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HÖRMANDER VECTOR FIELDS
EQUIPPED WITH DILATIONS:

LIFTING, LIE-GROUP CONSTRUCTION, APPLICATIONS

ANDREA BONFIGLIOLI

Let X = {X1, . . . ,Xm} be a set of Hörmander vector fields inRn, where
any X j is homogeneous of degree 1 with respect to a family of non-
isotropic dilations in Rn. If N is the dimension of Lie{X}, we can either
lift X to a system of generators of a higher dimensional Carnot group on
RN (if N > n), or we can equip Rn with a Carnot group structure with
Lie algebra equal to Lie{X} (if N = n). We shall deduce these facts
via a local-to-global procedure (available in the homogeneous setting),
starting from general results on the lifting of finite-dimensional Lie al-
gebras of vector fields. The use of the Baker-Campbell-Hausdorff The-
orem is crucial. Due to homogeneity, the lifting procedure is simpler
than Rothschild-Stein’s lifting technique. We finally provide applications
to the study of the fundamental solution Γ for the Hörmander sum of
squares ∑

m
j=1 X2

j , including global pointwise estimates of Γ and of its X-
derivatives in terms of the Carnot-Carathéodory distance induced by X .

We review some recent results obtained with Stefano Biagi [1–3],
and with Stefano Biagi and Marco Bramanti [5].
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1. Hörmander vector fields equipped with dilations δλ

In this paper we assume that X = {X1, . . . ,Xm} (with m ≥ 2) is a set of smooth
vector fields on space Rn (with n≥ 2) fulfilling suitable conditions. By smooth
‘vector field’ Y = ∑

n
j=1 a j

∂

∂x j
we mean both a linear differential operator acting

on the set of the smooth functions as

C∞(Rn) 3 f 7→ Y f (x) =
n

∑
j=1

a j(x)
∂ f
∂x j

(x), x ∈ Rn, (1)

or, occasionally, we mean a smooth map from Rn to Rn

Rn 3 x 7→ Y (x) = (a1(x), . . . ,an(x)), x ∈ Rn.

If X (Rn) is the Lie algebra of all the smooth vector fields on Rn, we denote by
Lie{X} the smallest Lie subalgebra of X (Rn) containing X . We set once and
for all the notation

N := dim(Lie{X}), (2)

where N can be ∞. In due course, we shall fix on X the following two assump-
tions (H.1) and (H.2) (whilst in Sections 2 and 3 we shall considerably weaken
these assumptions):

(H.1) There exists a family of (non-isotropic) “dilations” {δλ}λ>0 of the form

δλ : Rn −→ Rn
δλ (x) = (λ σ1x1, . . . ,λ

σnxn), (3)

where 1 = σ1 ≤ ·· · ≤ σn, such that X1, . . . ,Xm are δλ -homogeneous of
degree 1, i.e.,

X j( f ◦δλ ) = λ (X j f )◦δλ , for λ > 0, f ∈C∞(Rn), j = 1, . . . ,m.

In what follows, we denote by

q := ∑
n
j=1 σ j (4)

the so-called homogeneous dimension of (Rn,δλ ).

(H.2) X1, . . . ,Xm are linearly independent1 and satisfy Hörmander’s rank condi-
tion at 0, i.e.,

dim
{

Y (0) : Y ∈ Lie{X}
}
= n.

1The linear independence of the Xi’s is meant with respect to the vector space of the smooth
vector fields on Rn; this must not be confused with the linear independence of the vectors
X1(x), . . . ,Xm(x) in Rn (when x ∈ Rn): the latter is sufficient but not necessary to the former
linear independence. Thus, X1 = ∂x1 and X2 = x1 ∂x2 are linearly independent vector fields, even
if X1(0,x2)≡ (1,0) and X2(0,x2)≡ (0,0) are dependent vectors of R2.
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Note that, due to assumption (H.2), one necessarily has

N ≥ n.

Strict inequality may hold, as in some of the following examples.

Example 1.1. In the following list we provide examples of sets of vector fields
X on Rn fulfilling assumptions (H.1) and (H.2) w.r.t. the family of dilations δλ ;
N is also exhibited:

n = 3, N = 3, X = {∂x1 , ∂x2 + x1 ∂x3},
δλ (x) = (λx1,λx2,λ

2x3);

n = 2, N = 3, X = {∂x1 , x1 ∂x2},
δλ (x) = (λx1,λ

2x2);

n = 2, N = 5, X = {∂x1 , x3
1 ∂x2},

δλ (x) = (λx1,λ
4x2);

n = 3, N = 4, X = {∂x1 , x1∂x2 + x2∂x3},
δλ (x) = (λx1,λ

2x2,λ
3x3).

n = 4, N = 5, X = {∂x1 , x1 ∂x2 + x2
1 ∂x3 + x3

1 ∂x4},
δλ (x) = (λx1,λ

2x2,λ
3x3,λ

4x4).

It is not by chance that the above vector fields have polynomial coefficients;
indeed, it is easy to prove that, under assumption (H.1), if we write X j ( j =
1, . . . ,m) in its coordinate form

X j =
n

∑
k=1

a j,k(x)
∂

∂xk
,

then a j,k(x) is a polynomial function,2 δλ -homogeneous of degree σk−1. Inci-
dentally,

a j,k(x) depends on those xi’s such that σi ≤ σk−1. (5)

Thus, a j,k(x) is independent of xk, so that div(X j(x)) ≡ 0 for any j = 1, . . . ,m.
In particular, the formal adjoint of X j (with respect to Lebesgue measure on Rn)

2This is a consequence of the following facts:
• a smooth function a is δλ -homogeneous of degree r if and only if a is a polynomial a(x) =

∑α cα xα , where the sum is extended over the multi-indices α such that ∑
n
j=1 α jσ j = r (so that

r ≥ 0 if a 6≡ 0);
• a smooth vector field X = ∑

n
j=1 a j(x)∂x j is δλ -homogeneous of degree β if and only if a j is

δλ -homogeneous of degree σ j−β ; hence a j ≡ 0 whenever σ j < β (so that X ≡ 0 if β > σn).
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is −X j, and the following operator, a sum of squares of vector fields,

L=
m

∑
j=1

X2
j (6)

is a second order divergence form PDO, formally self-adjoint on test functions.

Remark 1.2. Property (5) has another important consequence: any vector field
X1, . . . ,Xm (and analogously any vector field in Lie{X}) is complete, i.e., its
integral curves are all defined on the whole of R (see e.g., [4, Example 1.20]).

For brevity, in the sequel we use the notation

a := Lie{X}.

Remark 1.3. Thanks to (H.1) and (H.2), the Lie algebra a enjoys the following
properties:3

• a is graded If we set

a1 := span
{

X1, . . . ,Xm}, ak := [a1,ak−1] (for k ≥ 2),

then a= a1+a2+ · · · (in the sense of the sum of vector spaces); moreover,
since any commutator of length k of X1, . . . ,Xm is δλ -homogeneous of
degree k, any element of ak is δλ -homogeneous of degree k.

• a is nilpotent Indeed, ak = {0} whenever k > σn so that a is nilpotent, and
its step (r, say) satisfies r ≤ σn; furthermore, if we group the exponents
σi’s of δλ as follows

σ1, . . . ,σn1︸ ︷︷ ︸
=σ∗1

, σn1+1, . . . ,σn1+n2︸ ︷︷ ︸
=σ∗2

, σn1+n2+1, . . . ,σn1+n2+n3︸ ︷︷ ︸
=σ∗3

, . . . ,

with 1 = σ∗1 � σ∗2 � σ∗3 � · · · and n = n1 +n2 +n3 + · · · , then the typical
element of ak is

n1

∑
i=1

a(1)i (x)
∂

∂xi
+

n1+n2

∑
i=n1+1

a(2)i (x)
∂

∂xi
+

n1+n2+n3

∑
i=n1+n2+1

a(3)i (x)
∂

∂xi
+ · · · ,

with a(1)i δλ -homogeneous of degree σ∗1 −k, a(2)i δλ -homogeneous of de-
gree σ∗2 − k, etc. Thus a(1)i ,a(2)i , . . . are identically zero if σ∗1 ,σ

∗
2 , . . . < k

3To prove these facts, one repeatedly applies the remarks in footnote 2.
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(resp.), and, a(1)i (0),a(2)i (0), . . . are 0 if σ∗1 ,σ
∗
2 , . . . > k (resp.). Thus, as-

sumption (H.2) implies that the σ∗i ’s are all positive integers (that is, all
the exponents σi’s of δλ are positive integers), and the largest of the σ∗i ’s
(i.e., σn), satisfies aσn 6= {0}. This gives r≥ σn, so that r = σn, that is, the
last exponent in the dilations δλ is exactly the step of nilpotence of a.

• a is finite-dimensional This follows from the fact that a is a nilpotent Lie
algebra that is Lie-generated by a finite set. Thus N in (2) is finite.

• a is stratified This follows by gathering together the previous facts on a, ob-
serving that, if Y1, . . . ,Yk ∈ X (Rn) are δλ -homogeneous of pairwise dis-
tinct degrees (and if any Yj is not identically 0), then Y1, . . . ,Yk are linearly
independent: summing up, this gives

a= a1⊕·· ·⊕ar, with


a1 := span

{
X1, . . . ,Xm},

ak := [a1,ak−1] for 2≤ k ≤ r;
ar 6= {0}, [a1,ar] = {0}.

(7)

Thus ak is exactly the set of vector fields in Lie{X} that are δλ -homoge-
neous of degree k.

• a is endowed with dilations By (7), we can define a family {∆λ}λ>0 of di-
lations on a in the following way:

∆λ (Y ) =
r

∑
k=1

λ
k Yk, where Y =

r

∑
k=1

Yk and Yk ∈ ak for any k = 1, . . . ,r.

(8)
It is not difficult to prove that {∆λ}λ>0 is a family Lie algebra morphisms
of a:

∆λ [X ,Y ] = [∆λ X ,∆λY ], ∀ X ,Y ∈ a, λ > 0. (9)

Remark 1.4. It is rather unusual to handle with a set of vector fields that fulfil
Hörmander’s rank condition at one point only; as a matter of fact, (H.1) and
(H.2) together imply that the rank condition is fulfilled at every x ∈ Rn, as we
now describe. Indeed, by (H.2) we can find a family Y1, . . . ,Yn ∈ Lie{X} such
that Y1(0), . . . ,Yn(0) is a basis of Rn. Thus, the matrix-valued function

x 7→M(x) :=
(
Y1(x)T · · ·Yn(x)T )

is non-singular at x = 0; therefore, there exists a neighborhood Ω of 0 such that
det(M(x)) 6= 0 for every x ∈ Ω. Furthermore, since the left-nested brackets of
length k, say

[· · · [[Xi1 ,Xi2 ],Xi3 ], · · ·Xik ] (with i1, . . . , ik ∈ {1, . . . ,m}),
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span Lie{X} as k ranges in N, we can suppose that any Yj is left-nested, and we
denote its length by `( j). It is simple to check that, under assumption (H.1), Yj

is δλ -homogeneous of degree `( j), i.e.,

Yj( f ◦δλ ) = λ
`( j) (Yj f )◦δλ , for every λ > 0 and f ∈C∞(Rn).

This is in turn equivalent to

Yj(δλ (x)) = λ
−`( j)

δλ (Yj(x)), ∀ λ > 0, x ∈ Rn. (10)

Fixing x ∈ Rn and taking a small λ > 0 such that δλ (x) ∈Ω, we have

0 6= det
(
M
(
δλ (x)

)) (10)
= det

(
λ
−`(1)

δλ

(
Y1(x)

)T · · ·λ−`(n) δλ

(
Yn(x)

))T

= λ
−`(1)−···−`(n) det

(
δλ

(
Y1(x)

)T · · ·δλ

(
Yn(x)

)T
)

(4)
= λ

q−`(1)−···−`(n) det
(
Y1(x)T · · ·Yn(x)T ).

This implies that the vectors Y1(x), . . . ,Yn(x) form a basis of Rn, i.e, X1, . . . ,Xm

satisfy Hörmander’s rank condition at any x ∈Rn. As a consequence, L in (6) is
C∞-hypoelliptic on every open subset ofRn, due to Hörmander’s Hypoellipticity
Theorem, [11].

In its simplicity, the argument in Remark 1.4 shows how δλ -homogeneity
can serve as a “local-to-global” tool; we shall invoke similar arguments so fre-
quently that we state this globalizing property of δλ -homogeneity as an inde-
pendent remark:

Remark 1.5 (Propagation of inequalities via homogeneity). Let A⊆ Rn be a
set which is closed under {δλ}λ , that is,

δλ (x) ∈ A for every x ∈ A and every λ > 0. (11)

Suppose that F,G : A→ R are two δλ -homogeneous functions of the same de-
gree, say α , i.e.,

F(δλ (x)) = λ
α F(x), G(δλ (x)) = λ

α G(x), for x ∈ A and λ > 0.

Finally, suppose that there exists a neighborhood Ω of 0 ∈ Rn such that Ω∩
A 6= /0 and F ≤ G on Ω∩A; then F ≤ G on A. Indeed, let x ∈ A be arbitrary;
then there exists a small λ > 0 such that δλ (x) ∈ Ω∩A (this follows from (11)
and since δλ (x) → 0 ∈ Rn as λ → 0+). As F ≤ G on Ω∩ A we infer that
F(δλ (x))≤G(δλ (x)); due to the δλ -homogeneity of F and G, this is equivalent
to λ α F(x)≤ λ α G(x). Canceling out λ α > 0, this gives F(x)≤ G(x).
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A completely analogous result holds true if we replace “F ≤G” with any of

“F ≥ G”, “F = G”, “F 6= G”, “F < G”, “F > G.”

Thus, we recognize that the argument in Remark 1.4 is a particular case of
Remark 1.5 relative to the maps F(x) = det(M(x)) and G(x)≡ 0: they are both
δλ -homogeneous of degree q−∑

n
j=1 `( j), so that the information F 6= G on Ω

“propagates” to the whole of A = Rn.

Supposing the reader is familiar with the following topics, other examples of
meaningful inequalities with two sides that are homogeneous of the same degree
w.r.t. some dilations are listed below (dX denotes the Carnot-Carathodory dis-
tance in Rn associated with X = {X1, . . . ,Xm} and BX(x,r) denotes the dX -ball
of center x ∈ Rn and radius r > 0):

(i) the doubling inequality

meas(BX(x,2r))≤C meas(BX(x,r))

for the Lebesgue measure of the balls of the Carnot-Carathodory distance
dX : both sides are homogeneous of degree λ q w.r.t. the dilations

Rn×R 3 (x,r) 7→ (δλ (x),λ r);

the same can be said of the reverse doubling inequality: there exists θ ∈
(0,1) such that

meas(BX(x,r))≤ θ meas(BX(x,2r));

(ii) when n > 2, the lower/upper estimates for the fundamental solution Γ of
L= ∑

m
j=1 X2

j

C−1 dX(x,y)2

meas
(

BX(x,dX(x,y))
) ≤ Γ(x;y)≤C

dX(x,y)2

meas
(

BX(x,dX(x,y))
) ;

all members are homogeneous of degree 2−q w.r.t. the dilations

Rn×Rn 3 (x,y) 7→ (δλ (x),δλ (y));

(iii) when q > 2, the upper estimates for the X-derivatives of Γ∣∣∣Xi1 · · ·Xik Γ(x;y)
∣∣∣≤C

dX(x,y)2−k

meas
(

BX(x,dX(x,y))
) ,

where the Xi’s can act on x and/or on y; both sides are homogeneous of
degree 2−q− k w.r.t. the dilations in (ii);
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(iv) the Nagel-Stein-Wainger estimates for the volume of BX(x,r) (see [13]):

C−1
q

∑
k=n

fk(x)rk ≤meas
(
BX(x,r)

)
≤C

q

∑
k=n

fk(x)rk;

indeed, one can prove that fk is δλ -homogeneous of degree q− k, so that
all members of the above two inequalities are homogeneous of degree q
w.r.t. the dilations in (i);

(v) the Poincar inequality associated with X :

−
∫

BX (x,r)

∣∣∣u(y)−uBX (x,r)

∣∣∣dy≤CP r −
∫

BX (x,2r)

√
m

∑
j=1
|X ju(y)|2 dy,

valid for every u which is C1 in a neighborhood of BX(x,2r), and where
we have set

uB :=−
∫

B
u :=

1
|B|

∫
B

u(y)dy for any dX -ball B;

indeed, one considers the dilations in (i) on (x,r) and one replaces u with
v = u◦δ1/λ .

Thus, due to Remark 1.5, once one knows that one of the above inequalities is
true in the small scale, then it is globally valid. For instance, due to profound
results contained in the seminal papers [10, 12, 13], the inequalities in (i), (iv),
(v) are valid for x in a neighborhood of the origin and for small r’s, so that
Remark 1.5 implies that they are globally valid for all x ∈ Rn and all r > 0 in
our homogeneous setting. We shall investigate the global validity of (ii) and (iii)
in Section 5.

Not always are we so lucky to handle with inequalities with two members
with the same homogeneity: an example of a meaningful inequality that does
not rescale suitably is the X-Sobolev inequality for L (here Lp norms are meant
on Rn)

‖u‖W 2,p
X
≤ c
(
‖Lu‖Lp +‖u‖Lp

)
, (12)

with the Sobolev norm ‖u‖W 2,p
X

= ‖u‖Lp +∑
m
j=1 ‖X ju‖Lp +∑

m
i, j=1 ‖XiX ju‖Lp . In-

deed4

‖u◦δλ‖Lp = λ
−q/p‖u‖Lp , whereas ‖L(u◦δλ )‖Lp = λ

2−q/p‖Lu‖Lp .

4One clearly performs the change of variable δλ (x) = y in the integral defining ‖u◦δλ ‖Lp , so
that dx = λ−q dy. In rescaling ‖L(u ◦ δλ )‖Lp , one also exploits (H.1), which gives L(u ◦ δλ ) =
λ 2 (Lu)◦δλ .
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Similarly, the W 2,p
X -norm rescales not so satisfactorily:

‖u◦δλ‖W 2,p
X

= λ
−q/p‖u‖Lp +λ

1−q/p
m

∑
j=1
‖X ju‖Lp +λ

2−q/p
m

∑
i, j=1
‖XiX ju‖Lp .

The fact that the inequality (12) does not behave encouragingly under δλ -resca-
ling does not mean that it does not hold true: indeed, we recently proved in [6]
that (12) is valid (more generally, we proved this when W k,p

X norms are involved,
for any k ≥ 0 and any p ∈ (1,∞)).

Remark 1.6 (Propagation of injectivity/surjectivity via homogeneity). Sup-
pose that F : Rn→ Rm is a map with the following property: every component
function Fi of F (for i = 1, . . . ,m) is δλ -homogeneous of some positive degree,
say αi. This is equivalent to saying that

F(δλ (x)) = ∆λ (F(x)), ∀ x ∈ Rn, λ > 0, (13)

where we have set

∆λ : Rm→ Rm, ∆λ (y1, . . . ,ym) = (λ α1y1, . . . ,λ
αmym).

Then the following facts hold:

1. If there exists an open neighborhood Ω of 0 ∈ Rn such that F |Ω is in-
jective, then F is globally injective. Indeed, if x,y ∈ Rn are such that
F(x) = F(y), then take some small λ > 0 such that δλ (x),δλ (y) ∈ Ω;
then we have

F(δλ (x))
(13)
= ∆λ (F(x)) = ∆λ (F(y))

(13)
= F(δλ (y)).

Thus (as F |Ω is injective) δλ (x) = δλ (y), which implies that x = y, since
δλ is injective.

2. If there exist open neighborhoods U and V of 0 ∈ Rn and of 0 ∈ Rm (re-
spectively) such that V ⊆ F(U), then F is globally surjective. Indeed,
given any y ∈ Rm, take some small λ > 0 such that ∆λ (y) ∈ V (here we
have made use of the positivity of the αi’s). Since V ⊆ F(U), there ex-
ists uλ ∈U such that ∆λ (y) = F(uλ ). Next we set x := δ1/λ (uλ ) and we
notice that

F(x) = F(δ1/λ (uλ ))
(13)
= ∆1/λ F(uλ ) = ∆1/λ ∆λ (y) = y.

Thus F is surjective.
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Homogeneity of vector fields is not only a technical tricky tool (as it may
seem from a rapid glance to Remarks 1.5 and 1.6), but much more can be done
in its presence, as glaringly appears from the following theorem (one of the main
results of this review), a combination of two theorems results proved in [1, 2].

Theorem 1.7. Assume that X = {X1, . . . ,Xm} satisfies assumptions (H.1) and
(H.2), of which we inherit the notation. As usual, N = dim(Lie{X}). The fol-
lowing facts hold:

(1). Suppose that N = n. Then there exists a homogeneous Carnot group
G = (Rn,?,δλ ) (with the same dilations as in (3)) such that Lie(G) coincides
with Lie{X}. Thus the vector fields X1, . . . ,Xm are left-invariant on G, and the
operator L in (6) is a sub-Laplacian on G.

(2). Suppone that N > n and, setting p := N − n, denote the variables
of RN = Rn ×Rp by (x,ξ ). There exist a homogeneous Carnot group G =
(RN ,?,Dλ ) of homogeneous dimension Q > q and a system {X̃1, . . . , X̃m} of
Lie-generators of Lie(G) such that X̃i is a lifting of Xi for every i = 1, . . . ,m; by
this we mean that

X̃i(x,ξ ) = Xi(x)+Ri(x,ξ ), (14)

where Ri(x,ξ ) is a smooth vector field operating only in the variables ξ ∈ Rp,
with coefficients possibly depending on (x,ξ ). Moreover the dilations {Dλ}λ>0
and the dilations {δλ}λ>0 are related as follows:

Dλ (x,ξ ) = (δλ (x),δ
∗
λ
(ξ )),

with δ ∗
λ
(ξ ) = (λ τ1ξ1, . . . ,λ

τpξp), for suitable integers 1≤ τ1 ≤ ·· · ≤ τp.

We shall describe how to obtain Theorem 1.7 in the next sections, where we
considerably relax our assumptions on the vector fields involved. We observe
that, unlike Rothschild-Stein’s local lifting technique, [14], the above lifting is
globally valid. See also Folland’s global lifting for homogeneous vector fields,
[9].

2. A general result on the local lifting of vector-field algebras

In this section, we make the effort to handle with less restrictive assumptions
than the δλ -homogeneous framework of Section 1. Thus, we only assume that

g is a Lie subalgebra of X (Rn) of finite dimension,
and any X ∈ g is a complete vector field.
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The above assumptions have useful consequences.

Consequence (I). Since g is a finite-dimensional Lie algebra, one can equip
g with a local operation by means of the celebrated Baker-Campbell-Hausdorff
series (see e.g., [7])

a�b= a+b+
1
2
[a,b]+

1
12

[a, [a,b]]− 1
12

[b, [a,b]]+
1
24

[a, [b, [b,a]]]+ · · · , (15)

the series being convergent for any a,b in a small neighborhood5, say U, of
0 ∈ g (see [4, Chap. 5]). Moreover, � defines a local-Lie-group (see e.g, [4,
Thm. 5.9]), that is, the following facts hold:

• a�0 = 0�a = a and a� (−a) = (−a)�a = 0 for every a ∈ g;

• there exists a (smaller) neighborhood of 0, say V⊆ U, such that a�b ∈ U
whenever a,b ∈V;

• a� (b� c) = (a�b)� c for every a,b,c ∈V, the local associativity of �.

We use (not by chance!) the “left-translation” notation

τa(b) := a�b, a,b ∈ U.

It can be proved, by using the magnificent properties of the Baker-Campbell-
Hausdorff series, that one can define a Lie algebra LV(g) of vector fields on
V (analogous to the “left invariant” vector fields associated with the local left
translations τa) which is isomorphic to g (see [4, §15.1]): this provides a proof
of the local version of Lie’s Third Theorem, in that we construct a local Lie
group on the neighborhood V whose “local Lie algebra” LV(g) is isomorphic
to g.

More precisely, LV(g) can be defined as follows (see [4, Thm. 15.3]): an
element of LV(g) is the restriction to V of a vector field Z on U satisfying the
following identity

dbτa(Zb) = Zτa(b), for every a,b ∈V. (16)

Such a Z can always be constructed: namely, for any tangent vector v ∈ T0g, the
vector field

Za := d0τa(v) (a ∈ U) (17)

is smooth on U and (thanks to the local associativity of �) it satisfies (16); more-
over the map

Λ : LV(g)→ T0g, Λ(Z) := Z0 (18)

5We tacitly equip g with a metric structure resulting from its being a real finite-dimensional
vector space.
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is an isomorphism of vector spaces; in particular dim(LV(g)) = dim(g).

Consequence (II). In (I) above we have not used the fact that g is made of
vector fields: we shall do it now. Since any element X ∈ g is a complete vector
field in Rn, then, for every x ∈ Rn, the integral curve6 t 7→ ΨX

t (x) of X starting
(at null time) from x is defined for every time t ∈ R. Thus, time t = 1 is always
allowed, and we use the notation

exp(X)(x) := Ψ
X
1 (x). (19)

For example, if x = 0, we shall soon make crucial use of the map

Exp : g→ Rn, Exp(X) := exp(X)(0). (20)

As in the old days of Sophus Lie’s theory of continuous transformations, the
family

{exp(X)}X∈g

is a subset of the smooth diffeomorphisms of Rn.
Indeed, notice that exp(X)−1 = exp(−X) and exp(0) = idRn . Unfortunately,

this family is not always closed under composition, but this is true “in the small”,
as we now describe:

Link between (I) and (II). A very remarkable fact links the operation dia-
mond in (I) and the exp-like maps in (II): there exists a neighborhood of 0 in g,
say W⊆V, such that

exp(Y )(exp(X)(x)) = exp(X �Y )(x), for every X ,Y ∈W and every x ∈ Rn.
(21)

This can be referred to as the Baker-Campbell-Hausdorff Theorem for ODE’s
(see [4, Sec. 13.3]).

Our next step is to show that any vector field X in g admits a “local lifting”
X̃ (via the map Exp in (20)), where X̃ is a suitable vector field defined on the
open neighborhood V of 0 ∈ g introduced above. Indeed, any X ∈ g defines an
element x of T0g (the tangent space of g at 0) as follows:

x f =
d
dt

∣∣∣
t=0

f (tX), ∀ f ∈C∞(g). (22)

The map X 7→ x of g into T0g is an isomorphism of vector spaces.

6By this we mean that γ(t) = ΨX
t (x) is the solution of the Cauchy problem γ̇(t) = X(γ(t)),

γ(0) = x.
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We define X̃ ∈ LV(g) as the unique vector field on V corresponding to x via
the linear isomorphism Λ in (18): by unraveling the definitions (see (17)), this
means that X̃ is the restriction to V of the vector field on U defined by

X̃Z = d0τZ(x), for every Z ∈ U. (23)

With this definition at hand, we claim that X and X̃ are Exp-related on W, i.e.,

dwExp(X̃w) = XExp(w), for every w ∈W. (24)

We prove (24) by showing that both members of this identity act in the same
way on f ∈C∞(Rn); this is a consequence of the following computation

dwExp(X̃w) f = X̃w( f ◦Exp)
(23)
= d0τw(x)( f ◦Exp) = x( f ◦Exp◦ τw)

(22)
=

d
dt

∣∣∣
t=0

( f ◦Exp◦ τw)(tX) =
d
dt

∣∣∣
t=0

f
(
Exp(w� (tX))

)
(21)
=

d
dt

∣∣∣
t=0

f
(

exp(tX)(Exp(w))
)

(19)
=

d
dt

∣∣∣
t=0

f
(

Ψ
tX
1 (Exp(w))

)
=

d
dt

∣∣∣
t=0

f
(

Ψ
X
t (Exp(w))

)
= XExp(w) f .

The last identity derives from the fact that t 7→ΨX
t (Exp(w)) is the integral curve

of X starting at the point Exp(w). We remark the essential use of the Baker-
Campbell-Hausdorff identity (21).

Whilst, in general, (24) is referred to as the Exp-relatedness of X and X̃ , one
can call this identity a (local) ‘lifting’ of X to X̃ if Exp is (locally) surjective
near 0 ∈ g. In turn, it is not difficult to recognize (see e.g., [4, Thm. 13.4]) that
the differential of Exp at 0 is the map

d0Exp : T0g→ T0Rn, T0gw g 3 Y 7→ Y (0) ∈ Rn w T0Rn. (25)

Thus the image set of Exp on W (the latter being a neighborhood of 0 ∈ g)
contains an open ball centered at the origin in Rn if and only if

dim
{

Y (0) ∈ Rn | Y ∈ g
}
= n,

which is Hörmander’s rank condition at 0 for the algebra of vector fields g.

Summing up, we have proved the following result on the local lifting of
finite-dimensional Lie algebras of complete vector fields:

Theorem 2.1. Let g be a Lie subalgebra of X (Rn) of finite dimension, and
suppose that every X ∈ g is a complete vector field. Let Exp : g→ Rn be the
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map introduced in (20), obtained by letting the vector fields of g flow up to time
t = 1 starting from 0 ∈ Rn.

Then, there exists an open neighborhood W of 0 ∈ g with the following
properties: for every X ∈ g there exists a smooth vector field X̃ defined on W
such that

dwExp(X̃w) = XExp(w), for every w ∈W. (26)

If the algebra of vector fields g satisfies Hörmander’s rank condition at 0, then
Exp(W) is a neighborhood of 0 ∈ Rn.

The vector field X̃ can be constructed as follows: if τv(w) := v �w is the
local left translation defined by the Baker-Campbell-Hausdorff series � in (15),
then to any X ∈ g we can associate the smooth vector field X̃ on W defined as
follows

X̃w f =
d
dt

∣∣∣
t=0

( f ◦ τw)(tX), (27)

for any w ∈W and any f ∈C∞(g). Thus, X̃ enjoys the left-invariance property

dwτv(X̃w) = X̃v�w, for every v,w ∈W. (28)

Moreover, the map X 7→ X̃ of g onto its image set is an isomorphism of Lie
algebras.

3. A general result on local Lie groups for vector-field algebras

In this section, together with the same assumptions on g made in Section 2 (i.e.,
g is a finite-dimensional Lie subalgebra of X (Rn) made of complete vector
fields), we also assume that

the dimension of g is n,
and g satisfies Hörmander’s rank condition at any x ∈ Rn.

Under all these assumptions, due to (25) (and the Inverse Function Theorem)
we can infer that Exp is a diffeomorphism of a neighborhood of 0 ∈ g onto a
neighborhood of 0 ∈ Rn. Resuming the notation of Section 2, we can assume
from the very start that the set U where the Baker-Campbell-Hausdorff series
converges is contained in the open neighborhood of 0 ∈ g on which Exp is a
diffeomorphism. Thus, we can transfer the local Lie group (U,�) on a neigh-
borhood Ω of 0 ∈ Rn. This amounts to introduce the local operation ? defined
by

x? y := Exp(Log(x)�Log(y)), for x,y ∈Ω, (29)
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where Log denotes the inverse function of Exp|U. By replacing Ω with Exp(W),
and taking into account the notable formula (21), one recognizes that

x? y = exp(Log(y))(x), for x,y ∈Ω.

This immediately provides a prolongation of ? to Ω×Rn. Now, a result proved
in [4, Chap. 17] (see also [3] and [1]; in the latter paper, real-analytic vector
fields are involved) shows that

? can be smoothly prolonged to the whole of Rn×Rn,

and the prolongation can be chosen as to define on Rn a Lie group, say G. In
[3] we obtained this result by considering a suitable ODE solved by the curve

t 7→ x? (ty),

and by showing that this ODE admits a global solution defined throughout R.
Now, a natural question arises: what is the relationship between Lie(G) and
g? Clearly, from the arguments in Section 2, it appears that Lie(G) and g are
isomorphic Lie algebras, which is however only a partially satisfactory fact.
Furthermore, it is not difficult to recognize from the very definition of ?, and
thanks to Theorem 2.1, that any X ∈ g is locally left invariant for the ? operation:
indeed, for any x,y ∈ Ω (denoting by τ? and τ� the left translations associated
with ? and � respectively)

dyτ
?
x (Xy)

(29)
= dy(Exp◦ τ

�
Log(x) ◦Log)(Xy)

= dLog(x)�Log(y)Exp◦dLog(y)τ
�
Log(x) ◦dyLog(Xy)

(26)
= dLog(x)�Log(y)Exp◦dLog(y)τ

�
Log(x)(X̃Log(y))

(28)
= dLog(x)�Log(y)Exp(X̃Log(x)�Log(y))

(26)
= XExp(Log(x)�Log(y))

(29)
= Xx?y.

Actually, the identity dyτ?
x (Xy) = Xx?y remains valid if ? is replaced by its men-

tioned prolongation, so that we can prove that7

Lie(G) = g.

Summing up, we have the following result:

Theorem 3.1. Suppose that g is a Lie algebra of smooth vector fields on Rn

such that:

7Here we are thinking of Lie(G) as the Lie algebra of the left invariant vector fields on G,
where vector fields are always meant as linear first order PDOs, as in (1).
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1. every X ∈ g is a complete vector field;

2. g satisfies Hörmander’s rank condition at any x ∈ Rn;

3. dim(g) = n.

Then there exists a Lie group G= (Rn,?) such that Lie(G) = g. The operation
? is a prolongation of the local operation of Baker-Campbell-Hausdorff type

x? y = Exp(Log(x)�Log(y)), for x,y ∈ Exp(W),

where �, Exp and W are as in Theorem 2.1.

In the presence of homogeneity, the results in Theorems 2.1 and 3.1 produce
a global lifting Carnot group, as we show in the next section.

4. Back to homogeneity: the proof of Theorem 1.7

Let us return to a Lie algebra of vector fields a = Lie{X}, where we set as in
the previous sections X = {X1, . . . ,Xm}, and X satisfies axioms (H.1) and (H.2)
in Section 1. Then the following facts hold true:

(i) a has finite dimension, say N as usual (see Remark 1.3);

(ii) every X ∈ a is a complete vector field (see Remark 1.2);

(iii) a satisfies Hörmander’s rank condition at any point of Rn (see Rem. 1.4);

(iv) since a is nilpotent, the Baker-Campbell-Hausdorff series X �Y is conver-
gent for every X ,Y ∈ a (actually, it is a finite sum).

Now, if ∆λ are the dilations on a introduced in (8), it is not difficult to prove
that8

δλ (exp(X)(x)) = exp(∆λ (X))(δλ (x)), ∀ X ∈ a, x ∈ Rn, λ > 0. (30)

Moreover, ∆λ is a Lie-group morphism of (a,�) (see (9)):

∆λ (X �Y ) = ∆λ (X)�∆λ (Y ), ∀ X ,Y ∈ a, λ > 0. (31)

Property (iii) ensures that, defining Exp : a→Rn by Exp(X) = exp(X)(0), then

the image under Exp of any neighb. of 0 ∈ a is a neighb. of 0 ∈ Rn. (32)

We claim that (30)-to-(32) allow us to globalize the local results obtained
in Sections 2 and 3, via suitable applications of the homogeneity arguments in
Remarks 1.5 and 1.6. Indeed we have the following list of facts:

8Indeed, starting from (10) one can easily show that δλ (X(x)) = (∆λ X)(δλ (x)), for every
X ∈ a, every x ∈ Rn and λ > 0. In its turn, this gives Ψ

∆λ X
t (δλ (x)) = δλ (Ψ

X
t (x)).
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• The i-th component functions of both sides of (21) are homogeneous of
degree σi w.r.t.

a×a×Rn 3 (X ,Y,x) 7→ (∆λ (X),∆λ (Y ),δλ (x)).

Thus, the local identity (21) is globally true:

exp(Y )(exp(X)(x)) = exp(X �Y )(x), for X ,Y ∈ a and x ∈ Rn.

• Exp : a→ Rn is surjective: we argue as in Remark 1.6 starting from (31),
which also gives

δλ ◦Exp = Exp◦∆λ on a. (33)

• Properties (i) and (ii) imply that Theorem 2.1 is valid for a; the vector
field X̃ which locally lifts X ∈ a is defined via (27) as a vector field defined
on the whole of a, since τw is defined by the Baker-Campbell-Hausdorff
(global) operation �. We claim that (26) holds globally:

dwExp(X̃w) = XExp(w), for every w ∈ a and every X ∈ a.

This can be proved via a homogeneity argument w.r.t. the dilations

a×a 3 (X ,w) 7→ (∆λ (X),∆λ (w)).

• The operation � endows a of a Lie group structure: once again one can
prove the associativity of � by globalizing the local associativity via a
homogeneity argument, based on (31). Moreover, the Lie algebra of this
group is isomorphic to a, hence it is stratified (Rem. 1.3).

• The vector fields X̃1, . . . , X̃m are ∆λ -homogeneous of degree 1 (see (27)),
and are Lie-generators of the Lie algebra of (a,�).

From what we have proved so far, it follows that

(a,�,∆λ ) is a homogeneous Carnot group.

We can prove part (2) of Theorem 1.7 starting from this fact. The special form
(14) under which the lifting Xi 7→ X̃i can be put is however subtler: this needs a
suitable change of variable on a≡ RN , for which the reader is directly referred
to [2].

For what concerns part (1) of Theorem 1.7, if N = n then we are entitled to
apply Theorem 3.1, together with all the above facts (which hold true whatever
the N is). The local invertibility of Exp, together with (33), proves that Exp is
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actually globally invertible: this is a consequence of Remark 1.6-(1). Thus we
can globally transfer the dilations ∆λ to Rn via Exp; these dilations on Rn coin-
cide with δλ , owing to (33). This shows that G= (Rn,?,δλ ) is a homogeneous
Carnot group. Since the group (Rn,?) is obtained from (a,�) via Exp, the Lie
algebra Lie(G) is obtained from Lie(a) via dExp. The identity (26) says that
the vector field of Lie(G) corresponding to X̃ ∈ Lie(a) is exactly X ; this proves
that Lie(G) = g.

5. Applications to the study of the fundamental solution of L

In this section we apply Theorem 1.7 in order to get precious information on
the existence and on the estimates of a global fundamental solution Γ for L =

∑
m
i=1 X2

i ; in the sequel we suppose that X = {X1, . . . ,Xm} satisfy axioms (H.1)
and (H.2) in Section 1. If N = n, Theorem 1.7-(1) says that L is a sub-Laplacian
on a Carnot group, and all that is worthy of note about Γ is contained in the
paper [8] by Folland. Thus we suppose that

N > n and q > 2.

Indeed the latter assumption is not restrictive since the case q = 2 only happens
whenL is a strictly-elliptic constant-coefficient operator inR2 (which is also left
invariant on (R2,+)), another well-known setting, where everything is known
about the associated Γ.

Thus we are entitled to apply Theorem 1.7-(2), which grants the existence of
a lifting Carnot groupG=(RN ,?,Dλ ) onRN =Rn×Rp, and of a sub-Laplacian
LG=∑

m
i=1 X̃2

i which lifts L (in the sense of (14)). Thanks to the aforementioned
paper [8], we know of the existence of a unique fundamental solution ΓG for
LG with pole at the origin and δλ -homogeneous of degree 2−Q < 0. By a
“saturation” argument over the lifting variables of Rp, in [2] it is proved that L
has a unique global fundamental solution Γ vanishing at infinity, which admits
the following integral representation

Γ(x;y) =
∫
Rp

ΓG

(
(x,0)−1 ? (y,η)

)
dη (for x 6= y in Rn). (34)

By saying that Γ is a global fundamental solution of L we mean that the map
y 7→ Γ(x;y) is locally integrable on Rn and that∫

Rn
Γ(x;y)Lϕ(y)dy =−ϕ(x) for every ϕ ∈C∞

0 (Rn) and every x ∈ Rn.

Γ enjoys further properties: it is smooth out of the diagonal; it is symmetric in
x,y; it is strictly positive; it is locally integrable on Rn×Rn; it vanishes when x
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or y go to infinity; it is jointly homogeneous of degree 2−q < 0, i.e.,

Γ
(
δλ (x);δλ (y)

)
= λ

2−q
Γ(x,y), x 6= y, λ > 0.

In the sequel we denote by dX the Carnot-Carathodory distance on Rn as-
sociated with X , and by dX̃ the Carnot-Carathodory distance induced on RN by
the lifted vector fields X̃1, . . . , X̃m. Accordingly, the balls in the cited metrics are
denoted by BX(x,r) and BX̃((x,ξ ),r).

By means of the local-to-global Remark 1.5, one can prove the following re-
sult, starting from profound (local) results concerning the geometry of Hörman-
der vector fields, contained in the seminal papers [13] by Nagel, Stein, Wainger,
and [15] by Sánchez-Calle:

Theorem 5.1. With the above notation and assumptions, the following global
results hold.

(A). Let q be as in (4). For any k ∈ {n, . . . ,q} there exists a function fk :
Rn→R which is continuous, nonnegative and δλ -homogeneous of degree q−k,
and there exist structural constants γ1,γ2 > 0 such that

γ1

q

∑
k=n

fk(x)rk ≤
∣∣BX(x,r)

∣∣≤ γ2

q

∑
k=n

fk(x)rk, (35)

for every x ∈ Rn and every r > 0. Moreover, fq(x) is constant in x, and strictly
positive.

(B). There exist constants κ ∈ (0,1) and c1,c2 > 0 such that, for every x ∈
Rn, ξ ∈ Rp and r > 0 one has the following estimates:∣∣∣{η ∈ Rp : (y,η) ∈ BX̃((x,ξ ),r)}

∣∣∣≤ c1

∣∣BX̃((x,ξ ),r)
∣∣∣∣BX(x,r)

∣∣ , for all y ∈ Rn, (36)

∣∣∣{η ∈ Rp : (y,η) ∈ BX̃((x,ξ ),r)}
∣∣∣≥ c2

∣∣BX̃((x,ξ ),r)
∣∣∣∣BX(x,r)

∣∣ , for all y ∈ BX(x,κ r).

(37)

It is nice to observe that all terms in (35) have the same homogeneity (of
degree q) w.r.t. the dilations (δλ x,λ r), and that all terms in (36) and (37) have
the same homogeneity (of degree Q−q) w.r.t. the dilations (δλ x,δ ∗

λ
ξ ,λ r): thus

one obtains the global inequalities (35)-to-(36) starting from the local results in
[13]-[15] by means of Remark 1.5.

By using the representation (34), and by a crucial use of Theorem 5.1, in [5]
it is proved the following result:9

9By ‘structural constant’ we mean a constant only depending on the objects introduced in
axioms (H.1)-(H.2).
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Theorem 5.2. Under the above assumptions on X ,N,q, the following results
hold true.

(I). Representation of the X-derivatives of Γ. For any s, t ≥ 1, and any
choice of i1, . . . , is and j1, . . . , jt in {1, . . . ,m}, we have the following represen-
tation formulas (holding true for x 6= y):

Xy
i1 · · ·X

y
is

(
Γ(x; ·)

)
(y) =

∫
Rp

(
X̃i1 · · · X̃isΓG

)(
(x,0)−1 ? (y,η)

)
dη ;

Xx
j1 · · ·X

x
jt

(
Γ(·;y)

)
(x) =

∫
Rp

(
X̃ j1 · · · X̃ jt ΓG

)(
(y,0)−1 ? (x,η)

)
dη ;

Xx
j1 · · ·X

x
jt X

y
i1 · · ·X

y
isΓ(x;y)

=
∫
Rp

(
X̃ j1 · · · X̃ jt

((
X̃i1 · · · X̃isΓG

)
◦ ι

))(
(y,0)−1 ? (x,η)

)
dη .

Here ι denotes the inversion map of the Lie groupG. (Superscripts on the vector
fields denote the variables w.r.t. which differentiation is performed.)

(II). Estimates for the X-derivatives of Γ. For any integer r ≥ 1 there
exists a constant Cr > 0 (only depending on r, otherwise structural) such that∣∣∣Z1 · · ·ZrΓ(x;y)

∣∣∣≤Cr
dX(x,y)2−r∣∣BX(x,dX(x,y))

∣∣ ,
for any x,y ∈ Rn (with x 6= y) and any Z1, . . . ,Zr ∈

{
Xx

1 , . . . ,X
x
m,X

y
1 , . . . ,X

y
m
}

. In
particular, for every fixed x ∈ Rn we have

lim
|y|→∞

Z1 · · ·ZrΓ(x;y) = 0.

(III). Estimates of Γ when n > 2. Suppose that n > 2. Then one has

C−1 dX(x,y)2∣∣BX
(
x,dX(x,y)

)∣∣ ≤ Γ(x;y)≤C
dX(x,y)2∣∣BX(x,dX(x,y))

∣∣ ,
for any x,y ∈ Rn (with x 6= y). Here C ≥ 1 is a structural constant.

(IV). Estimates of Γ when n= 2. Suppose that n= 2. For every compact set
K ⊆ R2 there exist structural constants c1,c2 > 0 and real numbers R1,R2 > 0
(all depending on K) such that

c1 log
( R1

dX(x,y)

)
≤ Γ(x;y)≤ c2

dX(x,y)2∣∣BX(x,dX(x,y))
∣∣ · log

( R2

dX(x,y)

)
,

uniformly for x 6= y in K.
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(V). On-diagonal estimates of Γ when n = 2. For every fixed pole x ∈ R2,
there exist positive constants γ1(x),γ2(x) and 0 < ε(x)< 1 such that

γ1(x)F(x,y)≤ Γ(x;y)≤ γ2(x)F(x,y),

for any y such that 0 < dX(x,y)< ε(x), where ( f2 being as in Theorem 5.1)

F(x,y) =


log
(

1
dX(x,y)

)
if f2(x)> 0,

dX(x,y)2∣∣BX(x,dX(x,y))
∣∣ if f2(x) = 0.

(VI). Blowing-up property of Γ at the pole. For any n ≥ 2, Γ(x; ·) has a
pole at x ∈ Rn:

lim
y→x

Γ(x;y) = ∞.

Let us now say a few words about the proof of Theorem 5.2.

• The representation formulas in (I) follow from (34) and a passage-under-
the-integral argument that, for the case of mixed derivatives, is particu-
larly delicate.

• For simple homogeneity reasons on the group G, ΓG and its derivatives
satisfy global growth estimates, which, combined with the representations
in (I), give∣∣∣Z1 · · ·ZrΓ(x;y)

∣∣∣≤ cr

∫
Rp

d2−Q−r
X̃

(
(x,0)−1 ? (y,η)

)
dη , for x 6= y.

• Again via the homogeneity arguments in Remark 1.5, it is sufficient to
provide estimates of Γ and its derivatives when x,y are confined to a com-
pact set.

Deferring all the details to [5], we give a rough idea of the proof of (II). As said,
we can take x,y in some compact set, say K. Then one has∣∣∣Z1 · · ·ZrΓ(x;y)

∣∣∣≤ cr

∫
Rp

d2−Q−r
X̃

(
(x,0)−1 ? (y,η)

)
dη

= cr

∫
|η |≥1

d2−Q−r
X̃

(
(x,0)−1 ? (y,η)

)
dη

+ cr

∫
|η |<1

d2−Q−r
X̃

(
(x,0)−1 ? (y,η)

)
dη .



88 ANDREA BONFIGLIOLI

Then one turns to prove that both summands in the above far right-hand term
are bounded by

Cr
dX(x,y)2−r∣∣BX(x,dX(x,y))

∣∣ .
Indeed, as for the first summand, one can easily prove that it is finite (notice
that, as |η | ≥ 1, (x,0)−1 ? (y,η) is far from the singularity of d2−Q−r

X̃
), and that

(see Theorem 5.1-(A))

inf
x,y∈K
x 6=y

dX(x,y)2−r∣∣BX(x,dX(x,y))
∣∣ ≥ 1

γ2
inf

x,y∈K
x 6=y

( q

∑
k=n

fk(x)dX(x,y)k+r−2
)−1

=: M(K,r)> 0.

Thus the really difficult task is to estimate the second integral summand: to this
regard, one can prove the following estimates∫

|η |<1
d2−Q−r

X̃

(
(x,0)−1 ? (y,η)

)
dη ≤C(K,r)

∫ R0(K)

dX (x,y)

ρ1−r∣∣BX(x,ρ)
∣∣ dρ

≤C′(K,r)
dX(x,y)2−r∣∣BX(x,dX(x,y))

∣∣ ;
the second inequality easily follows from the doubling inequality (a corollary
of Theorem 5.1-(A)), while the first inequality follows from a delicate argument
based on (A) and (B) in Theorem 5.1. It is out of the scope of this review to
enter the details of the proof of the latter inequality, but we think it is worthy
of note to know that it can be proved by means of the sole information on the
geometry of Hörmander vector fields contained in the mentioned Theorem 5.1.

Acknowledgements

We wish to thank the Referee of the paper for his valuable remarks.

REFERENCES

[1] S. Biagi, A. Bonfiglioli: A completeness result for time-dependent vector fields
and applications. Commun. Contemp. Math. 17 (2015), 1–26.

[2] S. Biagi, A. Bonfiglioli: The existence of a global fundamental solution for
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condition, Duke Math. J. 53 (1986), 503–523.

[13] A. Nagel, E. M. Stein, S. Wainger: Balls and metrics defined by vector fields I:
Basic properties. Acta Mathematica, 155 (1985), 130–147.

[14] L.P. Rothschild, E.M. Stein: Hypoelliptic differential operators and nilpotent
groups, Acta Math. 137 (1976), 247–320.

[15] A. Sánchez-Calle: Fundamental solutions and geometry of the sum of squares
of vector fields. Invent. Math., 78 (1984), 143–160.

ANDREA BONFIGLIOLI
Andrea Bonfiglioli: Dipartimento di Matematica, Alma Mater Studiorum -
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