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Abstract
Mixtures of unigrams are one of the simplest andmost efficient tools for clustering textual data, as they assume that documents
related to the same topic have similar distributions of terms, naturally described by multinomials. When the classification
task is particularly challenging, such as when the document-term matrix is high-dimensional and extremely sparse, a more
composite representation can provide better insight into the grouping structure. In this work, we developed a deep version of
mixtures of unigrams for the unsupervised classification of very short documents with a large number of terms, by allowing for
models with further deeper latent layers; the proposal is derived in a Bayesian framework. The behavior of the deep mixtures
of unigrams is empirically compared with that of other traditional and state-of-the-art methods, namely k-means with cosine
distance, k-means with Euclidean distance on data transformed according to semantic analysis, partition around medoids,
mixture of Gaussians on semantic-based transformed data, hierarchical clustering according to Ward’s method with cosine
dissimilarity, latent Dirichlet allocation, mixtures of unigrams estimated via the EM algorithm, spectral clustering and affinity
propagation clustering. The performance is evaluated in terms of both correct classification rate and Adjusted Rand Index.
Simulation studies and real data analysis prove that going deep in clustering such data highly improves the classification
accuracy.

Keywords Deep learning · Mixture models · Clustering · Text data analysis

1 Introduction

Deep learningmethods are receiving an exponentially increas-
ing interest in the last years as powerful tools to learn complex
representations of data. They can be basically defined as a
multilayer stack of algorithms or modules able to gradually
learn a huge number of parameters in an architecture com-
posed by multiple nonlinear transformations (LeCun et al.
2015). Typically, and for historical reasons, a structure for
deep learning is identified with advanced neural networks:
deep feed forward, recurrent, auto-encoder, convolution neu-
ral networks are very effective and used algorithms of deep
learning (Schmidhuber 2015). They demonstrated to be par-
ticularly successful in supervised classification problems
arising in several fields such as image and speech recognition,
gene expression data, topic classification. Under the frame-
work of graph-based learning, Peng et al. (2016) proposed an
efficient method to produce robust subspace clustering and
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subspace learning; deep model-Structured AutoEncoder for
subspace clustering was introduced by Peng et al. (2018) to
map input data points into nonlinear latent spaces while pre-
serving the local and global subspace structure. Zhou et al.
(2018) addressed the data sparsity issue in hashing.

When the aim is uncovering unknown classes in an unsu-
pervised classification perspective, important methods of
deep learning have been developed along the lines of mixture
modeling, because of their ability to decompose a heteroge-
neous collection of units into a finite number of sub-groups
with homogeneous structures (Fraley and Raftery 2002;
McLachlan and Peel 2000). In this direction, van den Oord
and Schrauwen (2014) proposed Multilayer Gaussian Mix-
ture Models for modeling natural images; Tang et al. (2012)
defined deep mixture of factor analyzers with a greedy layer-
wise learning algorithm able to learn each layer at a time.
Viroli and McLachlan (2019) developed a general frame-
work for deep Gaussian mixture models that generalizes
and encompasses the previous strategies and several flexible
model-based clustering methods such as mixtures of mixture
models (Li 2005), mixtures of Factor Analyzers (McLachlan
et al. 2003), mixtures of factor analyzers with common factor
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loadings (Baek et al. 2010), heteroscedastic factor mixture
analysis (Montanari and Viroli 2010) and mixtures of fac-
tor mixture analyzers introduced by Viroli (2010). A general
‘take-home-message’ coming from the existing deep cluster-
ing strategies is that deep methods vs shallow ones appear to
be very efficient and powerful tools especially for complex
high-dimensional data; on the contrary, for simple and small
data structures, a deep learning strategy cannot improve per-
formance of simpler and conventional methods or, to better
say, it is like to use a ‘sledgehammer to crack a nut’ (Viroli
and McLachlan 2019).

The motivating problem behind this work derives from
ticket data (i.e. content of calls made to the customer ser-
vice) of an important mobile phone company, collected in
Italian language. When a customer calls the assistance ser-
vice, a ticket is created: the agent classifies it as, e.g. a claim,
a request of information for specific services, deals or promo-
tions. Our dataset consists of tickets related to five classes of
services, previously classified from independent operators.
The aim is to define an efficient clustering strategy to auto-
matically assign the tickets into the same classes without the
human judgment of an operator. The data are textual and
information are collected in a document-term matrix with
raw frequencies at each cell. They have a very complex and
a high-dimensional structure, caused by the huge number of
tickets and terms used by people that call the company for a
specific request and by a relevant degree of sparsity (after a
preprocessing step, the tickets have indeed an average length
of only 5words and, thus, the document-termmatrix contains
zero almost everywhere).

The simplest topic model for clustering document-term
data is represented by mixture of unigrams (MoU) (Nigam
et al. 2000)MoUs are based on the idea ofmodeling the word
frequencies as multinomial distributions, under the assump-
tion that a document refers to a single topic. Table 5 (last
column) shows that the method appears to be the most effi-
cient tool for classifying the complex ticket data, compared
to other conventional clustering strategies such as k-means,
partition around medoids and hierarchical clustering. The
reason is probably related to the fact that, by using propor-
tions, MoU is not affected by the large amount of zeros,
differently from the other competitors. We also compared
MoU with the latent Dirichlet allocation model (LDA) (Blei
et al. 2003), which represents an important and very pop-
ular model in textual data analysis, allowing documents to
exhibit multiple topics with a different degree of importance.
The latent Dirichlet allocation model has demonstrated great
success on long texts (Griffiths and Steyvers 2004), and it
could be thought of as a generalization of the MoU, because
it adds a hierarchical level to it and, hence, much more flex-
ibility. However, when dealing with very short documents
like the ticket dataset, it is very rare that a single unit could

refer to more than one topic; in such cases, the LDA model
may not improve the clustering performance of MoU.

The aim of this paper is to derive a deep generalization
of mixtures of unigrams, in order to better uncover topics or
groups in case of complex and high-dimensional data. The
proposal will be derived in a Bayesian framework and we
will show that it will be particularly efficient for classifying
the ticket data with respect to the ‘shallow’ MoU model. We
will also show the good performance of the proposedmethod
in a simulation study.

The paper is organized as follows. In the next section, the
mixture of unigrams model is described. In Sect. 3, the deep
formulation of themodel is developed. Section 4 is devoted to
the estimation algorithm for fitting the model. Experimental
results on simulated and real data are presented in Sects. 5
and 6, respectively. We conclude the paper with some final
remarks (Sect. 7 ).

2 Mixtures of unigrams

Let X be a document-term matrix of dimension n × T con-
taining the word frequencies of each document in row and
let k be the number of homogeneous groups in which docu-
ments could be allocated. Let xd be the single document of
length T , with d = 1, . . . , n.

In MoU, the distribution of each document has a specific
distribution function conditional on the values of a discrete
latent allocation variable zd describing the probability of each
topic. More precisely,

p (xd) =
k∑

i=1

πi p (xd |zd = i) , (1)

with p(zd = i) = πi , under the restrictions (i) πi > 0 for
i = 1, . . . , k and (ii)

∑k
i=1 πi = 1.

The natural distribution for p(xd |zd = i) is represented
by the multinomial distribution with a parameter vector, say
ωi , that is cluster-specific:

p (xd |zd = i) = Nd !∏T
t=1 xdt !

T∏

t=1

ω
xdt
ti ,

with Nd = ∑T
t=1 xdt denoting the word-length of the

document d. Themultinomial distribution assumes that, con-
ditionally to the cluster membership, all the terms can be
regarded as independently distributed.

The model is indeed a simple mixture of multinomial
distributions that can be easily estimated by the EM algo-
rithm (see Nigam et al. 2000 for further details) under the
assumption that a document belongs to a single topic and the
number of groups coincides with the number of topics. The
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approach has been successfully applied not only to textual
data, where it originated from, but to genomic data analysis.
In this latter field, a particular improvement of the method
consists in relaxing the conditional independence assumption
of the variables/terms, by using m-order Markov properties,
thus leading to the so-called m-gram models (Tomović et al.
2006). Due to the limited average length of documents in
ticket data, co-occurrence information is very rare and this
extension would be not effective on these data.

3 Going deep intomixtures of unigrams: a
novel approach

We aim at extending MoU by allowing a further layer in
the probabilistic generative model, so as to get a nested
architecture of nonlinear transformations able to describe the
data structure in a very flexible way. At the deepest latent
layer, the documents can come from k2 groups with differ-
ent probabilities, say π

(2)
j j = 1, . . . , k2. Conditionally to

what happened at this level, at the top observable layer the
documents can belong to k1 groups with conditional proba-
bilities π

(1)
i | j i = 1, . . . , k1. For the sake of a simple notation,

we refer in the following to a generic document denoted by
x. The distribution of x conditionally to the two layers is a
multinomial distribution with cluster-specific proportions ω:

p
(
x|z(1) = i, z(2) = j,ω

)

=
(∑T

t=1 xt
)
!

∏T
t=1 xt !

T∏

t=1

ω
xt
ti j , (2)

where z(1) and z(2) are the allocation variables at the top and
at the bottom layers, respectively. They are discrete latent
variables that follow the distributions:

p
(
z(2) = j

)
= π

(2)
j , (3)

and

p(z(1) = i |z(2) = j) = π
(1)
i | j . (4)

In mixture of unigrams, the proportions ω were fixed
parameters. Here we assume they are realizations of ran-
dom variables with a Dirichlet distribution. In order to have
a flexible and deep model we assume that the parameters of
the Dirichlet distribution are a linear function of two sets of
parameters that originate in the two subsequent layers. The
Dirichlet parameters are β i + α jβ i = β i (1+ α j ), where β i
and α j are vectors of length T . Since they must be positive
and the overall modelmust be identifiable, we further assume
that βi t > 0 and −1 < α j t < 1. These choices lead to a nice
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Fig. 1 Structure of a deep MoU with components k1 = 3 and k2 = 2

interpretative perspective: at the bottom layer α j acts as a
perturbation on the cluster-specific β i parameters of the top
layer. Therefore, the distribution is:

p
(
ω|z(1) = i, z(2) = j

)

=
Γ

(∑T
t=1 βi t

(
1 + α j t

))

∏T
t=1 Γ

(
βi t

(
1 + α j t

))
T∏

t=1

ω
βi t(1+α j t)−1
ti j , (5)

where Γ denotes the Gamma function.
An example of deep MoU structure is depicted in Fig. 1

for the case k1 = 3 and k2 = 2. Notice that in a model with
k1 = 3 and k2 = 2 componentswe have an overall numberM
of sub-components equal to 5, but 6 > M possible paths for
each document. The paths share and combine the parameters
of the two levels, thus achieving great flexibility with less
parameters to be estimated.

By combining equations (2) and (5), the latent variable ω

can be integrated out from themodel estimation, thus gaining
efficiencywithout losingflexibility and interpretability.More
precisely:

p(x|z(1) = i, z(2) = j)

=
∫

p
(
x|z(1) = i, z(2) = j,ω

)

p(ω|z(1) = i, z(2) = j)dω

=
(∑T

t=1 xt
)
!

∏T
t=1 xt !

Γ
(∑T

t=1 βi t (1 + α j t )
)

∏T
t=1 Γ

(
βi t

(
1 + α j t

))

×
∫ T∏

t=1

ω
xt+βi t (1+α j t )−1
ti j dωi j

=
(∑T

t=1 xt
)
!

∏T
t=1 xt !

Γ
(∑T

t=1 βi t (1 + α j t )
)

∏T
t=1 Γ (βi t (1 + α j t ))
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Fig. 2 DAG specifying the deep MoU model

×
∏T

t=1 xt + Γ (βi t (1 + α j t ))

Γ
(∑T

t=1 xt + βi t (1 + α j t )
)

=
∑T

t=1 xt∏T
t=1 xt

B
(∑T

t=1 xt ,
∑T

t=1 βi t (1 + α j t )
)

∏T
t=1 B

(
xt , βi t (1 + α j t )

) , (6)

where B denotes the Beta function.
Figure 2 shows the Directed Acyclic Graph (DAG) sum-

marizing the dependence structure of the model.
Finally by combining formulas (6) with (3) and (4), the

density of the data is a mixture of mixtures of Multinomial-
Dirichlet distributions:

p(x) =
k1∑

i=1

k2∑

j=1

π
(1)
i | j π

(2)
j

×
∑T

t=1 xt∏T
t=1 xt

B
(∑T

t=1 xt ,
∑T

t=1 βi t (1 + α j t )
)

∏T
t=1 B

(
xt , βi t (1 + α j t )

) . (7)

In other terms, adding a level to the hierarchy resulted
in adding a mixing step. A double mixture is deeper, more
flexible and it can capture more heterogeneity of the data,
than a simplemixture ofMultinomial-Dirichlet distributions.
Having two layers and two number of groups for each, that
are k1 and k2, it is important to define the procedure by which
the units are clustered.

3.1 Cluster assignment

Theoretically, under this double mixtures, we could group
units into k1 groups, k2 groups or k1 × k2 groups. However,
note that, under the constraint −1 < α j t < 1, the role of k2
components at the deepest layer is confined to add flexibility
to themodel, while the real cluster-distribution is specified by
the β parameters. For this reason, the number of ‘real’ clus-
ters is given by k1. Their internal heterogeneity is captured
by the k2 sub-groups that help in adding more flexibility to
the model. Therefore, the final allocation of the documents

to the clusters is given by the posterior probability p(z(1)|x)
that can be obtained as follows:

p
(
z(1) = i |x

)

=
∑k2

j=1 π
(1)
i | j π

(2)
j p

(
x|z(1) = i, z(2) = j

)

∑k1
i=1

∑k2
j=1 π

(1)
i | j π

(2)
j p

(
x|z(1) = i, z(2) = j

) . (8)

The model encompasses the simple MoU, that can be
obtained as special case when k2 = 1 and without any prior
onω.When k2 = 1 and aDirichlet prior is put onω, amixture
of Dirichlet-Multinomials is defined. In this case, in order to
assure identifiability, we assume α = 0.

The approach can be generalized to multilayer of latent
variables, where at each layer perturbation parameters to the
final β are introduced, under the constraint that their values
are limited between -1 and 1. However, we will show in the
next sections that the structure with just one additional latent
layer is generally sufficient to gain large flexibility and very
good clustering performance.

4 Model estimation

In this section, we present a Bayesian algorithm for param-
eter estimation. The prior distribution for the weights of the
mixture components is assumed to follow a Dirichlet dis-
tribution with hyperparameter δ. We want non-informative
priors for the model parameters. Hence, the value of the
Dirichlet hyperparameter is δ = 1 in order to have a flat
Dirichlet distribution. The prior distributions for each α j

and β i are given by the Uniform in the interval [-1,1] and
in (0, 1000], respectively.

By using the previous model assumptions, the posterior
distribution can be expressed as

p(z(1), z(2),π (1),π (2),α,β|X) ∝
p

(
X|z(1), z(2),α,β

)
p

(
z(1)|z(2),π (1))p(z(2)|π (2)

)
p

(α) p(β)p
(
π (1))p(π (2)

)
,

where p(X|z(1), z(2),α,β) is the likelihood function of the
model. By indexing the documents for which it holds that
z(1)di · z(2)d j = 1, as d : z(1)di · z(2)d j = 1, the likelihood function
can be expressed as:

p
(
X|z(1), z(2),α,β

)

=
k1∏

i=1

k2∏

j=1

∏

d:z(1)di ·z(2)d j =1

∑T
t=1 xdt∏T
t=1 xdt

ψd(α j ,β i ), (9)
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with

ψd(α j ,β i ) =
B

(∑T
t=1 xdt ,

∑T
t=1 βi t (1 + α j t )

)

∏T
t=1 B

(
xdt , βi t (1 + α j t )

) .

In order to sample parameters and latent variables from
the posterior distribution, we determine the full conditionals
of each unobservable variable given the other ones.

4.1 Full conditionals

The posterior distribution of the parameters and latent allo-
cation variables given the other variables are proportional to
known quantities. By using | . . . to denote conditioning on
all other variables, they are:

p(π (2)| . . .) ∼ Dirichlet

(
n∑

d=1

z(2)d1 + δ, . . . ,

n∑

d=1

z(2)d j

+ δ, . . . ,

n∑

d=1

z(2)dk2
+ δ

)
;

p(π (1)
·| j | . . .)∼Dirichlet

(
n∑

d=1

z(1)d1 z
(2)
d j +δ, . . . ,

n∑

d=1

z(1)di z
(2)
d j

+ δ, . . . ,

n∑

d=1

z(1)dk1
z(2)d j + δ

)
;

Pr(z(2)d j = 1| . . .) ∝
k1∏

i=1

(
π

(1)
i | j π

(2)
j ψd(α j ,β i )

)z(1)di ;

Pr(z(1)di = 1| . . .) ∝
k2∏

j=1

(
π

(1)
i | j ψd(α j ,β i )

)z(2)d j ;

f (α j | . . .) ∝
k1∏

i=1

∏

d:z(1)di ·z(2)d j =1

ψd(α j ,β i )1[−1<α j<1];

f (β i | . . .) ∝
k2∏

j=1

∏

d:z(1)di ·z(2)d j =1

ψd(α j ,β i )1[0<βi<∞].

A Gibbs sampling MCMC algorithm can be thus easily
implemented for generating values from the posterior distri-
butions.

Note that in order to get α j and β i we need an accept–
reject mechanism. We consider as proposal value for βi , the
average value of the parameters generated byn×k2 Dirichlet-
multinomials, given α j fixed and vice versa.

The computational time of the algorithm depends on the
desired number of runs of the MCMC algorithm, the number
of nodes k1 and k2 and on the length of the vectors α j and β i .
For a two-class dataset, described in Sect. 6, with D = 240,
T = 357 and k2 = 2 the MCMC algorithm with 5.000

iterations requires about 10 minutes on a processor Intel(R)
Core(TM) i7-6500U CPU @ 2.50GHz, 2592 Mhz, 2 cores,
under R cran 3.6.1.

We will show the estimation and clustering performance
through a simulation study and real applications in the next
sections.

5 Simulation study

The performance of the proposed method is evaluated under
different aspects in an empirical simulation study. In order
to prove the capability of the deep MoU to uncover the clus-
ters in complex data, data were generated with a high level
of sparsity. Several simulation studies are presented and dis-
cussed in the following.

The first simulation study aimed to check the capability of
the deep MoU to cluster well the data, when these are gener-
ated according to a deep generative process. More precisely,
we set T = 200 and n = 200, k1 = 3, k2 = 2 and balanced
classes. We randomly generated β from a Uniform distribu-
tion in (0,20] and α from a Uniform distribution in [-1,1]. In
order to assure a high level of sparsity, for each document
the total number of terms has been generated according to
a Poisson distribution with parameter Nd = 20, ∀d. Data
are then organized in a document-term matrix containing the
term frequencies of each pseudo-document.

Panel (a) of Fig. 3 shows the row frequency distributions of
the features across the clusters and provides a representation
of the group overlapping.

Clustering performance has been measured by using both
the Adjusted Rand Index (ARI) and the accuracy rate. The
former is a corrected-for-chance version of the Rand Index
(Hubert and Arabie 1985), that measures the degree to which
two partition of objects agree; Romano et al. (2016) proved
that this measure is particularly indicated in presence of large
equal sized reference clusters. The accuracy is defined as the
complement of themisclassification error rate. Table 1 shows
theAdjusted Rand Index and the accuracy obtained by a deep
MoU model for different values of k2, ranging from 1 to 5.
We run an MCMC chain with 5000 iterations, discarding
the first 2000 as burn-in. Visual inspection assured that this
burn-in was largely sufficient.

The results show how the model with k2 > 1 is really
effective in clustering the data and, as desirable, the model
with k2 = 2 (i.e. the setting that reflects the generative pro-
cess of the data) resulted to be the best one in terms of
recovering the ‘true’ grouping structure. The gap between
k2 = 1 and k2 > 1 is relevant; however, the performance
remains elevate for the various k2 > 1, thus indicating that a
deep structure can be really effective in clustering such kind
of data.
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Fig. 3 Heatmap of the
conditional distribution of
features across the classes. The
left panel refers to the first
simulation study and the right
panel to the second ones
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Table 1 Simulated Data, simulation study 1. Adjusted Rand Index
(ARI) and Accuracy of deep MoU for k1 = 3 and different values
of k2

k2 ARI Accuracy

1 0.468 0.755

2 0.940 0.980

3 0.910 0.970

4 0.934 0.980

5 0.925 0.975

Table 2 Simulated Data, simulation study 2. Adjusted Rand Index
(ARI) and Accuracy of deep MoU for k1 = 3 and different values
of k2

k2 ARI Accuracy

1 0.824 0.940

2 0.811 0.935

3 0.798 0.930

4 0.811 0.935

5 0.797 0.930

In a second simulation study, we tested the performance
of a deep MoU with data that are not originated according
to a deep generative process, but simply by k1 = 3 balanced
groups, T = n = 200 and Nd = 20, ∀d. Panel (b) of Fig. 3
displays the row frequency distributions of the generated fea-
tures. As shown in Table 2, in this situation, the deep model
with k2 > 1 does not significantly improve the clustering per-

formance, and the accuracy remains stable as k2 increases.
This suggests that when the data are pretty simple, and are
not high-dimensional, a deep algorithm is not more efficient
than the conventional MoU.

The third simulation study aimed at measuring the accu-
racy of the estimated parameters α and β in data with double
structure k1 = 3 and k2 = 2, allowing for different com-
binations of T , n and N , so as to measure the effect of data
dimensionality and level of sparsity on the goodness of fit.We
considered a total of 8 different scenarios generated accord-
ing to the combinations of T = {100, 200}, n = {100, 200}
and N = {10, 20}. Table 3 contains the Euclidean distance
between the true parameter vectors and the posterior means,
normalized over T .

As expectable, for a given T the goodness of fit improves
as the number of documents increases. The level of sparsity
has a relevant role as well: when N increases the documents
are more informative and the parameter estimates become
more accurate.

5.1 Application to real data

The effectiveness of the proposed model is demonstrated by
using four textual datasets, including the introduced ticket
data. We compare the deep MoU with conventional cluster-
ing strategies: k-means (Lloyd 1982) with cosine distance
(k-means) and with Euclidean distance on data transformed
according to semantic analysis (LSA k-means), partition
around medoids (PAM) (Kaufman and Rousseeuw 2009),
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Table 3 Simulated Data, simulation study 3. Precision of the estimated parameters for different values of n, T and N

n T N ||β1−β̂1||
T

||β2−β̂2||
T

||β3−β̂3||
T

||α1−α̂1||
T

||α2−α̂2||
T

100 100 10 5.016 5.357 4.737 0.488 0.596

100 200 10 5.360 5.754 5.455 0.511 0.516

100 100 20 3.983 3.917 3.166 0.340 0.329

100 200 20 5.396 4.261 4.220 0.375 0.392

200 100 10 3.999 4.188 5.061 0.317 0.370

200 200 10 4.630 4.540 5.934 0.439 0.441

200 100 20 3.275 5.488 3.205 0.261 0.291

200 200 20 3.912 3.435 3.982 0.311 0.315

Fig. 4 Heatmap of the conditional distribution of terms across classes.
The shades reflect the distribution of row frequencies

mixture of Gaussians on semantic-based transformed data
(MoG) (McLachlan and Peel 2000), hierarchical cluster-
ing according to Ward’s method (Murtagh and Legendre
2014) with cosine dissimilarity (HC), latent Dirichlet alloca-
tion (LDA) (Blei et al. 2003), mixtures of unigrams (MoU)
(Nigam et al. 2000) estimated via the EM algorithm (Demp-
ster et al. 1977), spectral clustering (SpeCl) (Ng et al. 2002)
and affinity propagation clustering (AffPr) (Frey and Dueck
2007) with normalized linear kernel.

The CNAE-9 dataset contains 1080 documents of free
text business descriptions ofBrazilian companies categorized
into 9 balanced categories (Ciarelli and Oliveira 2009; Cia-

Table 4 Real Data. Number of tickets for each class

Class Description Freq.

ACTIV Activation of SIM, ADSL,
new contracts

407

INFO General information about
current balance,
consumption, etc.

471

PROMO Request of information
about new offers and
promotions

376

TOP-UP Top-up 435

PROBL Problems with password,
top-up, internet
connection, etc.

440

relli et al. 2010) for a total of 856 preprocessed words. Since
the classes 4 and9are themost overlappedweconsidered also
the reduced CNAE-2 dataset composed by these two groups
only which consists of 240 documents and 357 words. This
dataset is highly sparse: the 99.22% of the document-term
matrix entries are zeros.

The BBC dataset consists of 737 documents from the BBC
Sportwebsite corresponding to sport news articles in five top-
ics/areas (athletics, cricket, football, rugby, tennis) from2004
to 2005 (Greene and Cunningham 2006). After a preprocess-
ing phase aimed at discarding non-relevant words, the total
number of features is 1075. This dataset is moderately sparse
with a fraction of zeros equal to 92.36%.

The ticket dataset contains n = 2129 tickets and T =
489 terms obtained after preprocessing: original raw data
were processed via stemming, so as to reduce inflected or
derived words to their unique word stem, and some terms
have been filtered out in order to remove very common non-
informative stopwords words in the Italian language. The
tickets have then been classified by independent operators to
k = 5 main classes described in Table 4.

The peculiarity and major challenge of this dataset is the
limited number of words used, on average, for each ticket. In
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Fig. 5 Most frequent terms within each group

Table 5 Real Data. Accuracy (multiplied by 100) for different methods

Method CNAE-2 CNAE-9 BBC Ticket

k-means 55.8 59.8 76.5 51.6

LSA k-means 65.0 54.4 40.6 46.4

PAM 52.5 11.9 28.8 22.2

MoG 50.4 37.6 43.6 43.8

HC 51.2 13.2 25.4 22.5

LDA 53.3 64.6 41.0 31.8

MoU 60.8 69.6 59.0 74.3

SpeCl 72.9 50.3 44.5 53.0

AffPr 59.2 58.9 53.5 51.7

fact, after preprocessing, the tickets have an average length of
5 words. A graphical representation of the data, after the pre-
processing step, is shown in Fig. 4. The heatmap shows the
row frequency distributions of themost common terms (over-
all occurrences ≥ 50). As clear from the shades, each class
is characterized by a limited set of specific words, while the
majority is uniformly distributed across them, thus making
the classification problem particularly challenging. In order
to have further details about the terms characterizing the tick-
etswithin each topic, Fig. 5 displays themost frequentwords.

Data are characterized by a large amount of sparsity with
the 99.05% of zeros: as a consequence, most conventional
clustering strategies fail.

Tables 5 and 6 show, respectively, the accuracy and the
ARI of the different methods on the presented datasets. For
comparative reasons, the true number of clusters was consid-
ered as known for all the methods.

Among the considered methods, spectral clustering, k-
means and mixtures of unigrams are the most effective
method for classifying the datasets. An advantage of MoU,
which is inherited by the proposed deepMoU, is that it seems
to be not affected by the large number of zeros like the other
methods, as it is based on proportions. The latent Dirichlet
allocation model, despite its flexibility, is not able to improve
the classification on these short documents, because it is
based on the assumption of multiple topics for each docu-

Table 6 Real Data. Adjusted Rand Index (ARI) for different methods

Method CNAE-2 CNAE-9 BBC Ticket

k-means 0.010 0.418 0.567 0.233

LSA k-means 0.088 0.282 0.038 0.135

PAM 0.002 0.000 0.031 0.000

MoG 0.000 0.092 0.060 0.158

HC − 0.003 − 0.005 − 0.004 − 0.001

LDA 0.000 0.507 0.092 0.000

MoU 0.043 0.562 0.226 0.523

SpeCl 0.207 0.284 0.104 0.224

AffPr 0.030 0.338 0.189 0.219

Table 7 Real Data. Accuracy (multiplied by 100) of deep MoU for
different numbers of nodes k2

k2 CNAE-2 CNAE-9 BBC Ticket

1 81.2 50.1 95.5 76.2

2 93.3 73.3 95.8 89.2

3 92.9 77.5 95.9 87.6

4 92.5 77.3 93.9 85.6

5 91.2 76.4 93.9 83.3

Table 8 Real Data. Adjusted Rand Index (ARI) of deep MoU for dif-
ferent numbers of nodes k2

k2 CNAE-2 CNAE-9 BBC Ticket

1 0.388 0.290 0.888 0.616

2 0.750 0.667 0.894 0.757

3 0.736 0.661 0.895 0.721

4 0.721 0.663 0.848 0.681

5 0.679 0.615 0.843 0.651

ment, which is not realistic for short data, as in the case of
ticket dataset.

We applied deep MoU with k2 = 1, . . . , 5. For each
setting, we run 5000 iterations of the MCMC algorithm,
discarding the first 2000 as burn-in. From graphical visu-
alization and diagnostic criteria we observed convergence
and stability to the different choices of starting points and
hyperparameters δ, so we considered δ = 1.

Tables 7 and 8 contain the clustering results of the deep
MoUon the datasets, measured by accuracy andARI, respec-
tively. The case k2 = 1 corresponds to a Bayesian MoU and
classification is improved with respect to the conventional
MoU in most all empirical cases. A probable reason for that
is the adoption of Dirichlet-multinomials (in BayesianMoU)
instead of classicalmultinomials (in frequentistMoU),which
are more suitable to capture overdispersion with respect to
the multinomial framework (Wilson and Koehler 1991). In
our analysis, the only exception is represented by the dataset
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CNAE-9,which is particularly challenging because it is com-
posed by 9 unbalanced groups. In this case, classical MoU
performs slightly better in terms of misclassification rate and
ARI. This may depend on a particularly good starting point
of the EM algorithm for fitting MoU, which is initialized by
the k-means clustering.

When we move from k2 = 1 to a deeper structure with
k2 = 2 or k2 = 3 the accuracy improves in all the analyzed
experiments. This proves how the introduction of the param-
etersα j maybe beneficial for classification.When the hidden
nodes are greater than 3 (k2 = 4 or k2 = 5) results seem to
be little worsened, probably because of the larger number of
parameters to be estimated.

6 Final remarks

In this paper, we have proposed a deep learning strategy that
extends the mixtures of unigrams model. With respect to
other clustering methods, MoUs have desirable features for
textual data. Firstly, document-term matrices usually con-
tain the frequencies of the words in each document; for this
reason, MoUs represent an intuitive choice, since they are
based on multinomial distributions that are the probabilistic
distributions formodeling positive frequencies.Moreover, as
MoUs naturally model proportions, they are not affected by
the large amount of zeros of the datasets like other methods,
so they are a proper choice for modeling very short texts and
sparse datasets. Furthermore, MoU is based on the idea that
documents related to the same topic have similar distributions
of terms, which is realistic in practice. Taking a mixture of
k multinomials means doing clustering into k topics/groups:
there is a unique association between documents and topics.

All these nice characteristic are inherited by the pro-
posed deep MoU model. The proposed deep MoU is
particularly effective in clustering with challenging issues
(sparsity, overdispersion, short document length and high-
dimensionality). Being hierarchical in its nature, the model
can be easily estimated by a MCMC algorithm in a Bayesian
framework. In our analysis, we chose non-informative pri-
ors, because there is little prior information available on the
empirical context. The estimation algorithm produces good
results in all the simulated and real situations considered here.

The proposed model could be extended in several direc-
tions: as discussed in Sect. 3, several hidden layers (instead
of just a single one) could be considered. The merging func-
tion β i (1 + α j ) has been defined for identifiability reasons
under the idea that the number of estimated groups is k1 and
the latent layer is only aimed at perturbing the β i parameters
for capturing some residual heterogeneity inside the groups.
Of course, more complex nonlinear functions could be con-
sidered, without however losing sight of identifiability. In
case of non-extreme sparsity and long documents, the model

could be also extended to allow for deepm-grammodels. We
leave all these ideas to future research.
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