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Abstract 

Scholars in social sciences often refer to “social capital” to explain a wide list of relevant economic 

and social phenomena. Taking an economic perspective, as put forth by Guiso et al. (Social 

Economics Handbook , 2011), we refer in this chapter to civic capital, defined as “those persistent 

and shared beliefs and values that help a group overcome the free rider problem in the pursuit of 

socially valuable activities”. Starting from a first analytical discussion of how civic capital 

(collaboration between individuals) may emerge through horizontal transmission, we develop an 

agent-based model to simulate transmission of civic capital in a spatial interaction setting. We do 

so within the context of the so-called threshold models, which allow us to hypothesize conditional 

cooperation between agents, based on observation of societal behaviour. In our simulations, we 

model horizontal transmission of civic capital as given by social influence determining how 

behavioural thresholds evolve over time. We test interactions at both the global and local levels (in 

http://dx.doi.org/10.1007/978-981-33-4098-5_11
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space), and test different ranges of parameters for the transmission mechanism. Finally, we attempt 

to find systematic evidence on the effect of model parameters on the amount of civic capital and 

on its level of spatial clustering by means of regression analyses. 

Keywords: civic capital; horizontal transmission; agent-based modelling; spatial; simulations. 

 

1. Introduction 

Scholars in social sciences often refer to “social capital” to explain a wide list of economic and social 

phenomena, notably including national and regional economic performance and growth (Westlund, 

2006; Fazio and Piacentino, 2010; Tabellini, 2010), starting from the seminal work such as Putnam 

(2001). Notwithstanding its wide use, there is no definition of social capital which is commonly 

accepted, in particular across disciplines, and social capital can be easily confused with other forms 

of capital (for example, human capital). In this chapter, we will follow the economic perspective put 

forth by Guiso et al. (2011), who rephrase social capital in terms of civic capital, intended as “those 

persistent and shared beliefs and values that help a group overcome the free rider problem in the 

pursuit of socially valuable activities”. 

While the impact of social capital on economic and social outcome is well-documented, the process 

driving its accumulation or depreciation is still an active area of research. Guiso et al. (2011) 

distinguish civil capital from human capital because the former is the result of a social process of 

investment and requires individual values and beliefs to be shared by other members of the 

community. Particular attention has been paid to intergenerational transmission mechanism, in 

which values to transmit to children are influenced by the spatial pattern of external values and 

beliefs, and the process of cultural transmission evolves slowly over time, explaining the persistence 

of the cultural traits of a community even over centuries (Tabellini, 2008). Recent contributions have 

also highlighted the role of spatial interaction (see Durlauf and Ioannides, 2010; and Fazio and 

Lavecchia, 2013). Civic capital can be transmitted also horizontally (intragenerational transmission, 

i.e. among peers), although this form of transmission has received less attention. Approaches to 

social/civic capital analysis are very diverse, and analytical solutions for its transmission mechanisms 

are possible only for relatively simple hypotheses. 

To overcome this obstacle, this chapter develops an agent-based model in which the emergence of 

cooperation and the horizontal transmission of civic capital are jointly considered in a spatial 

interaction setting. It does this within the context of the so-called threshold models (Schelling, 1973; 

Granovetter, 1978; Watts, 2002). Threshold models are a class of models aimed at representing 

collective actions in which: i) individuals have a binary choice (in our case being “cooperative” or 

“defective”); ii) the probability that an individual chooses a certain action positively depends on the 

fraction of individuals in society (or in a relevant sub-group) choosing the same action, that is, such 

a fraction is above an (individual-specific) threshold. These models are well-suited to represent 

individual behaviour in social dilemmas situations (those at risk of free-riding), since a consolidated 

experimental literature now exists showing that conditional cooperation, that is, to be 
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“cooperative” if others are, often characterizes human behaviour, while at the same time a 

significant level of heterogeneity exists across subjects. In our model, the lower is the threshold, the 

higher is the “propensity” towards cooperation, this propensity being affected by those “beliefs and 

values” constituting the definition of civic capital in Guiso et al. In other words, at the social level, 

civic capital is inversely related to the average threshold level in the population. In addition, a 

distinctive feature of threshold models is that not only the average, but also the distribution of 

thresholds matters for determining collective behaviour. In our model, the process of horizontal 

transmission of civic capital is given by social influence determining how thresholds evolve over 

time. In other terms, it is not an actual behaviour which diffuses, but rather beliefs and values which 

in turn determine, mediated by individual choices, collective cooperative behaviour. Space matters 

as well, because interactions can be global or local, depending on the size of the group affecting 

both behaviour and the transmission of civic capital. 

The rest of the chapter is organized as follows. In Section 2, we briefly review those streams of 

literature which are relevant to support our hypotheses and to which we intend to contribute. 

Section 3 describes the model. Section 4 derives a few analytical results which are used as 

benchmark for the results from the numerical simulations reported and discussed in Section 5. 

Section 6 concludes the chapter. 

 

2. Literature Review 

In the first part of this section, we review those studies which connect civic capital to various kinds 

of economic outcomes, thus supporting the relevance of our work. Secondly, we look at the mix of 

experimental evidence and theoretical insights which identified human regularities behaviour in 

social dilemma situations and mechanisms for sustaining cooperation. These streams of research 

are key to motivate our model assumption. Finally, we introduce the class of threshold models of 

collective action, to which our contribution belongs.  

2.1 Civic Capital and Economic Outcomes 

In a review of the debate about the role of social capital in economics, Guiso et al. (2011) try to 

overcome the vagueness of the previous literature by relabelling social capital as civic capital. 

According to the authors, this definition has several advantages. First, it restricts the above concept 

to a notion of capital that has a positive and durable economic payoff. Second, social capital as 

beliefs and values becomes measurable through experiments and surveys. Third, as the other 

notions of capital, it attributes importance to the mechanism of accumulation and depreciation of 

civic capital.  

The literature on civic capital has analysed its antecedents and consequences. As for antecedents, 

the cultural transmission of cooperative values is at the core of Tabellini (2008). In this model, 

parents choose what values to pass on to their children, while assessing their children’s welfare in 

terms of their values. This creates a complementarity between norms and behaviour: when more 

people cooperate, the payoff from cooperation increases, consequently increasing the scope of 



4 
 

cooperation. Guiso et al. (2008) consider a model in which beliefs are transmitted by parents to 

children. It turns out that, in order to protect their children, parents transmit conservative priors, 

which could create a “mistrust equilibrium”. Both models generate a distinctive feature of civic 

capital, which is persistence (Guiso et al., 2016; Giavazzi et al., 2019). 

As for its consequences, civic capital has been shown to impact on both macro and micro 

phenomena. Using historical variables as instruments for civic capital, Tabellini (2010) shows how 

the latter strongly correlates with current regional economic development in Europe. Nannicini et 

al. (2013) show that civic capital may increase economic wellbeing by improving the functioning of 

institutions through political accountability, since the electorate punishes political misbehaviour 

more severely in Italian districts with higher civic capital. Using regional background as proxy for 

civicness, Ichino and Maggi (2000) show that it can explain shirking differentials in a large Italian 

firm. Burker et al. (2013) argue that civic capital may also affect the governance of firms, and show, 

using Italian data, that the productivity effect of foreign ownership depends on the stock of civic 

capital in the area where the firm is located. 

2.2. Overcoming the Free-Rider Problem: The Experimental Evidence and the Theoretical Insights 

In the definition of Guiso and coauthors, civic capital is inherently seen as a solution for social 

dilemmas, that is, those situations in which a conflict exists between individual and social interests. 

In social dilemmas, each person has a dominant strategy which yields the best outcome for all 

possible circumstances (the non-cooperative choice), but if all individuals pursue this strategy, a 

sub-optimal collective outcome emerges, as everyone would be better off by cooperating. Several 

games exhibit these characteristics, in particular the prisoner’s dilemma and public good games. In 

one-shot games, or finitely repeated games, if individuals are rational and self-interested, game 

theory predicts that they should play their dominant strategy, that is, they should not cooperate. 

Experimental evidence on such games does not (fully) support this view. In a summary of early work 

on public goods experiments, Ledyard (1995) identifies as a “stylized fact” that individuals tend to 

contribute positive amounts to public goods (while they should not if rational and self-interested), 

although their contributions decline over time across repetitions of the game. Subsequent work has 

tried to identify in a more precise way the deviation of the observed evidence with respect to 

classical game theory predictions. One strong regularity that has emerged is that individuals tend to 

be conditionally cooperative. In public good games, for instance, this means that contributions to 

the public good are positively correlated with expectations about average group contribution 

(Fischbacher et al., 2001; Chaudhuri, 2011), although a self-serving bias, for which individuals 

contribute less than the expected average, is observed (Fischbacher and Gächter, 2010). 

Heterogeneity across individuals also emerges as a recurrent fact: while most subjects are 

conditionally cooperative, unconditionally cooperative and free-riding agents are also observed 

(Kurzban and Houser, 2005), with evidence that the distribution of such types may vary across 

countries (Kocher et al., 2008). Evidence of conditional cooperation has emerged also in prisoner’s 

dilemma games (Grujic et al. 2010; Cimini and Sanchez, 2014). 
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Although the predictions based on rationality and self-interest are not fully confirmed in the 

experimental evidence, the observed decay in cooperative behaviour has nevertheless reinforced 

the interest towards those mechanisms which are able to sustain cooperation, which we indeed 

observe in human interactions and, more generally, in the biological world (Nowak and Highfield, 

2011). Some mechanisms are known. If interaction is repeated within the same group of players, 

the folk theorems for repeated games (Mailath and Samuelson, 2006) show that cooperative 

behaviour may indeed be the equilibrium outcome in the supergame. Experimental evidence also 

shows that cooperation may be favoured by mechanisms such as altruistic punishment (Fehr and 

Gächter, 2000), in which cooperators bear a cost to punish defectors, or rewards (Rand et al., 2009). 

Finally, in an evolutionary perspective, where the frequency of individuals playing a certain strategy 

increases with their “fitness”, local interaction has been identified as an important channel towards 

the emergence of cooperation (Nowak and May, 1992). While with global interaction cooperators, 

who played a dominated strategy, tend to disappear, local interaction may lead to the emergence 

of clusters of cooperators which can succeed in invading the population. 

2.3. Threshold Models of Collective Action 

Threshold models of collective action find their origins in the work of Schelling (1973) and 

Granovetter (1978). In abstract terms, they represent binary decision problems with externalities, 

in which agents choose a certain action if the fraction of other agents choosing that action is above 

a certain threshold. The existence of such a threshold may be explicitly microfounded (Schelling, 

1973) or not (Granovetter, 1978). Threshold models belong to a more general class of models that 

analytical sociologists define as the class of conditional choice models (Rolfe, 2009). 

Due to their generality, threshold models have been applied to various social phenomena, such as 

crowd behaviour, participation to social movements, voting or adoption of innovations (Watts and 

Dodds, 2009). Most models are interested in determining the conditions for certain collective 

behaviour to be observed, such as a riot or the diffusion of an innovation. In this case, individuals 

are initially “inactive”, and the probability of a cascade of active behaviour is investigated, as a 

function of the threshold distribution and the nature of interaction (Watts, 2002). In a very simple 

example, Granovetter considers the case of 100 individuals considering if participating or not to a 

riot. He notices that if the thresholds are uniformly distributed, then the riot will be observed with 

probability equal to 1. However, if no agent has a threshold of 2, while two agents have a threshold 

of 3 (and the rest of the distribution is as before), then the riot will be observed with zero probability. 

This suggests that the outcome of the collective action may be very sensitive to the threshold 

distribution. 

In Section 5, we present both analytical results on civic capital horizontal transmission and, for more 

complex solutions that cannot be solved analytically, an agent-based version of our model. Agent-

Based Models (ABMs) are usually based on a set of autonomous agents, capable of interacting with 

each other, as well as with the environment, according to given behavioural rules. Such rules can be 

simple or complex, deterministic or stochastic, fixed or adaptive. Adaptive agents have the ability 

to learn, and they evolve in a learning cycle (Billari et al. 2006). Rules are typically derived from 
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published literature (van Leeuwen and Lijesen 2016), expert knowledge, data analysis or numerical 

work, and are the foundation of an agent’s behaviour (Crooks and Heppenstall 2012). ABMs allow 

one to simulate the individual actions of a diverse number of agents, assessing the resulting system 

behaviour and outcomes over time, and they are models that generally deal with systems that are 

complex, open-ended, hence emergent and thus exhibit novelty and surprise (Crooks et al. 2008). 

They have their roots in an interdisciplinary computing movement and in the field of artificial 

intelligence. Today, ABMs are often used to investigate the interplay occurring at the micro and 

macro structures of a given system, in which the interaction structure itself plays an important role. 

Furthermore, ABMs allow a flexible design of how individual entities behave and interact, since the 

results are computed and need not to be solved analytically (Leombruni and Richiardi 2005). They 

have been applied to a diverse range of subject areas, such as: archaeological reconstruction of 

ancient civilizations; understanding theories of political identity and stability; biological models of 

infectious diseases; modelling economic processes as dynamic systems of interacting agents; 

geographical retail markets, and so on (see Crooks and Heppenstall 2012 for a more extensive 

overview). 

 

3. The model 

We will now describe the model in its most general formulation, while for both the analytical 

solution and the numerical experiments we will consider specific versions of the same. Our model 

is dynamic in discrete time. Consider a fixed population of N agents. At each moment of time, each 

agent i faces a binary choice, represented by function 𝛼𝑖
𝑡: being cooperative (𝛼𝑖

𝑡 = 1) or not (𝛼𝑖
𝑡 =

0). Each agent is characterized by a threshold 𝛼𝑖
𝑡 in the unit interval, affecting her choice, with 𝛼𝑖  

being the vector of thresholds in the population. From agent i’s viewpoint, the rest of the individuals 

differ in their influence on his behaviour. The behaviour-influencing network gb is a (possibly 

directed) graph over N such that, for each agent i, a weighting function 𝑤𝑖(𝑔𝑏) assigns a weight 

𝑤𝑖
𝑗

> 0 to agent 𝑗 ≠ 𝑖, with ∑ 𝑤𝑖
𝑗

𝑗≠𝑖 = 1. This leads to define 𝛼−𝑖
𝑡 = ∑ 𝑤𝑖

𝑗
𝛼𝑗

𝑡
𝑗≠𝑖 . If all agents are 

assigned the same weight, that is, the case of global interaction, then 𝛼−𝑖
𝑡  denotes the actual 

fraction of agents (excluding i) who are cooperative at time t (therefore 𝛼−𝑖
𝑡 = ∑

1

𝑁−1
𝛼𝑗

𝑡
𝑗≠𝑖 ). This is 

a case for which analytical results can be easily obtained. Alternatively, we will consider individuals 

located on a bounded two-dimensional grid. In this case, agents are only (equally) influenced by 

others in their “neighbourhood”, whose characteristics will be specified in the following. Denoting 

with Ei(𝛼−𝑖
𝑡 ) the expectation for the behaviour of agent i, he cooperates if 𝐸𝑖(𝛼𝑡) > 𝛼𝑖

𝑡, and he does 

not cooperate otherwise. We shall assume adaptive expectations, that is, Ei(𝛼−𝑖
𝑡 ) = 𝛼−𝑖

𝑡 , therefore 

leading to the following (deterministic) choice rule: 

 𝛼𝑖
𝑡 = {

0 𝑖𝑓 𝛼𝑖
𝑡 < 𝛼𝑖

𝑡

1 𝑖𝑓 𝛼𝑖
𝑡 ≥ 𝛼𝑖

𝑡. (1) 
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Agents are heterogeneous in 𝛼𝑖
𝑡, and this captures the extent to which an individual is a conditional 

cooperator. Notice that, for 𝛼𝑖
𝑡 → 0 , agent i (almost) always cooperates, that is, he is an 

unconditional cooperator. For 𝛼𝑖
𝑡 → 1, agent i (almost) never cooperates, that is, he is a free-rider. 

Social capital (defined as civic capital) is then inversely related to the average value of 𝛼𝑖
𝑡, but its 

overall distribution is also relevant, and a parameter we will control in our numerical experiment. 

As mentioned earlier, 𝛼𝑖
𝑡 evolves over time as the outcome of a process of social transmission. In 

order to model such a process, we introduce the notion of value-influencing network gv, where gv is 

a (possibly directed) graph over population N. For each agent i, we then introduce a weighting 

function 𝜃𝑖(𝑔𝑣) which assigns a weight 𝜃𝑖
𝑗

> 0 to agent 𝑗 ≠ 𝑖, with ∑ 𝜃𝑖
𝑗

𝑗≠𝑖 = 1. In general terms, 

the law of motion of 𝛼𝑖
𝑡 can be written as 𝛼𝑖

𝑡 = 𝛼𝑖
𝑡[𝛼𝑡−1; 𝜃𝑖(𝑔𝑣)]. In our simulation experiments, we 

will consider the process given by: 

 𝛼𝑖
𝑡 = 𝜌𝛼𝑖

𝑡−1 + (1 − 𝜌) ∑ 𝜃𝑖
𝑗
𝛼𝑗

𝑡−1
𝑗≠𝑖 , (2) 

with 0 < 𝜌 < 1. This in an example of assimilative social influence model (DeGroot, 1974; Flache et 

al., 2017). In particular, we will consider the case of global interaction ( 𝜃𝑖
𝑗

=
1

𝑁−1
 for each i,j) and 

cases where weights are determined by the agents’ location on the grid. From this last perspective, 

the matrix containing all the weights 𝜃𝑖
𝑗
 may be compared to the spatial weights matrices used in 

spatial econometrics. 

 

4. Analytical Results 

A model which can be easily studied analytically (and graphically), being substantially equivalent to 

Granovetter (1978), is the one of global interaction with time-invariant – but heterogenous – 

thresholds. In this case, the threshold of one individual is compared to the average cooperative 

behaviour of all the remaining agents. For tractability, let us assume that the set of individuals in 

the society is given by a continuum of agents of mass 1, and that 𝛼𝑖  is distributed across individuals 

with a cumulative (density) function 𝐹(∙) (𝑓(∙)). 

At time t, the fraction of cooperating individuals is given by 𝛼𝑡 ≡ Pr(𝛼𝑖 < 𝛼𝑡−1) ≡ 𝐹(𝛼𝑡−1) (notice 

that by considering a continuum of agents, including individual i does not affect the fraction of 

cooperating agents in society). Therefore, the evolution of the system is described by the difference 

equation 𝛼𝑡 = 𝐹(𝛼𝑡−1). As usual, the equilibrium is identified by 𝛼𝑡 = 𝛼𝑡−1. 

Standard graphical analysis (through staircase diagrams) can help analysing the stability properties 

of such equilibria. In Figure 1, we represent a case of a distribution function for which a unique 

interior stable equilibrium is observed. 
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1 

1 

In terms of interpretation, the distribution function represented in Figure 1 corresponds to a case 

where both (almost) unconditional cooperators and free-riders are common in the population. As a 

result, both cooperative and non-cooperative behaviours coexist in equilibrium. 

 

 

 

 

 

 

 

 

 

Figure 1. Case with a unique interior stable equilibrium 

 

Consider now the case of a uniform distribution between 𝛼𝑚𝑖𝑛 > 0 and 𝛼𝑚𝑎𝑥 < 1. As shown in 

Figure 2, we have one unstable interior equilibrium and two stable corner equilibria, where all 

agents cooperate or all agents do not. 

 

 

Figure 2. Case with one unstable interior equilibrium and two stable corner equilibria 

 

In this case, initial conditions will determine which equilibrium prevails, while the min and max 

values will determine the basin of attractions of the equilibria (with lower values, i.e. higher values 

of civic capital, leading to full cooperation for a larger set of initial conditions). Notice that this case 

1 

𝛼𝑡 

𝛼𝑡−1 

𝐹(∙) 

𝛼𝑡 

𝛼𝑡−1 

𝐹(∙) 

1 
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corresponds to a relatively homogenous society (in terms of types of individuals). Interestingly, 

social homogeneity leads to less predictable outcomes in terms of social behaviour. 

 

5. Simulation results 

In this section, we report on simulation results for the different configurations of model parameters 

we consider, varying the value of ρ in Eq. (2), the global/local nature of interaction in the diffusion 

of values and behaviour, and the initial distribution of civic capital (distribution of 𝛼). In particular, 

we analyse five scenarios, in which the distribution of 𝛼 at t = 0 is uniform: 

• Scenario 1: ρ = 1, with global influence for both behaviour and values. This scenario 

illustrates numerically the conclusion we reached analytically in the previous section. 

• Scenario 2: ρ = 1, with local influence for behaviour. 

• Scenario 3: ρ < 1, with global influence for both behaviour and values. 

• Scenario 4: ρ < 1, with local influence for values and global influence for behaviour. 

• Scenario 5: ρ < 1, with local influence on both behaviour and values. 

Then, we briefly comment on what happens when the distribution of 𝛼 at t = 0 is normal. In our 

simulations, “equilibria” take two forms: i) a stationary state in which 𝛼𝑡 = 𝛼𝑡−1; ii) a 2-cycle, in 

which very few agents (in most cases a single one) alternate between cooperative and non-

cooperative behaviour. 

5.1. Scenario 1 

Focusing on the uniform distribution, we tested different values for 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥. 𝛼𝑚𝑖𝑛  ranges 

between 0.05 and 0.5 (in 0.05 increments), while 𝛼𝑚𝑎𝑥  ranges between 0.6 and 0.95 (with 

increments of 0.05). We run 100 replications for each parameter pair (𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥). 

Results for the equilibrium values of the average levels of cooperation (that is, the fraction of agents 

being cooperative in the population) are reported in Table 1. The effects of the initial random 

distribution of 𝛼 is clear: when 𝛼𝑚𝑖𝑛 + 𝛼𝑚𝑎𝑥 < 1, the model always end with a fully cooperating 

society; when 𝛼𝑚𝑖𝑛 + 𝛼𝑚𝑎𝑥 > 1, the model always end with a fully non-cooperating society. If 

𝛼𝑚𝑖𝑛 + 𝛼𝑚𝑎𝑥 = 1, such that the expected value of 𝛼 at t = 0 is 0.5, each corner solution is almost 

equally likely. 

5.2. Scenario 2 

In our second experiment, the focus is on the extent to which neighbourhood effects happen. This 

time, the agents do not compare their personal values with the observed behaviour of society as a 

whole, but with the one of their neighbours. We compare the difference of being affected by the 4 

nearest neighbours (rook contiguity order 1), the 8 nearest neighbours (queen contiguity order 1), 

24 neighbours (queen contiguity order 2), or 48 neighbours (queen contiguity order 3). Based on 

the literature, we expect clusters of cooperation to emerge, especially when the influence is very 

local, as is the case when the rook contiguity is used. 



10 
 

 

Table 1. Average levels of cooperation for different ranges of personal values 

𝛼𝑚𝑎𝑥 

𝛼𝑚𝑖𝑛 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

0.05 1 1 1 1 1 1 1 0.49 

0.10 1 1 1 1 1 1 0.54 0 
0.15 1 1 1 1 1 0.55 0 0 

0.20 1 1 1 1 0.54 0 0 0 
0.25 1 1 1 0.45 0 0 0 0 

0.30 1 1 0.49 0 0 0 0 0 
0.35 1 0.47 0 0 0 0 0 0 

0.40 0.52 0 0 0 0 0 0 0 
0.45 0 0 0 0 0 0 0 0 

0.50 0 0 0 0 0 0 0 0 

 

The model results, provided in Table 2, indicate that the more local the interaction, the larger the 

deviation from the results of Scenario 1. Now, simulation results are mixed also for initial personal 

values that are drawn from ranges that sum up to 0.9 or 1.05. In these cases, generally, no corner 

solutions are found, but patches of cooperating and non-cooperating agents coexist next to each 

other (as shown in Figure 3). The number of iterations needed to reach an equilibrium lies between 

5 and 54, with an average of 16. 

Table 2. Average level of cooperation of society as a whole with different levels of 
neighbourhood effects and different minimum ranges for the random personal value of each 
agent (𝛼𝑚𝑎𝑥= 0.6) 

 Global interaction Neighbourhood effects 
𝛼𝑚𝑖𝑛   Rook-1 Queen-1 Queen-2 Queen-3 

0.25 1 1 1 1 1 
0.30 1 0.9 1 1 1 
0.35 1 0.7 0.9 0.9 1 
0.40 0.5 0.5 0.5 0.5 0.5 
0.45 0 0.1 0.1 0.0 0 
0.50 0 0 0 0 0 

 
5.3. Scenarios 3–4 

In Scenario 3, not only behaviour, but also personal values are influenced by society as a whole. 

Allowing different values of 𝜌, values in society affect the ones of the individual agent. It means that, 

in each period, each agent becomes more similar to society as a whole. The results show that the 

outcomes are very similar to the first experiment. Again, all model runs result in corner solutions of 

either fully cooperating or non-cooperating society. 
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Figure 3. Example of a final outcome of Scenario 2 

 
In Scenario 4, it is neighbouring agents that influence each other’s personal values. However, the 

final choice to cooperate or not is still based on the average behaviour of society as a whole. Again, 

all model runs result in a corner solution, and only when 𝛼𝑚𝑖𝑛 + 𝛼𝑚𝑎𝑥 = 1, the outcome whether 

everyone cooperates or not depends on the (spatial distribution of the) initial values. 

5.4. Scenario 5 

In this final basic scenario, we combine the insights from all the previous ones. We combine different 

levels of neighbourhood effects with different combinations of values for 𝜌 and different levels of 

the initial random variables. This means that neighbours influence both the choice to cooperate or 

not, as well as the personal values of the agent. 

For this scenario, we report, in Table 3, the share of model runs that find an equilibrium (each 

configuration is repeated 100 times, with the maximum number of iterations equal to 600). The 

main conclusion that can be drawn here is that smaller values of 𝜌 (that is, social influence) result 

in fewer model runs that reach an equilibrium: the model becomes more unstable. Furthermore, 

the range from which the initial values of 𝛼 are drawn appears to matter, since if  𝛼𝑚𝑖𝑛 + 𝛼𝑚𝑎𝑥 ≠1, 

our simulations result much more often in an equilibrium. The average number of iterations 

required to reach an equilibrium lays around 20. The range of the neighbours’ sphere of influence 
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is important as well: when only the 4 nearest neighbours are taken into account (rook contiguity of 

order 1), the probability of reaching an equilibrium is higher when  𝛼𝑚𝑖𝑛 + 𝛼𝑚𝑎𝑥 =1, and lower 

otherwise. This setting is the one needing on average the most iterations to find a solution (more 

than 200). Furthermore, when taking 8 neighbours into account (queen contiguity of order 1), the 

share of models that reach an equilibrium is the lowest. Similarly to Scenario 2, this scenario 

generates coexisting patches of collaborating and non-collaborating agents, more clearly defined 

than before (see Figure 4). 

 

Table 3. The share of model runs finding an equilibrium for Scenario 5 

𝛼𝑚𝑎𝑥-𝛼𝑚𝑖𝑛 Queen-3 Queen-2 Queen-1 Rook-1 

 ρ = 1.00    

0.60-0.30 100 100 100 100 

0.60-0.40 100 100 100 100 

0.65-0.30 100 100 100 100 

0.65-0.35 100 100 100 100 

0.70-0.30 100 100 100 100 

0.70-0.35 100 100 100 100 

 ρ = 0.95    

0.60-0.30 100 100 100   96 

0.60-0.40   30   51     7   56 

0.65-0.30 100   99   89   73 

0.65-0.35   38   58     8   57 

0.70-0.30   46   77     6   59 

0.70-0.35 100 100   90   64 
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𝛼𝑚𝑎𝑥-𝛼𝑚𝑖𝑛 Queen-3 Queen-2 Queen-1 Rook-1 

 ρ = 0.90    

0.60-0.30 100 100 100   92 

0.60-0.40   15     5     1   55 

0.65-0.30   97   90   59   69 

0.65-0.35   11     3     1   56 

0.70-0.30   15   90     1   42 

0.70-0.35   99   85   66   54 

 ρ = 0.85    

0.60-0.30 100 100 100   66 

0.60-0.40     4     1     2   38 

0.65-0.30   97   67   49   40 

0.65-0.35     7     2     3   38 

0.70-0.30     7     3     2   33 

0.70-0.35   96   74   52   38 

 

5.5. Normal Distribution 

In a further simulation exercise, we hypothesized a normal distribution for 𝛼 at t = 0, with a mean 

of 0.5 and a standard deviation of 0.1. When running 1600 simulations, only 79 resulted in corner 

solutions (of which 47 for ρ = 0.95, and neighbourhood radius at Queen-2 or 3). Table 4 shows the 

share of models that reach an equilibrium when the maximum number of runs is set to 600. Again, 

queen contiguity of order 1 results in the lowest share of models with a solution, and rook contiguity 

in the highest one. The average number of iterations was 142, but for ρ = 1, the average number of 

steps was 19. 

5.6. Statistical Analysis 

The above simulation findings depict pictures of the average performance of the system when 

certain population and behavioural parameters are used. However, it is difficult, within this 

framework, to assess the role played by each single model parameter in shaping the final population 

outcome. We can go more in-depth in our analysis from this viewpoint by analysing single simulation 

outcomes in a regression framework, by considering their related simulation parameters. In 



14 
 

particular, it is worth examining two types of information in this regard: (i) the share of collaborating 

agents in the final population (behaviour of society), that is, at time t = T; and (ii) the related level 

of clustering found. 

 

 

Figure 4. Example of a final outcome of Scenario 5 

 

Table 4. The share of model runs finding an equilibrium with a normal distribution 

ρ Queen-3 Queen-2 Queen-1 Rook-1 

1.00 100 100 100 100 

0.95   37   64     8   60 

0.90   11     2     1   54 

0.85     8     2     2   35 
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While fully cooperating or non-cooperating societies show no clustering, it is interesting to 

understand what are the parameters that lead to local pockets of collaborating individuals, a 

dichotomic population (split 50-50 either horizontally or vertically on the grid) being the strongest 

possible clustering. Such clustering can be measured, given the binary nature of the simulations’ 

outcome variable, by join count statistics. Similarly to standard spatial autocorrelation indices like 

Moran’s I, join count statistics can signal positive or negative clustering, as well as no statistically 

significant clustering. Given a binary variable classified as 1s and 0s, and a spatial weights matrix W 

(in our case, a rook contiguity matrix), the number of “joins” of grid cells of the same type (1-1, or 

0-0) are counted, and compared against the theoretically expected number of joins. A simple test 

for significance of the difference between the two can be used to detect clustering (Cliff and Ord 

1981). 

We then focus on Scenario 5, which has local influence on both behaviour and values, and estimate 

simple regression models as follows: 

 𝛼𝑇 = 𝑐𝑜𝑛𝑠𝑡 + 𝛽1𝛼𝑚𝑖𝑛 + 𝛽2𝜌 + 𝑛𝑒𝑖𝑔ℎ𝑜𝑢𝑟𝑖𝑛𝑔, (3) 

 𝐽𝐶𝑇 = 𝑐𝑜𝑛𝑠𝑡 + 𝛽1𝛼𝑚𝑖𝑛 + 𝛽2𝜌 + 𝑛𝑒𝑖𝑔ℎ𝑜𝑢𝑟𝑖𝑛𝑔 + 𝛽3𝐽𝐶0, (4) 

where, in addition to what was defined above, neighbouring is a set of indicator variables – and 

related coefficients – for the type of neighbours influence simulated (between Rook-1, Queen-1, 

Queen-2, Queen-3), while 𝐽𝐶𝑇  and 𝐽𝐶0 are the join count statistics measured (for the collaborating 

agents) at the final iteration and at t = 0, respectively. 

The model in Eq. (3) explains the final share of collaborating agents, while in Eq. (4) we model its 

level of spatial clustering. Both models employ, as explanatory variables, the lower bound of the 

uniform distribution of thresholds 𝛼𝑚𝑖𝑛 (𝛼𝑚𝑎𝑥 is fixed in Scenario 5), the inertia parameter 𝜌, and 

the type of neighbours influence. In addition, Eq. (4) includes the level of clustering at t = 0. We 

estimate OLS regression models and present our empirical estimates in Table 5. 

Regression results highlight the different roles played by simulation parameters in shaping the final 

population behaviour. Extending (downward) the range of possible individual thresholds logically 

increases the share of collaborating agents, but it leads to more homogeneous behaviour (less 

clustering). Instead, behavioural inertia (𝜌) appears to have a limited effect in terms of decreasing 

the share of collaborating agents, as well as, to a greater degree, clustering. Coefficients for the 

different types of spatial influence (Rook-1 being the benchmark) suggest that the more spatially 

extended the observation, the higher the chances of collaborating, and the higher the clustering. As 

expected, the initial level of clustering has a positive correlation with the final clustering. 

 

6. Conclusions 

This chapter addressed the issue of civic capital development (emergence of cooperation) from a 

spatial viewpoint, using agent-based modelling (ABM). We first developed a simple analytical model 
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for the most general case of a threshold model in which single individuals choose to collaborate 

based on a set of personal values and a minimum share of society following the same behaviour. In 

order to look deeper into this issue, we set up five scenarios and ran a high number of simulations 

to inspect regularities in the aggregate (population-level) outcomes of collaboration. We found that 

the most interesting cases are the ones in which interaction between agents, in terms of both 

reciprocal influence on values and observation of others behaviour, happens at the local (instead of 

global) level, that is, between nearby individuals. Finally, we conducted a preliminary regression 

analysis to relate aggregate behavioural outcomes (also in terms of spatial clustering) to the 

simulation parameters used. 

 

Table 5. Regression results for Eqs (3) and (4) 

Regressors Coeff. Std error Sign. Coeff. Std error Sign. 

 

Dep. var.: 

𝛼𝑡  

 Dep. var.: 

𝐽𝐶𝑇   

 

𝛼𝑚𝑖𝑛  –4.7886 0.0291 ***   43.6555 2.9890 *** 

𝜌 –0.1002 0.0444 ** –52.8988 2.7968 *** 

Queen-1   0.0106 0.0070    16.3274 0.3995 *** 

Queen-2   0.0083 0.0070    17.4224 0.3953 *** 

Queen-3   0.0142 0.0070 **   21.6599 0.5496 *** 

𝐽𝐶0        0.3931 0.1722 ** 

Res. DoF 4794   1869   

Adj. R2 0.85   0.70   

Note: A constant is included in both models. 

 

Our results provide a number of insights.  

• When individual behaviour responds to the aggregate behaviour, society quickly converges 

to homogenous choices, where all individuals behave cooperatively, or none does. Which 

outcome is observed depends on the initial distribution of civic capital, but it is not affected 

by the social process of influence in values. 

• When individual behaviour responds instead to the behaviour of neighbours only, spatial 

clusters of cooperating and non-cooperating agents are often observed. In addition, when 

the propensity towards cooperation is socially affected, the system becomes less stable, and 
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is less likely to find a stable equilibrium in the observed time horizon of our simulations. We 

believe this issue to be due to expectable feedback effects happening between individuals 

over space. 

• When focussing on local mechanisms of influence, we observe, through regression models, 

that a behavioural inertia and the extent of the range of individual threshold for cooperation 

matter in shaping societal outcomes and the level of spatial clustering. 

• The latter further depends on the spatial extent of observation and influence. The larger this 

is, the higher the level of spatial clustering observed. This finding suggests that, while 

neighbourhood effects matter in setting the condition for the development of pockets of 

heterogeneous behaviour, there is most likely an “optimal” extent of spatial influence that 

leads to the strongest spatial clustering and therefore, in real-life settings, to possible issues 

of segregation and isolation. 

The above findings represent a first exploration of how horizontal transmission of civic capital may 

be modelled, explored and analysed. Further experiments are of course needed in this regard. For 

instance, the role played by urban infrastructure (positioned on the urban grid), like highways, in 

causing isolation and clustering of homogeneous behaviour by interrupting proximity relations may 

be fruitfully explored in an ABM simulation framework. At the same time, recent advancements in 

urban transportation, which facilitate cross-neighbourhood mobility, could have the opposite 

effect, and favour interaction between more distant individuals. We leave this and other model 

expansions for future developments. 
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