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Abstract Small-x logarithmic enhancements arising from
high-energy gluon emissions affect both the evolution of
collinearly-factorized parton densities and partonic coeffi-
cient functions. With the higher collider energy reached by
the LHC, the prospect of a future high-energy collider, and
the recent deep-inelastic scattering (DIS) results at small-x
from HERA, providing phenomenological tools for perform-
ing small-x resummation has become of great relevance.
In this paper we discuss a framework to perform small-x
resummation for both parton evolution and partonic coeffi-
cient functions and we describe its implementation in a com-
puter code named High-Energy Large Logarithms (HELL).
We present resummed and matched results for the DGLAP
splitting functions and, as a proof of principle, for the mass-
less structure functions in DIS. Furthermore, we discuss the
uncertainty from subleading terms on our results.
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1 Introduction

One aspect that makes the physics program of the CERN
Large Hadron Collider (LHC) particularly rich is the vast
kinematic region that can be explored. For inclusive enough
processes, the kinematics is traditionally parametrized with a
dimensionful scale Q, the typical hard scale of a process, e.g.
a final-state invariant mass, and with the dimensionless ratio
x = Q2/s, with

√
s the machine energy. Thus, the success

of the LHC physics program relies upon having control of
the many ingredients that enter theoretical predictions, over a
wide kinematic range in both x and Q2. This includes high-
order corrections in QCD and in the electro-weak sector,
resummation effects and non-perturbative inputs to hadron-
hadron cross section such as parton distribution functions
(PDFs), which often represent the main source of theoretical
uncertainty.

The bulk of experimental data that constrain PDFs comes
from deep-inelastic scattering (DIS) data collected by the
HERA experiments [1], which span several orders of mag-
nitude in both x and Q2. Here, we concentrate on the high-
energy, or small-x , regime. In particular, at low Q2, these
data reach very small values of x , perhaps outside the region
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of validity of the fixed-order calculations which are used as
inputs in the fits. Moreover, in the context of LHC physics,
the unique design of the LHCb detector (essentially a forward
spectrometer) makes this experiment well-suited to access a
region of phase-space of very large rapidities, thus provid-
ing useful data to pin down the largely unconstraint PDFs
at small x . The success of this enterprise relies on having a
reliable theory description of the low-x region.

As we approach the small-x regime, logarithms of x
become large and need to be resummed. As a consequence,
PDF fits that are purely based on fixed-order matrix ele-
ments, may become unreliable at low x . Indeed, recent stud-
ies reveal some tension between low-x and low-Q2 data and
standard fixed-order DGLAP fits [1–3]. High-energy log-
arithms appear both in partonic cross sections and in the
DGLAP splitting functions [4–6], which govern the evolu-
tion of the parton densities. The resummation of these con-
tributions is based on the BFKL equation [7–12]. However,
it turns out that the correct inclusion of leading-logarithmic
(LL) and next-to-leading logarithmic (NLL) corrections is
far from trivial. This problem received great attention in
1990s, by more than one group, see, for instance, Refs. [13–
16], Refs. [17–23], and Refs. [24–27], which resulted in
resummed anomalous dimensions for PDF evolution (for
recent work in the context of effective theories, see [28]).

Small-x resummation of partonic cross sections is based
on the so-called kt -factorization theorem [29–36], which has
been used to compute the high-energy behaviour of per-
turbative cross section for several processes such as heavy
quark production [37], DIS [34], Drell–Yan [38], direct pho-
ton [39,40] and Higgs production [41–44]. The formalism
has been subsequently extended to rapidity [36] and trans-
verse momentum distributions [45].

Despite the wealth of calculations listed above, very few
phenomenological studies that incorporate both fixed-order
and resummed calculations exist. The reason for this is tech-
nical: small-x resummation requires an all-order class of sub-
leading corrections in order to lead to stable results. The pur-
pose of this paper is to remedy this deficiency. We develop
a framework to perform small-x resummed phenomenol-
ogy. Our starting point is the resummation of coefficient and
splitting functions according to the formalism developed by
Altarelli, Ball and Forte (ABF) [17–22]. However, as we will
describe in the paper, we introduce a number of improve-
ments that make the procedure easier to extend to new pro-
cesses, as well as numerically more stable. For the first time,
we make resummed splitting and coefficient functions avail-
able in a public code named HELL (High-Energy Large Log-
arithms).

The structure of this paper is the following. In Sect. 2
we describe the ABF resummation of the splitting functions
and its HELL implementation, highlighting and motivating
several improvements. We then perform a comparison to the

ABF original results and also to the ones of Ref. [16]. In
Sect. 3 we introduce a method to perform the resummation of
coefficient functions directly in transverse momentum space,
which is then implemented inHELL. We show its equivalence
to the ABF Mellin-space resummation, while discussing the
numerous advantages of the new method. As a proof of prin-
ciple, we present results for the partonic coefficient functions
of the massless DIS structure functions F2 and FL , as well as
their comparison to the results obtained by ABF in Ref. [22].

Finally, we draw our conclusions in Sect. 4 and we outline
forthcoming phenomenological studies which include fits of
PDFs, as well as studies of small-x effects in electro-weak
boson production at the LHC and Future Circular Colliders
(FCC). Technical details are collected in a number of appen-
dices.

2 Resummation of DGLAP evolution kernels

In this section we review the construction of resummed
DGLAP evolution kernels needed for resummed PDF evo-
lution up to NLL. We follow the formalism developed in the
ABF series of papers [17–22]. We will also comment about
other approaches, but leave a thorough analytic comparison
to future work. Most of the section is devoted to introduc-
ing notation and describing how the theoretical results can
be practically implemented in the code HELL. We will also
present several improvements over the original implementa-
tion.

It is convenient to work in the space of the variable N
conjugate by Mellin transformation to the variable x ,

fi (N , Q2) =
∫ 1

0
dx xN fi (x, Q

2), (1)

since all convolutions become ordinary products. Here
fi (x, Q2) is a generic PDF, and we used a non-standard nota-
tion for the Mellin transform in which the kernel is xN rather
than xN−1. This is useful when discussing small-x because
the small-x singularities, of the form (1/x) lnk x , are mapped
into poles in N = 0 (in the usual notation, the poles are in
N = 1):

∫ 1

0
dx xN αn

s
lnk−1 x

x
= (−1)k+1(k − 1)! αn

s

Nk
. (2)

LL contributions at small-x correspond to terms in Eq. (2)
with k = n to all orders n in αs , while NLL ones have k =
n−1. Note that double logarithmic corrections, which would
correspond to k = 2n, are absent in QCD, with the noticeable
exception of the Higgs production in gluon fusion with a
pointlike effective vertex in the large-mt effective theory [41].
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The dominant small-x logarithmic enhancement only
affects the singlet sector, while (double) logarithmic terms
in the non-singlet are power-suppressed, i.e. they correspond
to poles in N = −1. Therefore, we focus on the 2×2 singlet
evolution matrix. The construction of resummed anomalous
dimensions, which are the Mellin transform of the splitting
functions, can be divided into three successive steps:

1. resummation of the “largest” eigenvalue γ+ of the singlet
anomalous dimension matrix

2. resummation of the quark-sector anomalous dimension
γqg

3. construction of the resummed anomalous dimension
matrix in the physical (flavor) basis.

We address these three steps in turn, giving a brief summary
of the ABF procedure, emphasizing those aspects that are
different from the original construction. We finally comment
on the numerical implementation and present some results.

2.1 Resummation of the largest eigenvalue

The singlet-sector DGLAP evolution equation reads

Q2 d

dQ2

(
fg
fq

)
= �

(
N , αs(Q

2)
) (

fg
fq

)
, (3)

where fg = fg(N , Q2) and fq = fq(N , Q2) are the
gluon and quark-singlet PDFs respectively, and the evolu-
tion matrix is given by (omitting arguments for readability)

�(N , αs) ≡
(

γgg γgq
γqg γqq

)
. (4)

As already mentioned, the non-singlet sector is not affected
by small-x logarithmic enhancement, and we therefore
ignore it.

The DGLAP evolution equation Eq. (3) can be diago-
nalised by performing a change of basis. We define the
“eigenvectors” f± as

(
f+
f−

)
= R

(
N , αs(Q

2)
) (

fg
fq

)
, (5)

where the transformation matrix R (and its inverse) can be
generically written as

R = 1

r− − r+

(
r− −1

−r+ 1

)
, R−1 =

(
1 1
r+ r−

)
. (6)

Substituting Eq. (5) into Eq. (3) we get

Q2 d

dQ2

(
f+
f−

)
=

[
R�R−1 + Q2 dR

dQ2 R
−1

](
f+
f−

)
. (7)

In general, to make the equation diagonal, one has to provide
a matrix R such that the matrix in squared brackets in Eq. (7)
is diagonal,

R�R−1 + Q2 dR

dQ2 R
−1 =

(
γ+ 0
0 γ−

)
. (8)

Solving this problem in general is rather complicated. How-
ever, we notice that at pure LL level the matrix that diag-
onalizes � has constant coefficients, so we can ignore the
second term in squared brackets and simply solve an eigen-
value problem. At NLL, a non-trivial dependence on Q2

appears; however, the action of the derivative with respect
to Q2 further suppresses the second term in squared brack-
ets by αsβ0, showing that it first contributes at NNLL level.
Therefore, when treating running coupling effects perturba-
tively, we can ignore the derivative contribution and simply
focus on the eigenvalue problem, which in particular leads
to the following explicit form for R,

r± = γqg

γ± − γqq
, (9)

being γ± the eigenvalues of �. We anticipate that running
coupling effects will eventually be resummed to all orders in
αsβ0: when this counting is adopted, the derivative term is no
longer subleading and the matrix R should be corrected for
it. We will come back to this point later in Sects. 2.3 and 3.2.

The eigenvalue γ+ is chosen to be the largest eigenvalue
at small-x , i.e. N ∼ 0, namely the one which is enhanced at
small N , while γ− is finite in N = 0. Consequently, f+ is the
only eigenvector that contains logarithmic enhancement and
which is affected by high-energy resummation. This holds
for several factorization schemes, including DIS and MS,
and the so-called Q0MS scheme which is particularly use-
ful in small-x resummation [32,34,46,47]. The resumma-
tion of small-x logarithms in the evolution is then encoded
in the resummation of the largest eigenvalue γ+. The dif-
ference between the MS and Q0MS factorization schemes
influences the resummation of γ+ beyond the leading loga-
rithmic accuracy, as well as the resummation of γqg and of
the coefficient functions, as we shall see in more detail in
Sect. 3. The structure of the resummation described in the
remainder of the section is rather general and it is valid for
both MS and Q0MS schemes. When presenting phenomeno-
logical results our scheme of choice will be Q0MS, which is
preferred from an all-order viewpoint, because it gives more
stable results [22]. It has to be noted that, when expanded
to fixed-order, the difference between the two schemes only
starts at relative O(α3

s ): thus, all theoretical predictions that
enter current PDF fits are not sensitive to this choice.

High-energy resummation is achieved thanks to the BFKL
equation [7–12], which, in analogy with DGLAP, we write as
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an evolution equation for the moments of the parton density.
Therefore, defining the M moments of f+ by

f+(x, M) =
∫ ∞

−∞
dQ2

Q2

(
Q2

Q2
0

)−M

f+(x, Q2), (10)

with Q0 some reference scale (the PDFs depend logarithmi-
cally on Q, so the value of Q0 is irrelevant), we have

−x
d

dx
f+(x, M) = χ(M, αs) f+(x, M), (11)

where χ is the BFKL kernel, currently known to NLO [12]
and to NNLO in the collinear approximation [47] (see
Ref. [48] for recent work beyond NLO accuracy). In the
small-x and high-Q2 limit, both the DGLAP and BFKL
equations are expected to hold, and consistency between
the solutions to both equations allows to resum to all orders
collinear contributions in the BFKL kernerl or, equivalently,
small-x contributions in the DGLAP anomalous dimension.
Knowledge of the BFKL kernel to NkLO accuracy allows for
the resummation of the NkLL contributions to the DGLAP
anomalous dimension (and vice-versa). It is worth noting that
Eq. (11) is an ordinary differential equation only if the cou-
pling does not run. Indeed, in M-space, αs(Q2) becomes a
differential operator α̂s , essentially because ln Q2 is turned
into −∂/∂M and consequently Eq. (11) is to be intended as
an operator-valued equation. This is a manifestation of the
well-known fact that the eigenvalues of the LO kernel do not
diagonalize the BFKL equation at NLO.

Consistency between DGLAP and BFKL equations allows
us to build a double-leading (DL) expansion of γ+ and χ

which takes into account the logarithmically enhanced con-
tributions in both ln Q2 and ln(1/x) [13]. Because of the
poor perturbative behaviour of the BFKL kernel, obtaining
a stable resummed result is however not straightforward and
requires a somehow complex procedure with a careful treat-
ment of the formally subleading terms. This issue received
great attention in the past, mainly by three groups: Refs. [13–
16], Refs. [17–23], and Refs. [24–27]. Despite the different
approaches, which are characterized by different treatments
of formally subleading corrections, a fairly consistent pic-
ture emerged, with small differences in the final results of
the different groups (see e.g. Ref. [49]).

The ABF approach [17–22], which we adopt in this paper
with a few improvements, allows us to build perturbatively
stable resummed results by combining four main ingredi-
ents: duality, symmetrization, momentum conservation and
running coupling resummation, as we summarize below.

Duality between the DGLAP anomalous dimensions and
the BFKL evolution kernel, is the statement that in the fixed
coupling limit (i.e. neglecting contributions due to the run-
ning of αs), the kernels satisfy the following relations [50,51]

χ(γ+(N , αs), αs) = N ↔ γ+(χ(M, αs), αs) = M.

(12)

Beyond LL Eq. (12) is corrected by contributions due to the
running of αs . In principle Eq. (12) provides all the ingre-
dients for small-x resummation: we start with the BFKL
kernel χ at a given order (LO or NLO) and we use dual-
ity to determine a DGLAP anomalous dimension, dual to
χ , which resums small-x contributions to the desired loga-
rithmic accuracy (LL or NLL). However, as previously men-
tioned, the BFKL kernel itself exhibits a very poor pertur-
bative behaviour, with poles of the form αk

s /( j − M)k for
any integer j at every perturbative order k. The poles in
M = 0 and M = 1, which correspond to the collinear
and anti-collinear regions, are particularly harmful [13]. The
key observation is that the resummation of collinear poles
(which in momentum space are just collinear logarithms) is
controlled by the DGLAP anomalous dimension. Hence, we
can use duality, in the opposite direction, to derive a ker-
nel χ , dual to standard DGLAP, that resums all the collinear
enhancements. The DL kernel can then be constructed by
matching standard BFKL with the collinearly improved one.
Furthermore, again by duality, this result can be turned into
an anomalous dimension.

However, the stabilization of the collinear region does
not completely cure the problem, because of the singular-
ity of the BFKL kernel in M = 1. Indeed the behavior in
middle region between M = 0 and M = 1 determines
by duality the nature of the rightmost small-N singularity,
i.e. the asymptotic small-x behaviour of the splitting func-
tions. The nature of the singularity obtained in this way is
perturbatively unstable: it is a pole at fixed order, a square
root branch-cut at DL-LO, non-singular at DL-NLO, see
e.g. [52]. The anticollinear terms can however be resummed
and thus stabilized by exploiting the symmetry properties of
the BFKL kernel, which relate them to the collinear contri-
butions [13,21]. This symmetrization is performed by con-
structing a kernel which coincides with the DL one at a
given logarithmic accuracy in ln Q2 and ln(1/x), but sat-
isfies the required symmetry properties exactly (while in
general these would be spoiled by subleading terms). In
the ABF approach, the symmetrized kernel is defined via
implicit equations which must be solved numerically (more
details are given in Appendix A). Note that the definition of
the symmetrized kernels has some degree of arbitrariness,
due to the inclusion of unconstrained subleading contribu-
tions. After symmetrization, the singular behaviour of the
dual DGLAP anomalous dimension is always a square root
branch-cut.

The third important ingredient of the ABF resummation is
momentum conservation, which implies that the first Mellin
moment of the largest eigenvalue must vanish, and translates
by duality into a constraint on the BFKL kernel:
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γ+(1, αs) = 0 → χ(0, αs) = 1. (13)

In general, in a DL expansion, Eq. (13) is violated by sub-
leading terms, but it may be enforced by adding a subleading
contribution which does not introduce new singularities at
small N and vanishes at large N . We stress that, while the
final anomalous dimension must clearly satisfy momentum
conservation, one can decide whether momentum conser-
vation should be imposed in any of the intermediate steps.
We note that the stability of the result is greatly improved by
enforcing momentum conservation at each step of the resum-
mation procedure.

Symmetrization and momentum conservation allow us to
build perturbatively stable BFKL kernels, and, by duality,
DGLAP anomalous dimensions, in the fixed coupling limit.
The resulting singularity is however modified at every pertur-
bative order by running coupling corrections to duality [19].
These corrections start at NLL and, while formally sublead-
ing, they are in fact dominant since they change the nature
of the small-N singularity. The dominant running coupling
corrections are resummed by solving the running-coupling
BFKL evolution equation for f+, and extracting its anoma-
lous dimension (see e.g. Refs. [24–26]). This can be done
analytically by approximating the kernel in proximity of its
minimum, which in turn corresponds by duality to the square-
root branch cut of the anomalous dimension, i.e. its leading
singularity. After running coupling resummation, the right-
most singularity of the anomalous dimension is turned back
to a simple pole (as it was at fixed leading order), but now
shifted from N = 0 to N = NB(αs) > 0. The overall effect
is a suppression of the small-x growth with respect to the
(symmetrized) DL result.

Combing all the effects together, the final form of the
resummed DGLAP eigenvalue in the ABF approach at
LO+LL is

γ LO+LL+ (N , αs) = γ
�,LO
+ (N , αs) + γ B,LL(N , αs)

− γ LO,LL d.c. (14)

while at NLO+NLL is

γ NLO+NLL+ (N , αs) = γ
�,NLO
+ (N , αs) + γ B,NLL(N , αs)

− γ NLO,NLL d.c. (15)

In the above equations γ
�,(N)LO
+ contains the symmetrized

double-leading contributions at LO and NLO respectively,
which include the fixed-order part of the anomalous dimen-
sions. The “Bateman” contribution γ B,(N)LL contains the
running coupling effects obtained by solving the evolution
equation, and carries the actual small-N singularity. The
remaining term in each equation avoids double counting. Fur-
ther details and explicit formulas are given in Appendix A.
For later convenience, we also define

	γ LL+ = γ LO+LL+ (N , αs) − γ LO+ (N , αs),

	γ NLL+ = γ NLO+NLL+ (N , αs) − γ NLO+ (N , αs), (16)

which contain only the resummed contributions to be added
to the corresponding fixed order. Note that one could also
imagine to match the resummation to NNLO. This step,
which is usually straightforward, is rather cumbersome in
this case essentially because the dependence on the strong
coupling of symmetrized DL result γ �+ is only known numer-
ically. We leave this further matching for future work, stress-
ing that it is of great interest especially in the context of PDF
fits.

Before moving to the resummation of the quark and gluon
entries of the anomalous dimension matrix, let us briefly
comment about the different approaches to the resummation
of γ+ that can be found in the literature. The resummation
proposed in Refs. [13–16] is based on very similar ingredi-
ents as ABF, namely the resummation of collinear singular-
ities, symmetrization and running coupling effect. However,
rather than relying upon duality to determine the resummed
anomalous dimension, the running coupling BFKL equa-
tion is solved and the anomalous dimension is extracted
from the solution. References [24–27] on the other hand,
only relied on running coupling corrections and not on sym-
metrization, with the argument that high-Q2 physics should
be dominated by the M ∼ 0 region. A thorough study of
all the sources of uncertainty in small-x resummation of γ+
would require investigating all the subleading modifications
described above and goes beyond the scope of this work.
However, given the conclusions of Ref. [49], which found
the three different approaches to be in reasonable agreement,
one might expect the small-x resummation of the eigenvalue
γ+ to be under good control.

2.2 Resummation of the quark anomalous dimension

The high-energy behaviour of the qg anomalous dimension
has been derived at the leading logarithmic level in Refs. [33,
34]. The quark anomalous dimensions are always suppressed
by a power of αs with respect to the gluon ones, so they enter
for the first time at NLL.

The all-order small-N behaviour of γqg is determined
from the resummed anomalous dimension γ+:

γqg(N , αs) = αsh (γ+(N , αs)) . (17)

In order to perform the resummation, the function h to all
orders in its argument is needed; however, to the best of
our knowledge, a closed form for h in either MS or Q0MS
does not exist. Nevertheless, the coefficients hk of its Taylor
expansion
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h(M) =
∞∑
k=0

hkM
k (18)

can be computed recursively, as described in Ref. [34]. The
first 35 coefficients have been worked out in Ref. [22]. The
singular behaviour of γqg up to O(αk

s ) is obtained by includ-
ing the singular behaviour of γ+ up to at least the same order.

We first address the question of which accuracy is needed
for γ+ in Eq. (17). Since NLL effects in γ+ will contribute to
NNLL in γqg , we could use the LL expression for the largest
eigenvalue. However, since the position of the pole deter-
mines the asymptotic small-x behaviour of the result, the
use of the LL γ+ pole is not ideal because it would lead to
displaced poles in different entries of the anomalous dimen-
sion matrix. Therefore, we find it convenient (mostly from a
numerical point of view) to use an hybrid expression which
we denote LL′ which is based on the DL-LO result but con-
tains the running-coupling NLL contribution. In formulae,
we define

γ LO+LL′
+ = γ

�,LO
+ (N , αs) + γ B,NLL(N , αs)

− γ LO,NLL d.c.. (19)

In other words, this expression is basically the same as
γ LO+LL+ , Eq. (14), but the parameters entering the Bateman
anomalous dimension γ B (and consequently all the double
counting terms), which determine the position of the pole,
are those of the NLL result Eq. (15).

The function γ LO+LL′
+ , Eq. (19), cannot be directly used in

Eq. (17), because its growth at large N (due to its fixed-order
component) would produce a spurious large N behavior in
γqg to all orders in αs . Therefore, we use

γ LL′
+ = γ LO+LL′

+ − γ LO+ + γ
LO,sing
+ , (20)

where γ
LO,sing
+ is the singular N ∼ 0 part of the LO anoma-

lous dimension.1 We point out that this procedure differs from
that of Ref. [22], where h is computed with γ NLO+NLL+ , and
the large-N behaviour is subtracted by recomputing h with
γ NLO+ − γ

NLO,sing
+ . We comment on the differences between

the two approaches in Appendix B.2. Here we just stress that
the two procedures are formally equivalent, our formulation
leading to a faster and more reliable numerical implementa-
tion.

The resummation of running coupling contributions also
affects the determination of γqg . In the approach of Ref. [35],
it is included by computing

1 In principle it would be sufficient to include in only the singular LL
contributions. However, one might argue that it is safer to also include
additional subleading (NLL) terms in it, provided they vanish at large N .
We indeed include these NLL terms; details are given in Appendix B.2.

γ NLL
qg = αs

∞∑
k=0

hk

[(
γ LL′
+

)k]
, (21)

where the square brackets notation
[
γ k

]
is defined by the

recursion

[
γ k+1

]
= γ

(
1 + k

γ̇

γ 2

) [
γ k

]
,

[
γ
] = γ, (22)

the dot denoting the derivative with respect to ln Q2. In our
implementation, γ̇ is computed as a derivative with respect
to αs , γ̇ = −β0α

2
s ∂γ /∂αs . The need to compute a derivative

with respect to αs of the resummed anomalous dimension
is one of the main practical motivation for using γ LL′

+ rather
than γ NLL+ , as the numerical evaluation of the former is much
faster and more stable than the latter, thereby allowing a more
precise determination of the numerical derivative. Note that
Eq. (22) comes from the approximate assumption that γ is
linear in αs [35] (we will explicitly re-derive this result in the
context of coefficient functions in in Sect. 3.3). Under this
assumption, γ̇ would simply be γ̇ 	 −β0αsγ . We shall also
consider this additional approximate form for γ̇ as a means
to estimate the uncertainty due to this approximation.

A further complication arises from the fact that after the
inclusion of running coupling corrections Eq. (21), the series
Eq. (18) is only asymptotic. In Ref. [22] the resummation
is performed by computing the sum of the series à la Borel,
using a truncated Borel integral corrected with an asymptotic
behaviour derived from a simpler solvable model. We adopt
here a different approximate procedure, which only relies on
the available information from h. We make use of a Borel–
Padé summation procedure, where we compute the sum of
the series à la Borel, and use a Padé approximant for the
sum of the Borel-transformed series obtained from a finite
number of coefficients of the expansion of h. Details of this
procedure are given in Appendix B.1.

Finally, from Eq. (21) we can construct the pure resummed
contribution

	γ NLL
qg = γ NLL

qg − αsh0 − α2
s h1γ

LO,sing
+ (23)

as the contribution to be added to the NLO anomalous dimen-
sion to obtain a matched NLO+NLL result.

2.3 Construction of the resummed singlet splitting function
matrix

Now that we have resummed the largest eigenvalue and the
qg component, we can construct the full anomalous dimen-
sion matrix in the gluon-singlet basis. First of all, the qq
component can be recovered by making use of the color-
charge relation [34]
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γ NLL
qq = CF

CA

[
γ NLL
qg − αs

π

n f

3

]
. (24)

The eigenvalue γ−, which is finite in N = 0 and does not
resum, contains a finite fixed-order constant terms which is
formally NLL,

γ NLL− = −αs

π

n f

3

CF

CA
. (25)

This particular form, together with the color-charge relation
Eq. (24), is such that the r− component of the transformation
matrix, Eq. (9), is simply given at NLL by r− = −CA/CF ,
and is therefore Q2-independent.

The gg component can be recovered by transforming back
the diagonal matrix to the physical basis, leading to the gen-
eral expression

γgg = γ+ − γ−r+/r−
1 − r+/r−

. (26)

Using Eq. (9), valid in the fixed-coupling case, we simply get
γgg = γ+ + γ− − γqq , which combined with Eqs. (24) and
(25) leads to

γ NLL
gg = γ NLL+ − CF

CA
γ NLL
qg . (27)

When resumming running coupling effects, the form of r±
changes and, consequently, Eq. (27) receives in principle
running-coupling corrections. However, we have checked
that these effects are typically smaller than the various
sources of ambiguity in the whole resummation procedure
coming from subleading contributions. Therefore, following
Ref. [22], and without loss of accuracy, we adopt Eq. (27)
as our default implementation for γgg . On the other hand, a
more careful treatment of running coupling effects is needed
when dealing with the resummation of coefficient functions,
as we shall see later in Sect. 3.2.

Finally, it remains to compute γgq ; however, the available
information is not sufficient to constraint its NLL part. This
is not a problem, because the accuracy of the solution of the
evolution equation is formally NLL even if the gq entry is
just LL. At LL, we can just use a color-charge relation

γ LL
gq = CF

CA
γ LL
gg ; (28)

this equation can be modified by using the NLL expression
of γgg , even though the resulting gq anomalous dimension
will still remain formally accurate at LL.

For phenomenological application we find useful to write
the resummed and matched anomalous dimensions as a fixed-
order contribution γ (N)LO plus a 	γ (N)LL, which contains the

resummation minus double counting. Thus, in this notation,
the NLO+NLL evolution matrix is given by

�NLO+NLL =
(

γ NLO
gg γ NLO

gq
γ NLO
qg γ NLO

qq

)
+

(
	γ NLL

gg
CF
CA

	γ NLL
gg

	γ NLL
qg

CF
CA

	γ NLL
qg

)
,

(29)

where 	γ NLL
qg is given in Eq. (23), and 	γ NLL

gg = 	γ NLL+ −
(CF/CA)	γ NLL

qg can be easily derived from Eq. (27). From
the above matrix, one can compute the inverse Mellin trans-
form and obtain the resummed splitting functions,

PNLO+NLL =
(
PNLO
gg PNLO

gq
PNLO
qg PNLO

qq

)
+

(
	PNLL

gg
CF
CA

	PNLL
gg

	PNLL
qg

CF
CA

	PNLL
qg

)
,

(30)

where 	PNLL
gg and 	PNLL

qg are the ultimate primary ingredi-
ents for a resummed DGLAP evolution.

The results in momentum space deserve further com-
ments. The contributions 	γi j vanish, by construction, at
large N . This is enough to guarantee that their x-space con-
jugates 	Pi j are ordinary functions, i.e. they do not contain
plus distribution or delta functions. However, they potentially
exhibit a constant behavior, or even an integrable singularity,
as x → 1. To avoid potential problems with matching at large
x , we follow ABF and we further suppress these functions at
x = 1 with an x-space damping:

	PNLL
gg → (1 − x)2	PNLL

gg (31a)

	PNLL
qg → (1 − x)2	PNLL

qg . (31b)

However, despite the many desirable features of the above
damping procedure, momentum is no longer conserved in
Eq. (29). In the flavor basis, momentum conservation implies
that

γgg(1) + γqg(1) = 0, γgq(1) + γqq(1) = 0, (32)

namely, the sum of each column must vanish in N = 1. Both
equations imply

	γ NLL
gg (1) + 	γ NLL

qg (1)

= 	γ NLL+ (1) +
(

1 − CF

CA

)
	γ NLL

qg (1) = 0, (33)

which is violated. The origin of the violation is twofold: first,
even though 	γ NLL+ is originally constructed to vanish in
N = 1, it looses this property once the x-space damping
is applied; second, 	γ NLL

qg is not necessarily vanishing at
N = 1 even in absence of damping. While this momentum
violation was not considered in the original ABF work [22],
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here we force momentum conservation by a modification of
the gg entry

	γ NLL
gg (N ) = 	γ NLL+ (N )−CF

CA
	γ NLL

qg (N )−c d(N ), (34)

where

c =
	γ NLL+ (1) +

(
1 − CF

CA

)
	γ NLL

qg (1)

d(1)
, (35)

and d(N ) is any function that goes to zero at large N and has
no leading singularities. We use

d(N ) = 1

N + 1
− 2

N + 2
+ 1

N + 3
↔ d(x) = (1 − x)2,

(36)

so that the momentum conservation can be restored directly
in both N and x space.

Given the numerous steps involved in the resummation
procedure, we find useful to summarize our strategy in imple-
menting them in a numerical code:

– we compute 	γ NLL+ and 	γ NLL
qg as described earlier in

this Sects. 2.1 and 2.2, respectively;
– we construct 	γ NLL

gg from Eq. (27);
– we compute the inverse Mellin transforms 	PNLL

gg and
	PNLL

qg ;
– we apply the damping Eq. (31);
– we compute the N = 1 Mellin moments of the damped

functions, and construct c, Eq. (35);
– we subtract c d(x) directly from 	PNLL

gg ;
– we finally compute 	PNLL

gq and 	PNLL
qq according to

Eq. (30).

The four 	Pi j constructed in this way are the primary output
of the code HELL.

2.4 Numerical implementation and results

The numerical implementation of the resummation of γ+ is
quite challenging. The main difficulty comes from the fact
that several ingredients of the resummation procedure are
not available in a closed analytic form, but they are only
defined as zeroes of implicit equations which must be solved
numerically in the complex plane. Moreover, these equations
can depend on functions which are themselves computed as
zeros of implicit equations (see Appendix A for more details
and explicit examples). While for real N one can rely on
robust root-finding algorithms such as bracketing methods,
in the complex plane one must rely on root-polishing meth-
ods whose convergence heavily depends on the accuracy of

the initial guess supplied to the algorithm. Moreover, several
functions have more than a single branch which satisfy the
zero criterium, hence it is crucial to consistently identify the
correct one.

We circumvent the above difficulties by computing
γ

(N)LO+(N)LL
+ (N , αs) only along the contour for Mellin

inversion, which we parametrize, in the upper plane ImN > 0
(in the lower plane we use the complex conjugate path), as
N = c + t exp i3π

2 , where t ∈ [0,∞) is the integration vari-
able and c ∼ 1 is a parameter whose value is adjusted for each
value of αs to give optimal convergence properties for the
Mellin inversion. For t = 0, N = c is real, and we can there-
fore use robust bracketing root-finiding algorithms which are
guaranteed to converge. As we move from N = c into the
complex plane (t > 0), we resort to the secant method, whose
reliability entirely depends on our ability to provide an accu-
rate guess of the root to be found. Our strategy here consists
in proceeding by small steps in t , using for initial guess at
each step the value of the function at the previous step. If the
step is fine enough and the function sufficiently well behaved,
this method works well and also avoids jumps across differ-
ent branches. Very rarely, when this method fails, we can also
use a slower but more stable minimum-finding algorithm, by
turning the problem of finding a zero of a function into the
one of finding the minimum of the absolute value of the func-
tion itself. As a consistency check, we verify that at large |N |
(large t) the resummed expression becomes asymptotically
close to the known fixed-order result.

Using this strategy, we construct tables of values of
	γ

(N)LL
+ (N , αs) along the contour for a grid in αs , one grid

for each value of n f = 3, 4, 5, 6. The tables also contain
information about the leading singularities of γ+, namely the
position of the leading poles and value of their residues. We
keep the code which produces the tables private, and use the
tables as primary ingredients for the public code presented
in this work.

The public code HELL reads the provided tables as input
files, and performs the remaining steps for the resumma-
tion. In particular, it constructs the resummed quark anoma-
lous dimension 	γ NLL

qg (N , αs) according to the procedure
described in Sect. 2.2, along the Mellin inversion contour.
It then performs the inverse Mellin transform and recon-
struct the full singlet splitting function matrix, as described
in Sect. 2.3. (A similar strategy is used for the resummed
coefficient functions, see Sect. 3.)

The HELL code, while being quite flexible and numeri-
cally stable, is rather “heavy” (∼ 100 MB) due to the size of
the files which contain the tabulated 	γ

(N)LL
+ , and also slow

due to the presence of numerical integration (although we
implemented a dynamical caching which speeds up multiple
evaluation in a single run). Therefore, we created a higher-
level variant of the code, dubbed HELL-x, which reads pre-
tabulated (with HELL) splitting functions (and coefficient
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Fig. 1 The resummed and matched splitting functions at LO+LL
(dashed green) and NLO+NLL (solid purple) accuracy: Pgg (upper
left), Pgq (upper right), Pqg (lower left) and Pqq (lower right). The
fixed-order results at LO (dashed) NLO (solid) and NNLO (dot-dot-

dashed) are also shown (in black). The NLO+NLL result also includes
an uncertainty band, as described in the text. The plots are for αs = 0.2
and n f = 4 in the Q0MS scheme

functions) on a {αs, x} grid for each value of n f and inter-
polates them. Flexibility is lost but this version is very light
(a few MB) and very fast. HELL-x has been interfaced to
the evolution code APFEL [53], and will be in future used to
obtain high-energy resummed PDF fits.

We now present some representative results for the
resummed splitting functions for αs = 0.2 and n f = 4. In
Fig. 1 we show all four entries of the evolution matrix: Pgg
(upper-left panel) and Pgq (upper-right panel), Pqg (lower-
left panel) and Pqq (lower-right panel). The values of x
range from 1 to 10−9. We include in the plots the fixed-order
splitting functions at LO (dashed), NLO (solid) and NNLO
(dot-dot-dashed) in black. At resummed level, we show in
solid purple the NLO+NLL result, while the LO+LL result
is shown in dashed green and is present only for Pgg and Pgq ,
as the other two entries do not have any leading logarithmic
enhancement. At NLO+NLL we have to specify the factor-
ization scheme. As previously mentioned, we adopt Q0MS,

which is convenient from an all-order viewpoint. We recall
that the difference between MS and Q0MS starts relative
order O(α3

s ) and therefore the fixed-order splitting functions
start to differ only beyond NNLO.

We see that at large x the resummation has no effect, due to
the damping, so the resummed result smoothly matches onto
the fixed order. At smaller x , the resummed result grows.
The effect is more pronounced in the case of Pqg , where
the growth starts immediately, while for Pgg the growth is
delayed by an initial decrease, a well-known feature of sub-
leading small-x contributions [15,21,27].

Similarly, we see the same effect on Pqq and Pgq , where
the contribution of the resummation is just CF/CA times the
contribution on the left plots, Eq. (30). As far as Pgg and Pgq
are concerned, we observe a nice perturbative convergence
of the resummed and matched results, with the NLO+NLL
being a very small correction over the LO+LL, especially
when compared with the fixed-order perturbative behaviour
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Fig. 2 Ratio of fixed-order and resummed LO+LL splitting functions
over their LO counterparts, for Pgg (left) and Pgq . For comparison, the
resummed results of Ref. [22] are also shown (dot-dashed cyan). The

plots are for αs = 0.2 and n f = 4. Note at this accuracy the factoriza-
tion schemes Q0MS and MS coincide

at small x . This convergence derives from the stability of the
resummation of γ+, mostly determined by the the constraints
imposed by symmetrization and momentum conservation, as
described in Sect. 2.1.

We have included in Fig. 1 an “uncertainty band” for the
NLO+NLL result. This band is determined by replacing in
Eq. (22) γ̇ with −αsβ0γ . As Eq. (22) is derived under the
assumption of linearity of γ LL′

+ , both expressions are equally
valid, and the difference between the two can be taken as a
measure of the uncertainty coming from subleading correc-
tions beyond the linear approximation. The distance between
our default construction and this alternative approach is then
symmetrized, thus giving the band. We acknowledge that
the resulting uncertainty is just one of the many sources of
uncertainties of the resummation, as coming from the var-
ious approximations described before and from subleading
terms. However, we think that the uncertainty shown in Fig. 1
is a good representative of the uncertainty from subleading
contributions. We have indeed verified that other variations of
subleading terms, e.g., the actual form of γ

LO,sing
+ in Eq. (20),

leads to similar effects. On the other hand, the uncertainty on
the resummation of γ+ is likely to be much smaller, due to
the many constraints on its construction, as confirmed the
agreement between different groups [49], as well as by the
good convergence of the gluon entries. Clearly, the overall
uncertainty from all sources of ambiguities will be larger, but
we believe the shape and the relative size among the various
entries is likely to be well represented by the current band.

We now move to the comparison of our results with other
approaches. To better highlight the impact of the resum-
mation, we show the comparisons in terms of ratios over
the fixed-order splitting functions. In Fig. 2 the ratio of
resummed LO+LL splitting functions over the LO ones are
presented for Pgg and Pgq (at this order, only the gluon
components are affected by resummation). Along with our

curves, the ABF results of Ref. [22] are also shown in dot-
dashed cyan (the plotted range is limited in x due to the avail-
able information from the original paper). The fixed NLO
(solid) and NNLO (dot-dot-dashed) are also shown (in gray)
for comparison’s sake. Overall, we observe good agreement
with our result. The tiny deviation is due to a different treat-
ment of the n f dependence of the result, see Appendix A
for more detail. Interestingly, we observe that at large x the
resummed results tend to follow the shape of the NLO and
NNLO results, before merging onto the LO due to the damp-
ing, perhaps an indication that higher order contributions pre-
dicted by the resummation go in the right direction even far
from the small-x region. Note also that the LO+LL ratio is
basically identical for Pgg and Pgq , a small difference being
visible only at large x . This is easily understood by noting
that the small-x behaviour of both fixed-order and resummed
results are simply related by a color factor CF/CA.

The comparison of the NLO+NLL resummed results are
shown in Fig. 3. Here, not only we compare our results
to the ones obtained by ABF in Ref. [22] but also to the
resummed splitting function calculated in Ref. [16] (hence-
forth the CCSS approach). The latter also comes with a (yel-
low) uncertainty band which is obtained from renormaliza-
tion scale variation. While the agreement with ABF is still
rather good, there are more significant deviations, especially
in the quark entries, which come from many sources. For Pqg
(and Pqq ), we use the LL′ anomalous dimension, Eq. (20),
while ABF used the full NLL anomalous dimension. More-
over, we implement differently the large-N subtraction, as
discussed in Sect. 2.2, and we also have different numerical
implementations, as we adopt a Borel–Padé summation for
the series Eq. (21). These differences also affect Pgg (and
Pgq ), due to Eq. (27) but their numerical impact appears to
be smaller. Note that for these gluon splitting functions we
also have differences at large x due to our implementation of
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Fig. 3 Ratio of fixed-order and resummed NLO+NLL splitting functions over their NLO counterparts. The plots are for αs = 0.2 and n f = 4 in
the Q0MS scheme, except for CCSS curve, which uses a different factorization scheme

momentum conservation, Eq. (34). Unfortunately, our simple
uncertainty band does not fully cover all these differences,
especially at larger x . When comparing to CCSS, we see
that the gluon entries Pgg and Pgq are in decent agreement,
our result lying at the lower edge of the CCSS band. The
quark entries Pqg and Pqq , however, are quite different both
in shape and in size. It is clear that these entries are affected
by larger uncertainties, as demonstrated by both our and the
CCSS bands, as well as by the large perturbative corrections
in the fixed order. Therefore, it is likely that such a difference
is a manifestation of this ambiguity, which could be fixed only
by a NNLL computation. Note also that the CCSS results are
obtained in a scheme which is not exactly the Q0MS, and
it is well known that differences between schemes can be
significant at resummed level (see e.g. the comparison of the
MS and Q0MS in Ref. [22]).

3 Resummation of perturbative coefficient functions

We now turn our attention to the resummation of small-x
enhanced contribution to collinearly factorized partonic coef-
ficient functions. The general formalism for the resummation
of inclusive cross sections is based on kt -factorization, which

was derived a long time ago [29–34] and it is known to LL2 for
an increasing number of cross sections and distributions [36–
38,40,41,43–45,54].

The ABF approach for resumming coefficient functions
was developed in Ref. [35] and applied to the case of DIS
structure functions in Ref. [22]. The crucial point to note is
that, analogously to the case of PDF evolution, the resum-
mation of formally subleading running coupling corrections
plays a crucial role. The procedure that we will describe in
this section does take these effects into account but departs
from the original ABF method in that the resummation is per-
formed directly in transverse momentum space rather than in
Mellin moment space. Although the two procedures are for-
mally equivalent, as we shall discuss below, the momentum-
space technique significantly helps with two shortcomings
of the Mellin-space approach. First of all, computing Mellin
moments of kt -factorized cross sections with respect of the
gluons’ kt often constitutes the bottle-neck of a calcula-
tion. Secondly, running coupling corrections in Mellin space
are included order-by-order in perturbation theory and then
a Borel summation of the resulting series is performed,

2 Here by LL we mean the lowest non-trivial logarithmic order, which
is sometimes NLL in absolute order counting, as in the case of DIS
discussed later in this section.
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resulting in potential numerical instabilities. Thus, working
directly in transverse-momentum space avoids dealing with
asymptotic series and opens up the possibility of perform-
ing resummed calculations for processes for which Mellin
moments cannot be computed analytically.

In order to keep the notation simple, we consider a pro-
cess with only one hadron in the initial state, such as DIS.
The generalization to two hadronic legs is straightforward,
as discussed in Ref. [38]. Because we are interested in the
high-energy limit, we limit ourselves to consider the singlet
sector. Although we work in transverse-momentum space,
we find convenient to take Mellin moments with respect the
longitudinal momentum fractions and to work with cross sec-
tions in N space. The generic cross section is then given by
[henceforth we use αs = αs(Q2)]

σ(N , Q2)

= Cg (N , αs) fg(N , Q2)+Cq (N , αs) fq(N , Q2)

= C+ (N , αs) f+(N , Q2)+C− (N , αs) f−(N , Q2),

(37)

where fq and fg are the quark-singlet and gluon PDFs,
respectively, and in the second line we have transformed to
the basis of the eigenvectors of singlet DGLAP evolution. In
DIS, σ can be either the structure function F2 or FL (F3 is
non-singlet), up to a normalization factor (for precise defini-
tions, see Ref. [34]). Since only f+(N , Q2) resums at small
x , we have a single coefficient function, C+(N , αs), which is
affected by small x enhancements. We will come back later
in Sect. 3.2 on the precise definition of C+ in terms of Cg

and Cq .
It is known, e.g. [29–31], that in the high-energy limit

a different, more general, form of factorization holds, even
away from the collinear limit3:

σ(N , Q2) =
∫

dk2
t C

(
N ,

k2
t

Q2 , αs(Q
2)

)
Fg(N , k2

t ) (38)

where Fg(N , k2
t ) is the unintegrated (kt dependent) gluon

PDF and C(N , k2
t /Q

2, αs) is the off-shell coefficient func-
tion, i.e. the coefficient function for the partonic process with
an off-shell initial state gluon.

In the high-energy limit, the unintegrated gluon density
can be related to the standard resummed PDF

Fg(N , k2
t ) = U

(
N ,

k2
t

Q2

)
f+(N , Q2). (39)

Before discussing the form of U(N , k2
t /Q

2), we immedi-
ately observe that once the relation Eq. (39) between the

3 For a more general discussion on transverse-momentum dependent
factorization, we refer the Reader to Ref. [55].

integrated and unintegrated PDFs is established, by compar-
ing the gluon contribution in kt -factorization Eq. (38) and the
high-energy contribution in collinear factorization Eq. (37)
we are able to write

C+ (N , αs) =
∫

dk2
t C

(
N ,

k2
t

Q2 , αs

)
U

(
N ,

k2
t

Q2

)
. (40)

This equation represents our main formula for the implemen-
tation of high-energy resummation in the coefficient func-
tions. InHELL, the k2

t integral is evaluated numerically, given
the off-shell cross section C(N , k2

t /Q
2, αs) in kt space, and

an actual form of U(N , k2
t /Q

2), which will be discussed in
the next subsection. Note that LL accuracy only requires to
calculate C to lowest order in αs . Moreover, its N dependence
is also subleading and one can set N = 0.

3.1 The evolution factor

We now turn to discussing the form of U(N , k2
t /Q

2) in
Eq. (39). As clear from Eq. (39), it first evolves the largest
eigenvector PDF from Q2 to the scale k2

t , where it then con-
verts it to the unintegrated gluon PDFs. It can be understood
either in terms of the all-order gluon Green’s function [29–
31,34] or as the evolution kernel of a generalized ladder
expansion [36].

At lowest order and fixed coupling, the form of U is
known [34]

Us

(
N ,

k2
t

Q2

)
= R(γs)

d

dk2
t

(
k2
t

Q2

)γs

, (41)

where γs is the anomalous dimension obtained from the
leading order BFKL kernel with duality at fixed coupling
αs = αs(Q2). We also note the scheme-dependent factor
R(γs) that originates from the correct treatment of collinear
singularities, the calculation of which requires a more accu-
rate analysis away from d = 4 space-time dimensions. In the
commonly used MS scheme this factor reads [34]

RMS(M) =
√

−1

M

� (1 − M) χ0 (M)

� (1 + M) χ ′
0 (M)

× exp

{
Mψ(1)+

∫ M

0
dc

ψ ′(1) − ψ ′ (1 − c)

χ0(c)

}
,

= 1 + O
(
M3

)
, (42)

where χ0(M) is the eigenvalue of the leading-order BFKL
kernel and �(x) and ψ(x) are the Euler gamma and di-
gamma functions, respectively. In Q0MS instead we simply
have

RQ0MS(M) = 1. (43)
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Comparing the last line of Eq. (42) to Eq. (43) we see that the
difference between the two schemes starts at relative O (

α3
s

)
.

It is also useful to write the scheme-dependent factor as

R(M) =
∫ ∞

0
dξ ξM−1R̄(ξ); (44)

while it is not straightforward to find a closed analytic form
of R̄MS(ξ) from Eq. (42), in the Q0MS scheme we simply
have R̄Q0MS(ξ) = δ(1 − ξ).

The running-coupling generalization of Eq (41) that we
implement is

U
(
N ,

k2
t

Q2

)
=

∫ ∞

0

dq2
2

q2
2

R̄
(
q2

2

k2
t

)

× exp

[∫ q2
2

k2
t

dq2
1

q2
1

γ+(N , αs(q
2
1 ))

]

× d

dk2
t

exp

[∫ k2
t

Q2

dq2
1

q2
1

γ+(N , αs(q
2
1 ))

]
,

(45)

where γ+ is the resummed anomalous dimension. Note that
by substituting γ+ → γs , at fixed coupling, we recover the
lowest-order result Eq. (41). The general structure of the
result appears fairly complicated because of the presence
of the scheme factor R̄. However, in the preferred scheme
Q0MS the first two lines of Eq. (45) evaluate to unity and the
result simplifies to

UQ0MS

(
N ,

k2
t

Q2

)
= d

dk2
t

exp

[∫ k2
t

Q2

dq2
1

q2
1

γ+(N , αs(q
2
1 ))

]
,

(46)

where we recognize the derivative of a DGLAP evolution
factor.

3.2 Basis transformation and collinear subtraction

Once C+ is computed according to Eq. (40), one can use the
relation between C+ and Cg,Cq to obtain resummed expres-
sions for Cg and Cq . This relation can be trivially obtained
from the transformation matrix that diagonalizes the DGLAP
evolution equation in the singlet sector, Eq. (6), leading to

C± = Cg + r±Cq . (47)

At fixed coupling, as discussed in Sect. 2.1, diagonalizing
the evolution equation simply amounts to diagonalizing the
singlet anomalous dimension matrix, and using Eq. (9) would
lead to the simple relations

C+ = Cg + γqg

γ+ − γqq
Cq ,

C− = Cg + γqg

γ− − γqq
Cq . (48)

However, as previously discussed, when running coupling
effects are taken into account, a transformation that diago-
nalizes the evolution matrix does not in general diagonalize
the evolution equation, since the derivative with respect to
Q2 acts on the transformation matrix, Eq. (7), producing an
additional contribution which is in general not diagonal. Fur-
thermore, we note that in contrast to the case of γgg , here a
more careful treatment of these running coupling corrections
is required in order to guarantee the all-order cancellation of
collinear singularities that may be present in C+.

Finding the general transformation matrix that diagonal-
izes the singlet evolution equation is not an easy task. How-
ever, because our goal is to find a running coupling version
of Eq. (48), a full solution is not needed, as long as we limit
ourselves to the LL accuracy.

To this purpose, it is convenient to consider the logarithmic
derivative of Eq. (37) with respect to Q2

dσ(N , Q2)

d ln Q2 =
(

dCg

d ln Q2 + Cgγgg + Cqγqg

)
fg(N , Q2)

+
(

dCq

d ln Q2 + Cqγqq + Cgγgq

)
fq(N , Q2)

=
(

dC+
d ln Q2 + C+γ+

)
f+(N , Q2)

+
(

dC−
d ln Q2 + C−γ−

)
f−(N , Q2). (49)

The first two and last two lines of Eq. (49) are related by
the same transformation matrix that relates first and sec-
ond line of Eq. (37). However, the logarithmic derivative
already produces running coupling contributions, making
further running-coupling effects on the transformation matrix
genuinely subleading. Thanks to this observation, we can use
the fixed-coupling transformation matrix to relate the vari-
ous terms in Eq. (49). For the + component we are mostly
interested into, this leads to the equation

dC+
d ln Q2 + C+γ+ = dCg

d ln Q2 + Cgγgg + Cqγqg

+ γqg

γ+−γqq

(
dCq

d ln Q2 +Cqγqq+Cgγgq

)
.

(50)

We now need to understand the logarithmic order of each
contribution, and keep only those terms which are LL. First,
we observe that the logarithmic derivative of the coefficient
function is one logarithmic order higher than the coefficient
function itself. This suggest that all derivative terms could be
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thrown away, leading back Eq. (37). However, the key point
of the resummation of running coupling effects is exactly
to keep those subleading terms which are suppressed by
αsβ0, which are precisely those coming from these deriva-
tives. Next, from the analysis of the previous section, we
know that γgg and γgq are LL, while γqg and γqq are NLL.
Since to all orders Cq is of the same logarithmic order as
Cg (as we shall see later in this section), this suggests that
only the first two terms on the right-hand side of Eq. (49)
should be kept. However, some of those terms can be leading
if there is a fixed-order contribution in the coefficient func-
tion which is of higher logarithmic order than the coefficient
function itself. This is for instance the case of the DIS struc-
ture function F2: in this case, both Cg and Cq are NLL (in
absolute counting), but the fixed-order expansion of Cq is
Cq = 1 +O(αs), where the first O(α0

s ) term is formally LL.
When this is the case, the term Cqγqg with Cq replaced by
its fixed-order superleading contribution leads to a leading
contribution to the equation and must be retained. Finally,
the last contribution is genuinely subleading.

After all these consideration, and further approximating
γgg with γ+ (the difference being subleading), we end up
with the equation

dC+
d ln Q2 + C+γ+ = dCg

d ln Q2 + Cgγ+ + Cqγqg, (51)

which can be easily solved introducing an exponential factor

U

(
N ,

Q2

Q2
0

)
= exp

[∫ Q2

Q2
0

dμ2

μ2 γ+(N , αs(μ
2))

]
, (52)

so that Eq. (51) becomes

d

d ln Q2 (UC+) = d

d ln Q2

(
UCg

) + Cqγqg. (53)

The solution is then

C+(N , αs) = Cg(N , αs) + Cq(N , αs)Uqg(N , Q2) (54)

having defined

Uqg(N , Q2) =
∫ Q2

Q2
0

dq2

q2 γqg(N , αs(q
2))

× exp

[∫ q2

Q2

dμ2

μ2 γ+(N , αs(μ
2))

]
, (55)

where Q0 is the scale at which U vanishes (which is the
position of the Landau pole), and we have left Cq outside
the integral because it is either 1 or 0. Eq. (54) represents the
running coupling version of the first of Eq. (48), at LL. As

a cross check, we can easily verify that if the coupling does
not run we get

C+(N , αs) = Cg(N , αs) + Cq(N , αs)
γqg(N , αs)

γ+(N , αs)
, (56)

which is indeed equivalent to Eq. (48) up to subleading
terms. With similar arguments, it is also possible to show that
the solution in presence of running of the equation for C−
leads exactly to its fixed-coupling counterpart, second line
of Eq. (48), up to NLL terms. Note that this suggests that
the generalization of the transformation matrix R, Eq. (6), is
simply obtained by using (up to subleading corrections)

r+ = Uqg(N , Q2) (57)

and the fixed-coupling value of r−.
We have now all the ingredients to obtain resummed

expressions for Cg and Cq . From Eq. (54) we immediately
have

Cg (N , αs) = C+ (N , αs) − Cq (N , αs)Uqg(N , Q2)

=
∫

dk2
t C

(
N ,

k2
t

Q2 , αs

)
U

(
N ,

k2
t

Q2

)

− Cq(N , αs)Uqg(N , Q2), (58)

where in the second line we have used Eq. (40). As we already
discussed, the Cq subtraction is suppressed by a NLL term,
so this term is present only when Cq has a fixed-order con-
tribution which is superleading. This is the case of the DIS
structure function F2, where C2,q is NLL (in absolute count-
ing) and C2,q = 1 +O(αs). In this case, we can just replace
Cq with 1 and get

C2,g (N , αs) =
∫

dk2
t C2

(
N ,

k2
t

Q2 , αs

)
U

(
N ,

k2
t

Q2

)

− Uqg(N , Q2). (59)

In other cases, such as the longitudinal structure functions
FL , CL ,q is still NLL in absolute counting but does not con-
tain any superleading fixed-order contributions, as it starts at
O(αs); therefore, the Cq contribution is genuinely sublead-
ing and one finds

CL ,g (N , αs) =
∫

dk2
t CL

(
N ,

k2
t

Q2 , αs

)
U

(
N ,

k2
t

Q2

)
.

(60)

The resummed expressions for Cq can be found from the
second of Eq. (48),

Cq(N , αs) = γqq(N , αs) − γ−(N , αs)

γqg(N , αs)
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×
[
Cg(N , αs) − C−(N , αs)

]
. (61)

We note that C− does not contain any logarithmic enhance-
ments to all orders and therefore it can be safely evaluated
at fixed-order (NLO) and at N = 0. Furthermore, we can
make use of the high-energy color-charge relation Eq. (24)
and arrive at

Cq(N , αs) = CF

CA

[
Cg(N , αs) − C−(0, αs)

]
, (62)

which shows that Cq and Cg are of the same logarithmic
order, as anticipated.

In order to perform the matching to the fixed-order, we
find useful to introduce (i = g, q)

	nCi (N , αs) = Ci (N , αs) −
n∑

k=0

αk
s C

(k)
i (N ), (63)

whereC (k)
i (N ) is the kth order coefficient of the αs expansion

of the resummed result Ci (N , αs). Hence, the second con-
tribution subtracts from the first term (the resummed result)
its expansion up to the perturbative order we want to match
to, e.g. n = 1 is NLO, n = 2 is NNLO. In this notation the
resummed and matched contribution is simply given by

CNnLO+LL
i (N , αs) = CNnLO

i (N , αs) + 	nCi (N , αs), (64)

where the resummed contributions 	nCi (N , αs) are com-
puted by HELL, while the fixed-order parts have to be pro-
vided by an external code. Note that the color-charge relation
Eq. (62) reduces to

	nCq(N , αs) = CF

CA
	nCg(N , αs) (65)

when written in terms of 	n contributions, provided n ≥ 1.
Note also that these 	nCq , with n ≥ 1, can be seen as the
resummed contributions to the pure-singlet quark coefficient
functions [34,38].

3.3 Equivalence between transverse-momentum space and
Mellin space resummations

In this section we want to compare our result Eq. (40) with
running coupling Eq. (45) to the analogous result obtained in
the ABF approach [22], which is performed in Mellin space.
For convenience, and without loss of generality, we work in
the Q0MS scheme, and using the definition Eq. (52) we can
write

UQ0MS

(
N ,

k2
t

Q2

)
= d

dk2
t
U

(
N ,

k2
t

Q2

)
= 1

Q2

d

dξ
U (N , ξ) ,

(66)

where we introduced the dimensionless variable ξ = k2
t /Q

2.
We can thus write Eq. (40) as

C+ (N , αs) =
∫

dξ C (N , ξ, αs)
d

dξ
U (N , ξ) . (67)

In the ABF approach the resummation of coefficient func-
tions closely follows the one of the quark anomalous dimen-
sion γqg , where in place of the function h(M), Eq. (18), the
Mellin transform of the off-shell coefficient function with
respect to kt is used. Therefore we define the so-called impact
factor,4

C̃(N , M, αs) = M
∫ ∞

0
dξ ξM−1C (N , ξ, αs) , (68)

where C̃(N , M, αs) admits an expansion in powers of M

C̃(N , M, αs) =
∑
k

C̃k(N , αs)M
k . (69)

Note that k ≥ −1 for processes that are not two-particle irre-
ducible in the high-energy limit and therefore their lowest-
order diagrams exhibit a collinear singularity, as in the case
of F2, while k ≥ 0 for processes without such collinear sin-
gularity, as in the case of FL . The inverse Mellin transform
is given by

C (N , ξ, αs) =
∫ c+i∞

c−i∞
dM

2π i
ξ−M 1

M
C̃(N , M, αs)

=
∑
k

C̃k(N , αs)

∫ c+i∞

c−i∞
dM

2π i
ξ−MMk−1

=
[
C̃−1(N , αs) ln

1

ξ
+ C̃0(N , αs)

]
θ(1 − ξ)

+
∑
k≥1

C̃k(N , αs)
[
∂k−1
ν δ(ν − ln ξ)

]
ν=0

,

(70)

where the integration contour is a standard Mellin inversion
contour, with 0 < c < 1. The resummed expression for
the coefficient function C+ can be now found substituting
Eq. (70) into Eq. (67). The integral over ξ can be performed
in all cases and we find

C+ (N , αs)= C̃−1(N , αs)

[
ln ξ0 U (N , ξ0)+

∫ 1

ξ0

dξ

ξ
U (N , ξ)

]

+ C̃0(N , αs) [1 −U (N , ξ0)]

+
∑
k≥1

C̃k(N , αs)
[
∂kνU

(
N , eν

)]
ν=0

, (71)

4 In the literature, this is usually called h.
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where we have introduced a lower integration limit ξ0. This
lower limit is equal to 0 in the fixed coupling case, but in the
running coupling case we have

ξ0 = exp

[
− 1

αsβ0

]
(72)

due to the presence of the Landau pole. Note that, assuming
γ+ > 0 (as appropriate close to the pole), U (N , ξ0) = 0 so
Eq. (71) simplifies

C+ (N , αs) = C̃−1(N , αs)

∫ 1

ξ0

dξ

ξ
U (N , ξ)

+
∑
k≥0

C̃k(N , αs)
[
∂kνU

(
N , eν

)]
ν=0

, (73)

which represents an equivalent form of Eq. (40).
Let us now focus on the simpler case without collinear

singularities, C̃−1 = 0. We want to show that the sum in
Eq. (73) corresponds to the procedure adopted in ABF, under
some assumptions on the form of the resummed anomalous
dimension. In particular, we recover ABF assuming that the
dominant running coupling effects are determined by 1-loop
running of the lowest power of αs appearing in the anomalous
dimension. In other words, one makes the approximation [as
usual αs = αs(Q2)]

γ+
(
N , αs(μ

2)
)

= γ+(N , αs)

1 + αsβ0 ln(μ2/Q2)
, (74)

which is an exact expression at LO, where γ+
(
N , αs(μ

2)
) =

αs(μ
2)γ

(0)
+ (N ). In order to better describe the exact anoma-

lous dimension which is not simply linear in αs , one can
replace

αsβ0 → − γ̇+(N , αs)

γ+(N , αs)
= α2

s β0

γ+(N , αs)

d

dαs
γ+(N , αs), (75)

so that the μ2 derivative of Eq. (74) in μ2 = Q2 is correct
(and the 1-loop structure is kept). In this particular approxi-
mation, the ν-derivatives in Eq. (73) satisfy the recursion

[
∂k+1
ν UABF

(
N , eν

)]
ν=0

=
[
∂kνUABF

(
N , eν

)]
ν=0

[
γ+(N , αs) − kαsβ0

]

=
[
∂kνUABF

(
N , eν

)]
ν=0

[
γ+(N , αs) + k

γ̇+(N , αs)

γ+(N , αs)

]
,

(76)

whereUABF indicates the evolution factor Eq. (52) computed
with γ+ from Eq. (74). We recognize the recursion defined
in Eq. (22). This recursive construction is exactly the method

employed by ABF to perform the running coupling resum-
mation of coefficient functions. Therefore, we recover the
ABF result5 (in the case of no collinear singularities, as in
FL )

CL ,g =
∑
k≥0

C̃L ,k(0, αs)
[
∂kνUABF

(
N , eν

)]
ν=0

, (77)

where we further computed the expansion coefficients C̃k in
N = 0. However, we recall that the resulting series is diver-
gent, and cannot be summed analytically, so sophisticated
numerical techniques with limited numerical accuracy are
needed in order to use Eq. (73), see Appendix B.1.

In presence of a collinear singularity, the first term in
Eq. (73) proportional to C̃−1(N , αs) does not vanish. Addi-
tionally, the collinear subtraction due toCq must be included.
In the ABF approach, the subtraction is written first in Mellin
space as αsh(M)/M , with h(M) defined in Sect. 2.2, and
subtracted directly at the level of inverse Mellin integrand,
leading to (in the case of F2)

C2,g =
∑
k≥0

[
C̃2,k(0, αs) − αshk+1

] [
∂kνUABF

(
N , eν

)]
ν=0

,

(78)

where hk are the expansion coefficients of h(M) in powers of
M , Eq. (18), and the collinear term C̃2,−1(0, αs)/M cancels
against the first term −h0/M of the collinear subtraction,
since C̃2,−1(0, αs) = αsh0. In our approach, Eq. (58) together
with Eq. (73) leads to

C2,g =
∑
k≥0

C̃2,k(N , αs)
[
∂kνU

(
N , eν

)]
ν=0

+ C̃2,−1(N , αs)

∫ 1

ξ0

dξ

ξ
U (N , ξ) −Uqg(N , Q2)

=
∑
k≥0

C̃2,k(N , αs)
[
∂kνU

(
N , eν

)]
ν=0

+
∫ 1

ξ0

dξ

ξ
U (N , ξ)

[
αsh0 − γqg(N , αs(Q

2ξ))
]
.

(79)

To prove the equivalence of Eq. (78) and (79) under the ABF
assumptions we need to express Eq. (21) with the help of
Eq. (76) as

γqg(N , αs(Q
2ξ)) = αs

∑
k≥0

hk
[
∂kνUABF

(
N , eν

)]
ν=ln ξ

.

(80)

5 At small N . We treat the large N behaviour differently, see discussion
in Appendix B.2.
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Fig. 4 The resummation contribution 	2Ca,g computed with Mellin-
space (dashed) and kt -space (solid) resummation for both a = 2 and
a = L , using αs = 0.2 and n f = 4 in the Q0MS scheme

Plugging this into Eqs. (79) it is immediate to verify that the
h0 term cancels, and the integral can be computed to lead to
exactly Eq. (78). Note that the usage of the running-coupling
version of the basis transformation discussed in Sect. 3.2 is
crucial to obtain the correct result. Had one used the fixed-
coupling version, the collinear singularity would not cancel.

Therefore, we have shown that our transverse momentum
space derivation and the Mellin space resummation adopted
by ABF are completely equivalent, even though the current
result is more general and does not rely on the assumptions of
Eqs. (74) and (75). A numerical comparison of Mellin-space
and kt -space resummation is performed in Fig. 4. The plot
shows 	2Ca,g Eq. (63) for both a = 2, L , with αs = 0.2
and n f = 4 in the Q0MS scheme. We observe that the two
approaches give indeed the same result. We note however
that the Mellin space implementation suffers from numerical
instabilities, which determine small oscillations around the
actual result. These oscillations become more severe at larger
αs , and disappear at smaller αs . We note that these numer-
ical instabilities are related to the approximate Borel–Padé
method used for the Mellin space implementation, which
necessarily uses a limited amount of information (i.e., a
finite number of coefficients of the M = 0 expansion, see
Appendix B.1). In Ref. [22] a different “truncated” Borel
method was used, which did not develop oscillation; how-
ever, also in that case the amount of information used was
limited, while in our kt -space approach we make use of all
the information residing in the off-shell cross section.

3.4 Numerical implementation and results

We now turn to the numerical implementation of the resum-
mation of coefficient functions in HELL. Starting from
Eq. (40) written as in Eq. (67), we integrate by parts (the

boundary terms vanish at ξ → ∞ thanks toC and in ξ0 thanks
toU ) and evaluate the off-shell cross section at N = 0 (since
its N dependence is subleading),

C+ (N , αs) = −
∫ ∞

ξ0

dξ
d

dξ
C (0, ξ, αs) U (N , ξ). (81)

As the resummation of coefficient functions is at present
accurate only at LL, we may conveniently compute U (N , ξ)

using the LL′ anomalous dimension introduced in Eq. (20),

U (N , ξ) = exp
∫ ξ

1

dζ

ζ
γ LL′
+

(
N , αs(Q

2ζ )
)

. (82)

However, since αs in the evolution factor is evaluated at Q2ζ

with ζ ranging up to ξ , and ξ is integrated over all accessible
values, the resummed anomalous dimension should be com-
puted at extreme values of αs , from 0 to ∞. This is problem-
atic in practice, since the resummed anomalous dimension is
itself computed numerically as described in Sect. 2, and it is
numerically challenging to reach both high and low values
of αs .

Therefore, a convenient implementation consists in adopt-
ing the approximation Eq. (74), possibly together with the
replacement Eq. (75), as in ABF. Under this assumption, the
integral in the exponent can be computed analytically, and
we have

UABF(N , ξ) =
(

1 + r(N , αs) ln ξ
)γ LL′

+ (N ,αs )/r(N ,αs )

(83)

with

r(N , αs) = − γ̇ LL′
+ (N , αs)

γ LL′
+ (N , αs)

. (84)

This expression is advantageous because the integral in the
evolution factor has been computed analytically and it only
requires γ LL′

+ and its αs derivative at αs = αs(Q2).
We now turn to the specific case of massless DIS. For an

observable without collinear singularity, such as the longitu-
dinal structure function, we simply have

CL ,g (N , αs) = −
∫ ∞

ξ0

dξ
d

dξ
CL (0, ξ, αs) UABF(N , ξ).

(85)

For processes with collinear singularities, we further need the
collinear subtraction Uqg , Eq. (55), to obtain Cg , Eq. (58).
Computing the integral Eq. (55) numerically, even within
the approximation Eq. (74), is challenging due to the need of
integrating γqg over a range of αs from αs(Q2) to ∞. In prin-
ciple, we could find an approximation similar to Eq. (74) for
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Fig. 5 The resummed and matched coefficient function CL ,i at
NLO+LL accuracy (solid purple) and at NNLO+LL accuracy (solid
green). The gluon case i = g is on the left-hand panel, the quark-singlet
case i = q is on the right-hand panel. The fixed-order results are also

shown in black: NLO in dashed, NNLO in dot-dot-dashed and N3LO
in dotted. Our result also includes an uncertainty band, as described in
the text. The plots are for αs = 0.2 and n f = 4 in the Q0MS scheme

γqg . However, we propose here a different approach, based
on the ABF formulation Eq. (80), which allows us to write

Uqg(N , Q2) = αs

∑
k≥0

hk+1

[
∂kνUABF

(
N , eν

)]
ν=0

+ αsh0

∫ 1

ξ0

dξ

ξ
UABF (N , ξ) . (86)

The sum in Eq. (86) can be computed as we compute γqg
itself. In fact, the computation is identical, except that the
hk coefficients are all shifted by a unity. This way, we can
pre-tabulate it once for all, and use it for any observable with
collinear singularities. The integral term in Eq. (86) can be
combined with the integral in Eq. (81), so that the collinear
subtraction is performed at the level of the integrand, leading
to a more reliable numerical implementation. So, for C2, we
have finally

C2,g (N , αs)

= −
∫ ∞

ξ0

dξ

[
d

dξ
C2 (0, ξ, αs) + αsh0

ξ
θ(1 − ξ)

]

× UABF (N , ξ) − αs

∑
k≥0

hk+1

[
∂kνUABF

(
N , eν

)]
ν=0

.

(87)

From these resummed expressions, we can then construct the
resummed contributions, 	nCg(N , αs), Eq. (63) (see also
Appendix C.2), and 	nCq(N , αs) from Eq. (65). At this
point, as we did for the splitting functions, we damp the
resummed contributions in x space multiplying by (1 − x)2

to ensure a smooth matching onto the fixed order.6

6 In practice, a smoother matching to NLO is obtained if 	1 is derived
from 	2, as detailed in Appendix C.

The resummed and matched partonic coefficient func-
tions are shown in Fig. 5 in the case of CL , and in Fig. 6
in the case of C2. In both cases, the gluonic coefficient
functions are shown on the left-hand panel, while the quark
ones on the right-hand panel. The solid purple line is for
NLO+LL, while the solid green for NNLO+LL. The resum-
mation is performed in Q0MS. Analogously to the case of
the splitting functions, the size of the uncertainty band is
obtained from the symmetrized difference between the cal-
culation performed with r as given in Eq. (84) or its lin-
earized version r = αsβ0. The corresponding fixed-order
results are also shown: NLO in dashed, NNLO in dot-dot-
dashed and N3LO [56] in dotted. The plots are for αs = 0.2
and n f = 4.

The comparison to the ABF approach is done in Fig. 7,
where the resummed contribution 	1Ca,g (a = 2, L) is
shown. We note that our results are in general agreement
with the ones of the ABF paper [22], especially if we focus
on the longitudinal coefficient functionsCL ,i , i = g, q. In the
case of C2,i , differences are instead more pronounced. This
should not come as a surprise because, as discussed at length,
the resummation for the coefficient functions differs by var-
ious subleading terms. We stress once again that we have
verified (see e.g. Fig. 4) that the resummation performed in
Mellin space (as in Ref. [22]) gives identical results (modulo
numerical instabilities at large αs) as our kt -space formula-
tion, as long as the same γ+ is used and the same subtraction
of the large-N terms is adopted. Therefore, the difference
comes from both the different way of subtracting the large-N
behaviour (see discussion in Appendix B.2) and the fact that
we use γ LL′

+ rather than γ NLL+ . Moreover, note that the band
is indeed larger in the C2 case, confirming that subleading
effects in C2 are more pronounced than in CL . In particular,
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Fig. 6 Same as Fig. 5, but for the coefficient functions C2,i

Fig. 7 Comparison of the resummation contribution 	1Ca,g as
obtained in this work (solid) versus the ABF results (dot-dashed) of
Ref. [22] for both a = 2 (purple) and a = L (green), using αs = 0.2
and n f = 4 in the Q0MS scheme

a direct comparison with the expressions of Ref. [22] shows
that our result differs by constant terms at O(αs) and O(α2

s )

in the resummed γ+, which lead to formally NLL and NNLL
differences in the resummed coefficient functions. We con-
clude that, in absence of a well motivated preference for these
subleading contributions, both results have to be considered
as equally valid at the present logarithmic accuracy, and the
ambiguity can only be fixed by computing (resumming) the
NLL contributions in the coefficient functions. At larger x ,
we observe a significant deviation between our result and
ABF for CL , which is not well represented by the band. In
this case the difference has to do with the large-N matching,
and we expect our matching procedure to perform better than
ABF.

4 Conclusions and outlook

In this paper we have discussed the resummation of high-
energy, i.e. small-x , logarithms that affect both the evolution
of collinearly-factorized parton densities and perturbative
coefficient functions. Despite a wealth of calculations have
been performed in kt -factorization, the framework that allows
for high-energy resummation, very few phenomenological
studies that incorporate both fixed-order and resummed cal-
culations existed, essentially because of the complexity of
the running-coupling resummation of the DGLAP and BFKL
evolution kernels.

In this paper we have overcome this obstacle and we
have developed a computer code named HELL (High Energy
Large Logarithms), available for download at

www.ge.infn.it/~bonvini/hell ,

that enables one to obtain small-x resummed DGLAP split-
ting and partonic coefficient functions. The code is based on
the formalism developed by Altarelli, Ball and Forte (ABF),
with several improvements that avoid numerical instabili-
ties and facilitate the future inclusion of different processes.
The main innovation with respect to the ABF original pro-
cedure consists in performing the resummation of perturba-
tive coefficient functions from the off-shell cross section in
transverse-momentum space rather than in Mellin-moment
conjugate space. Therefore, partonic off-shell cross sections
computed in kt -factorization can be directly used, without the
necessity of performing Mellin transformations with respect
to the initial-state gluons’ virtualities, which is often the
bottle-neck of this kind of calculations.

We have provided resummed results for the splitting func-
tions in the singlet sector, both at LO+LL and NLO+NLL
and, as a proof of principle, we have also performed the
resummation for the massless DIS structure functions F2
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and FL , at NLO+LL and NNLO+LL. We have provided a
qualitative estimate of the theoretical uncertainty by varying
subleading contributions that are related to the running of
the strong coupling. We have found that this uncertainty is
rather small for the gluon splitting functions Pgg and Pgq ,
essentially because their resummation is mostly driven by
the all-order behaviour of the leading eigenvalue in the sin-
glet sector, which is under good theoretical control. On the
other hand, the uncertainty is larger for the quark splitting
functions Pqg and Pqq , as well as for the closely-related DIS
coefficient functions, for which we only control the first tower
of logarithmic contributions. This feature also appears in the
comparisons to ABF and CCSS. Indeed, all the approaches
considered here are in decent agreement for the gluon split-
ting functions, while they significantly differ in the quark
sector, which is also plagued by rather large uncertainties.

We see this, rather technical, paper as the first necessary
step towards a rich program of small-x phenomenology. First,
we would like to use the results presented here to perform a
PDF fit of DIS data that consistently include small-x resum-
mation in both parton evolution and perturbative coefficient
functions, especially in view of the recent final release of
HERA data [1]. These small-x resummed PDF fits will be
performed in the NNPDF global analysis framework [57] and
preliminary results have been presented in [58].

Furthermore, having at hand resummed PDFs, we will
perform a study of small-x effects at high-energy hadron
colliders, such as the LHC or an FCC. In particular at FCC,
because of the extremely large center-of-mass energy, low-x
effects in processes like Higgs or vector boson production
are expected to become very important. In this respect, the
study of electro-weak boson production via the Drell–Yan
mechanism offers an almost unique environment to look for
deviation from standard DGLAP dynamics. Finally, some of
us have recently developed frameworks to combine small-x
resummation with threshold [59] and transverse-momentum
resummation [60] and we look forward to performing phe-
nomenological studies of joint resummation in the context of
Higgs and electro-weak bosons productions.
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A Details on the resummation of γ+

In this appendix we give further details about the resumma-
tion of γ+. A comprehensive treatment of this topic can be
found in Refs. [21,22] and it is beyond the purpose of this
paper. Here, we collect the relevant formulae needed for the
numerical implementation of our version of the ABF resum-
mation procedure, pointing out the changes and improve-
ments we introduced with respect to the literature.

A.1 Double-leading contributions and symmetrization

As we briefly explained in Sect. 2.1, one of the ingredients
for building a stable DL expansion of the BFKL kernel (and
by duality of the resummed DGLAP anomalous dimension)
is symmetrization [13], i.e. the construction of a kernel which
satisfies symmetry properties otherwise spoiled by sublead-
ing terms. As explained e.g. in Refs. [13,21], the kernel χ in
the fixed coupling limit satisfies χ(M, αs) = χ(1−M, αs) if
the kinematic is symmetric upon exchange of the virtualities
Q2 and k2. This is e.g. true for gluon–gluon scattering where
the kinematic is x = √

Q2k2/s, but the symmetry is broken
for DIS-like kinematics where x ∼ Q2/s. If χσ and χ� are
the kernels obtained with a symmetric (gluon–gluon scatter-
ing) and asymmetric (DIS) choice of x respectively, one can
however show that the following (equivalent) relations hold

χ�

(
M + 1

2
χσ (M, αs), αs

)
= χσ (M, αs),

χσ

(
M − 1

2
χ�(M, αs), αs

)
= χ�(M, αs). (88)

In the ABF approach one constructs, at a given logarithmic
accuracy, a symmetric kernel χσ such that

χσ (M, αs) = χσ (1 − M, αs) (89)

and a corresponding asymmetric kernel χ� satisfying
Eq. (88), by means of the introduction of so-called off-shell
kernels. An off-shell kernel is a kernel χ(M, N , αs) which
depends on both M and N and is related to its on-shell
counterpart χ(M, αs) and to the dual anomalous dimension
γ (N , αs) by the equation

χ(M, N , αs) = N , (90)

evaluated at

N = χ(M, αs) (91)
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or

M = γ (N , αs) (92)

respectively. With the expression “putting on-shell” an off-
shell kernel, we mean solving Eq. (90) for χ(M, αs) while
imposing Eq. (91) or solving it for or γ (N , αs) while impos-
ing Eq. (92). The resulting on-shell kernel and anomalous
dimension satisfy the duality relation in Eq. (12) by con-
struction. The solutions to these equations, similarly to the
duality equations, must be found via numerical methods in
the complex plane.

The procedure for the construction of the off-shell kernel
is based on the separation of collinear M ≤ 0 and anti-
collinear M ≥ 1 singularities in the original expression of
χ , i.e. rewriting

χ(M, αs) = χ+(M, αs) + χ−(M, αs) (93)

where the collinear pieceχ+ has poles in M = 0,−1,−2, . . .

and the anti-collinear piece χ− has poles in M = 1, 2, . . . As
suggested by the symmetry relation in Eq. (89), we can define
the two contributions such that they satisfy χ−(M, αs) =
χ+(1 − M, αs). The two off-shell kernels are thus roughly
defined as

χ�(M, N , αs) ≈ χ+(M, αs) + χ+(1 − M + N , αs) (94)

χσ (M, N , αs) ≈ χ+
(
M + N

2
, αs

)

+ χ+
(

1 − M + N

2
, αs

)
. (95)

The actual expressions for the kernels are more involved and
take into account several technical details which are thor-
oughly discussed in Ref. [21]. In the following we collect
explicit formulae for the results.

The anomalous dimension γ
�,LO
+ (N , αs) in Eq. (14) is

obtained by putting on-shell the kernel

χLO
� (M, N , αs) = χs

(αs

M

)
+ χs

(
αs

1 − M + N

)

+ αs χ̃0(M, N ) + χmom(N , αs), (96)

where here and in the following χmom is a subleading contri-
bution which implements momentum conservation. This can
be taken to be of the form

χmom(N , αs) = cm fmom(N ), (97)

where f (0) = f (∞) = 0 and fm(1) = 1, e.g.

fmom(N ) = 4N

(1 + N )2 , (98)

and cm is such that the final kernel satisfies momentum con-
servation

χ�(0, 1, αs) = 1. (99)

In Eq. (96), χs represents the dual of the LO DGLAP anoma-
lous dimension and it is defined by the implicit equation

γ LO+
(
χs

(αs

M

)
, αs

)
≡ αsγ

(0)
+

(
χs

(αs

M

))
= M. (100)

The kernel χ̃0(M, N ) contains the BFKL LL contributions
and is constructed from the LO BFKL kernel

χ0(M) = CA

π

(
2ψ(1) − ψ(M) − ψ(1 − M)

)
, (101)

by performing the off-shell extension discussed above and
removing the double counting with the DGLAP contribu-
tions. Its expression reads

χ̃0 (M, N ) = CA

π

(
ψ(1) + ψ(1 + N ) − ψ(1 + M)

− ψ(2 − M + N )
)
. (102)

At NLO the term γ
�,NLO
+ appearing in Eq. (15) differs by

the fixed-coupling on-shell dual γ
�,NLO,fc
+ of the NLO ker-

nel by a running coupling correction to the duality relation,
according to

γ
�,NLO
+ (N , αs)

= γ
�,NLO,fc
+ (N , αs)−β0αs

(
χ ′′

0 (γs(αs/N )) χ0 (γs(αs/N ))

2
(
χ ′

0 (γs(αs/N ))
)2 − 1

)
,

(103)

where the function γs is the dual of the LO BFKL kernel

αs χ0(γs(αs/N )) = N . (104)

The anomalous dimension γ
�,NLO,fc
+ is obtained by putting

on-shell the kernel

χNLO
� (M, N , αs) + α2

s χ
β0
1

(
M − N

2
, N

)

+ β0α
2
s

(
χ0 (M, N )

M
− CA

πM2

)
, (105)

where

χ0 (M, N ) = χ̃0 (M, N ) (106)

+ CA

π

(
1

M
+ 1

1 − M + N

)

χ
β0
1 (M, N ) = −β0

CA

π
ψ ′ (2 − M + N

2

)
(107)
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χNLO
� (M, N , αs) = χs,NLO (M, αs)

+ χs,NLO (1 − M + N , αs)

+ αs χ̃0(M, N ) + α2
s χ̃1(M, N )

+ χmom(N , αs). (108)

In the last equation χs,NLO is the dual of the NLO DGLAP
anomalous dimension

γ NLO+ (χs,NLO(M, αs), αs) = M. (109)

Our construction of the kernel χ̃1(M, N ) follows the proce-
dure outlined in Ref. [21] (see in particular Appendix A of
that reference), but the result slightly differs since we sepa-
rate the collinear and anti-collinear singularities in the whole
range −∞ < M < +∞ rather than just on a finite interval
(the impact of this on the resummed splitting functions is
however very small and formally of higher twist). The result
can be written as

χ̃1(M, N ) = χ̃u
1 (M, N ) − χ̃u

1 (0, N ) + χ̃u
1 (0, 0). (110)

where

g1 = − 13n f + 10C2
An f

36π2CA
(111)

g2 = − 11C3
A + 2n f

12π2CA
(112)

χ̃u
1 (M, N ) = χ̆1(M, N ) − g1

(
1

M
+ 1

1 − M + N

)

− g2

(
1

M2 + 1

(1 − M + N )2

)
(113)

and

χ̆1(M, N ) = χ1(M, N )

− 1

2
χ0(M, N )

CA

π

(
2ψ ′(1 + N ) − ψ ′(M)

− ψ ′(1 − M + N )
)
. (114)

The symmetrized kernel χ1 is written in terms of the function
φ+
L defined by

φ+
L (M) ≡

∫ 1

0
dx

Li2(x)

x + 1
xM−1 = π2

6
ln(2)

−
∞∑
k=1

ak

(
M−1

M−1+k

π2

6
+ k (ψ(M+k)−ψ(1))

(M−1+k)2

)
,

(115)

as

χ1 (M, N )

= −1

2
β0

CA

π

(
π2

C2
A

χ0(M, N )2−ψ ′(M) − ψ ′(1−M+N )

)

+ C2
A

4π2

[(
67

9
− π2

3
− 10n f

9CA

)
(ψ(1) − ψ(M)) + 3ζ(3)

+ ψ ′′(M) + 4

(
π2

24

(
ψ

( 1
2 + M

2

) − ψ
(M

2

)) + φ+
L (M)

)

+ 3

4(1−2M)

(
ψ ′ ( 1

2 + M
2

)−ψ ′ (M
2

) + ψ ′ ( 1
4

) − ψ ′ ( 3
4

))

+ 1

16

(
1 + n f

C3
A

)
(2 + 3M(1 − M))

×
{

1

1 − 2M

(
ψ ′ ( 1

2 + M
2

) − ψ ′ (M
2

) + ψ ′ ( 1
4

) − ψ ′ ( 3
4

))

+ 1

2(1+2M)

(
ψ ′ ( 1

2 + M
2

)−ψ ′ (M
2

)+ψ ′ (− 1
4

)−ψ ′ ( 1
4

))

− 1

2(3−2M)

(
ψ ′ ( 1

2 + M
2

)−ψ ′ (M
2

)+ψ ′ ( 3
4

)−ψ ′ ( 5
4

))}

+ (M ↔ 1 − M + N )

]
. (116)

In the numerical implementation of the resummation pro-
cedure for n f �= 0, in Eqs. (100) and (109) we do not use the
exact eigenvalue of the DGLAP matrix γ+. The reason for
this is the presence of a branch-cut singularity in the solution
for the eigenvalue equations. Although this branch-cut can-
cels out in results for physical observables, in practice the
exact cancellation is spoiled by subleading terms introduced
in the resummation procedure. Since the cut is on the right
of the leading small-N singularity, it introduces an unphys-
ical oscillating behaviour in the splitting functions. One can
however observe that the whole resummation procedure can
be consistently carried out by replacing γ+ with any function
which has the same small-N behaviour. In our approach, we
replace γ+ with the same function evaluated in n f = 0 plus
the n f dependence of the LL and NLL contributions only. As
usual, we also add a subleading term which enforces exact
momentum conservation. The only missing pieces from the
resulting DL expansion are thus the n f -dependent contribu-
tions which are not enhanced at small N , but these always
cancel out when taking the difference between resummed and
unresummed result. The final result for 	γ LL+ and 	γ NLL+
defined by Eq. (16) is thus correct at the given logarith-
mic accuracy in both ln(1/x) and ln Q2 but free of spurious
branch cuts. In Ref. [22] a slightly different method was used,
where a rational approximation of the whole n f dependent
part was used, but we find our minimal approach cleaner and
more convenient (note e.g. that by adding too many terms
to the approximation one reconstructs an approximation of
the branch cut and thus reproduces the unphysical oscillat-
ing behaviour of the result). We verified that the difference
between the two approaches is numerically very small (and

123



Eur. Phys. J. C (2016) 76 :597 Page 23 of 28 597

of course formally subleading). A minor subtlety arises when
dealing with (subleading but de facto dominant) running cou-
pling effects, which we discuss in the next section.

A.2 Running-coupling contributions

The leading small-N singularity of the anomalous dimen-
sion is determined by running coupling corrections which,
as already mentioned, determine the small-x asymptotic
behaviour of the splitting functions and can be resummed
by solving the BFKL evolution equation for f+ [24–26]. In
the ABF approach [21], the resummation of the dominant
running coupling contributions is encoded in the so-called
Bateman anomalous dimension γ B,(N)LL(N , αs) appearing
in Eqs. (14) and (15) (henceforth generically referred to
as γ B(N , αs)). The latter is determined from the solution
of the BFKL evolution equation for f+, obtained from a
quadratic approximation of the BFKL kernel around its min-
imum M = Mmin(αs), which in turn corresponds to the
rightmost singularity of the DL anomalous dimension. This
implies that γ B(N , αs) depends on the intercept c(αs) and
curvature κ(αs) of the kernel in M = Mmin and their deriva-
tives with respect to αs . These are referred to as Bateman
parameters. The Bateman parameters are most conveniently
computed using the BFKL kernel in symmetric variables,
which is related to the kernel in DIS variables by Eq. (88).
Notice that the values of c and κ are the same for both kernels.

The actual BFKL kernel used for the calculation of the
Bateman parameters differs from the one discussed in the
previous subsection in two respects. As we explained in
Appendix A.1, in order to cure the unphysical branch cut
arising from the eigenvalue equation of the anomalous-
dimension matrix, we did not include the full n f dependence
in γ+ (although we argued that the final result is still correct
at NLL in both ln(1/x) and ln Q2). Here, instead, we include
the full n f dependence, since the branch-cut problem does
not affect the parameters c and κ . Since the running coupling
effects, though formally subleading, are in fact dominant and
determine the small-x asymptotic behaviour, the inclusion of
the full ln Q2 dependence at LO and NLO is important to
make sure that we do not miss relevant effects. Note that this
procedure differs from the approach of Ref. [22] where the
rational approximation of the n f -dependent part of the eigen-
value is used for both the DL contributions and the Bateman
parameters.

The second difference between the Bateman kernel and
the DL one is due to the method used in solving the differen-
tial evolution equation. As observed in Sect. 2.1, in M-space
the strong coupling is a differential operator α̂s , more pre-
cisely a function of −∂/∂M . In order to write the evolution
equation as a standard differential equation, the powers of
α̂s are moved to the left of each term. This reordering of
operators generates further contributions due to commuta-

tors between α̂s and (functions of) M , as described in detail
in Refs. [21,61].

Because operator reordering of LO terms only generates
NLO contributions, at LO the Bateman (off-shell) kernel can
be identified with the fixed-coupling one

χLO
B,σ (M, N , αs) = χLO

σ (M, N , αs), (117)

constructed according to the method described in
Appendix A.1, except for the fact that, as we explained, the
full eigenvalue γ+ is used in the DGLAP contributions in
χLO

σ . Because of the symmetry M ↔ 1 − M , this implies
that, at LO, the minimum is at Mmin = 1/2.

At NLO, we need to include in the Bateman kernel con-
tributions from operator reordering of LO terms. The posi-
tion of the minimum is thus shifted from M = 1/2 to
M = Mmin(αs). The NLO Bateman off-shell kernel can be
written as

χNLO
B,σ (M, N , αs) = χNLO

σ (M, N , αs) + α2
s χ

β0
1 (M, N )

+ χβ0
s (M, N , αs) + χ

β0
i (M, N , αs)

(118)

where χNLO
σ (M, N , αs) = χNLO

� (M + N/2, N , αs) is the
symmetric counterpart of the DL kernel, Eq. (108) (but,
once again, using the full eigenvalue of γ NLO+ ), χ

β0
1 (M, N )

is defined in Eq. (107) and

χβ0
s (M, N , αs) = 1

2
β0

α3
s(

M + N
2

)3 χ ′′
s

(
αs

M + N
2

)

− 1

2
β0

α3
s(

1 − M + N
2

)3 χ ′′
s

(
αs

1 − M + N
2

)

− β0
α2
s(

1 − M + N
2

)2 χ ′
s

(
αs

1 − M + N
2

)
,

(119)

χ
β0
i (M, N , αs) = 1

M + N/2
α2 β0

[
χ̃0(M, N )

+ 1

M + N/2
χ ′
s

(
αs

M + N/2

)

+ 1

1 − M + N/2
χ ′
s

(
αs

1 − M + N/2

)]
.

(120)

The expressions in Eqs. (119) and (120) are new, since in
Ref. [21] they were given as Taylor expansions around M =
1/2 (notice that Mmin − 1/2 = O(αs)). It is worth pointing
out that these expressions, on top of removing the truncation
error present in the mentioned Taylor expansion, can be easily
evaluated numerically since multiple derivatives of χs can
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always be written in terms of derivatives of γ LO+ evaluated at
the solution for χs .

The result for the Bateman anomalous dimension can be
written as

γ B(N , αs) = 1

2
− β0ᾱs + 1

A(N , αs)

×
(

2B(N , αs)U (1 − B(N , αs), 1, z)

U (−B(N , αs), 0, z)
−1

) ∣∣∣∣
z= 2

β0 ᾱs A(N ,αs )

,

(121)

whereU (a, b, z) is the confluent hypergeometric function of
the second kind and

A(N , αs) ≡
√

1
2 κ̄(αs)

N − c̄(αs)
(122)

B(N , αs) ≡ 1

2β0

(
c′(αs)

N − c̄(αs)
+ κ ′(αs)

κ̄(αs)

) √
N − c̄(αs)

1
2 κ̄(αs)

(123)

c̄(αs) ≡ c(αs) − αsc
′(αs) (124)

κ̄(αs) ≡ κ(αs) − αsκ
′(αs) (125)

1

ᾱs
≡ 1

αs
+ κ ′(αs)

κ̄(αs)
. (126)

Notice that the only difference between γ B,LL and γ B,NLL is
the kernel used for the computation of the Bateman parame-
ters, as explained above, while their functional form is iden-
tical. An equivalent representation in terms of Bateman func-
tions (from which the name for γ B) is given in Ref. [21].

The double-counting terms between the Bateman anoma-
lous dimension and the DL expansion which appear in
Eqs. (14) and (15) can be written as

γ LO,LL d.c.(N , αs) = γ
B,LL
s (N , αs) + γ

B,LL
ss,0 (N , αs)

+ γ LO+LL
match (N , αs) + γ LO+LL

mom (N , αs),

(127)

γ NLO,NLL d.c.(N , αs) = γ
B,NLL
s (N , αs) + γ

B,NLL
ss,0 (N , αs)

+ γ B
ss,1(N , αs) + γ NLO+NLL

match (N , αs)

+ γ NLO+NLL
mom (N , αs), (128)

at LO and NLO respectively, where

γ B
s (N , αs) = 1

2
−

√
N − c(αs)

1
2κ(αs)

, (129)

γ B
ss,0(N , αs) = − β0αs + 3

4
α2
s β0

κ ′(αs)

κ(αs)
, (130)

γ B
ss,1(N , αs) = 1

4
α2
s β0

c′(αs)

c(αs) − N
. (131)

The γmatch term in Eqs. (127) and (128) removes a subleading
spurious branch-cut due to using different kernels for the DL
and the Bateman anomalous dimensions. It can be chosen to
be of the form

γmatch(N , αs) =
√

N − c
1
2κ

−
√

N − cβ0

1
2κβ0

−
√

N + 1
1
2κ

+
√

N+1
1
2κβ0

+ 1+c√
2κ(N+1)

− 1+cβ0√
2κβ0(N+1)

,

(132)

where c and κ are the Bateman parameters while cβ0 and
κβ0 are the intercept and curvature in the minimum of the
final off-shell kernels defined in Eqs. (96) and (105) for the
symmetrized DL result. Finally, the termγmom is a subleading
contribution which enforces momentum conservation

γ
(N)LO+(N)LL
+ (1, αs) = 0, (133)

and can be chosen to be of the same form as χmom in Eq. (97).
We finally observe that, for the anomalous dimension

γ LO+LL′
+ defined in Eq. (19), the double counting term

γ LO,NLL d.c. has the same form of γ LO, d.c. but with the Bate-
man parameters c and κ computed from the NLO Bateman
kernel (118) in order to match the singularities of γ B,NLL.

B Details on the resummation of γqg

In this section we provide some detail on the resummation of
γqg . Note that what follows also applies to the resummation
of Uqg , Eq. (86), and of the partonic coefficient functions.

B.1 Borel-Padé method

Our starting point is either Eqs. (17) or (21), both of which
provide the resummation of γqg in terms of the function h(M)

which is not known in closed form. Only the first few coeffi-
cients of its Taylor expansion in M , Eq. (18), are known.
However, the usage of a truncated series will inevitably
decrease the all-order logarithmic accuracy to a fixed-order
accuracy. Therefore, we need a method to keep the all-order
nature of the result, while dealing with just a finite set of
coefficients.

The idea used here (originally proposed in Ref. [62]) is
to construct a Padé approximant of the sum of the series
from a given number of coefficients. In practice, given that
the series is expected to diverge [22], the actual implemen-
tation consists in summing the series à la Borel, using a
Padé approximant for the Borel-transformed series. Namely,
Eq. (21) becomes
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γ NLL
qg = αs

∫ ∞

0
dw e−w

∞∑
k=0

hk

[(
γ LL′
+

)k] wk

k! (134)

where the inner sum is to be replaced by its Padé approximant.
In Ref. [62] a diagonal [p/p] Padé, in which the degree of the
numerator is identical to the degree of the denominator, was
used. Here, we have found that a better numerical stability is
achieved by using an almost-diagonal approximant [p/(p−
1)], where the degree of the denominator is lower by a unity.
We also consider a stronger second-order Borel summation,
which basically consists in applying the Borel method twice,
leading to [22,62]

γ NLL
qg = αs

∫ ∞

0
dw 2K0(2

√
w)

∞∑
k=0

hk

[(
γ LL′
+

)k] wk

(k!)2 ,

(135)

where K0 is a modified Bessel function of second kind.
Again, the inner sum is to be replaced by its Padé approxi-
mant. While this stronger method might not be strictly nec-
essary, we find that it performs better than the first-order
method. Therefore, we use Eq. (135) for all applications pre-
sented in this work.

This Borel–Padé method, though far from optimal, works
reasonably well, provided αs is not too large (αs � 0.3)
and the number of coefficient used is not too high (we use
p = 8, i.e. 16 coefficients). We adopt this method also for
the computation of the part of Uqg , Eq. (86), which is given
as a series.

B.2 Large-N subtraction

We now briefly comment on the two ways of subtracting the
large-N behaviour in the computation of γqg we mentioned
in Sect. 2.2. For ease of notation, let us denote

γ = γ LO+LL′
+ , γ̄ = γ LO+ − γ

LO,sing
+ , (136)

such that γ LL′
+ = γ − γ̄ , and

lim
N→∞(γ − γ̄ ) = 0. (137)

Ignoring for simplicity the complications coming from the
resummation of running coupling effects, which is not rele-
vant for the present discussion, we implement the resumma-
tion of γqg as

γqg = αsh (γ − γ̄ ) , (138)

Equation (21), which automatically vanishes in the large-
N limit due to Eq. (137) (except for the 0-th order term of the

series, which is anyway subtracted when matching to fixed
order). This differs from the choice performed by ABF [22]7

γ ABF
qg = αsh(γ ) − αsh(γ̄ ) + αsh(0), (139)

where the first term contains the small-x resummation, and
the second term subtracts the large-N behaviour by recom-
puting h with γ̄ as argument; finally, the zero-th order con-
stant is restored with the last term.8 Note that in the original
ABF formulation the full NLO+NLL anomalous dimension
was used, however here we are interested in the different ways
of subtracting the large-N behaviour, so we do not need to
add this complication to the discussion. In other words, we
apply the large-N subtraction before acting with h, while
ABF do it after h. Our option is closer to the “plain” resum-
mation obtained by γ s

qg = h(γs), and has the advantage of
having to compute h (through the Borel–Padé method) only
once.

To understand the differences between the two approaches
we expand the two results

γqg = 1 + h1(γ − γ̄ ) + h2(γ
2 + γ̄ 2 − 2γ γ̄ )

+ h3(γ
3 − γ̄ 3 − 3γ 2γ̄ + 3γ γ̄ 2) + . . . (140)

γ ABF
qg = 1 + h1(γ − γ̄ ) + h2(γ

2 − γ̄ 2)

+ h3(γ
3 − γ̄ 3) + . . . (141)

from which we can write the difference as

γ ABF
qg − γqg = γ̄ (γ − γ̄ )

[
2h2 + 3h3γ + . . .

+ hk

k−2∑
j=0

γ̄ jγ k−2− j
[

1 + (−1) j
(
k − 1

j + 1

)]
+ . . .

]

(142)

These terms vanish at large N because of Eq. (137), as they
should, so the large-x limit is the same with the two proce-
dures. At small N , close to the pole, these terms vanish only if
γ̄ vanishes in N = 0. When this is the case, it is then clear that
the two approaches will give equivalent results (this is indeed
what we find). However, if γ̄ does not vanish in N = 0, the
difference, though formally subleading, can be sizeable.

From this observation it seems favourable to construct γ̄

such that it vanishes in N = 0. This is achieved if γ
LO,sing
+

contains not only LL terms (as formally strictly necessary)
but also NLL terms (which are not formally needed for the
present accuracy). Expanding the LO at small N up to NLL

7 We observe that Eqs. (3.29) and (4.25) of Ref. [22] contain several
typos.
8 The last term is actually irrelevant when computing just 	γqg , as it
is subtracted out anyway.
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we have

γ
LO,sing
+ = αs

π

(
CA

N
− 11CA + 2n f (1 − 2CF/CA)

12(N + 1)

)
.

(143)

Note that in the second term (the NLL contribution) we have
added a damping factor 1/(N+1). This is needed because this
NLL term is originally a constant, and therefore if included
without damping it would spoil Eq. (137), and hence the
large-N subtraction.

C Details of DIS resummation

In this appendix we collect the relevant expressions for the
massless off-shell coefficient functions in DIS, needed for the
resummation described in Sect. 3, and discuss the matching
to fixed order.

C.1 Massless off-shell coefficient functions

The off-shell cross section in the case of massive quarks
has been computed in Ref [30]; more precisely, the N = 0
moment of the cross section is Eq (4.12).9 Here we take
the massless limit of the expression reported in Ref. [30],
obtaining

C2(0, ξ, αs) = n f
αs

3π

3

8

∫ 1

0

dx1√
1 − x1

∫ 1

0

dx2√
1 − x2

(2 − x1)x2
2 + x1x2ξ(3x1 + 3x2 − 4x1x2) + (2 − x2)x2

1ξ2

(x2 + x1ξ)3 .

(144)

Its Mellin transform is [34]

C̃2(0, M, αs) = M
∫ ∞

0
dξ ξM−1C2(0, ξ, αs)

= n f
αs

3π

1

M

3(2+3M−3M2)

2(3−2M)

�3(1−M)�3(1+M)

�(2−2M)�(2+2M)
.

(145)

For the longitudinal coefficient function, we find an expres-
sion similar to Eq. (144)

CL(0, ξ, αs) = n f
αs

3π

3

8

∫ 1

0

dx1√
1 − x1

∫ 1

0

dx2√
1 − x2

× x1x2

x1 + x2ξ
; (146)

9 N moments are computed with respect to ρ = 4m2

s rather than z =
Q2

s , however the difference is subleading.

its Mellin transform reproduces the result of Ref. [34]:

C̃L(0, M, αs) = M
∫ ∞

0
dξ ξM−1CL(0, ξ, αs)

= n f
αs

3π

3(1 − M)

3 − 2M

�3(1 − M)�3(1 + M)

�(2 − 2M)�(2 + 2M)
.

(147)

For our numerical implementation, we find useful to note that
both C2(0, ξ, αs) and CL(0, ξ, αs) satisfy

C(0, ξ, αs) = 1

ξ
C

(
0,

1

ξ
, αs

)
, (148)

which implies

C̃(0, M, αs)

M
= C̃(0, 1 − M, αs)

1 − M
. (149)

C.2 Matching to fixed-order

In order to calculate the resummation contributions 	nCi ,
i = g, q, defined in Eq. (63), we have to consider the pertur-
bative expansion of the resummed results. Regardless of the
approximation we use to compute it, the evolution factor U
can be expanded as

U (N , ξ) = 1 + αsγ
(0)
+ (N ) ln ξ + O(α2

s ). (150)

In our case the resummed anomalous dimension is the LL′
one, Eq. (20), introduced in Sect. 2.2, so αsγ

(0)
+ = γ

LO,sing
+ ,

Eq. (143).
In the case of the longitudinal structure function FL , we

can plug Eq. (150) into Eq. (85) and get

CL ,g(N , αs) = αsC
(1)
L ,g(N ) + α2

s C
(2)
L ,g(N ) + O(α3

s ), (151)

with

C (1)
L ,g(N ) = CL (0, 0, 1) ,

C (2)
L ,g(N ) = −γ

(0)
+ (N )

∫ ∞

0
dξ

d

dξ
CL (0, ξ, 1) ln ξ, (152)

where we made explicit use of the fact that C (N , ξ, αs) is
linear in αs , and we let ξ0 → 0 since we are expanding to
fixed order. The expansion of C2,

C2,g(N , αs) = αsC
(1)
2,g(N ) + α2

s C
(2)
2,g(N ) + O(α3

s ), (153)

is obtained equivalently by plugging Eq. (150) into Eq. (87).
The solution is more involved and reads

C (1)
2,g(N ) =

(
C2 (0, ξ, 1) + h0 ln ξ

)
ξ=0

− h1,
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C (2)
2,g(N ) = −γ

(0)
+ (N )

[ ∫ ∞

0
dξ

( d

dξ
C2 (0, ξ, 1)

+ h0

ξ
θ(1 − ξ)

)
ln ξ + h2

]
. (154)

Having the expansion of the resummed coefficient func-
tions up toO(α2

s ), we can now construct both 	1Ci and 	2Ci

in N space, and then in x space by Mellin inversion. We have
however noted that, while 	2Ci (x, αs), which contains con-
tributions starting at O(α3

s ), vanishes fast enough at large x
(after applying the (1 − x)2 damping discussed in Sect. 3.4)
and hence ensures a smooth matching onto the fixed order,
	1Ci (x, αs), which contains contributions starting atO(α2

s ),
is sizable at large x ∼ 10−1, thereby potentially spoiling the
accuracy of the resummed and matched NLO+LL result in
that region. Since the culprit of this sizeable effect is exactly
theO(α2

s ) term of the expanded resummation, we find it con-
venient to re-define 	1Ci (x, αs) as

	1Ci (x, αs) ≡ 	2Ci (x, αs) + α2
s C

(2)
i (x)(1 − x)2 f (x),

(155)

where the damping (1− x)2 is the standard damping adopted
everywhere, and f (x) is a further damping function such that
f (0) = 1 and f (1) = 0. We have identified a convenient
form for the damping function in f (x) = (1 − √

x)6. We
observe that for f (x) = 1 one would recover the original
definition.
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