
Software and Systems Modeling (2021) 20:311–333
https://doi.org/10.1007/s10270-020-00838-x

SPEC IAL SECT ION PAPER

Asynchronous session subtyping as communicating automata
refinement

Mario Bravetti1 · Gianluigi Zavattaro1

Received: 27 February 2020 / Revised: 17 July 2020 / Accepted: 19 October 2020 / Published online: 4 January 2021
© The Author(s) 2020

Abstract
Westudy the relationship between session types and behavioural contracts, representingCommunicating Finite StateMachines
(CFSMs), under the assumption that processes communicate asynchronously. Session types represent a syntax-based approach
for the description of communication protocols, while behavioural contracts, formally expressing CFSMs, follow an opera-
tional approach.We show the existence of a fully abstract interpretation of session types into a fragment of contracts that maps
session subtyping into binary compliance-preserving CFSMs/behavioural contract refinement. In this way, on the one hand,
we enrich the theory of session types with an operational characterization and, on the other hand, we use recent undecidability
results for asynchronous session subtyping to obtain an original undecidability result for asynchronous CFSMs/behavioural
contract refinement.

Keywords Session types · Behavioural contracts · Communicating finite-state machines

1 Introduction

Session types are used to specify the structure of commu-
nication between the endpoints of a distributed system or
the processes of a concurrent program. In recent years, ses-
sion types have been integrated into several mainstream
programming languages (see, e.g. [2,28,31,36–39]) where
they specify the pattern of interactions that each endpoint
must follow, i.e. a communication protocol. In this way, once
the expected communication protocol at an endpoint has
been expressed in terms of a session type, the behavioural
correctness of a program at that endpoint can be checked
by exploiting syntax-based type checking techniques. The
overall correctness of the system is guaranteed when the
session types of the interacting endpoints satisfy some dead-
lock/termination related (see, e.g. [16,23]) compatibility
notion. For instance, in case of binary communication, i.e.
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interaction between two endpoints, session duality rules out
communication errors like, e.g. deadlocks: intuitively, ses-
sion duality means that each send (resp. receive) action in the
session type of one endpoint, is matched by a corresponding
receive (resp. send) action of the session type at the oppo-
site endpoint. Namely, we have that two endpoints following
respectively session types T and T ( T is the dual of T ) will
communicate correctly.

Duality is a rather restrictive notion of compatibility since
it forces endpoints to follow specular protocols. In many
cases, endpoints correctly interact even if their corresponding
session types are not dual. A typical example is when an end-
point is in receiving state and has the ability to accept more
messages than those that could be emitted by the opposite
endpoint. These cases are dealt with by considering session
subtyping: an endpoint with session type T1 can always be
safely replaced by another endpoint with session type T2,
whenever T2 is a subtype of T1 (here denoted by T2 ≤ T1). In
this way, besides being safe to combine an endpoint with type
T1 with a specular one with type T1, it is also safe to com-
bine any such T2 with T1. The typical notion of subtyping for
session types is the one byGay andHole [26] defined by con-
sidering synchronous communication: synchronous session
subtyping only allows for a subtype to have fewer internal
choices (sends), andmore external choices (receives), than its
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supertype.1 Asynchronous session subtyping has been more
recently investigated [8,10,22,34,35]: it is more permissive
because it widens the synchronous subtyping relation by
allowing the subtype to anticipate send actions, under the
assumption that the subsequent communication protocol is
not influenced by the anticipation. Anticipation is admitted
because, in the presence of message queues, the effect of
anticipating a send is simply that of enqueueing earlier, in
the communication channel, the corresponding message. As
an example, a session type ⊕{l : &{l ′ : end}} with a send
action on l followed by a receive action on l ′, is an asyn-
chronous subtype of & {l ′ : ⊕{l : end}} that performs the
same actions, but in reverse order. This admits the safe combi-
nation of two endpoints with session types⊕{l : &{l ′ : end}}
and ⊕{l ′ : &{l : end}}, respectively, because each program
has a type which is an asynchronous subtype of the dual type
of the partner. Intuitively, the combination is safe in that the
initially sent messages are first enqueued in the communica-
tion channels, and then consumed.

Behavioural contracts [11–13,20,29] (contracts, for short)
represent an alternative way for describing the communica-
tion behaviour of processes. While session types are defined
to be checked against concurrent programs written in some
specific programming language, contracts can be consid-
ered a language independent approach strongly inspired
by automata-based communication models. Contracts fol-
low the tradition of Communicating Finite State Machines
(CFSMs) [6,21], which describe the possible send/receive
actions in terms of a labelled-transition system: each transi-
tion corresponds with a possible communication action and
alternative transitions represent choices that can involve both
sends and receives (so-called mixed-choices, which are usu-
ally disregarded in session types). A system is then modelled
as the parallel composition of the contracts of its constitut-
ing processes. Also in the context of contracts, safe process
replacement has been investigated by introducing the notion
of contract refinement: if a contract C1 is part of a correct
system, then correctness is preserved whenC1 is replaced by
one of its subcontracts C2 (written C2 � C1 in this paper).
Obviously, different notions of contract refinement can be
defined, based on possible alternative notions of system cor-
rectness. For instance, for binary client/service interaction
where correctness is interpreted as the successful completion
of the client protocol, the server pre-order (see e.g. [4,5]) has
been defined as a refinement of server contracts that preserves
client satisfaction. On the other hand, if we move to multi-
party systems, andwe consider a notion of correctness, called
compliance, that requires the successful completion of all the

1 Actually, the subtyping formalized by Gay and Hole [26] allows for
more internal choices and less external choices in that it follows a
channel-oriented instead of a process-oriented approach. More about
this in Sect. 3.

partners, an alternative compliance preserving subcontract
relation [12] is obtained.

Given that both session types and behavioural contracts
havebeendeveloped for formal reasoningoncommunication-
centered systems, and given that session subtyping and
contract refinement have been respectively defined to char-
acterize the notion of safe replacement, it is common under-
standing that there exists a strong correspondence between
session subtyping and contract refinement. Such a corre-
spondence has been formally investigated for synchronous
communication by Barbanera and de’Liguoro [4] and by
Bernardi and Hennessy [5]: there exists a natural interpre-
tation of session types into a fragment of contracts where
mixed-choice is disallowed, called session contracts, such
that synchronous subtyping ismapped into a notion of refine-
ment that preserves client satisfaction (but can be applied to
both clients and servers; and not only to servers as the server
pre-order mentioned above).

The correspondence between session subtyping and con-
tract refinement under asynchronous communication is still
an open problem. In this paper, we solve such a problem by
identifying the fragment of asynchronously communicating
contracts for which refinement corresponds to asynchronous
session subtyping: besides disallowing mixed-choices as for
the synchronous case, we consider a specific form of commu-
nication (i.e. FIFO channels for each pair of processes as in
the communication model of CFSMs) and restrict to binary
systems (i.e. systems composed of two contracts only).

In all, this paper contribution encompasses: (i) a new
theory of asynchronous behavioural contracts that coincide
with CFSMs and includes the notions of contract compliance
(correct, i.e. deadlock free, system of CFSMs) and contract
refinement (preservation of compliance under any test); (i i)
a precise discussion about the notion of refinement, showing
under which conditions it coincides with asynchronous ses-
sion subtyping, which is known to be undecidable [9]; and
(i i i) a gentle introduction to session types and asynchronous
subtyping, which, thanks to our mapping to behavioural con-
tracts and refinement, can be explained from an operational
(transition system based) point of view.

More precisely, concerning (i i), we show asynchronous
subtyping over session types to be encodable into refinement
over binary and nonmixed-choice asynchronous behavioural
contracts (CFSMs). Thismeans that for contracts of this kind,
refined contracts can anticipate outputs w.r.t. the original
contract as it happens in the context of session subtyping.
Moreover, we show that it is crucial, for such a correspon-
dence to hold, that, when establishing refinement between
two binary and non mixed-choice asynchronous behavioural
contracts, only tests that are actually binary (a single inter-
acting contract) and non mixed-choice are considered: if we
also consider tests that are either multiparty (multiple inter-
acting contracts) or mixed-choice, in general, a binary and
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non mixed-choice contract C ′ that anticipates output w.r.t. a
binary and non mixed-choice contract C is not a subcontract
of it. This observation has deep implications on decidability
properties in the context of general asynchronous behavioural
contracts (CFSMs), while compliance, i.e. (non) reachabil-
ity of deadlocking global CFSM states over asynchronous
behavioural contracts (CFSMs) is known to be undecidable
[6], an obvious argument showing undecidability cannot be
found for the refinement relation; such a relation can be put in
direct correspondence with asynchronous session subtyping
only for the restricted binary and non mixed-choice setting
(including also tests). Therefore, since in general an asyn-
chronous behavioural contract (CFSMs) C ′ that anticipates
output w.r.t. a contract C is not a subcontract of it, decid-
ability of refinement over general asynchronous behavioural
contracts (CFSMs) remains, quite unexpectedly, an open
problem.
Structure of the paper. InSect. 2,wedefineourmodel of asyn-
chronous behavioural contracts inspired by CFSMs [6,21];
we define syntax, semantics, correct contract composition,
and the notion of contract refinement. In Sect. 3, we recall
session types, focusing on the notion of asynchronous ses-
sion subtyping [9,35]. In Sect. 4, we present a fragment of
behavioural contracts, and we prove that there exists a natu-
ral encoding of session types into this fragment of contracts
which maps asynchronous session subtyping into contract
refinement. In Sect. 5, we discuss related work, while Sect. 6
reports some concluding remarks.

This paper is an extended version of the conference paper
[18]. We improved presentation by introducing main con-
cepts in a more gentle manner (e.g. by starting from the
simpler synchronous versions of session types and contracts
before moving to the more complex asynchronous versions)
and by enriching it with additional examples andmore details
about related and future work. Moreover, we here present
technical results and their proofs in full details.

2 Behavioural contracts

In this section, we present behavioural contracts (simply con-
tracts for short), in the form of a process algebra (see, e.g.
[1,3,7,32,33]) based formalization of Communicating Finite
State Machines (CFSMs) [6,21]. CFSMs are used to repre-
sent FIFO systems, composed by automata performing send
and receive actions having the effect of introducing/retrieving
messages to/from FIFO channel. One channel is considered
for each pair of sender/receiver automata.

As an example, we can consider a client/service interac-
tion (inspired by the UDP communication protocol) depicted
in Fig. 1. Communication protocols are denoted by means
of automata with transitions representing communication
actions; overlined labels denote send actions, while non-

overlined labels denote receive actions. The server is avail-
able to serve both Write (w for short) and WriteTo (wto)
requests. In the first case, the server replies with OK (ok) or
DataTooLarge (dtl), depending on the success of the request
or its failure due to an exceeding size of the message. On the
other hand, in case ofWriteTo, the server has a third possible
reply, InvalidEndPoint (iep), in case of wrongly specified
destination. We consider two possible clients: a client fol-
lowing a specular protocol, and an alternative client that
(given the connectionless nature of UDP) does not synchro-
nize the reception of the server replieswith the corresponding
requests. More precisely, such a client follows an optimistic
speculative behaviour; if it has to send a sequence of Write
requests, and no error message is received from the server
after sending the first one (i.e. it receives OK), then it sends
two requests in sequence (anotherWrite followed by aWrite
or a WriteTo) without blocking waiting for the server reply
in between.

2.1 Behavioural contracts as terms

We now present behavioural contracts, that can be seen as a
syntax for individual machines of CFSMs [6,21]. Differently
from the examples of communicating automata reported in
Fig. 1, the send (resp. receive) actions will be decorated with
a location identifying the expected receiver (resp. sender)
contract. This was not considered in the example because, in
case of two interacting partners, the sender and receiver of
the communication actions can be left implicit.

Definition 1 (Behavioural Contracts) We consider three
denumerable sets: the set N of message names ranged over
by a, b, · · · , the location names Loc, ranged over by l, l ′, · · · ,
and the contract variables Var ranged over by X , Y , · · · . The
syntax of contracts is defined by the following grammar:

C ::= 1 |
∑

i∈Iαi .Ci | X | recX .C

α ::= al | al

where the finite set of indices I ⊂ N is assumed to be non-
empty, and recX ._ is a binder for the process variable X
denoting recursive definition of processes: in recX .C an
occurrence of X that is free (i.e. it is not bound) inside C
represents a jump going back to the beginning of C . We
assume that in a contract C all process variables are bound
and all recursive definitions are guarded, i.e. in recX .C all
free occurrences of X are guarded by (i.e. included in the
scope of) a prefix operator

∑
i∈I αi .Ci . Following CFSMs,

we assume contracts to be deterministic, i.e. in
∑

i∈I αi .Ci ,
we have αi = α j iff i = j .

We useα to range over the actions: al is a send action, with
message a, towards the location l; al is the receive of a sent
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Fig. 1 Fragment of a UDP
Server serving Write / WriteTo
requests, with specular client
and opportunistic client that can
send twoWrite requests in
sequence, without waiting for
the reply in between
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Table 1 Semantic rules for contracts

j ∈ I

i∈I αi.Ci
αj−→ Cj

C{recX.C/X} α−→ C

recX.C
α−→ C

from the location l. The contract
∑

i∈I αi .Ci (also denoted
with α1.C1 + α2.C2 + · · · + αn .Cn when I = {1, 2, . . . , n})
performs any of the actions αi and activates the continuation
Ci . In case there is only one action, we use the simplified
notation α.C , where α is such a unique action, and C is its
continuation. The contract 1 denotes a final successful state.
In the following, we will omit trailing “ .1” when writing
contracts.

The operational semantics of contracts C is defined in
terms of a transition system labelled over {al , al | a ∈ N , l ∈
Loc}, ranged over by α, α′, …, obtained by the rules in
Table 1.We useC{_/_} to denote syntactic replacement. The
first rule states that contract

∑
i∈I αi .Ci can perform any of

the actions αi and then activate the corresponding continu-
ation Ci . The second rule is the standard one for recursion
unfolding (replacing any occurrence of X with the opera-
tor recX .C binding it, so to represent the backward jump
described above).

The semantics of a contractC yields a finite-state labelled
transition system,2 whose states are the contracts reachable
from C . It is interesting to observe that such a transition
system can be interpreted as a communicating automaton of
a CFSM, with transitions al (resp. al ) denoting send (resp.
receive) actions. The final contract 1 coincides with states of
communicating automata that have no outgoing transitions.

Moreover, we have that each communicating automaton
can be expressed as a contract; this is possible by adopting
standard techniques [32] to translate finite labelled transi-
tion systems into recursively defined process algebraic terms.
Hence, we can conclude that our contracts coincide with the
communicating automata as defined for CFSMs.

Example 1 As an example of contracts used to denote com-
municating automata, the alternative client and the server in

2 As for basic CCS [32] finite-stateness is an obvious consequence of
the fact that the process algebra does not include static operators, like
parallel or restriction.

Fig. 1 respectively correspond to the following contracts:3

AltClient = recX .(w.(ok.w.X+dtl.X+iep.X)

+wto.(ok.X+dtl.X+iep.X))

Server = recX .(w.(ok.X+dtl.X)

+wto.(ok.X+dtl.X+iep.X))

Notice that we have not explicitly indicated the locations
associated to the send and receive actions; in fact, interaction
is binary and the sender and receiver of each communication
is obviously the partner location, and we leave it implicit.

2.2 Synchronous contract composition

We now move to the formalization of contract systems. A
contract system is the parallel composition of contracts, each
one located at a given location. More precisely, we use [C]l
to denote a contract C located at location l.

Definition 2 (Contract Synchronous Systems) The syntax of
contract (synchronous) systems is defined by the following
grammar:

P ::= [C]l | P||P

We assume that every contract synchronous system P is such
that (i) all locations are different (i.e. every subterm [C]l
occurs in P with a different location l), (i i) all actions refer
to locations present in the system (i.e. for every al or al
occurring in P , there exists a subterm [C]l of P), and (i i i)
receive and send actions executed by a contract consider a
location different from the location of that contract (i.e. every
action al or al does not occur inside a subterm [C]l of P).
Example 2 The contract synchronous system

[al2 .al3 .1 + al3 .1]l1 || [al1 .1]l2 || [al1 .1 + al2 .1]l3
is the parallel composition of three contracts located at l1, l2
and l3, which communicate with one another by specifying
the destination location (in outputs) and the sending location
(in inputs).

3 The correspondence is as follows: the labelled transition systems of
the indicated contracts and the corresponding automata in Fig. 1 are
isomorphic.
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Table 2 Systemsemantics: rules for synchronous sending and receiving

C
al−→ C

[C]l
al,l−→ [C ]l

C
al−→ C

[C]l
al,l−→ [C ]l

Table 3 System semantics: rules for parallel composition (symmetric
rules omitted)

P
al,l−→ P Q

al,l−→ Q

P ||Q τ−→ P ||Q
P

λ−→ P

P ||Q λ−→ P ||Q

The operational semantics of contract synchronous sys-
tems is defined in terms of a transition system labelled over
{al,l ′ , al,l ′ , τ | l, l ′ ∈ Loc, a ∈N }, ranged over by λ, λ′, …,
obtained by the rules in Tables 2 and 3 (plus the symmetric
version for the two rules for parallel composition). The first
rule of Table 2 indicates that a send action al ′ executed by a
contract located at location l, becomes an action al,l ′ (the two
locations l and l ′ denote the sender and receiver locations,
respectively); the second rule, symmetrically, states that a
receive action al executed by a contract located at location
l ′, becomes an action al,l ′ . The first rule of Table 3 is the
synchronization rule between the two complementary labels
al,l ′ and al,l ′ ; the second rule is the usual one that extends,
to the entire system, transitions performed by a part of it.
Notice that al,l ′ and al,l ′ labelled transitions are just needed
to compute synchronizations, i.e. τ transitions, which repre-
sent actual system evolutions.

Example 3 The contract synchronous system of Example 2
evolves as follows:

[al2 .al3 .1 + al3 .1]l1 || [al1 .1]l2 || [al1 .1 + al2 .1]l3
performs a τ transition, due to the synchronization of al2,l1
with al2,l1 , leading to

[al3 .1]l1 || [1]l2 || [al1 .1 + al2 .1]l3
which, in turn, performs a τ transition, due to the synchro-
nization of al1,l3 with al1,l3 , leading to

[1]l1 || [1]l2 || [1]l3
We now define system successful completion: the pred-

icate P
√

checks whether all contracts in a system P have
reached a succesfully terminated contract 1.

Definition 3 (Successful Completion) The notion of success-
ful completion for a system is formalized by a predicate P

√
defined as follows:

[1]l √ for any l

[recX .C]l √ if [C{recX .C/X}]l √
(P||Q)

√
if (P

√ ∧ Q
√

)

Example 4 The systemofExample 2 reaches successful com-
pletion with the execution trace shown in Example 3, i.e. we
have

[1]l1 || [1]l2 || [1]l3
√

Definition 4 [Deadlock] The notion of deadlock for a system
is formalized as follows. P is in deadlock if P

√
does not hold

and there is no P ′ such that P
τ−→ P ′.

Example 5 The contract synchronous system

[bl2 .(al2 .al3 .1 + al3 .1)]l1 || [al1 .bl1 .1]l2 || [al1 .1 + al2 .1]l3
is obtained from that of Example 2 by introducing an extra
output and input action on b. It is immediate to observe that
such a system is in deadlock; in that, l1 is unable to perform
the output bl2 (which has been introduced at the beginning of
its behaviour) because even if l2 can perform a corresponding
receive on bl1 ; it does so only after performing output al1 ;
in turn, l2 cannot perform output al1 because even if l1 can
perform a corresponding receive on al2 , it does so only after
performing output bl2 .

2.3 Asynchronous FIFO contract composition

We now move to the formalization of FIFO contract asyn-
chronous systems; parallel composition of contracts, each
one located at a given location,which communicate bymeans
of FIFO channels. More precisely, we use [C,Q]l to denote
a contract C located at location l with an input queue Q.
The queue contains messages denoted with al ′ , where l ′ is
the location of the sender of such message a. This queue
should be considered as the union of many input channels,
one for each sender; in fact, the FIFO order of reception
is guaranteed only among messages coming from the same
sender, while two messages coming from different senders
can be consumed in any order, independently from the order
of introduction in the queueQ. This coincides with the com-
munication model considered in CFSMs [6,21].

Definition 5 (FIFO Contract Asynchronous Systems) The
syntax of FIFO contract asynchronous systems is defined
by the following grammar:

P ::= [C,Q]l | P||P Q ::= ε | al ::Q

We assume that every FIFO contract asynchronous system
P is such that: items (i)− (i i i) of Definition 2, with [C,Q]l
replacing [C]l , are satisfied, and it also holds (iv) messages
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in a queue come from a location different from the location
of the queue (i.e. there is no message al inside the queue Q
of a subterm [C,Q]l of P).

Terms Q denote message queues; they are sequences
of messages a1l1 ::a2l2 :: . . . ::anln ::ε,4 where “ε” denotes the
empty message queue. Trailing ε are usually left implicit.
(Hence, the above queue is denoted with a1l1 ::a2l2 :: . . . ::anln .)
We overload :: to denote also queue concatenation, i.e. given
Q = a1l1 ::a2l2 :: . . . ::anln and Q′ = b1l ′1

::b2l ′2 :: . . . ::b
m
l ′m
, then

Q::Q′ = a1l1 ::a2l2 :: . . . ::anln ::b1l ′1 ::b
2
l ′2
:: . . . ::bml ′m . In the follow-

ing, we will use the notation l /∈ Q to state that if al ′ is in
Q, then l �= l ′. Moreover, we will use the shorthand [C]l ,
standing for [C, ε]l , to represent contract C located at l in
the initial system state; queues are assumed to be initially
empty.

Example 6 The FIFO contract asynchronous system

[bl2 .(al2 .al3 .1 + al3 .1)]l1 || [al1 .bl1 .1]l2 || [al1 .1 + al2 .1]l3
is formed by three contracts located at l1, l2 and l3; their
input queues are assumed to be initially empty, due to the
above defined shorthand notation.When, in the following,we
will consider its evolution, and we will represent its execu-
tion states by means of FIFO contract asynchronous systems
with explicit representation of (possibly non-empty) queues.
Notice that also due to the adopted shorthand notation, the
system is written in exactly the same way as for the dead-
locked synchronous system of Example 5. However, under
asynchronous communication, as we will see, such a system
is not deadlocked, in that locations l1 and l2 can perform
their initial outputs even without an immediately available
corresponding receive action.

The operational semantics of FIFO contract asynchronous
systems is defined in terms of a labelled transition system
obtained by the rules in Tables 4 and 3 (plus the symmet-
ric version for the two rules for parallel composition). The
set of labels is {al,l ′ , al,l ′ , τ | l, l ′ ∈ Loc, a ∈ N }, ranged
over by λ, λ′, …, as for the synchronous case. The first rule
of Table 4, similar to that for the synchronous case, indi-
cates that a send action al ′ executed by a contract located at
location l, becomes an action al,l ′ (the two locations l and l ′
denote the sender and receiver locations, respectively). The
second rule states that at the receiver location l ′, it is always
possible to execute a complementary action al,l ′ (that can
synchronize with al,l ′ ) whose effect is to enqueue message
al in the local queue. Notice that this complementary action
is not executed by the contract at the receiver location l ′,

4 We consider :: to be right associative, as it naturally derives from the
syntax of Q.

but by the location itself, with the effect of enqueueing the
new message in the local queue at the receiver location l ′.
So, there is no synchronization between the sender and the
receiver contracts, but between the sender and the queue at
the receiver location. The third rule is for message consump-
tion; a contract can remove a message al from its queue, only
if al is not preceded by messages sent from the same loca-
tion l. This guarantees that messages coming from the same
location are consumed in FIFO order. The rules for parallel
composition of Table 3 are the same as those considered in
the synchronous case.

Example 7 An execution trace of the FIFO contract asyn-
chronous system of Example 6 is the following one:

[bl2 .(al2 .al3 .1+al3 .1), ε]l1 || [al1 .bl1 .1, ε]l2 || [al1 .1+al2 .1, ε]l3
may perform a τ transition obtained as synchronization of
al2,l1 with al2,l1 (enqueuing al2 in the local queue of process
l1), leading to

[bl2 .(al2 .al3 .1+al3 .1), al2 ]l1 || [bl1 .1, ε]l2 || [al1 .1+al2 .1, ε]l3
which, in turn, performs a τ transition obtained as synchro-
nization of bl1,l2 with bl1,l2 (enqueuing bl1 in the local queue
of process l2), leading to

[al2 .al3 .1 + al3 .1, al2 ]l1 || [bl1 .1, bl1 ]l2 || [al1 .1 + al2 .1, ε]l3
Now, due to process l1 reading from its local queue, the sys-
tem may perform a subsequent τ transition to

[al3 .1, ε]l1 || [bl1 .1, bl1 ]l2 || [al1 .1 + al2 .1, ε]l3
Then, similarly, due to process l2 reading from its local queue,
another τ transition is performed leading to

[al3 .1, ε]l1 ||[1, ε]l2 ||[al1 .1 + al2 .1, ε]l3
Finally, the system performs a τ transition (enqueuing al1 in
the local queue of process l3) to

[1, ε]l1 || [1, ε]l2 || [al1 .1 + al2 .1, al1 ]l3
and then a τ transition (process l3 reading from its local
queue) to

[1, ε]l1 || [1, ε]l2 || [1, ε]l3
The notion of system successful completion, defining

when a system P is such that P
√
, is as in Definition 3

(remember that we assume [C]l to stand for [C, ε]l ; thus, the
predicate also checks whether input queues of contracts in P
are all empty). So the system of Example 6 reaches success-
ful completion with the execution trace shown in Example 7
that ends with [1, ε]l1 ||[1, ε]l2 ||[1, ε]l3

√
.
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Table 4 System semantics: rules for asynchronous sending and receiv-
ing

C
al−→ C

[C, Q]l
al,l−→ [C , Q]l

[C, Q]l
al,l−→ [C, Q :: al]l

C
al−→ C l

[C, Q :: al :: Q ]l
τ−→ [C , Q :: Q ]l

Finally, also the notion of system deadlock is as in Defini-
tion 4. Thus, for example, differently from the synchronous
case, the system of Example 6 is not in deadlock; in that, as
shown in Example 7, it can perform a τ transition.

2.4 Contract compliance and refinement

In the following, we will present definitions that hold for
both the synchronous and asynchronous case in an uniform
way. We call computation step a τ -labelled transition P

τ−→
P ′; a computation, on the other hand, is a (possibly empty)

sequence of τ -labelled transitions P
τ−→∗

P ′, in this case
starting from the system P and leading to P ′. To simplify
the notation, we omit the τ labels, i.e. we use P −→ P ′ for
computation steps, and P −→∗ P ′ for computations.

We now move to the definition of correct composition of
contracts. A contract system is correct if, during any of its
computations, it is not possible to reach a deadlock, i.e. a sys-
tem that is in deadlock according to Definition 4. This means
that all its reachable states (via any computation) are such
that the system has successfully completed or it is able to
perform computation steps (i.e. τ transitions) and after each
step it moves to a system which is, in turn, correct. In other
terms, a system is correct if all of its maximal sequences of
τ labelled transitions either lead to a successfully completed
system or are infinite (do not terminate). The notion of con-
tract compliance that we obtain is along the lines of that
defined, e.g. by Barbanera and de’Liguoro in [4] or Bernardi
and Hennessy in [5] (even if they consider a client/server
setting instead of a multiparty one as in our definition).

We are now ready to define our notion of correct contract
composition.

Definition 6 (Correct Contract Composition – Compliance)
A system P is a correct contract composition according to
compliance, denoted P ↓, if for every P ′ such that P −→∗
P ′, then either P ′ is a successfully completed system, i.e.
P ′√, or there exists an additional computation step P ′ −→
P ′′.

Example 8 The synchronous system of Example 2 is a cor-
rect contract composition because it can evolve just as shown
in Example 3, so any of its computations can reach success-
ful completion. The synchronous system of Example 5 is,

instead, not correct because it is immediately deadlocked.
The same system considered as a FIFO asynchronous sys-
tem (Example 6) is, instead, correct, because from all its
computations it is possible to reach successful completion,
see, e.g. Example 7.

Consider now the contract C = recX .al .X . We have that
the FIFO asynchronous system [C]l ′ ||P , with P including
location l, is trivially a correct contract composition for every
P . In fact, every computation cannot terminate in that C is
always allowed to perform an output operation al .

As a more significant example of correct FIFO asyn-
chronous system, we can consider [AltClient]c||[Server]s ,
with AltClient being the contract (for the alternative client
in Fig. 1) defined in Example 1 where we assume all actions
to be decorated with s; and Server being the contract for
the server, where we assume all actions to be decorated with
c. In this system, successful completion cannot be reached,
but the system never reaches a deadlock, i.e. every system
reachable via a computation always has an additional com-
putation step. Notice that [AltClient]c||[Server]s considered
as a synchronous system is, instead, not correct because, e.g.
after synchronization on w, ok and w, the system reaches a
deadlock (both the client c and the server s want to do just
outputs).

Notice that the above client/server FIFO asynchronous
system is a correct contract composition even if the consid-
ered client AltClient does not behave specularly w.r.t. the
server Server. When we replace a contract with another one
by preserving system correctness, we say that we refine the
initial contract. As an example, consider the correct system
[bl ′ .al ′ ]l || [bl .al ]l ′ composed of two specular contracts. We
can replace the contract bl ′ .al ′ with al ′ .bl ′ by preserving sys-
tem correctness (i.e. [al ′ .bl ′ ]l || [bl .al ]l ′ is still correct). The
latter differs from the former in that it anticipates the send
action al ′ w.r.t. the receive action bl ′ . This transformation is
usually called output anticipation (see e.g. [35]). Intuitively,
output anticipation is possible because, under asynchronous
communication, its effect is simply that of anticipating the
introduction of a message in the partner queue. In the context
of asynchronous session types, for instance, output anticipa-
tion is admitted by the notion of session subtyping [22,35]
that, as we will discuss in the following sections, is the coun-
terpart of contract refinement in the context of session types.

We now formally define contract refinement and we
observe that, differently from session types, in the FIFO
asynchronous setting, output anticipation is not admitted as
a general contract refinement mechanism.

Definition 7 (Contract Refinement)A contractC ′ is a refine-
ment of a contract C , denoted C ′ � C , if and only if, for all
contract systems ([C]l ||P) we have that, if ([C]l ||P) ↓ then
([C ′]l ||P)↓.
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In the following, whenever C ′ � C , we will also say that C ′
is a subcontract ofC (or equivalently thatC is a supercontract
of C ′).

The above definition contains a universal quantification
on all possible contract systems P and locations l; hence,
it cannot be directly used to algorithmically check con-
tract refinement. To the best of our knowledge, in the
asynchronous case, there exists no general algorithmic char-
acterization (or proof of undecidability) for such a relation.
Nevertheless, we can use the definition on some examples.

As an initial trivial example of refinement consider the
contract C = recX .al .X discussed in the Example 8. We
have commented that ([C]l ′ ||P)↓ for every P including loca-
tion l. But this holds also if we replaceC with any contractC ′
willing to perform infinitely many outputs towards location
l; hence, we have that C ′ � C (and also C � C ′) for all such
contracts C ′.

Another more interesting example considers the two con-
tracts C = bl ′ .al ′ and C ′ = al ′ .bl ′ discussed above. We
have seen that in the FIFO asynchronous setting, C ′ is a safe
replacement of C in the specific context [ ]l ||[bl .al ]l ′ . But we
have that C ′

� C because there exists a discriminating con-
text [ ]l ||[bl .al + al ]l ′ . In fact, when combined with C ′, the
contract in l ′ can take the alternative branch al , leading to an
incorrect system where the contract at l blocks waiting for a
never incoming message bl ′ .

The above example shows that output anticipation, admit-
ted in the context of asynchronous session types, is not a
correct refinement mechanism for contracts. The remainder
of the paper is dedicated to the definition of a fragment of
contracts in which it is correct to admit output anticipation.
We will, however, need to first recall session types and asyn-
chronous subtyping.

3 Session types

In this section, we recall session types; in particular, we dis-
cuss binary session types for asynchronous communication.
In fact, for this specific class of session types, subtyping
admits output anticipation.We do this by presenting the basic
definitions of session type syntax and synchronous and asyn-
chronous session subtyping.

We start with the formal syntax of binary session types,
adopting a simplified notation (used, e.g. in [9,10]) with-
out dedicated constructs for sending an output/receiving
an input. We instead represent outputs and inputs directly
inside choices. More precisely, we consider output selection
⊕{li : Ti }i∈I , expressing an internal choice among outputs,
and input branching &{li : Ti }i∈I , expressing an external
choice among inputs. Each possible choice is labelled by a
label li , taken from a global set of labels L , followed by a

session continuation Ti . Labels in a branching/selection are
assumed to be pairwise distinct.

Definition 8 (Session Types) Given a set of labels L , ranged
over by l, the syntax of binary session types is given by the
following grammar:

T ::= ⊕{li : Ti }i∈I | &{li : Ti }i∈I | μt.T |
t | end

where the finite set of indices I ⊂ N is assumed to be
non-empty, and μt._ is a binder for the variable t denot-
ing recursive definition of types. We assume that in a type
T all variables t are bound and all recursive definitions are
guarded, i.e. in μt.T all free occurrences of t are guarded by
(i.e. included in the scope of) an output or an input type. In the
sequel, we leave implicit the index set i ∈ I in input branch-
ings and output selections when it is already clear from the
denotation of the types. Note also that we abstract from the
type of data that is transmitted via outputs/inputs, since this
is orthogonal to our results in this paper.

For session types, two types are dual when they behave
symmetrically; output selections in one type are matched
by corresponding input branchings in the other type. There
are alternative definitions of duality in the literature (for a
discussion about duality in session types see the recent paper
[27]); for the sake of the present paper, the simplest form of
duality, called naive duality, is sufficient.

Definition 9 (Duality) Given a session type T , its dual T is
inductively defined as:

⊕{li : Ti }i∈I = &{li : T i }i∈I &{li : Ti }i∈I = ⊕{li : T i }i∈I
end = end t = t μt.T = μt.T

3.1 Synchronous session subtyping

We now move to the session subtyping relation. The sub-
typing relation was initially defined by Gay and Hole
[26] for synchronous communication; we adopt a simi-
lar co-inductive definition but, to be more consistent with
the behavioural contract theory of Sect. 2, we follow a
slightly different approach that is process-oriented instead of
channel-oriented, following the terminology in [25].5 More-
over, following [35], we consider a generalized version of
unfolding that allows us to unfold recursions μt.T as many
times as needed. This is formalized by the following function:

Definition 10 (n-unfolding)

unfold0(T ) = T unfold1(⊕{li : Ti }i∈I ) = ⊕{li : unfold1(Ti )}i∈I
unfold1(μt.T ) = T {μt.T /t} unfold1(&{li : Ti }i∈I ) = &{li : unfold1(Ti )}i∈I
unfold1(end) = end unfoldn(T ) = unfold1(unfoldn−1(T ))

5 Differently from our definitions, in the channel-based approach of
Gay and Hole [26] subtyping is covariant on branchings and contra-
variant on selections.
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We are now in a position to present synchronous subtyp-
ing.

Definition 11 (Synchronous Subtyping, ≤sy) R is a syn-
chronous subtyping relation whenever (T , S) ∈ R implies
that:

1. if T = end then ∃n ≥ 0 such that unfoldn(S) = end;
2. if T = ⊕{li : Ti }i∈I then ∃n ≥ 0 such that unfoldn(S) =

⊕{l j : S j } j∈J , I ⊆ J and ∀i ∈ I . (Ti , Si ) ∈ R;
3. if T = &{li : Ti }i∈I then ∃n ≥ 0 such that unfoldn(S) =

&{l j : S j } j∈J , J ⊆ I and ∀ j ∈ J . (Tj , S j ) ∈ R;
4. if T = μt.T ′ then (T ′{T /t}, S) ∈ R.

T is a synchronous subtype of S, written T≤sy S, if there is
a synchronous subtyping relation R such that (T , S) ∈ R.

Example 9 As an example of session types in subtyping rela-
tion, consider

T = μt.&
{
coffee : ⊕{american : t}, tea : ⊕{green : t} }

that describes a cyclic protocol that initially accepts two pos-
sible messages coffee or tea, and then respectively replies
with american or green, and

S = μt.&
{
coffee : ⊕{american : t, espresso : t} }

that initially accepts only the coffee messages and then
replieswith either american or espresso.We have that T≤sy S
because of the following subtyping relation:

{ (T , S) ,

(&
{
coffee : ⊕{american : T }, tea : ⊕{green : T } } , S) ,

(⊕{american : T } , ⊕{american : S, espresso : S}) }

Notice that T , and its derived types, have input branch-
ings with more labels than those of the corresponding input
branchings in S, or in its derived types (input contravari-
ance). On the other hand, they have output selections with
less labels (output covariance).

Two types T and S are related by ≤sy , whenever S is able
to simulate T with output and input types enjoying covari-
ance and contravariance properties, respectively. Notice the
asymmetric use of unfolding between the left- and right-hand
terms T and S; in T , recursion is always unfolded once, while
in S many unfoldings can be needed in order to expose the
starting operator of T .

Synchronous subtyping ≤sy is dual closed, i.e. when we
move to the dual of two session types that are in subtyping
relation, their ordering is also complemented, that is, their
subtyping relation is inverted.

Definition 12 (Dual Closeness) We say that a relation R on
session types is dual closed if (S, T ) ∈ R implies (T , S) ∈
R.

Dual closure of≤sy directly follows from basic properties
of session subtyping, like the inversion properties formalized
by Lemma 2 in [26].

3.1.1 Aynchronous session subtyping

We now consider the standard notion of asynchronous sub-
typing [22,34].

We start by introducing the auxiliary notion of input con-
texts, which we use to denote sequences of initial input
branchings in a session type. This is needed because, as
we will discuss in the following, in the definition of asyn-
chronous session subtyping, it is important to identify those
output selections that are guarded by input branchings.

Definition 13 (Input Context)An input contextA is a session
type with multiple holes defined by the syntax:

A ::= [ ]n | &{li : Ai }i∈I

The holes [ ]n , with n ∈ N
+, of an input context A are

assumed to be consistently enumerated, i.e. there exists
m ≥ 1 such that A includes one and only one [ ]n for each
n ≤ m. Given types T1,…, Tm , we use A[Tk]k∈{1,...,m} to
denote the type obtained by filling each hole k inA with the
corresponding term Tk .

As an example of how input contexts are used, consider
the session type &

{
l1 : ⊕{l : end}, l2 : ⊕{l : end}}. It can

be decomposed as the input context &
{
l1 : [ ]1, l2 : [ ]2} with

two holes that can be both filled with ⊕{l : end}.
We are now ready to define the asynchronous subtyping

≤ relation. In particular, we consider the definition in [9],
which constitutes a simplified formulation of the definition
in [34] (and, in our setting, also of the definition in [22], as
we discuss below).

Definition 14 (Asynchronous Subtyping, ≤) R is an asyn-
chronous subtyping relation whenever (T , S) ∈ R implies
1., 3., and 4. of Definition 11 plus the following modified
version of 2.:

2. if T = ⊕{li : Ti }i∈I then ∃n ≥ 0,A such that

– unfoldn(S) = A[⊕{l j : Sk j } j∈Jk ]k∈{1,...,m},
– ∀k ∈ {1, . . . ,m}. I ⊆ Jk and
– ∀i ∈ I , (Ti ,A[Ski ]k∈{1,...,m}) ∈ R;

T is an asynchronous subtype of S, written T ≤ S, if there is
an asynchronous subtyping relationR such that (T , S) ∈ R.
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Intuitively, the above co-inductive definition says that it is
possible to play a simulation game between a subtype T and
its supertype S as follows: if T is the end type, then also S is
ended; if T starts with an output selection, then S can reply
by outputting at least all the labels in the selection (output
covariance), and the simulation game continues; if T starts
with an input branching, then S can reply by inputting atmost
some of the labels in the branching (input contravariance),
and the simulation game continues. The unique nontrivial
case is the case of output selection; in fact, in this case the
supertype could reply with output selections that are guarded
by input branchings.

As an example of application of this rule for output selec-
tion, consider the session type T = ⊕{

l : &{l1 : end, l2 :
end}}. We have that T is a subtype of S = &

{
l1 : ⊕{l :

end}, l2 : ⊕{l : end}}, previously introduced. In fact, we
have that the following relation

{ (T , S) , (&{l1 : end, l2 : end},&{l1 : end, l2 : end}) , (end, end) }

is an asynchronous subtyping relation. Rule 2. of the def-
inition is applied on the first pair (T , S). The first item of
the rule is used to decompose S (as discussed above) as the
input context &

{
l1 : [ ]1, l2 : [ ]2} with two holes both filled

with ⊕{l : end}. The second item trivially holds because the
output selection at the beginning of T has only one label l,
as also the output selections filling the holes in the decom-
position of S. Finally, the third item holds because of the
pair (&{l1 : end, l2 : end},&{l1 : end, l2 : end}) present
in the relation. The first element of the pair is obtained by
consuming the output selection at the beginning of T , while
the second element by consuming the initial output selection
of the terms filling the holes of the considered input context.

The rationale behind asynchronous session subtyping is
that under asynchronous communication it is unobservable
whether an output is anticipated before an input or not. In
fact, anticipating an output simply introduces in advance
the corresponding message in the communication queue. For
this reason, rule 2. of the asynchronous subtyping definition
admits the supertype to have inputs in front of the outputs
used in the simulation game.

As a further example, consider the types T = μt.&{l :
⊕{l : t}} and S = μt.&{l : &{l : ⊕{l : t}}}. We have
T ≤ S by considering an infinite subtyping relation includ-
ing pairs (T , S′), with S′ being &{l : S}, &{l : &{l : S}},
&{l : &{l : &{l : S}}}, …; that is, the effect of each output
anticipation is that a new input &{l : _} is accumulated in
the initial part of the r.h.s. It is worth to observe that every
accumulated input &{l : _} is eventually consumed in the
simulation game, but the accumulated inputs grows unbound-
edly.

Example 10 As a less trivial example, we can express as ses-
sion types the two client protocols depicted in Fig. 1:

Client = μt. ⊕{w :&{ok : t, dtl : t},wto :&{ok : t, dtl : t, iep : t}}
AltClient = μt. ⊕{w :&{ok :⊕{w : t}, dtl : t, iep : t},wto :&{ok

: t, dtl : t, iep : t}}

We have that AltClient ≤ Client because the subtyping sim-
ulation game can go on forever: when one of the derived
types of AltClient selects the output w while the correspond-
ing derived types of Client starts with an input branching,
this input branching is accumulated in front of such derived
type of Client.

We now discuss specific limit cases of application of Def-
inition 14 of asynchronous subtyping:

– Concerning rule 2., as discussed above, it assumes the
possibility to decompose the candidate supertype into an
initial input context, with holes filled by types starting
with output selections. We notice that there exist session
types that cannot be decomposed in such a way. Con-
sider, for instance, the session type S = μt.&{l1 : t, l2 :
⊕{l : t}}. S cannot be decomposed as an input context
with holes filled by output branchings because, for every
n, unfoldn(S) will contain a sequence of input branch-
ings (labelled with l1) that terminate in a term starting
with the recursive definition μt._. Our opinion is that the
definition of asynchronous subtyping does not manage
properly these limit cases. For instance, the above ses-
sion type S could be reasonably considered a supertype
of μt. ⊕ {l : &{l1 : t, l2 : t}, that simply anticipates the
output selection with label l. Such a type has runs with
more output selections, because S has a loop that does
not include the output selection; but this is not problem-
atic because such outputs could be simply stored in the
message queue. Nevertheless, we have that such a session
type is not a subtype of S due to the above observation
about the inapplicability of rule 2.

– On the other hand, there are cases inwhich rule 2. is appli-
cable but the input that it accumulates in the r.h.s. is never
consumed. Consider, e.g. the infinite simulation game
between T = μt. ⊕ {l : t} and S = μt.&{l ′ : ⊕{l : t}}:
only output selections are present in the subtype T , and
an instance of the input branching in the supertype S
is accumulated in each step of the simulation game.
These limit cases are allowed in [34], on which our
Definition 14 is based, but are, instead, disregarded in
[22] by means of a specific “orphan message free” con-
straint that is added to the definition of asynchronous
subtyping: considering T to be subtype (i.e. a replace-
ment) of S conceptually means allowing for messages
l ′ that are sent to T to remain “orphan” (never actually
read by T ). Moreover, the fact that, as in [34], we have
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T ≤ S implies that ≤ is not dual closed on (arbitrary)
binary session types. This because, if we consider the
dual of T , i.e. T = μt.&{l : t}, and the dual of S, i.e.
S = μt. ⊕ {l ′ : &{l : t}}, we have that S �≤ T (T cannot
match the l ′ output).

In order to avoid such limit cases (which lead to either com-
plicating the definition of asynchronous subtyping as in [22]
or to lose the dual closeness property as in [34]), in the follow-
ing, wewill restrict to session types that do not include output
divergent or input divergent recursions. An output (input,
resp.) divergent recursion is a recursion where it is possibile
to advance forever by just executing outputs (inputs, resp.).
The intuition is that any significant session type should rep-
resent a conversation and not have the possibility to end up
in a permanent mono-directional communication.

Formally, given a session type S and any subterm μt.T
of S, we assume that all free occurrences of t are guarded
in T by both a send and a receive action, i.e. t is included
both in the scope of an output selection ⊕{_} and of an input
branching&{_}. A formal operational characterization of this
constraint will be given in Sect. 4 by mapping session types
into behavioural contracts. Essentially, the constraint yields
an input/output alternation property: any infinite execution
contains infinitely many inputs as well as infinitely many
outputs.

Notice that the restriction that we consider is consistent
with session type duality, in that, if a session type T sat-
isfies the constraint above, then also its dual T satisfies it.
Under such a restriction for session types it is immediate
to show that also asynchronous subtyping of [22] reduces to
the Definition 14 considered here (see, e.g. the reformulation
presented in [8] where the orphan message-free constraint of
[22] is expressed as absence of output divergent behaviour).
Intuitively, this is due to the fact that it is no longer possi-
ble to express output divergent recursive types originating
orphan messages. An important consequence is that since
asynchronous subtyping of [22] is dual closed (see [10]),
also the subtyping relation ≤ of Definition 14 enjoys such a
property.

Proposition 1 The asynchronous subtyping relation ≤ is
dual closed.

We conclude this section by observing that asynchronous
session subtyping was considered decidable (see [35]), but
recently Bravetti, Carbone and Zavattaro proved that it is
undecidable [9].6 After undecidability was proven, efforts
have been spent in detecting decidable fragments or sound
algorithmic characterizations, see Sect. 6.

6 Lange and Yoshida [30] independently proved that the specific
(orphan-message-free) version of asynchronous subtyping in [22] is
undecidable.

4 Mapping session types into behavioural
contracts

In Sect. 2we have defined a notion of refinement for contracts
and we have seen that, even when communication is asyn-
chronous, output anticipation is not admitted as a general
refinement mechanism. Then, in Sect. 3, we have recalled
session types where, on the contrary, output anticipation is
admitted by asynchronous session subtyping. In this section
we show that in the asynchronous setting, it is possible to
define a fragment of contracts for which refinement turns
out to coincide with asynchronous session subtyping. More
precisely, we will identify a fragment of contracts that are
sufficient to naturally encode session types. Moreover, we
will prove that such a natural encoding maps asynchronous
session subtyping into refinement, in the sense that two types
are in subtyping relation if and only if the corresponding con-
tracts are in refinement relation.

The first restriction that we discuss is about mixed-choice,
i.e. the possibility to perform from the same state both send
and receive actions. Consider, for instance, the system:

[al2 .bl2 , ε]l1 || [al1 .bl1 + bl1 .zl1, ε]l2
Such a system is a correct contract composition in that there
is only one possible deterministic computation terminating
in a successful configuration. On the contrary, if we replace
the first contract with the contract obtained simply by antic-
ipating the output bl2 , we obtain the system

[bl2 .al2 , ε]l1 || [al1 .bl1 + bl1 .zl1, ε]l2
which is not correct because there is a computation that acti-
vates the alternative branching of the second contract. In this
alternative branching, the message z is produced that cannot
be consumed. For this reason, we start by removing mixed-
choices from contracts. This is justified also by the fact that
mixed-choices are not present in session types, where we
have either output selections or input branchings.

But removing mixed-choice from contracts is not suffi-
cient to admit output anticipation. For instance, consider the
system

[bl2 .cl2 , ε]l1 || [al3 .bl1 .cl1 + cl1 , ε]l2 || [al2 , ε]l3
which is correct; but if we replace the contract at location l1
with cl2 .bl2 , that simply anticipates an output, we obtain

[cl2 .bl2 , ε]l1 || [al3 .bl1 .cl1 + cl1 , ε]l2 || [al2 , ε]l3
which is no longer correct in that the alternative branch cl1
can be taken by the contract in l2, thus reaching a system in
which the contract at l1 will wait indefinitely for bl2 .
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For this reason, we need an additional restriction on
choices: besides requiring any choice to involve either send
actions only or receive actions only, we also impose all such
actions to address the same location l. This is obtained by
restricting to systems with only two locations. This restric-
tion is in line with our objective, i.e. obtain a refinement
which is fully abstract w.r.t. asynchronous subtyping defined
in Sect. 3.1.1, where we considered binary session types (i.e.
types for sessions between two endpoints). Given that there
are only two locations, each contract can send to or receive
from only the partner’s location; hence, all sends or receives
in a choice address the same location. In general, wewill omit
the locations associated to send and receive actions: in fact, as
already discussed also in Example 1, these can be left implicit
because, when there are only two locations, all actions in one
location consider the other location. A final restriction fol-
lows from the decision (see Sect. 3.1.1) to focus our analysis
on session types that do not include output divergent or input
divergent recursions, i.e. session types that do not end up in
a permanent (infinite) mono-directional communication.

We are now ready to formally define the restricted syn-
tax of contracts considered in this section; it is similar to
session behaviours, as defined in [4], and session contracts,
as defined in [5], for synchronous communication, plus the
above-mentioned restriction that excludes output divergent
and input divergent recursions. The only significant differ-
ence is that here we do not make use of a special internal
choice operator

⊕
i∈I ai .Ci to represent a choice among a set

of send actions ai , with i ∈ I . As a matter of fact, internally
choosing send actions in behavioural contracts is natural in
the case of synchronous communication, so to represent that
the decision on which action to communicate is taken from
the sender side: the behaviour of

⊕
i∈I ai .Ci in [4,5] can

be represented as
∑

i∈I τ.ai .Ci by introducing internal τ

actions in the syntax of Definition 1 (see, e.g. [15,19] and the
more general characterization of output persistent contracts
therein). In the context of synchronous communication, this
is also needed to obtain covariance of output choices and
contravariance of input choices in contract refinement. In the
context of asynchronous communication, instead, the deci-
sion on which action to communicate is already implicitly
taken by the sender and the introduction of an internal choice
operator/τ actions in contracts is not needed.

Definition 15 (Session contracts) Session contracts are
behavioural contracts obtained by considering the following
restricted syntax:

C ::= 1 | ∑
i∈I ai .Ci | ∑

i∈I ai .Ci | X | recX .C

where besides the assumptions in Definition 1, we also con-
sider the same restriction defined, in the context of session
types, in Sect. 3.1.1; in recursive definitions recX .C , all

free occurrences of X are guarded by both a send and a
receive action, i.e. X is included both in the scope of a pre-
fix

∑
i∈I ai .Ci and of a prefix

∑
j∈J a

j .CJ . Notice that we
omit the locations l associated to the send and receive actions
(which are present in the contract syntax as defined in Def-
inition 1). This simplification is justified because we will
consider systems with only two locations, and we implic-
itly assume all actions of the contract in one location to be
directed to the other location.

Operationally, the syntactical restriction considered above
means that C cannot perform a trace of transitions that ends
up in an output divergent or in an input divergent execution.
An output (input, resp.) divergent execution is an infinite
sequence of output (input, resp.) transitions. Thus, C enjoys
an input/output alternation property; any infinite execution
contains infinitely many inputs as well as infinitely many
outputs. Formally, assuming α meta-variables to range over
{a, a | a ∈ N }, i.e. input and output actions without a loca-
tion, session contracts C satisfy the following property.

If there exist infinite contractsCi and labelsαi , with i ∈ N,
such that C can perform an infinite trace C

α1−→ C1
α2−→

C2
α3−→ . . . (i.e. formally, ∀i ∈ N.Ci−1

αi−→ Ci with C0 =
C), then for all i ∈ N there exist j, k ∈ N, with both j > i
and k > i , such that: α j = a, for some a (i.e. α j is an input
label), and αk = a, for some a (i.e. αk is an output label).7

As mentioned above, we restrict our investigation to FIFO
contract systems with only two locations and by considering
only session contracts. We will omit the location names also
in the denotation of suchbinary contract systems.Namely,we
will use [C,Q]||[C ′,Q′] to denote binary contract systems,
thus omitting the names of the two locations as any pair of
distinct locations l and l ′ could be considered. In the restricted
setting of binary session contracts, we can redefine the notion
of refinement as follows.

Definition 16 (Binary Session Contract Refinement) A ses-
sion contract C ′ is a binary session contract refinement of a
session contract C , denoted with C ′ �s C , if and only if, for
all session contract D, if ([C]||[D])↓ then ([C ′]||[D])↓.

We now move to the proof of correspondence between
session types and session contracts. The first step is the defi-
nition of a syntactic translation from session types to session
contracts.

Definition 17 Let T be a session type. We inductively define
a function [[T ]] from session types to session contracts as
follows:

[[⊕{li : Ti }i∈I ]] = ∑
i∈I li .[[Ti ]] [[&{li : Ti }i∈I ]] = ∑

i∈I li .[[Ti ]]
[[μt.T ]] = rec t.[[T ]] [[t]] = t [[end]] = 1

7 We use N to denote the set of natural numbers (excluding 0).
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Notice that [[_]] defines a direct mapping from constructs
of the syntax of session types to corresponding constructs of
the syntax of session contracts.

The remainder of this section reports the proof that given
two session types T and S, we have that T ≤ S if and only if
[[T ]] �s [[S]]. This result has two main consequences. On the
one hand, as a positive consequence, we can use the charac-
terization of session subtyping in Definition 14 to prove also
session contract refinement. For instance, if we consider the
two session types AltClient and Client of Example 10, we
can conclude that

recX .(w.(ok.w.X+dtl.X+iep.X)+wto.(ok.X
+ dtl.X+iep.X)) �s recX .(w.(ok.X + dtl.X)

+ wto.(ok.X + dtl.X + iep.X))

because these two contracts are respectively the encoding of
the session typeAltClient, and of its supertypeClient, accord-
ing to [[ ]] (notice that these two contracts coincide with the
two clients represented in Fig. 1). On the other hand, as a
negative consequence, we have that session contract refine-
ment �s is in general undecidable, because asynchronous
subtyping ≤ is undecidable as recalled in Sect. 3.

4.1 Proving the coincidence of session subtyping
with contract refinement

We start with the presentation of a roadmap of the tech-
nical results proved in this section. There are two main
results: soundness (Theorem 1), stating that if two types are
in subtyping relation then their corresponding contracts are in
refinement relation, and completeness (Theorem 2), stating
that also the vice versa holds.

The proof of soundness relies on the possibility to antici-
pate outputs without breaking system correctness, i.e. given a
correct binary session contract systemwith a contract having
an output on a specific label that is eventually executable after
every possible sequence of inputs, the system remains correct
even if we replace this contract with another one that per-
forms immediately this output, and for the rest behaves as the
previous contract. This property is formalized in terms of two
Propositions, Proposition 2 dealing with the anticipation of
output selectionswith only one branch, andProposition 3 that
considers also output selections with more than one branch.
The proof of such Propositions exploits a couple of prelimi-
nary lemmata (Lemma 1 and 2).

The proof of completeness actually considers the contra-
positive statement; if two types are not in subtyping relation
then their corresponding session contracts are not in refine-
ment relation. In particular, given T and S, such that T �≤S
then there exists a session contract D such that ([[[S]]]||[D])↓
while ([[[T ]]]||[D]) � ↓ (i.e. ([S]||[D])↓ does not hold), hence
[[T ]] is not a refinement of [[S]]. As a discriminating con-

text, we take D = [[S]]. We prove that ([S]||[[[S]]]) ↓ in
Proposition 4. On the other hand, in order to prove that
([[[T ]]]||[[[S]]]) � ↓, we show the existence of a computation
starting from ([[[T ]]]||[[[S]]]) and leading to a deadlock, i.e. a
configuration which is not successful and from which there
are exiting transitions. Such a computation (at least an initial
part of it) is discussed and formalized in Proposition 5.

We now start from the auxiliary lemmata used in the for-
malization of our first result about the possibility to anticipate
outputs without breaking system correctness.

Lemma 1 Consider the two session contract systems
P1 = [[[A[Sk]k∈{1,...,m}]],Q]||[D,Q′::l] and
P2 = [[[A[⊕{l : Sk}]k∈{1,...,m}]],Q]||[D,Q′].
If P2↓ then one of the following holds:

– A is a single hole and P2 −→ P1;
– A is not a single hole and P1 has at least one outgoing
transition. For every possible transition P1 −→ P ′

1, we
have that one of the following holds:

1. P1 does not consume the label l and there exist A′,
D′, Q′′ and Q′′′ s.t. P ′

1 = [[[A′[Sk]k∈{1,...,m}]],Q′′]||
[D′,Q′′′::l] and
P2 −→ [[[A′[⊕{l : Sk}]k∈{1,...,m}]],Q′′]||[D′,Q′′′];

2. P1 consumes the label l, hence P ′
1=[[[A[Sk]k∈{1,...,m}]],

Q]||[D′,Q′], and ∃ j ∈ {1, . . . ,m} s.t. P2 −→∗
[[[S j ]],Q′′]||[D′,Q′] and Q = a1:: . . . ::aw::Q′′,
where a1, . . . , aw are the labels in the path to [ ] j
in A.

Proof A simple case analysis on the possible transitions of
the two considered systems P1 and P2. In the case 2. of the
second item, we also have to observe that if the label l is
consumed in one step by P1, thenQ′ = ε and D′ starts with
an input branching. Given that P2↓, the l.h.s. should be able
to eventually produce a label that can be consumed by the
initial input branching of the r.h.s. Hence, A should have a
sequence of input branchings that consumes initial labels in
Q and then reaches a hole. We simply assume a1, . . . , aw to
be such labels and [ ] j to be such hole. ��
Lemma 2 Consider the two session contract systems
P1 = [[[A[Sk]k∈{1,...,m}]], a1:: . . . ::aw::Q]||[D′,Q′] and
P2 = [[[S j ]],Q]||[D′,Q′]
with j ∈ {1, . . . ,m} and a1, . . . , aw that are the labels in the
path to [ ] j in A.
If P2↓ then also P1↓.
Proof By contradiction, assume there exists a computation
P1 −→∗ P ′

1 with P ′
1 blocked (P

′
1 without exiting transitions

and not successful). We have that such computation con-
sumes the messages a1, . . . , aw in the queue. Hence, we can
reorder the computation by anticipating, at the beginning, the
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corresponding input consumption. At the end of this initial
part of the computation, the system is identical to P2, hence
also P2 −→∗ P ′

1, but this contradicts P2↓. ��
We now formalize the possibility to anticipate out-

puts without breaking system correctness; we start with a
first Proposition that considers outputs without alternative
branchings.

Proposition 2 Consider the two following session contract
systems
P1 = [[[A[Sk]k∈{1,...,m}]],Q]||[D,Q′::l] and
P2 = [[[A[⊕{l : Sk}]k∈{1,...,m}]],Q]||[D,Q′].
If P2↓ then also P1↓.
Proof By contradiction, assume that P2 ↓, while P1 � ↓. The
latter ensures the existence of a computation P1 −→∗ P with
P blocked (P without exiting transitions and not successful).
We now observe that we can apply Lemma 1 on P1 and P2.
The first item cannot hold, otherwise P2 −→ P1 −→∗ P
with P blocked, that implies that P2 � ↓, thus contradict-
ing the thesis. Hence, the second item must hold, implying
that the computation P1 −→∗ P is not of length 0, i.e.
there exists P ′

1 s.t. P1 −→ P ′
1 −→∗ P . By considering

also Lemma 2 we have that only 1. in the second item of
Lemma 1 can hold, i.e. there exist A′, D′, Q′′ and Q′′′ such
that P ′

1 = [[[A′[Sk]k∈{1,...,m}]],Q′′]||[D′,Q′′′::l] and P2 −→
P ′
2 = [[[A′[⊕{l : Sk}]k∈{1,...,m}]],Q′′]||[D′,Q′′′]. But we can

apply our reasoning again on P ′
1 and P ′

2, because P ′
2 ↓ in

that it is a derivative of P2 and P2 ↓, while P ′
1 � ↓, because

we can consider the shorter computation P ′
1 −→∗ P to the

blocked system P . Each time the arguments are applied, the
computation is shortened, and at the end we would have that
the first of the two considered systems (P1 in the proposition
statement) should be already blocked, but this contradicts
Lemma 1. ��

The above proposition formalizes a condition underwhich
anticipating an output does not break system correctness.
The direct application of the above proposition is limited
to outputs with only one branch. The following proposition
generalizes its applicability to outputs with more branch-
ings, provided that all the involved outputs have at least one
branching with the same label.

Proposition 3 Consider the following session contract sys-
tem
P1 = [[[A[⊕{l j : Skj } j∈Jk ]k∈{1,...,m}]],Q]||[D,Q′].
If P1↓ and i ∈ ⋂

k∈{1,...,m} Jk , then also P2↓ with

P2 = [[[A[⊕{li : Ski }]k∈{1,...,m}]],Q]||[D,Q′].
Proof By contradiction assume that P2 � ↓. Then, there exists
a computation P2 −→∗ P ′

2 s.t. P
′
2
√

does not hold and there
exists no additional computation step P ′

2 −→ P ′′
2 . Notice

that P1 and P2 are identical excluding the output selections

filling the holes inA that in P1 could include more branches.
Hence, P1 can mimic the same computation steps of P2.

Going back to the above computation P2 −→∗ P ′
2, we

notice that there are two possibilities; either the sequence
of computation steps entirely consumes the input context
A, or not. In the first case, we have that P1 can perform
an equivalent computation P1 −→∗ P ′

1 s.t. P ′
1
√

does not
hold and there exists no additional computation step. But
this contradicts the assumption P1↓. In the second case, we
have P ′

2 = [[[A′[⊕{li : Ski }]k∈{1,...,m}]],Q′′]||[D′,Q′′′]. As
observed above, there exists also the computation P1 −→∗
P ′
1 with P

′
1=[[[A′[⊕{l j : Skj } j∈Jk ]k∈{1,...,m}]],Q′′]|| [D′,Q′′].

But also this cannot hold because also P ′
1 is blocked (P ′

1
√

does not hold and there exists no additional computation step
P ′
1 −→ P ′′

1 ), and this contradicts the assumption P1↓. ��
We are now ready to prove our soundness result, i.e. if

two types are in subtyping relation, then the corresponding
contracts are in refinement relation.

Theorem 1 (Soundness) Given two session types T and S, if
T≤S then [[T ]] �s [[S]].
Proof We start by defining the following relation S on sys-
tems:

{ ( [[[S]],Q]||[D,Q′] , [[[T ]],Q]||[D,Q′] ) | T≤S }

We now prove that S has the following property: given
(P1, P2) ∈ S we have that if P1 ↓ then P2 ↓. This is proved
by showing that if (P1, P2) ∈ S and P1 ↓ then one of the
following holds:

1. P2
√
;

2. for every P ′
2 s.t. P2 −→ P ′

2 and there exists P ′
1 ↓ such

that (P ′
1, P

′
2) ∈ S.

We first show that if P1 ↓ then P2 cannot be blocked, i.e.
either P2

√
or there exists P ′

2 such that P2 −→ P ′
2. If P1 ↓

we have that either P1
√

or P1 −→ P ′
1 for some P ′

1.
If P1

√
then P1 = [[[S]],Q]||[D,Q′] with [D,Q′]√,

Q = ε, and [[S]] = 1 (possibly guarded by some recursive
definitions). This implies, by definition of [[ ]], that S = end
(possibly guarded by some recursive definitions). Hence
P2 = [[[T ]], ε]||[D,Q′] with T , by definition of session sub-
typing, either equal to end or end guarded by some recursive
definitions. This implies [[T ]] equal to 1 or 1 guarded by some
recursive definitions, hence also P2

√
holds.

If P1 −→ P ′
1, i.e. P1 = [C,Q]||[D,Q′], with C = [[S]],

has a reduction, then also P2 = [C ′,Q]||[D,Q′], with
C ′ = [[T ]], has the possibility to perform a reduction. This is
proved by observing that there are four types of reductions
that P1 can perform: (i) a transition performed by [D,Q′]
in isolation, (ii) the insertion in the queue Q of a message
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sent from D, (iii) the insertion in the queueQ′ of a message
sent from C , (iv) a transition performed by [C,Q] in isola-
tion. In all cases, but the last one, it is trivial to see that also
P2 = [C ′,Q]||[D,Q′] can perform the same type of transi-
tion. The unique non trivial case, i.e. the last one, is that of the
consumption of a message from the local queue Q; let lk be
such message (hence Q = lk ::Q′′). In this case we have that
C = [[S]] with S that coincides (possibly after some unfold-
ing) with &{li : Si }i∈I , with k ∈ I . Being T≤S, T does not
coincide (neither applying unfolding) with end. Possibly by
applying some unfolding, it will either start with an output
selection or an input branching. In the former case, [[T ]] has
the possibility to execute in the system P2 one of its initial
output actions. In the latter, due to input contravariance, the
subtype T will be (possibly after some unfoldings) of kind
&{l j : S j } j∈J , with k ∈ J . This guarantees that also [[T ]]
can perform in P2 the same local message consumption of
lk .

So far, we have proved that if P2
√

does not hold then P2
has at least one outgoing transition. We now show that for
each transition P2 −→ P ′

2 then item 2. holds. We proceed
by analysing the possible transitions P2 −→ P ′

2; there are
four possible cases:

1. a local reduction of [D,Q′];
2. the insertion in the queueQ of a new message emitted by

D;
3. the insertion in the queue Q′ of a new message emitted

by C ;
4. a local reduction of [C,Q].

In the first two cases it is trivial to see that also P1 −→ P ′
1,

by performing the same type of transition, with (P ′
1, P

′
2) ∈ S

and, obviously, P ′
1↓ because P ′

1 is itself reachable from P1.
In case 3.we have that [[T ]] coincides (possibly after some

unfoldings) with
∑

i∈I li .[[Ti ]]. This implies that T coin-
cides (possibly after some unfoldings) with ⊕{li : Ti }i∈I ,
and P ′

2 = [[[Ti ]],Q]||[D,Q′::li ]. As S is a supertype of
T , the corresponding output selection could be guarded by
input branchings. Any way we have that S coincides (possi-
bly after some unfoldings)withA[⊕{l j : Sk j } j∈Jk ]k∈{1,...,m},
such that ∀k ∈ {1, . . . ,m}.i ∈ Jk and Ti≤A[Ski ]k∈{1,...,m}.
The latter ensures that ([[[A[Ski ]k∈{1,...,m}]],Q]||[D,Q′::li ],
[[[Ti ]],Q]||[D,Q′::li ]) ∈ S. Moreover, given that P1 ↓,
we also have that

( [[[A[⊕{l j : Sk j } j∈Jk ]k∈{1,...,m}]],Q]||[D,

Q′] )↓holds. FromProposition3,wehave that
( [[[A[⊕{li :]]]

Ski }k ∈ {1, . . . ,m},Q]||[D,Q′] )↓ holds and from Proposi-
tion 2 we finally conclude that also

( [A[Ski ]k∈{1,...,m},Q]||
[D,Q′::li ]

)↓ holds.
In case 4.we have that [[T ]] coincides (possibly after some

unfoldings) with
∑

i∈I li .[[Ti ]], with C = [[Ti ]]. As S is a
supertype of T , it also starts with an input action, and because
P1 ↓ holds, such an initial input will include also the label

li (because we have that Q = li ::Q′′). Moreover, after such
label, the type S continues with a type Si such that Ti≤Si .
This implies that P1 −→ [[[Si ]],Q′′]||[[[D]],Q′]. More-
over, ([[[Si ]],Q′′]||[[[D]],Q′], [[[Ti ]],Q′′]||[[[D]],Q′]) ∈ S.
Being [[[Si ]],Q]||[[[D]],Q′] reachable from P1, we have that
[[[Si ]],Q]||[[[D]],Q′]↓ holds.

We now conclude the proof by considering two types T
and S, such that T≤S. We have that, for every contract D,( [[[S]]]||[D] , [[[T ]]]||[D] ) ∈ S. Assume that [[[S]]]||[D] ↓
holds. Consider now a computation [[[T ]]]||[D] −→∗ P ′ of
length n (i.e. composed of n transitions). By applying n times
the property 2 proved for the relation S, we can conclude
that P ′ is such that P ′√ (property 1 of S) or P ′ −→ P ′′
(property 2 of S). This guarantees that also [[[T ]]]||[D] ↓
holds, hence we can conclude that [[T ]] �s [[S]]. ��

We now move to the proof of completeness. The first
preliminary result states that the composition of a session
contract [[T ]] with its specular contract [[T ]] generates a cor-
rect contract system.

Proposition 4 Given a session type T , we have that [[[T ]]]||
[[[T ]]]↓.
Proof We first prove that given a computation [[[T ]]]||[[[T ]]]
−→∗ [C,Q]||[C ′,Q′] we have that:

– either the two queues are empty (i.e. Q = Q′ = ε) and
C = [[S]], C ′ = [[S]], for some S;

– or only one queue between Q and Q′ is non empty and

– if Q is not empty then C has |Q| initial inputs that
it can use to consume all messages in Q, and then it
becomes C ′′ such that C ′′ = [[S]] and C ′ = [[S]], for
some S, or

– if Q′ is not empty then C ′ has |Q′| initial inputs that
it can use to consume all messages inQ′, and then it
becomes C ′′ such that C ′′ = [[S]] and C = [[S]], for
some S.

The proof is by induction on the length of the computation
[[[T ]]]||[[[T ]]] −→∗ [C,Q]||[C ′,Q′].

If the length of the computation is 0, then the two queues
are empty and C = [[T ]], C ′ = [[T ]].

By inductive hypothesis, let the above condition holds
for [[[T ]]]||[[[T ]]] −→∗ [C,Q]||[C ′,Q′]. Consider now
[C,Q]||[C ′,Q′] −→ [C1,Q1]||[C ′

1,Q′
1]. There are two

possible cases for this last transition: it is (i) either the con-
sumption of one label in a queue, (ii) or the production of a
new message.

In case (i), such input is the initial one of the sequence
of inputs able to empty the queue, that exists by inductive
hypothesis. At the end of the execution of this sequence of
inputs, the above condition is guaranteed to hold (still by
inductive hypothesis).
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In case (ii), it is not restrictive to assume that the output
is performed by C (in fact, a symmetric reasoning can be
applied to the case in which C ′ performs the output). Let
l be the emitted message. As C starts with an output, by
inductive hypothesis its queue Q is empty and there exists
a session type S, such that C = [[S]], that begins with an
output selection with a branch labelled with l. Let S′ the
continuation after such label; we have that C1 = [[S′]]. Still
by inductive hypothesis, we also have that C ′ can consume
all themessages in its queueQ′ and then becomes [[S]]. Given
that S starts with an output selection with the label l, we have
that S starts with an input branching with a branch labelled
with l, and S′ is the continuation after such label. The above
guarantees that C ′

1 = C ′ is able to consume all the messages
in its queue Q′

1 = Q′::l and then becomes [[S′]].
We now observe that the above condition guarantees

that [[[T ]]]||[[[T ]]] ↓ actually holds. Consider a computation
[[[T ]]]||[[[T ]]] −→∗ [C,Q]||[C ′,Q′]. If the queues are empty
(i.e. Q = Q′ = ε), we have that the two contracts C and C ′
either (i) starts one with an input and one with an output or
(ii) they are both ended (i.e. equal to 1, possibly guarded by
some recursive definitions). In the case (i) we have that at
least one computation is possible (the output action), while
in the case (ii) we have that [C,Q]||[C ′,Q′]√. On the other
hand, if one of the queues is not empty, the corresponding
contract can perform at least one input transition. ��

Another preliminary result used in the completeness
proof is about a relationship between the so-called subtyp-
ing simulation game discussed after Definition 14 and a
computation of the corresponding contract system. To for-
malize such a relationship,we need some additional notation;
topunfold(T ) used to unfold initial recursive definitions and
ant(C,Q) that removes from the contract C input actions
that C itself can use to consume the messages in the queue
Q.

Given a session type T we define:

topunfold(T ) =
{
T ′{μt.T ′/t} if T = μt.T ′
T otherwise

Given a session contract C and a queue Q we define
ant(C,Q) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

C if Q = ε

[[A[Tki ]k∈{1,...,m}]] ifQ = li ∧ ∀k ∈ {1, . . . ,m}.i ∈ Jk ∧ C = [[T ]] ∧
n = min{n|unfoldn(T ) = A[⊕{l j : Tk j } j∈Jk ]k∈{1,...,m}}

ant( ant(C, l) ,Q′) if Q = l::Q′

Notice that ant(C,Q) could be undefined, in particular
when {n|unfoldn(S) = A[⊕{l j : Tk j } j∈Jk ]k∈{1,...,m}} in the
second item is empty.

Proposition 5 Given two session types T and S such that
T � ≤S, we have that there exist two session types T ′ and

S′ for which there exists a computation [[[T ]]]||[[[S]]] −→∗
[C, ε]||[C ′,Q′] with C = [[T ′]], ant(C ′,Q′) = [[S′]], and

1. if topunfold(T ′) = end then �n ≥ 0 such that
unfoldn(S′) = end;

2. if topunfold(T ′) = ⊕{li : T ′
i }i∈I then �n ≥ 0,A such

that

– unfoldn(S′) = A[⊕{l j : S′
k j } j∈Jk ]k∈{1,...,m} and

– ∀k ∈ {1, . . . ,m}. I ⊆ Jk.

3. if topunfold(T ′) = &{li : T ′
i }i∈I then �n ≥ 0 s.t.

unfoldn(S′) = &{l j : S′
j } j∈J with J ⊆ I .

Proof We first prove the following statement.

Consider the session contract system [C, ε]||[C ′,Q′]
and the session types T , S, T1, and S1 such that
C = [[T1]], ant(C ′,Q′) = [[S1]], topunfold(T ) =
topunfold(T1) and ∃n.unfoldn(S1) = S. Let T ′ and
S′ be two session types obtained from T and S by
applying one step of the subtyping simulation game
discussed after Definition 14. We have that there
exist [C, ε]||[C ′,Q′] −→∗ [C1, ε]||[C ′

1,Q′
1], T ′

1, and

S′
1 such that C1 = [[T ′

1]], ant(C ′
1,Q′

1) = [[S′
1]],

topunfold(T ′) = topunfold(T ′
1), and∃n.unfoldn(S′

1) =
S′.

The proof of the above statement is by case analysis con-
sidering the three possible steps in the subtyping simulation
game: (i) output selection, (ii) input branching, and (iii)
unfolding.

In the case (i) it is sufficient to consider the computation
[C, ε]||[C ′,Q′] −→ [Ci , ε]||[C ′,Q′::li ] where li is the label
of the selected branching in the subtyping simulation game,
and Ci is the session contract obtained from C after execu-
tion of the output li . We immediately observe thatCi = [[T ′]]
because in this case T ′ is the session type in the continua-
tion of the branching with label li . Definition 14 guarantees
that there exist n ≥ 0 and A such that unfoldn(S) =
A[⊕{l j : Sk j } j∈Jk ]k∈{1,...,m} and ∀k ∈ {1, . . . ,m}. i ∈ Jk .
From the latter we have that also ant(C ′,Q′::li ) is defined
because ant(C ′,Q′) = [[S1]]. Let ant(C ′,Q′::li ) = [[S′′]]:
we have that S′′ is like S′, but possibly less unfolded; in
fact, [[S′′]] is obtained by the partial function ant(_, _) that
unfolds as less as possible.

In the case (ii) it is sufficient to consider the computation
[C, ε]||[C ′,Q′] −→∗ [C, ε]||[C ′′,Q′′] −→ [C, li ]||[C ′

i ,Q′′]
−→ [Ci , ε]||[C ′

i ,Q′′] in which C ′ performs input actions
until it reaches the possibility to perform an output action,
then it performs the output li , where li is the label of the
selected branching in the subtyping simulation game, C ′

i
is the session contract obtained from C ′ after execution
of the output li , and finally C performs the consumption
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of li and becomes Ci . Such a computation exists in that
ant(C ′,Q′) = [[S1]], ∃n.unfoldn(S1) = S (by hypothe-
sis) and ∃n′.unfoldn

′
(S) starts with an input branching that

includes a branch with label li and continuation S′ (this fol-
lows from the second item in Definition 14 that defines the
subtyping simulation game steps for input branchings). In
other terms, we have that if C ′ starts with inputs, such initial
inputs cannot be more than the length ofQ′; when an output
choice is reached, such choicewill include also the possibility
to emit li . LetQ′′ be the queue after the execution of the initial
inputs; we have that ant(C ′,Q′′) = [[S1]]. Considering that
the operational semantics of contracts unfolds only initial
recursive definitions, the session contract C ′

i , reached after
the execution of the output li , will be such that C ′

i = [[S′′]]
for some session type S′′ which is like S′, but possibly less
unfolded.We conclude this case by observing thatCi = [[T ′]]
because in this case T ′ is the session type that occurs in T
after the label li .

In the case (iii) we have that [C, ε]||[C ′,Q′] already satis-
fies the required constraints. In fact, S = S′ and T ′ is obtained
from T with an initial unfolding, hence topunfold(T ) =
topunfold(T ′).

We now prove the Lemma by considering two session
types S and T such that T �≤S. We have that there exists a path
in the subtyping simulation game between T and S that ends
in a pair T ′ and S′ forwhich such a gamecannot continue. The
latter implies that the three properties stated in the Lemma
hold for such a pair of session types; in fact, such properties
are the negation of corresponding items in the Definition 14,
that formalizes the subtyping simulation game. By repeated
application of the statement proved above, we have that there
exists a computation [[[T ]]]||[[[S]]] −→∗ [C, ε]||[C ′,Q′]
and two session types T ′′ and S′′ such that C ′ = [[T ′′]],
ant(C ′,Q′) = [[S′′]], topunfold(T ′) = topunfold(T ′′),
and ∃n.unfoldn(S′′) = S′. We have that the three proper-
ties stated in the Lemma holds also for T ′′ and S′′. In fact,
topunfold(T ′) = topunfold(T ′′), and S′′ is like S′, but pos-
sibly less unfolded; this implies that if T ′′ and S′′ have a step
in the subtyping simulation game then also T ′ and S′ should
have a corresponding step. This because one step in the sub-
typing simulation game can require a minimum amount of
unfolding of the r.h.s. type, but additional unfoldings cannot
forbid its application. ��

We are now ready to prove completeness; actually, we
prove the contrapositive statement.

Theorem 2 (Completeness) Given two session types T and
S, if T �≤S then [[T ]] �s [[S]].

Proof Consider two session types T and S such that T �≤S.
We prove that [[T ]] �s [[S]] by showing the existence of a
contract C s.t. [[[S]]]||[C] ↓ holds while [[[T ]]]||[C] ↓ does

not. Such contract C is [[S]]. By Proposition 4 we have that
[[[S]]]||[[[S]]]↓; it remains to show that [[[T ]]]||[[[S]]] � ↓.

Given that Given that T �≤S, we can apply Proposition 5.
Hence there exist two session types T ′ and S′ and a com-
putation [[[T ]]]||[[[S]]] −→∗ [C, ε]||[C ′,Q′] with C = [[T ′]],
ant(C ′,Q′) = [[S′]] and:

1. if topunfold(T ′) = end then �n ≥ 0 such that
unfoldn(S′) = end;

2. if topunfold(T ′) = ⊕{li : T ′
i }i∈I then �n ≥ 0,A such

that

– unfoldn(S′) = A[⊕{l j : S′
k j } j∈Jk ]k∈{1,...,m} and

– ∀k ∈ {1, . . . ,m}. I ⊆ Jk .

3. if topunfold(T ′) = &{li : T ′
i }i∈I then �n ≥ 0 such that

unfoldn(S′) = &{l j : S′
j } j∈J with J ⊆ I .

We now analyse the three above cases showing that we
can always extend the computation [[[T ]]]||[[[S]]] −→∗
[C, ε]||[C ′,Q′] reaching a deadlock, i.e. there exists a com-
putation [C, ε]||[C ′,Q′] −→∗ P with P such that it does
not hold that P

√
and there exists no P ′ such that P −→ P ′.

This implies that [[[T ]]]||[[[S]]] � ↓.

1. In this case we can extend the computation by con-
sidering any of the computations [C, ε]||[C ′,Q′] −→∗
[C,Q1]||[C2, ε] in which C ′ consumes all the mes-
sages in its queue Q′. These computations exist because
ant(C ′,Q′) is defined.Moreover, given that ant(C ′,Q′)
= [[S′]] and �n ≥ 0 such that unfoldn(S′) = end, we are
in two possible situations: either (i) some outputs have
been executed by the r.h.s. session contract during the
extension of the computation, or (ii) the r.h.s. session con-
tractC ′′ is not the terminated process 1 (possibly guarded
by some recursive definition).

In the first case (i) we have that the l.h.s. queue Q1, at
the end of the extended computation, is not empty while
the contract C cannot consume such messages because
C = [[T ′]] and topunfold(T ′) = end. Given that the
r.h.s. contract cannot perform infinitelymany outputs, the
computation will eventually terminate in a configuration
that is not successful because the l.h.s. queue is not empty.

In the second case (ii) we have that the r.h.s. contract
C ′′ starts with either an input or an output. In the first
case, given that the r.h.s. queue is empty, the computation
is immediately blocked in a configuration which is not
successful because the r.h.s. contract iswilling to perform
an input on an empty queue. If C ′′ starts with an output,
we can reason as in the above case (i) because themessage
is introduced in the l.h.s. queue while the l.h.s. contractC
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is terminated, namely, C = [[T ′]] and topunfold(T ′) =
end.

2. In this case we consider two possibilities: either (i) �n ≥
0,A such thatunfoldn(S′) = A[⊕{l j : S′

k j } j∈Jk ]k∈{1,...,m}
or (ii) there exist such n and A allowing for the decom-
position of S′ as an input context filled with output
selections.

In the first case (i) we have that the contract C ′ has
the ability to consume all the messages in its queue
Q′ and then reach the contract 1 (possibly guarded by
some recursive definitions). In fact, ant(C ′,Q′) = [[S′]]
guarantees the ability to consume the messages in Q′.
Moreover, the impossibility to decompose S′ as an input
context filled with output selections, implies that in S′
there is a sequence of input branching leading to the
terminated end type (possibly guarded by some recur-
sive definitions). Symmetrically, besides the inputs for
consuming Q′, C ′ has a sequence of outputs selections
leading to the terminated process 1 (possibly guarded
by some recursive definitions). We now consider the
computation [C, ε]||[C ′,Q′] −→∗ [C,Q1]||[C2, ε] −→
[C1,Q1]||[C2, l]withC2 which is the terminated process
1 (possibly guarded by some recursive definitions), and l
is one of the labels in the output selection initially present
in C . Given that the l.h.s. contract C1 cannot perform a
loop with only outputs, the computation will eventually
block in a configuration that cannot be successful because
the message l introduced in the r.h.s. queue cannot be
consumed, in that the r.h.s. contract C2 is ended.

In the second case (ii) we have that ∃n ≥ 0,A such
that unfoldn(S′) = A[⊕{l j : S′

k j } j∈Jk ]k∈{1,...,m}. This
implies that ∃k ∈ {1, . . . ,m}. I � Jk . From this
we have that there exists i ∈ I such that i /∈ Jk .
We now consider the following extension of the com-
putation [C, ε]||[C ′,Q′] −→∗ [C,Q1]||[C2, ε] −→
[C1,Q1]||[C2, li ] in which the r.h.s. contract C ′ con-
sumes all the messages in its queueQ′, possible because
ant(C ′,Q′) = [[S′]], and then performs outputs corre-
sponding to the inputs that guard the hole [ ]k in the above
context A such that unfoldn(S′) =
A[⊕{l j : S′

k j } j∈Jk ]k∈{1,...,m}, and then the l.h.s. contract

performs the output of li , available because C = [[T ′]],
topunfold(T ′) = ⊕{li : T ′

i }i∈I and i ∈ I . After
this computation, the r.h.s. contract C2 has a symmetric
behaviour w.r.t. the session type ⊕{l j : S′

k j } j∈Jk fill-

ing the hole [ ]k in the above context A; hence, it starts
with an input branching and moreover there is no branch
labelled with li . We can now proceed as in the above case
(i) because we have reached a configuration in which the

r.h.s. queue contains a message that cannot be consumed
by the r.h.s. contract.

3. In this case we consider two possibilities: either (i) the
session type S′ does not start with an input branching, or
(ii) ∃n ≥ 0 such that unfoldn(S′) = &{l j : S′

j } j∈J .

In the first case (i), given that ant(C ′,Q′) = [[S′]], the
r.h.s. contract C ′ has the possibility to consume all the
messages in its queueQ′, but it is unable to perform any
output (otherwise, symmetrically, S′ should start with
an input branching). Hence we can consider the com-
putation [C, ε]||[C ′,Q′] −→∗ [C, ε]||[C2, ε] in which
C ′ consumes the messages in Q′ and then a configura-
tion is reached which is blocked (because no additional
transition is possible) and not successful (because C is
willing to perform an input because C = [[T ′]] and
topunfold(T ′) = &{li : T ′

i }i∈I ).

In the second case (ii) we have that C = [[T ′]],
topunfold(T ′) = &{li : T ′

i }i∈I , ant(C ′,Q′) = [[S′]],
∃n ≥ 0. unfoldn(S′) = &{l j : S′

j } j∈J and J � I . The
latter implies the existence of j ∈ J such that j /∈ I .
We can consider the computation [C, ε]||[C ′,Q′] −→∗
[C, ε]||[C2,Q′′] −→ [C, l j ]||[C ′

2,Q′′] in which the r.h.s.
contract C ′ possibly performs inputs until reaching an
output that symmetrically corresponds with the input
branching&{l j : S′

j } j∈J (letC2 be the reached contract),
and then emits the message l j that is not present in any
branch of the input branching topunfold(T ′) = &{li :
T ′

i }i∈I . The latter ensures that in the reached configu-
ration the l.h.s. contract C is blocked because it cannot
consume themessage l j . Hence the computation can con-
tinue with actions executed by the r.h.s. contract, but it
eventually terminate (because the r.h.s. contract has no
loops with only outputs) in a configuration which is not
successful because C is willing to perform an input.

��

As a direct corollary of the two previous Theorems we
have the following full abstraction result.

Corollary 1 Given two session types T and S, T≤S if and
only if [[T ]] �s [[S]].

5 Related work

In this paper we introduced a behavioural contract theory
based on a definition of compliance (correctness of com-
position of a set of interacting contracts) and refinement
(preservation of compliance under any test, i.e. set of inter-
acting contracts): the two basic notions onwhich behavioural
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contract theories are usually based [12,13,20,29]. In particu-
lar, the definitions of behavioural contracts and compliance
considered in this paper have been devised so to formally
represent Communicating Finite State Machines (CFSMs)
[6,21], i.e. systems composed by automata performing send
and receive actions (the interacting contracts) that communi-
cate by means of FIFO channels. Behavioural contracts with
asynchronous communication have been previously consid-
ered, see e.g. [14,17]; however, to the best of our knowledge,
this is the first paper defining contracts that formally repre-
sent CFSMs. Compared to [14,17,19], where at each location
an independent FIFO queue of received messages is consid-
ered for each channel name “a” (enqueuing only messages
of type “a” coming from any location “l1”, “l2”,…), here
we consider a different functioning mechanism for queues.
Here, as in CFSMs, at each location an independent FIFO
queue of received messages is considered for each sender
location “l” (enqueuing only messages coming from “l” and
having any type “a” , “b”, …). Other minor differences w.r.t.
[14,17,19] concern the syntax of behavioural contracts:while
in [14,17,19] they include τ actions and input actions a with
an unspecified sending location, in this paper τ actions are
disregarded and input actions explicitly specify a required
sending location l (thus assuming the form al ), so to repre-
sent the behaviour of individual machines of CFSMs [6,21].
Moreover,while in this paperwemakeuse of a notion of com-
pliance that corresponds to absence of deadlocking global
CFSM states [6,21] (globally the system of interacting con-
tracts either reaches successful completion or loops forever),
in [14,17,19] a totally different definition of compliance is
considered, which requires global looping behaviours to be
eventually terminated under a fairness assumption. Techni-
cally, the definition of compliance considered in this paper
is along the lines of that in [4,5], with the difference that
here a general multiparty setting is considered, instead of a
client/server one, and that all involved partners are required to
reach successful completion (as in [4,5], though, for the pur-
pose of mapping binary session types, we make use of only
two parties). Notice that, in the original definition of CFSMs
[6] a notion of well-formedness is assumed that here, instead,
we do not impose: this allows us to also consider CFSMs
composed of individualmachineswith potential input actions
that are never actually triggered by a received message.
Encompassing such CFSMs is fundamental for effectively
studying contract refinement with the typical output covari-
ant/input contravariant properties of choices.

Concerning previous work on (variants of) CFSMs, our
approach has some commonalities with [30]. In [30] a
restricted version of CFSMs is considered w.r.t. [6,21], by
constraining them to be binary (a system is always composed
of twoCFSMs only) and not to usemixed choice (i.e. choices
involving both inputs and outputs). A specific notion of com-
pliance, called compatibility, is considered which, besides

guaranteeing absence of deadlocking global CFSM states
[6,21] (i.e. compliance as in this paper) also requires each
sent message to be eventually received: thanks to a map-
ping from the CFSMs of [30] to session types, compatibility
of a CFSM A with a CFSM B corresponds to subtyping,
as defined in [22], between the mapped session type T (A)

and the dual T (B) of the mapped session type T (B). The
approach to compatibility definition in [30] significantly dif-
fers from usual contract compliance in that it is based, like for
session subtyping, on a co-inductive definition that directly
applies to the communicating CFSMs. Contract compliance
definition, as considered in this paper, is instead based on the
transition system obtained, as for CFSMs [6,21], by explic-
itly representing communication among CFSMs via global
states that include queues. Moreover, even if [30] makes use
of a notion of compliance, it does not consider, as in this
paper, a notion of refinement defined in terms of compliance
preserving testing (as usual in behavioural contract theories
where communicating entities have a syntax). Finally, notice
that, as discussed in Sect. 3.1.1, with respect to the subtyp-
ing definition used in this paper, [22] adds a requirement
(called “orphan message free” constraint) that corresponds
to the eventual reception of sent messages considered in the
definition of compatibility by [30]. In relation to this, [30]
does not exclude, as we do, session types with output diver-
gent or input divergent recursions: under our restriction [22]
coincides with subtyping as considered in this paper.

Concerning previous work on session types, our results
have some commonalities with those of the above mentioned
[22]. The above discussed subtyping variant considered in
[22] is shown to correspond to substitutability, in the context
of concurrent programswritten in a variant of theπ -calculus,
of a piece of code with session type T with a piece of code
with session type T ′, while preserving error-freedom. A spe-
cific error-freedom notion is formalized for such a language,
that corresponds to absence of communication error (similar
to our notion of compliance) plus the guaranteed eventual
reception of all emitted messages (an orphan-message-free
constraint that we do not consider in the definition of com-
pliance). Even if the program (context) in which the piece
of code is substituted can be seen as corresponding to a test
in contract refinement, the subtyping characterization in [22]
is based on a specific programming language, while in this
paper we consider as tests a generic, language independent,
set of CFSMs and we discuss the conditions on tests under
which we can characterize asynchronous session subtyping.

Finally, it isworthmentioning that the connection between
session types and CFSMs has been investigated also in
[24]. In particular, that paper discusses an encoding of
multiparty session types into CFSMs, and vice versa, that
preserve a trace-based semantics. The difficult point solved
in that encoding is the different way in which session
types and CFSMs deal with repetitive behaviour: session
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types use recursive definitions while CFSMs use cycles.
Our approach to deal with the relationship between session
types and CFSMs is different; we borrow from the tradition
of behavioural contracts a process algebraic denotation of
CFSMs that includes recursive definitions. Hence, our trans-
lation from session types into CFSMs (see Definition 17) is
rather straightforward. Another relevant difference with that
paper is that their focus is on the properties preserved by the
projection of global into local multiparty session types, while
our focus is on the relationship between session subtyping
and behavioural contract refinement.

6 Conclusion and future work

6.1 Summary of results

In this paper we have investigated a notion of refine-
ment, intended as compliance preserving replacement of
asynchronous behavioural contracts formalized as Commu-
nicating Finite State Machines (CSFMs), showing precisely
under which conditions it coincides with asynchronous ses-
sion subtyping. In particular, given that subtyping considers
binary session types, we need to restrict to CFSMs com-
posed of two parties. The other significant restrictions for
CFSMs that we consider are: (i) we remove mixed choices
that involve both input and output actions, and (ii) we remove
infinite sequences of only input (or only output) actions.
Restriction (i) points out an interesting specificity of session
types; they do not naturally model preemption mechanisms
like those adopted inmany concurrent programming patterns
in which time-outs or interrupts are used to avoid waiting for
non-incoming messages. In CFSMs, these patterns can be
naturally modelled by mixing internal and external choices:
the external choices consider the possible incoming mes-
sages, while the internal choice models the possibility to stop
waiting for such messages. This form of mixed choice is not
considered in session types. Restriction (ii) also deals with
natural assumptions in binary protocolswhere the two parties
are symmetric, in the sense that they do not play distinct roles
like in sensor/collector systems (where the former only sends
and the latter only receives) or client/server interactions (for
which forms of refinement different from session subtyping
are natural, as discussed e.g. in [4,5]).

6.2 Alternative formalizations of contracts

It is worth to observe that small variations to the formaliza-
tion of contracts, as well as modifications to the notion of
compliance, break our correspondence result.

The main characteristics of asynchronous session subtyp-
ing are output anticipation, i.e. the possibility for a subtype
to anticipate outputs w.r.t. inputs, and contra/co-variance on

input branchings and output selections, i.e. the possibility for
a subtype to have more/less branches in inputs/outputs. We
now discuss alternative asynchronous communication mod-
els for contracts, as well as alternative notions of compliance,
that do not accept output anticipation or contra/co-variance
on input/outputs as general notions of refinement.

We start by considering a communication model, similar
to actor-based communication, in which each location has
only one input FIFOchannel, instead of one for each potential
partner as for CFSMs (or one for each channel name as in
[14,17,19]). In this model, input actions can be expressed
simply with a instead of al , indicating that a is expected to
be consumed from the unique local input queue. Under this
variant, output anticipation is no longer admitted. Consider,
e.g.

[a.bl2 ]l1 || [c.al1 .b]l2 || [cl2 ]l3
which is a correct system. If we replace the contract at loca-
tion l1 with bl2 .a, that simply anticipates an output, we obtain

[bl2 .a]l1 || [c.al1 .b]l2 || [cl2 ]l3
which is no longer correct because, in case message b (sent
from l1) is enqueued at l2 before message c (sent from l3),
the entire system is stuck.

Consider now another communication model in which
there are many input queues, but instead of naming them
implicitlywith the sender location,we consider explicit chan-
nel names like in CCS [32] or π -calculus [33]. In this case, a
send action can be written aπ@l , indicating that the message
a should be inserted in the input queue π at location l. A
receive action can be written aπ , indicating that the message
a is expected to be consumed from the input queue π . Also in
this model output anticipation is not admitted. In fact, we can
rephrase the above counter-example as follows: the correct
system is

[aπ1 .bπ2@l2 ]l1 || [cπ2 .aπ1@l1 .bπ2 ]l2 || [cπ2@l2 ]l3
while the non-correct one is

[bπ2@l2 .aπ1 ]l1 || [cπ2 .aπ1@l1 .bπ2 ]l2 || [cπ2@l2 ]l3
where we have applied output anticipation to the contract at
location l1.

We now consider an alternative notion of compliance,
like the one discussed in [14,17,19]. In those papers, com-
pliance is more restrictive, because it requires, under fair
exit from loops, that the computation eventually successfully
terminates. In other terms, contracts that can only generate
infinite computations are no longer compliant. Consider, for
instance, the binary system

[recX .(a + b.X)] || [recX .(a + b.X)]
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It satisfies the condition above because, if we consider only
fair computations, the send action a will be eventually exe-
cuted, thus guaranteeing successful termination. In this case,
output covariance, admitted by synchronous session subtyp-
ing, is not correct. If we consider the contract recX .(b.X)

having less output branches (hence following the output
covariance principle), and we use it as a replacement for
the first contract above, we obtain the system

[recX .(b.X)] || [recX .(a + b.X)]

that does not satisfy the above definition of compliance
because it cannot reach successful termination.

6.3 Future perspectives

We end this section with a presentation of possible future
work. The above discussion opens two interesting problems
that we plan to investigate. On the one hand, one could study
alternative notions of asynchronous session subtyping more
appropriate for actor-based communication, multi-channel
based communication, or to capture alternative notions of
contract compliance/refinement.On the other hand, the unde-
cidability result proved for asynchronous session subtyping
may not apply to alternative notions of refinement: one could
investigate the possibility to identify decidable refinement
notions for contracts/CFSMs.

The notions of asynchronous session subtyping and con-
tract refinement presented in this paper, themselves, could
assume different variants if the simplifying assumption about
excluding types/contracts with output or input divergent
recursion is disregarded. As already discussed in Sect. 3.1.1,
when dealing with such types/contracts, a possibility is to
consider an “orphan message free” constraint conceptually
corresponding to the subtyping of [10,22]: messages that are
sent to a contract cannot remain “orphan”, i.e. theymust even-
tually be read by the contract from its queue in order for a
contract composition to be correct. Therefore, a possible line
of future research is to adapt Definition 6 (correct contract
composition) so to enforce such a constraint: this would yield
a technically more involved definition, which no longer cor-
responds to just absence of deadlock. The obtained notion of
refinement should then be shown to correspond to the asyn-
chronous subtyping definition of [10,22] (which, again, is a
technically more involved variant of subtyping as presented
in Definition 14). An alternative line of future research could
be, on the contrary, not to consider such an “orphan message
free” constraint and stick to our simple definition of correct
contract composition that just requires absence of deadlock.
In this case, as already discussed in Sect. 3.1.1 by means
of the two example types S = μt.&{l1 : t, l2 : ⊕{l : t}}
and T = μt. ⊕ {l : &{l1 : t, l2 : t}, subtyping of Defini-
tion 14 (i.e. that in [34] and [9]) would be too restrictive, in

that it does not consider T ≤ S to hold. As we explained in
Sect. 3.1.1, this is due to the fact S cannot be decomposed
as an input context with holes filled by output branchings: a
possible solution could be to extend the syntax of input con-
texts so to also encompass recursive behaviours. Notice that,
on the contrary, if we assumed orphan message freedom, it
would be correct for T ≤ S not to hold and no extension to
the syntax of input contexts would be needed (the subtyping
definition in [10,22] uses non-recursive input contexts as we
do here).

Concerning decidability, another possible line of research,
we plan to keep investigating, is to devise decidable frag-
ments of the undecidable existing notions of asynchronous
session subtyping [9,10,22,34]. This can be done, e.g. by
restricting the syntax of session types or limit communica-
tion (using forms of bounded asynchrony), as in [9,10] or,
alternatively, by providing algorithmic characterizations of
(unrestricted) asynchronous session subtyping that are sound
but not complete, as in [8]. More precisely, in [8] an algo-
rithm for checking the orphan message free asynchronous
session subtyping of [10,22] is presented, which is not com-
plete in that in some cases it terminates without returning
a decisive verdict. In spite of this limitation, an implemen-
tation of this algorithm has been successfully run on many
interesting non-trivial examples taken from the literature.

A final interesting line for future research is about multi-
party asynchronous session subtyping. The first paper intro-
ducing asynchronous session subtyping considered multi-
party sessions [35]. Besides allowing for output anticipation
w.r.t. inputs (as it happens in the binary case considered in
this paper), in [35] also output (resp. input) re-ordering is
permitted, when the outputs (resp. inputs) are sent to (resp.
received from) different partners. Such re-ordering can be
informally justified by observing that the order in which such
operations are executed is unobservable in an asynchronous
setting because the corresponding messages are placed in
distinct FIFO queues. Nevertheless, formalizing such intu-
itions is not trivial and it is not clear whether the techniques
adopted in this paper could be easily adapted. For instance,
we use the notion of dual of a session type which is simple
to be defined in a binary setting, while it is more complex
when moving to a multi-party setting as discussed, for the
synchronous case, in [40].
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