of 22h when setting 25ms of latency. The local processing
thus allows for at least 2.4x energy savings with respect to
direct data streaming for offline or external processing.

IV. DISCUSSION

The results obtained denote that BioWolf not only is
in line with the IFCN standards but also provides similar
performance to the research-grade systems analyzed. The
IRN values obtained demonstrate BioWolf shares a similar
noise to the other systems for both peak-to-peak and RMS
noise. CMRR is in all cases above the recommended value of
110dB, with the eego™mylab providing the highest rejection
ratio. The electrical characterization results obtained were
also complemented by experiments on end-to-end biosignal
processing applications. The accuracy of the EMG classifi-
cation of BioWolf and Noraxon DTS is comparable, without
significant differences (1% improvement for BioWolf). Re-
garding the more challenging EEG signal, the tests conducted
denote that BioWolf allows for an 11% improvement for the
classification of SSVEP signals with respect to eego Mmylab.
We have also demonstrated that BioWolf can perform both
EMG and EEG classification in real-time at a power budget
that allows for more than 22h of operation, providing 4.4x,
2.75x, and 2.44x improvement with respect to Noraxon,
eego™mylab and BioWolf itself when in streaming mode,
respectively. This battery life boost is the result of embedded
processing and parallel computing available thanks to Mr.
Wolf SoC. It is also to note that BioWolf offers signif-
icant improvements to current experimental sensor nodes
for biosignal acquisition and processing, as highlighted in
[7], allowing advanced algorithms to run efficiently in a
non-intrusive device form-factor. When considering system
costs, the proposed architecture has an estimated price lower
than 200 EUR, a significant reduction, even after market
markup, with respect to the commercial devices used in
the comparative experiments. Lower cost implies enhanced
opportunities for large-cohorts studies and experimental test-
beds.

The results described in this paper outline a clear trend.
Still, this work holds some limitations when delivering defini-

BioWolf 45 210

SNR-AW < 35

0

Spw
538

>

5

Amplitude (uV)

L
88

Eyes
50 Closed >

Eye s
Closed >

Magnitude (linear)

oAbt

10 15 20 25

ANT Neuro eego mylab 45 210

<« Closed

SNR-AW < 31

Amplitude (uV)

Magnitude (linear)

§ 5
Eyes
4« Closed 0 M MMMM

10 15 20 25
Frequency

Time (s)

Fig. 5. Alpha waves test

tive results as it is restricted to the study of a single subject.
Nevertheless, the methodology presented here will serve as
a tool for future work to include an extended number of
subjects. Similarly, and although this work aimed to validate
BioWolf and showcase its features, future work will also
include other commercial and research acquisition devices
to provide a complete picture of the new trend for portable
biosignal monitoring.

V. CONCLUSIONS

This work presented a preliminary assessment of the
features and performance of BioWolf and two SoA devices
for EMG and EEG signal acquisition. The comparison in-
cludes electrical tests and end-to-end biosignal classification
application tests. The results obtained denote that BioWolf
achieves similar performance (slightly better) at a lower cost
while also providing embedded capabilities for extensive
experimentation and real-time processing in an unintrusive,
versatile, and energy-efficient platform.
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