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LIE CONFORMAL SUPERALGEBRAS AND DUALITY OF MODULES
OVER LINEARLY COMPACT LIE SUPERALGEBRAS

NICOLETTA CANTARINI, FABRIZIO CASELLI, AND VICTOR KAC

ABSTRACT. We construct a duality functor on the category of continuous representations of
linearly compact Lie superalgebras, using representation theory of Lie conformal superalge-
bras. We compute the dual representations of the generalized Verma modules.

1. INTRODUCTION

Lie conformal superalgebras encode the singular part of the operator product expansion
(OPE) of chiral fields in the vacuum sector of conformal field theory [15]:

a(w)(j)b(w)
JEZ
They play an important role in the theory of vertex algebras that encode the full OPE (1), so

that the full structure of a vertex algebra is captured by the A-bracket of the Lie conformal
(super)algebra structure:

(2) [a(w)ab(w)] = Y (a(w)(5b(w))

720

N
ﬁa

and the normally ordered product a(w)_1)b(w) (since a(w)_,_1)b(w) = %(83@(10)(_1)6(10))).
In the classical limit the normally ordered product of a vertex algebra becomes commutative,
but the A-bracket still satisfies the axioms of a Lie conformal superalgebra. This leads to the
theory of Poisson vertex algebras that play a fundamental role in the theory of Hamiltonian
PDE.
Recall that A-bracket (2) satisfies the following axioms, where a = a(w), da = dya(w):
(sesquilinearity) [Daxb] = —A[apb], [axdb] = (0 + A)[axb],
(skewsymmetry) [bra] = —(—1)P@PO)[a_,_5b],
(Jacobi identity) [ax[buc]] = [[arb]asud] + (—1)P@OPOb, [axrc]].
An F[0]-module R, endowed with a A-bracket R® R — R[)], satisfying the above three axioms,
is called a Lie conformal superalgebra. Here and in the sequel we denote by F an algebraically
closed field of characteristic 0.

All the work on representation theory of Lie conformal superalgebras R was based on the
simple observation that representations of R are closely related to “continuous” representa-
tions of the associated to R annihilation Lie superalgebra. Recall that the annihilation Lie
superalgebra is the vector superspace

(3) A(R) = R[[t]]/(0 + o) RI[t]]
2010 Mathematics Subject Classification. 08A05, 17B05 (primary), 17B65, 17B70 (secondary).

Key words and phrases. Linearly compact Lie superalgebra, Lie conformal superalgebra, annihilation super-
algebra, formal distribution, formal Fourier transform, generalized Verma module, shift character, duality.



2 NICOLETTA CANTARINI, FABRIZIO CASELLI, AND VICTOR KAC

where ¢ has even parity, with the (well-defined) continuous bracket

(4) [at™, bt"] = Z <m> (a(j)b)tm”‘*j,
=0 N7

which makes it a linearly compact Lie superalgebra. Since 0 commutes with d;, it extends in a
natural way to a derivation 0 of the Lie superalgebra A(R), hence one can define the extended
annihilation Lie superalgebra A°(R) = F[J] x A(R). It is easy to see that a “conformal”
R-module M is the same as a continuous A°(R)-module [10]. In most of the examples the
derivation 0 is an inner derivation of A(R): 0 = ada, a € A(R), so that A(R) = A°(R)/(0 —
ad a)A°(R). An R-module (= A°(R)-module) M is called coherent if (9 —a)M = 0. Thus a
continuous A(R)-module is the same as a coherent R-module.

Note that if a Lie conformal superalgebra R is a finitely generated F[0]-module, then A(R)
is a linearly compact Lie superalgebra, hence representation theory of Lie conformal superal-
gebras is intimately related to the theory of continuous representations of linearly compact Lie
superalgebras.

Although it is unclear what is a right definition of a vertex algebra in several indetermi-
nates, the definition of a Lie conformal superalgebra and all the above remarks can be easily
extended to the case when one even indeterminate A is replaced by several even commuting
indeterminates Aq, ..., A,. In the paper we allow also for s odd indeterminates Ap41, ..., Arts
and we say that the corresponding Lie conformal superalgebra is of type (r, s), but for the sake
of simplicity this will not be discussed in the introduction. In the present paper we reverse the
point of view: instead of using continuous representations of linearly compact Lie superalge-
bras in the study of finitely generated F[0]-modules over Lie conformal superalgebras, we use
the latter to study the former. But then a natural question arises: which linearly compact Lie
superalgebras are annihilation algebras of Lie conformal superalgebras? The answer probably
is: in all interesting examples. Namely, if a linearly compact Lie superalgebra is of geometric
origin, i.e., it is constructed with the use of vector fields and differential forms in a formal
neighborhood of a point in an (r|s)-dimensional supermanifold, then it is an annihilation su-

peralgebra of a finitely generated as an F[0y, ..., d,]-module Lie conformal superalgebra in r
indeterminates.

Let us demonstrate this on the example of the Lie algebra W (r) of continuous deriva-
tions of the algebra of formal power series F[[t1,...,¢,]]. Include the Lie algebra W(r) in

a larger Lie algebra W (r) of continuous derivations of the algebra of formal Laurent series
F[t1, ..., t])[t7", ..., t;1]. Consider the W (r)-valued formal distributions

ai(z) = — Z A T P
ki,....kr€Z"
It is immediate to see, using the standard properties of the formal §-function §(z — w) =
> ez 2"w" ™t that
[ai(2), aj(w)] = Ow,;a;(w)d(z — w) + ai(w) 0w, (2 — w) + aj(w)w,;0(z — w),
where z = (21,...,2), w = (wi,...,w,), and 0(z — w) = [[i_; 0(z — w;). Applying the
formal Fourier transform, i.e., letting
[axb] = Res.[a(z), b(w)]e2: Y%

we obtain a structure of a Lie conformal algebra, which we denote by RW (r), on the free
F[0.,,...,0, ]-module of rank r, generated by the elements a; = a;(z), with the following
A-brackets:

[aw\aj] = 8iaj + )\jai + )\iaj, t,7=1,...,m
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It is easy to see that the linearly compact Lie algebra W (r) is the annihilation algebra of the
Lie conformal algebra RW ().

A remarkable feature of representation theory of a Lie conformal superalgebra R is the
existence of a contravariant duality functor on the category of R-modules which are finitely
generated as F[0]-modules [15, 2, 5|. Extension of this construction to the case of a Lie
conformal superalgebra R in several indeterminates is straightforward. Due to the above
remarks, this duality functor can be transported to the category of continuous representations
of the linearly compact Lie superalgebra, which is the annihilation algebra of R.

In the present paper we study the duality functor for the category P of continuous Z-
graded modules with discrete topology over Z-graded linearly compact Lie superalgebras g =
[I;ez._, 8j, where the depth d > 1, dimg; < oo, and [g;, g;] C gi+;. We have: g = g<o + g>0
where g<g = @j <09; and g>o = szo g; . We also require that modules from P are finitely
generated as U(g_)-modules. Recall that a g-module M is continuous if, for any v € M,
gnv = 0 for n sufficiently large.

The category P is similar to the BGG category O, and, as in category O, the most important
objects in P are generalized Verma modules M (F') (see, e.g. [16]). Recall, that, given a finite-
dimensional gg-module F', one extends it trivially to the subalgebra g~o = Hj>0 g; C g, and
defines

M(F) = Indg_ F.

Our main result is the computation of the dual to M(F) g-module M (F)* (see Theorems
3.15 and 3.17). It turns out that M(F)* is not M(F*), but M(F"), where F" is a shifted
go-module F™* by the following character (=1-dimensional representation) y of go:

(5) x(a) =str(ad alg_, ).

In particular, if go = [go, go, then x = 0, and M (F)* = M(F*), which happens, for example,
for the principally graded exceptional Lie superalgebra F/(5,10) [14]. This observation has
been made in [6], which led us to the present paper.

One of the main problems of representation theory of a linearly compact Lie superalgebra
g is the classification of degenerate (i.e. non-irreducible) generalized Verma modules M (F),
associated to finite-dimensional irreducible go-modules F'. Since the topological dual of M (F')
endowed with discrete topology is a linearly compact g-module, a solution of the above problem
is important for the description of irreducible linearly compact g-modules.

In order to apply these results to representation theory of simple, finite rank Lie conformal
superalgebras of type (r,s), one needs to develop representation theory of the corresponding
annihilation algebra, which apart from the “current” case, is a central extension of an infinite-
dimensional simple linearly compact Lie superalgebra.

The simple infinite-dimensional linearly compact Lie superalgebras were classified and ex-
plicitly described, along with their maximal open subalgebras, in [14, 11, 8]. It was shown in
[9] and [13] that all linearly compact simple Lie superalgebras of growth 1 (rather their uni-
versal central extensions) are annihilation superalgebras of simple Lie conformal superalgebras
of type (1,0). Using them, all finite rank simple Lie conformal superalgebras of type (1,0)
were classified in [13]. A complete list of those, admitting a non-trivial Z-gradation, consists
of three series Wy, Sy, and K, and two exceptions: K} and CKg.

Representation theory of Wy and Sy was constructed in [5], of Ky with N = 0,1 in [10],
resp. with N = 2,3,4 in [12], resp. with all N > 0 in [3]. Representation theory of C'Kg and
K, was constructed in [4] and [1], respectively. A very interesting feature of these works is
that all degenerate modules are members of infinite complexes, for classical (resp. exceptional)
Lie conformal superalgebras the number of these complexes being one or two (resp. infinite).
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A complete representation theory of linearly compact Lie superalgebras, corresponding to
simple Lie conformal superalgebras of type (r,s) with » > 1 is known only for Cartan type
Lie algebras, beginning with the paper [20], and for the exceptional Lie superalgebra E(3,6)
[16, 17, 19]. Some partial results in other cases are obtained in [18] and [21]. Note that again
for all known examples the degenerate modules can be organized in infinite complexes, the
number of them being finite (resp. infinite) in the classical (resp. exceptional) cases. We hope
that the duality, established in the present paper, and the Lie conformal superalgebra approach
will help to make progress in representation theory in the remaining cases, especially F(5,10).

The contents of the paper are as follows. After the introduction we discuss in Section 2
the notion of Lie conformal superalgebra of type (7, s), its annihilation Lie superalgebra, and
elements of their representation theory. In Section 3 we introduce the duality functor in the
category of finitely-generated modules over a Lie conformal superalgebra of type (r,s) and
of the corresponding annihilation Lie superalgebra. We prove here the main Theorem 3.17
under Assumptions 3.3. We conjecture that if g is a linearly compact Lie superalgebra then
for any transitive pair (g, g>0), i.e., such that g>¢ is an open subalgebra of g containing no
non-trivial ideal of g, one can construct a duality functor for which Theorem 3.17 still holds
with x(a) = str(adalg/y.,) for a € g>o. In the remaining Sections 4-8 we show that the
linearly compact Lie superalgebras g = W(r,s), K(1,n), E(5,10), E(3,6), and F(3,8) are
annihilation Lie superalgebras of certain Lie conformal superalgebras Rg of type (r,s) (for
suitable r and s) which we describe explicitely. We check that in all these cases Assumptions
3.3 on g with its principal gradation are satisfied. We also check in Section 4 that for all
annihilation superalgebras, associated to the ordinary Lie conformal superalgebras (i.e., of
type (1,0)) Theorem 3.17 is applicable as well. Unfortunately we do not know whether this is
the case for the remaining exceptional simple Lie superalgebra g = E(4,4), though it is not
difficult to construct the corresponding Rg.

Acknowledgments. The first two authors were partially supported by PRIN 2015: “Moduli
spaces and Lie theory”. The third author was partially supported by the Bert and Ann Kostant
fund, and the Simons fellowship.

2. LIE CONFORMAL SUPERALGEBRAS OF TYPE (7, s)

Let Z+ = {0,1,2,...}. Fix once and for all two non-negative integers r and s. We will use
several sets of r + s variables such as A1,..., \ras, 01, -+, Orts, Y1, .-+, Yrrs. We will always
assume that variables with indices 1,...,r are even and variables with indices r+1,...,r+ s
are odd, and accordingly we let p, =0ifi=1,...,rand p;=1ifi=r+1,...,7r+s. We
will also use bold letters such as A or @ or y to denote the set of corresponding variables. We
denote by A[A] =F[A1,..., A] @ A(Ar41, ..., Arts) and we similarly define A[@] or Aly]. The
completion A[[y]] of Aly] is the algebra of formal power series in y.

If R is a Z/27Z-graded vector space we give to A[A] ® R the structure of a Z/2Z-graded
A[A]-bimodule by letting A\;(P(A) ®a) = \;P(A\) ®a and (P(A\) ®a)\; = (—1)PPDPA)\; @a,
where p(a) € Z /27 denotes the parity of a. We will usually drop the tensor product symbol
and simply write P(\)a instead of P(A) ® a.

Definition 2.1. A Lie conformal superalgebra of type (r,s) is a Z/27 graded A[@]-bimodule
R such that ad; = (—1)Pi?(@ga for alla € Rand i € {1,...,7+s}, endowed with a A-bracket,
i.e. a Z/2Z-graded linear map R ® R — A[A] ® R, denoted by a ® b — [axb], that satisfies the
following properties:



(6) [(Dia)Ab] = —Ai[axb];

(7) [ax(b0;)]) = [axb](0; + N\i);

(8) [baa] = —(=1)"POa_x_pb];

9) [albucl] = [[axblaspuc + (=)POPO b, [axd]].

We refer to Properties (6) and (7) as the conformal sesquilinearity, Property (8) as the
conformal skew-symmetry and Property (9) as the conformal Jacobi identity.

We note that the notion of a Lie conformal superalgebra, as treated in [15], corresponds to
a Lie conformal superalgebra of type (1,0). For the convenience of the reader we first briefly
present the theory of Lie conformal superalgebras of type (r,0): in this case all the results are
straightforward extensions of those in type (1,0) and therefore are stated without proofs. We
then develop the general theory in type (r, s).

If K= (ki,...,ky) is any r-tuple of non-negative integers we let

A= Rk and K = k! kL

For a,b € R the K-products (axb) are defined by the polynomial expansion
K

(10) axt] = 3 %(a;(b).

Kez,

Starting from a Lie cqnformal superalgebra R of type (r,0), one can construct a new Lie
conformal superalgebra R of the same type, called the affinization of R. Let R = R @ F[[y]].
We consider R as a F[@y] = F[0y,, ..., 0y ]-module, with A-bracket given by

(11) [(ay™)A(by™)] = ([ar+a,bly™)y™.
Note that in this expression it is meant that the derivatives with respect to the variables y; in
the bracket [ax4a,b] act only on yM . The corresponding K-products are:

(12) (™ )iclby ) = 32 (o D)((8y) "y ™.
JET!,

The A-bracket (11) defines on R a Lie conformal superalgebra structure with & = 8 + 8.
The annihilation algebra associated with R is the Lie superalgebra
A(R) = R/OR
with the bracket given by

™, by = 37 (@) ((9y) 5™y = (a2 (0™ aco.
J

The representation theory of a Lie conformal superalgebra is closely related to the repre-
sentation theory of the corresponding annihilation algebra. This fact relies on the following
relation

(13) [a)‘,b“] = [a)\b])\+u, a,b € R,

where
K

= Y Ty’ e ARIN]

Kezr,
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The goal of this section is to extend these results to Lie conformal superalgebras of type
(r,s). In this context, in order to simplify computations involving signs, it is more convenient
to use expansion (14) below instead of (10). For this, introduce the following notation. If
K = (ki,..., k) is any sequence with entries in {1,...,r + s} we let

mi(K) = [{j € {1,...,t}: k; =i},
:HmZ(K !

and
AK = Ay Aky o0 A

and we similarly define yp, £k and so on. If K = (), we let f(K) =1, Ax = 1. We also let
DK = Dk, + -+ pk, and so p(Ax) = px. For example, if r =2, s =3 and K = (2,3,2,1,5,4),
then f(K) =2, Ax = —A\1A3A3\4)\5 and px = 1. It is clear that if J and K are obtained from
each other by a permutation of the entries we have A; = Ak ; we write in this case J ~ K
and we denote by S, any set of representatives of these equivalent classes. For a,b € R the
K-products (axb) are uniquely determined by the following conditions:

- (agb) =0 if Ag =0 (i.e. if K contains a repeated odd index);

- Ay(agb) = Ag(agd) for J ~ K;

(14) a)\b Z aKb
KES’I‘ s f

Remark 2.2. Conditions (6) and (7) in Definition 2.1 can be restated in terms of K-products
by means of the following equations, where, for K = (ky,...,k;) and i € {1,...,r + s}, we let
iIK = (i, kl, .. .,kt)Z

(15)  ((8;a) i) = 0 if m;(K) = 0 and ((8ja)ixb) = —(mi(K) + 1)(agxb) ;
(16) (ar(b0;)) = (axb)0; if m;(K) =0 and
(air (b3;)) = (air)d; + (mi(K) 4 1)(—1)P@OFTPOIPi (g, p) .

As in the completely even case, starting from a Lie conformal superalgebra R of type (r, s)
one can construct a new Lie conformal superalgebra R of the same type, called the affinization

of R. Let R = R® A[[y]]. We consider R as a A[[y]]-bimodule and also as a A[@y] =
ADy,, ..., 0y, ]-bimodule letting

Oy,ayyy = (1P Da(d,y,,) = (1P gy, 9,

with A-bracket given by

(17) [(Yara)a(byn)] = (yarlarta,bl)yn
The corresponding K-products are:
(18) ((yara)x (byy)) = (1P Y7 f(lj)(yM(ay)J)(aKJb)yNa

JGST,S
where for K = (k1,..., k) and J = (j1,...,5u) we let KJ = (k1,..., ke, J1,- -y Ju)-

Proposition 2.3. The A(d)-module R with & = 8 + 8, and A-bracket given by (17) is a Lie
conformal superalgebra.



Proof. We first check condition (6) in Definition 2.1.

[(Oiyrpra)abyn] = [((0; + 9y, )y ara) aby n]

(=1)PPM[(ypr0ia) by n] + Oy, Yrrlar+a, b))y N

(=1)PPM (ypr[0iaxta, b)Yy + (Oy,Yrlaxta,b)yn
—(=1)PPM (y (N + Oy,)[axva,b))yn + (Oy.ynlarta,b)yn
= —Ai(Yumlar+a,0)yn

= —Xil(ypra)a(byy)]

Similarly one can check condition (7). Now we verify the conformal skew-symmetry, i.e.

((ypra)a(byy)] = —(~1) PO by )5 o, (yara)].

-1
-1

We have

[(Ypra)a(byn)] = (Y [GA+8y by n

=—(= 1)p(a)p(b) (ZJM [b,)‘,ay,aa]) Yn
= —(=1)P@PO)+P()+pE) (PartpN)+PMPN g (b-r—a,-8aly )

=—(-1 )p(a)p(b)+(p(a)+p(b))(pM +pN)+PMPN [(y D)

~x-8-8,(ay )]
where the last equality holds due to the Leibniz rule. The verification of the conformal Jacobi
identity is left to the reader. O

Definition 2.4. Given a Lie conformal superalgebra R of type (r,s), the annihilation Lie
superalgebra associated to R is the vector super space

A(R) = R/OR,
with bracket given by

aabyy] = 3 @(yM<ay>J><an>yN=[(yMa»(byN)hA0.
JESr s

Proposition 2.5. A(R) is a Lie superalgebra.

Proof. The proof is a straightforward generalization of the standard conformal case which is
treated in [1~5] One can also check that this is an immediate consequence of Properties (8)
and (9) on R together with the observation that 9; + 9,, = 0 on A(R). O

Next target is to extend the fundamental identity (13) to Lie conformal superalgebras. The
crucial point here is to give the appropriate definition of ay € A[[A]] ® A(R): this is the main
result in the next Proposition 2.8. We first give some technical lemmas.

Lemma 2.6. Let R, J be two finite sequences with entries in {1,...,r + s}. Then

1 o
myRJ(ay)J = mym

where ny = (=1)1*25%9 and q; is the number of odd entries in J.

Proof. Tt easily follows by induction on the length of J. 0

For K = (k1,...,k:) a sequence with entries in {1,...,7 + s} we let K= (ky,....k). f K
is the empty set then K = K.
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Lemma 2.7. Let K be a finite sequence with entries in {1,...,r 4+ s}. We have
1 1
A+ prkyx = Z T o MHMRYIYR-
7(5) s nes s TOI(R)

and

1 1
ARy =Y ApuryiYg.
f(K)( +/J')KyK 1res TR f(I)f(R) RMTYIYR

Proof. 1t is sufficient to notice that
1 1
— A+ p)i = Z ELRK T 7 py MHMER-
7(K) e T D F(R)
where, if IR ~ K, €1 .k is defined by A\;Ag = €1 g,k A and therefore e; g, x = ERIR O

As in the completely even case the following result will turn out to be crucial in the repre-
sentation theory of Lie conformal superalgebras (cf. [10]).

Proposition 2.8. Let R be a Lie conformal superalgebra of type (r,s). For a € R, let
ar = KGZST,S(_W%”K” € AR
Then
[ax, bu] = [axb]a+p-
Proof. We have

[ax,b ; ) [Yra, bym%
- X K?jcw(yﬂay)ﬂ(ajb)yf]f‘(‘fn
-2 e S s (9y)) @by e
- R%Juw*mmmymm)y%f(%
by Lemma 2.6. Now notice that A; = (—1)?/5s\; hence
ax,by] = I;;—l)mfug]’?(my}%yfm ) e

= Z 1)prtpn (}z/;}e}z(mungyR XJ: f)(‘;)(aﬁ)

_Z 1)Ps A+S;;s SZ ajb>

AN

by Lemma 2.7.



3. CONFORMAL MODULES AND CONFORMAL DUALS
This section is dedicated to the study of modules over Lie conformal superalgebras.

Definition 3.1. A conformal module M over a Lie conformal superalgebra R of type (r,s) is
a Z/2Z-graded A\[O@]-module with a Z/2Z-graded linear map

RRM = ANA @M, a®v— axv

such that
(M1) (0;a)av = [0;, ax]v = —Ajaxv;
(M2) [ax, bulv = ax(buv) — (=1)P@POb, (ax)v = (arb)aypuo-

Definition 3.2. A Lie conformal superalgebra R of type (r, s) is called Z-graded if AIN®@ R =
®acz(AA] ® R)4, where (A[A] ® R)4 denotes the homogeneous component of degree d, and for
every homogeneous elements a,b € A[A] ® R one has:
i) deg(\;a) = deg(a) — 2;
ii) deg(9ia) = deg(a) — 2;
iii) deglaxb] = deg(a) + deg(b).

Notice that if R is a Z-graded Lie conformal superalgebra of type (r, s) then its annihilation
algebra A(R) inherits a Z-gradation by setting

deg(ay,,) = deg(a) +24(M),

where, for M = (mq,...,my), (M) =t.

In what follows we assume the following technical conditions on a Lie conformal superalgebra
R of type (r, s), which turn out to be satisfied in many interesting cases: we state them explicitly
for future reference.

Assumptions 3.3.
(1) R is Z-graded;
(2) The induced Z-gradation on A(R) has depth at most 3;
(3) The homogeneous components A(R)_1 and A(R)_3 are purely odd,;
(4) The map ad : A(R)_p — der(A(R)) is injective and its image is D = (0y,,...,0y,,.)-

We consider the semi-direct sum of Lie superalgebras D x A(R), we observe that the subset
I ={z —ad(z), x € A(R)_2} is an ideal and we set

g(R) = (D x A(R))/1.

By Assumptions 3.3 (4), g(R) =2 A(R) and g(R)_2 = D. Indeed we will identify g(R)_o with
D =(0y,,...,0y,.,)-

We point out that the Lie superalgebra D x A(R) is the natural generalization of the so-
called extended annihilation algebra introduced by Cheng and Kac in [10]. A key observation
made in [10] is that conformal R-modules are exactly the same as continuous (called conformal
in [5]) modules over the extended annihilation algebra. The following proposition extends this

result in our context and is proved using Proposition 2.8.

Proposition 3.4. A conformal R-module is precisely a continuous module over D x A(R), i.e.
a module M such that for every v € M and every a € R, (yga).v # 0 only for a finite number
of K. The equivalence between the two structures is provided by the following relations:

o axv =3 (~ 1)K s (yca)v;
o &»v = —6%..’[).
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Definition 3.5. We say that a conformal R-module M is coherent if the action of the ideal
I ={z—ad(z), x € A(R)_2} is trivial.

Thanks to Proposition 3.4, a coherent R-module is precisely a continuous module over g(R).
One checks directly that a conformal R-module M is coherent if and only if it satisfies the
following property: for every a € R and all K such that deg(yya) = —2,i.e.yga =), a;0y, €
g(R>—27 if

A,
axv = Z(_l)pr(f[) VH,

H
then vg = =) ;0.

Definition 3.6. The conformal dual M* of a conformal R-module M is defined as
M*={fx: M = AA] | fa(@im) = (— )plp )\ ifa(m), forallme M and i =1,...,r + s},

with the structure of A[@]-module given by (9;f)a(m) = —A;fa(m), and with the following
A-action of R:

(axf)um = —(=D)PPD f,_5\(axm), a € Rym € M,
Here by p(f) we denote the parity of the map fa.

Proposition 3.7. If M is a conformal R-module, then M* is a conformal R-module. If, in
addition, M is coherent, then M™ is also coherent.

Proof. We need to check that properties (M1) and (M2) hold for M*. We have:
(i) f)um = _(_1)(pi+p(a))p(f)fqu((aia)Am) — (_1)(Pi+p(a))p(f)<_1)pip(f))\ifu7)\(a>\m)
= (_1)p(a)p(f))\if“_)\(a>\m).
Besides,
(01, ax] f)um = (Bi(axf))pm — (—=1)PPD (ax8; f)um

= _Ui(a)\f)p,m + (—1)ppl@)tpla P(f)+Pi)8if”7)\(aAm)
= pi(—1 )p(a alaam) + (=PI = ) fu-a(axm)
= (-1, f,L Alaxm).

(M1) thus follows. As for (M2), we have:

([ax, bl lum = —(=1)P @O (b, £),_x(axm) + (=1)PP (ax f)u—p(bum)

(
(

= (_1)p(a)(p(b)+p(f))+p(b)p(f)fV_A_“(b”(a)\m)) _ (_1)p(b)p(f)+p(a)p(f)fV_A_“(a}\(bu

= _(_1)(1)(a)+p(b))p(f)fV_A_M([a)\7 b)m)
= —(-)POPORDf s (axb)rsum) = (axb)aspf)um.

Now assume that M is coherent. Let ypa = ), o0, € g(R)—2. Let My be the subspace
of A(X\) ® M spanned by all elements of the form Agv for all H # K, ¢(H) > ¢(K) and all
v € M. We have

AR

axv = —(—l)pKT) Za,@iv mod Mp.

m))
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Therefore

(axf)pv = —(=1P@PD £, 5 (arv)

A —
= _(_1)p(a)p(f)f“7>\( — (—1)Px f(}lg) Zi:aiaiv) mod My
A _
= (=1)Px f(Ilg) zi:ai(,ui = Xi) fu—av mod My
A _
= (=1)P% f(ﬁ.) zi:@iﬂi(fuxl)) | \—o mod Mg
'(fuv) mod Mg

On the other hand
(Z ;0 [)uv = — Z aifti(fuv)

and the proof is complete by the observation following Definition 3.5. O

Proposition 3.8. Let T : M — N be a morphism of conformal R-modules i.e. a linear map
such that:

(1) T(8im) = (=1)PPTM ;T (m),
(2) T(axm) = (=1)P@PDayT(m),

then the map T* : N* — M* given by: (T*(f))am = —(=1)PDPU) 3T (m) is a morphism of
conformal R-modules.

Proof. Let us first check that if f lies in M* then T%(f) € N*. Indeed, for m € M we have
(T*(/)A(@m) = =(=1)PTPD £(T(9;m))
= —(=1)PMED+P) 3 (5, T (m)) = —(—=1)PDEO+PI+Pi N, £, T (m)
and
N(T*(f))am = =(= 1RO ST (m).
Let us verify property (1) for 7%. We have
(T*(8:f))am = —(—=1)PD@D+P) g, £, T (m))
= (=1)PD@N+PI N, 13T (m)
and
Oi(T*(£))am = =X(T*fam = (~1)PDPDN; £ T(m).

Besides we have

(T (axf))m = (=P DEOD (a5 ), T(m) = (~1POD DD £ (03T ()
and

(axT* ()i = —(=1POCDPONT( 1)),y (am) = (—1POOD DD [ (T(agm).

Property (2) for T* follows from property (2) for T O
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Proposition 3.9. Let M be a conformal R-module which is free and finitely-generated as a
A[B]-module. If {m;} is a basis of M such that axm; = >, Pjp(X, @)my, then M* is a free,
finitely-generated N\[@]-module, with basis {m}} given by: (m})amy = oz and
aym; = — Z(_1)p(mi)(p(mj)+p(mi))pji()\, ~8 - \)m.
J
Proof. The fact that M* is a free A[@]-module with basis {m;} is an easy verification. By

definition we have:

(axmi ) (mj) = —(=1POPm) (), x(amg) = —(=1POPm) S (me)s,_P(A, D)

k
= (-1 ) (Pi(h, D))
— _(_1)p(mi)(p(mj)+p(mi))pji()\’ w—A).
The statement follows. O

Remark 3.10. We point out that, by Proposition 3.9, the map
P 1 (M) = M, (mf)* > (—1)Pm ),

is an isomorphism of conformal R-modules, provided that M is free and finitely generated as
A[@]-module.

Remark 3.11. Let M, N be free and finitely generated conformal R-modules and T : M — N
be a conformal morphism. In [5, Proposition 2.4] it is shown that if R is of type (1,0), T is
injective and N/ImT is free as F[0]-module, then T* : N* — M* is surjective and that the
injectivity of T' is not sufficient. The same argument applies also for R of type (r,s). On the
other hand, it is easy to check that if T is a surjective morphism of conformal modules then
T* is always injective.

Recall that we always assume that Assumptions 3.3 on R are satisfied, in particular, g(R) =
®;>—39(R); is a Z-graded Lie superalgebra of depth at most 3 with g(R)_; and g(R)_3 purely
odd, and g(R)_» identified with D = (9,,,...,0,,.,)-

Let F' be a finite-dimensional g(?)o-module which we extend to g(R)>0 = ;>0 8(R); by
letting g(R);, j > 0, act trivially. We let N

R
M(F) = IndgERgzoF
be the generalized Verma module, attached to F. Since, by our assumptions, A[@,] =
U(g(R)_,), and g(R)_1 and g(R)_3 are purely odd, we see that M(F) is a free A[@]-module
of rank 2", where n = dim(g(R)_1 + g(R)_3).

Let {dy,...,dy,} be a basis of g(R)_1 & g(R)_3, and {vy,...,v,} be a basis of F. For every
Ic{1,....,n}, I ={ir,...,ix} with iy < --- < iy we let df = d;, ...d;, € U(g(R)). We set
Q= {1,...,n}. We observe that {djv, |I C Q, h € {1,...,0}} is a basis of M(F) as a free
A[Oy]-module and we will denote by{(d;vy)*|I C Q, h € {1,...,¢}} the corresponding dual
basis of M(F')* as a free A\[@y]-module.

Lemma 3.12. Let z € g(R)>o. Then for all1 CQ and allk =1,...,¢ we have

xdru, € @ /\[ay]deh.
JLh: | TS|
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Proof. We proceed by induction on |I]. If |I| = 0 the result is clear since vy € F. If |[I| > 0
let I = {i1,...,%}. Then

xdil e ditvk = [.ZC, dil]dig ce ditvk + (—1)p(x)dil$di2 e dit’l)]g.

Consider the first summand. If deglx,d;,] < 0 is odd then [z,d;,] is a linear combination of
the d;’s and the result follows. If deglz,d;,] < 0 is even then [z,d;;] € A[@y] and the result
also follows. If deg[x,d;,] > 0 we can apply our induction hypothesis.

For the second summand we can also apply the induction hypothesis so that

xdiz ce dz‘tvk = Z PJ/’h(ay)dJ/’Uh
J7 ke || <t—1
and the result follows observing that d;0,, = £0,,d; + > apdy,. Il

Definition 3.13. If g is a Lie superalgebra, ¢ : g — gl(V) is a representation of g and
x — Xz € F is a character of g, we let X : g — gl(V') be given by
X (z)(v) = (x)(v) + Xav-

It is clear that X is still a representation and we call it the x-shift of . In particular, if V' is
any g-module we call the y-shifted dual of V' the y-shift of the dual representation V*. More
explicitly, if {v1,...,v,} is a basis of V and {v],...,v}} is the corresponding dual basis of V*
the x-shifted action on V* is given by

(19) 2.0} = Xaj, — (—1PEOPE) S (2o,
k

forallz €egand h=1,...,n.

Now let U = U(g(R)<o) and observe that U is a graded g(R)o-module by adjoint action.
Let d = degdq and consider the homogeneous component of degree d of U

Ug = @ N(By)d—deg d; dr
1cQ
and note that
Us = B NOy)a—daegd, d1

I#£Q

is a g(R)o-submodule of codimension 1 by Lemma 3.12. So we have that Ug/UJ is a 1-
dimensional representation of g(R)o and we denote by x +— p, € F the corresponding character.
In other words the character p is uniquely determined by the condition

(20) [z,dq] = peda mod Uj.
Lemma 3.14. Let x € g(R)g. Then
pe = —str(ad(2)g(r)_,@g(R)_3):
where str denotes the supertrace of an endomorphism of a vector superspace.

Proof. Recall that dg = dy ---d, where {dy,...,d,} is a basis of g(R)_1 ® g(R)_3. If n =0
the result is trivial since dg = 1. The result is also trivial if p(z) = 1 since p, = 0 for parity
reasons and ad(z) = 0 because g(R)_1 @ g(R)_3 is purely odd.
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So we can assume that p(z) = 0 and n > 1. Next observe that if i1,...,4; € {1,...,n} are
such that i, = iy, for some h # k then d;, ---d;, € Ug. So, if [v,d;] = 3_; a;;d; we have

[x,dq] = [v,di]dy - - dp + di[z,do]d3 - - dpy + -+ dy - dp1]w, dy)

= aydids -+ - dp + di(agede)ds -~ dy + -+ dy -+ - dp—1[anndy] mod Uy
= (a11 + -+ + ann)do mod Uy.
Therefore p, = a1+ -+ apn = — str(ad(x)|g(R)_l@g(R)_3). O
We let {0} ,...,0; . } be the basis of g(R)*, dual to {y,,...,0y,, }. We let

m:U = @/\ yldr = A[9ylda

be the natural projection. Analogously we have M(F) = &;A[0]d;F and we also denote by
7w M(F) — A[@]doF the corresponding projection. The following result is crucial in this

paper.

Theorem 3.15. The subspace Fo = spanw{(doug)* | k = 1,...,4} of M(F)* is a g(R),-
module isomorphic to the x-shifted dual of F', where the shift character is given by

(21) Xz = str(ad(z)|gr),), * € §(R)o.
Proof. Recall that for all a € R we have
A _
(22) ax(drog) = ) (—1)”{%(?!1\/[@)(@%) = Priun(X, 8)dyup
MESy,s Jh

for some polynomials Py k. j4(A, 8). Let yga € g(R)o and observe that dega < 0 is even. We
make use of (22) to compute the action of yga on F. We point out that P ;.0 4 (X, 8) # 0 only
if I = Q. Indeed, if y)sa € g(R)<o then yya € g(R)-2 and so we have yya =0y (ypa)0y,
hence

(yar@)(drvg) = 05 (yara)dydrvw = =Y 05 (ypra)ddrog;

if ypsa € g(R)>o this follows by applying Lemma 3.12.
In order to compute the polynomials Pq .0 n(A, @) we notice that by (22) and Lemma 3.12
we have

Az

ZPQ,k;Qh()\,a)dth: Z (=1)PM
h

w((yra)dauy)
MeS,. Fly "R

A
= > (—1)Pm 2w (yara)dauy)-
M:deg(ypra)=0,—2

It follows that

> Pogan(A, 8)dauy, = > pM Z (ypra)0y, douvy
h M:degyMa:—2
A _
+ Z (—1)pN7]]¥[ (pyNavk + (—1)p(dQ)p(yN“)dQ(yNa).vk).
N:degyna=0 f( )

Substituting (yya).vx = >, v ((yna).vr)vp in the previous formula we deduce that
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Pako,n(X, 9) =5k,h( - > Z(—l)pM%azi (Yna)di+ Y (—1)pr)(\]]§[7)PyNa>

M:degyja=—2 1 N:degyna=0

AR I DR s T

N:degyna=0 f(N>
By Proposition 3.9 it follows that
(23)
ax(douvp)* =
M i o * PN Ay *
Z (-1) FOM) Za (yara) (=0 — Ni)(daup)* — Z (—1) WPyNa(dQUh)
M:degyra=—2 7 N:degypna=0

_ Z Z (—1)PN f)(‘]]\_\;') (_1)p(dﬂvh)(P(dnvh)ﬂo(dﬂvk)) (_1)P(dQ)P(yNa)U;(yNa ve) (daug)*
k N:degypna=0

Observe that in each summand of the last sum we have a factor v} (yyavi) so that we can
assume p(vp,) + p(vk) = p(yya) in order to simplify the sign

(—1)Pldavn)(pldovn)+p(dave)) (_1)p(da)pyna) — (—1)P(vn)p(yna)
Now recall that the action of yga € g(R)p on (dqup)* can be obtained from (23) thanks to

Proposition 3.4. This immediately implies that Fq is a g(R)o-submodule of M (F)*. More
precisely, for ygqa € g(R)o we have:

(1) ysaldom) =(— D0 (~DPeqars) mi($)9;, () = pyga ) (davn)’
i,M:iM~S

_ (_1)p(vh)p(y5a) Z v;:(ysa Uk) (dka)*
k

Recalling that iM ~ S implies y;y 5 = €i 1,5y We have 0y, (yg) = €i,0m,5m:(S)y ), and so we
have

yga.(davn) = (= 3 (~1)P85 (9,y50) — pysa) (davn)” — (—1PEPESD S o (ycavy)(dauy)*

i k
= (D (=170} [y5a, 0y = pyga) (dava)* — (=1)POWPESD N " (y ga vy) (dguy)*
7 k
= str (ad(y5a) o) (derwn)” — (—1POPED S i (g cay) (dn)
k
by Lemma 3.14. The result follows by (19). O

Proposition 3.16. The g(R)o-module Fq is annihilated by g(R)>o.

Proof. By the same argument used in the proof of Theorem 3.15 if the degree of a is positive
then ay(dqup)* = 0; moreover, if a has even non-positive degree then y,,a.(dquy)* = 0 by
(23).
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Now let us assume deg(a) = —2¢ + 1 for some positive integer g. If (M) = g— 1,9 — 2 then
we can write yy,a = > " anri(a)d; for some apri(a) € F. From (22) we obtain

. AM
> (—1)1*1aM,i(a)M5kh if 1=0\/{i} forsome 1<i<n,
Prian(X0) = § ym)=g—1,9-2 :

0 otherwise.
It follows that

ax(dovp)* = — Z(f1)p(d§2”h)(P(dﬂvh)""f’(dlvk))PLk;Qﬁ(A’ -8 — A)(dyvp)*
Lk

- A .
L M)=g—1,9—2 1

It follows that y,,a.(dquy)* = 0 for (M) > g. O

For the 1-dimensional g(R)p-module x given by (21), we denote the y-shifted dual of F' by
FV. The following is our main result.

Theorem 3.17. Let R be a Lie conformal superalgebra of type (r,s) satisfying Assumptions
3.3. Let F be a finite-dimensional g(R)o-module. Then M (F)* is isomorphic to M(F"V) as a
g(R)-module.

Proof. We use the same notation as above and consider the basis {v],...,v}} of FY dual to
the basis {v1,,...,v¢}. By Theorem 3.15 and Proposition 3.16, we can define a morphism
o M(FY) — M(F)* of g(R)-modules by extending the g(R)>¢-modules isomorphism ¢ :
FY — Fq given by p(v}) = (doug)* for all k =1,...,¢, in the following natural way:

p(u®v) = (=1 ()

for all uw € U(g(R)) and v € FV.

Since M (FV) and M (F)* are free A[@]-modules of the same rank, we will prove that ¢ is in
fact an isomorphism by showing that it is surjective. To this aim it is sufficient to show that the
g(R)-submodule S of M(F)* generated by Fgq is the whole M (F)*. Let a € R be an element
of negative odd degree, say dega = —2g + 1. Recall that by Lemma 3.12 if deg(y,,a) > 0 we
have

yyadmy € EB N[@y)d v,
Th: |J]<|1]

and if deg(y,sa) < 0 then yyra =", i m(a)d;. Therefore
axdrog = Y pM Z aiy(@)didiog +> > Prgggn(X, 0)d vy,
{(M)=g—1,9—2 h J:|JI<|]
In particular, if J = {j1,...,7,} with j; < jo <--- <4, and |J| > |I|, then

Onk § (—1)PM LM(*l)i_laiM(a) if I =J\{j;} for some i
M! ’
Prigp(X, 0) = o(M)=g—1,9-2

0 otherwise.
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It follows that

* ; Al i— *
ax(dyvp)" = Z —(ppeetE g R T~ T (1) i (@) (d gy on)
L(M)=g—1,9—2

(25) -3 > (- JPANFPED) Py oy (A, =X — 8) (drug)*.
kI |I|>]J|

We show by reverse induction on |I| that S contains all elements (drvg)*. The first step of the
induction consists of the elements in F which belong to S by definition.

So let I C © and let J be such that I C J and |J| = |I|+ 1. If J = {j1,...,jr} there exists
i such that I = J\ {j;}. By induction hypothesis all elements (djvy)* € S. Now we observe
that there exist a € R and N such that d;, = yya. Indeed, by definition of g(R), dj, can be

expressed as follows:
d;, = Z Y, Q-
T

Let N be such that yy is a non-zero common multiple of all y,, . Then we can write
djz = ZyMrar = ZBT?JN Irar Yn Zﬁr o) alrar Yyna,
"

where [, are suitable constants and I, are suitable sequences of indices. By Equation (25),
observing that o, y(a) = 1, we have

yya(dyop)* = —(=1)PE)@EN+PD) (1)1 ()" 4 Z,

Z € Z Z /\ dka

k L:|L|>|J|
This completes the proof. O

where

4. THE LIE CONFORMAL SUPERALGEBRA OF TYPE W.

We denote by W (r,s) the Lie superalgebra of derivations of A[[x]], where, as usual, =
(x1,...,%r4s) and x1, ...,z are even and Ty41,..., 2,45 are odd variables. In this section we
realize W (r, s) as the annihilation superalgebra associated to a Lie conformal superalgebra of
type (r,s) which satisfies Assumptions 3.3.

Definition 4.1. We denote by RW (r, s) the free A[@]-module with even generators as, ..., a,
and odd generators a,41,...,ar+s, all of degree —2, and A-bracket given by

laira;] = (0i + Ai)aj + a;\j
and extended on the whole RW (r,s) by properties (6) and (7) of Definition 2.1.

Proposition 4.2. RW (r,s) is a Z-graded Lie conformal superalgebra of type (r,s) satisfying
Assumptions 3.3.

Proof. 1t is sufficient to verify that conformal skew-symmetry and Jacobi identity hold for the
generators a;. We first verify the conformal skew-symmetry. We have

[ajAai] = (8]' + )\j)ai +aj\;
= (=1)PPi(a;(0; + Nj) + Niay)
= (=P (=(8i = Xi — Bi)aj — ai(=0; — Aj))

= —(=1)""[ai_x—ga;].
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The Jacobi identity can be verified similarly. Namely we have:
[aixlaj,ar]] = aix(0; + pj)ar + ajp]
= (=D pjlainar] + [aix0jar] + [aixa;]
= (=1)PPi ;i ((9; + Ni)ak + aihg) + (—1)PP1(9; + ;) [aixax]
+ ((0i + Ai)aj + aikj)
= (0; + Ni)pjar + aipi i + (05 + Xi) (05 + Aj)ak + ai(05 + Xj) Mg + (0 + Ni)ajju
+ @i

[laixasIxtpar] = [(0i + Ai)a;j + aidj 5, ak]
= —philajny o] + (=1)PP Ajlaixng pak]
= —wi((9j + Aj + pj)ar + aj(Ak + pe)) + (95 + Ai + pi) Ajar + aidj (A + p);

(=) [a; ,lainar]] = (=1)P*P7[a;,,(0; + Ai)ay + aily]
= (0; + pi + Xi) (05 + pj)ak + ajur) + ai(95 + i) A + piaj Ak
The fact that RW (r, s) satisfies Assumptions 3.3 is straightforward.

Proposition 4.3. The map

¢ : g(RW (r,s)) = W(r,s)
given by ypra; — —x 0y, is a Z-graded Lie superalgebra isomorphism, where the Z-gradation
on W(r,s) is given by degx; = —deg 0y, = 2.

Proof. In the Lie superalgebra W (r, s) one has:
[2110z;, &N Oz)) = Ta1 (D, 2N ) Dy — (_1)(Pi+PAl)(pj+PN)xN(8xij)axi‘

On the other hand, by Definition 2.4, we have:

[yaras yyas) = (—1)78 3 f(lK)@M(ay i) (@i a;)yy
K

(=1)PIPN (y 0 (i)Y N + (YnrOyi )y n + (Yar Oy, ) ((=1)PPia;)y
(_1)pij(_(_1)pipM+pij (ayinyNaj) + (_1)pipM+pij (8yin)yNaj
(—1)PiPitPiPM PPN (Oy, Y1) YN i)

= —yM(ayin)aj + (—1)(pi+pM)(pj+pN)yN(ayin)aj-

+

g

Remark 4.4. Let R = RW(r,s). We observe that g(R)o = gl(r, s), hence the center of the
even part of g(R)o is spanned by ¢p = Y.;_, yia; and ¢; = Z:if-u yia;. We have x., = —r
and x¢, = s.

We point out that this is consistent with the classification of degenerate Verma modules of
W (1,s) given in [5] that we recall below. In this case let us denote by F(«g, aq1; 81, .., Bs—1)
the irreducible gl(1, s)-module with highest weight (g, aq; 51, .., Bs—1) with respect to the
elements 10, f;rzl 2i0p,;, ©203y — X305y, .., TsOp, — L1105,

We observe that for & > 0, the dual of the gl(1, s)-module F(0,—k;0,...,0,k) is F(1,k —
1;k —1,0,...,0). Indeed the module F(1,k — 1;k — 1,0,...,0) consists of k-forms in the
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indeterminates x1, ..., zs11 with constant coefficients, its highest weight vector is d:lcl(dacg)k*1

and its lowest weight vector is dw'jH. It follows that the shifted dual of F(0,—k;0,...,0,k)
is F(0,s+k—1;k—1,0,...,0). Moreover, the module F(0,0;0,...,0) is self-dual and so its
shifted dual is F(—1,s;0,...,0).

In this notation we have the following two sequences of morphisms of generalized Verma
modules:

M(0,0:0,...,0) <+ M(0,—1;0,...,0,1) «+ M(0,-2;0,...,0,2) <+

M(-1,s;0,...,00 — M(0,s;0,0,...,0) — M(0,s+1;1,0...,0) — .-+,

which contain all non-trivial morphisms. Note that these two sequences are dual to each other.

5. THE FINITE SIMPLE LIE CONFORMAL SUPERALGEBRAS OF TYPE (1,0)

It is known that all infinite-dimensional simple linearly compact Lie superalgebras of growth
1 (rather their universal central extensions) are annihilation Lie superalgebras of simple Lie
conformal superalgebras of type (1,0), which have finite rank over F[J] [13]. These Lie super-
algebras are

(26) W(l,n), S'(1,n), K(1,n), K'(1,4) and E(1,6),

except that here by K’(1,4) we mean the universal central extension of [K(1,4), K(1,4)]. The
corresponding simple Lie conformal superalgebras are respectively

(27) Wy, Spy, Kn, Kj and CKg
(in fact there are many Lie conformal superalgebras with the annihilation Lie superalgebra
S(1,n) [13]).

All Lie superalgebras (26) are Z-graded by their principal gradation described in [11], and
these gradations are induced from Z-gradations of the corresponding Lie conformal superalge-
bras. For example the principal Z-gradation of W (1,n) and S(1,n) is defined as in Proposition
4.3, and it is induced from the Z-gradation of RW (r, s) from Proposition 4.2.

The linearly compact Lie superalgebra K(1,n) is identified with the linearly compact su-
perspace

The bracket is given by the formula

(28) [6,6] = (20— 3 &06,0) (D) — (8y0) (20 = D €Gew) + (~1)") Y (9, 0) (9,0,
i=1 i=1 i=1

and the principal Z-gradation is

(29) deg(&i, - .- &, t") = s +2m — 2,

hence it is of the form K(1,n) = [[;>_5 8k, where g_o = F1, g1 = span{{i,...,&n}, go =

span{&;¢&;} @ Fy. It follows from (28) that go is isomorphic to so, @ Fy, where y is its central

element and ady defines the Z-gradation; the adjoint representation of so,, is trivial on g_o
and standard on g_;. Hence, by Theorem 3.15, the shift character x on gg is as follows:

(30) Xjson =05 Xy =n—2.

The Lie superalgebras K’(1,4) and F(1,6) with their principal gradation are Z-graded
subalgebras of K(1,4) and K(1,6) respectively, with the same non-positive part. Hence the
shift character in these cases is given by (30) with n = 4 and 6, respectively. Note also that on
the central element ¢ of the universal central extension of K’(1,4) the shift character vanishes.
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This description of the shift character shows that the complexes of degenerate Verma mod-
ules described in [3], [1] and [4] for K(1,n), K'(1,4), and E(1,6), respectively, are mapped to
each other under duality described by Theorem 3.17.

Of course, in order to be able to apply Theorem 3.17, we need to check that the Lie super-
algebras in question are annihilation superalgebras of Lie conformal superalgebras, and that
Assumptions 3.3 hold. But this holds for K(1,n) and K’(1,4) by [13] and for E(1,6) by [9].

For example, the Lie conformal superalgebra with annihilation Lie superalgebra K(1,n),
as an F[0]-module, is K,, = F[0] ® A(€), and the A-bracket between f = &, ...&;, and g =
&, - .- &, is given in [13] by the following formula:

n
[1rg) = (k= 2)0(fg) + (1) > (0, ) (Pe,9) + Ak +h —4) fg.
i=1
The principal gradation on K (1,n) is induced by the following Z-gradation on K,,:
deg(&iy -+ &i.) = 5 — 2, deg(0) = deg(A) = —2.
6. THE LIE CONFORMAL SUPERALGEBRA RFE(5,10).

In this section we introduce, following [11], the exceptional linearly compact infinite-dimensional
Lie superalgebra F(5,10) and realize it as the annihilation superalgebra of a Lie conformal su-
peralgebra of type (5,0).

The even part of E(5,10) consists of zero-divergence vector fields in five (even) indetermi-
nates x1,...,Ts, i.e.,

5
Afi
E(5, 10)6 =55 = {X = ;fzazz | fi € F[[$1, ce le Z a.l‘l = ,
and E(5,10); = Q2 consists of closed two-forms in the five indeterminates zy,...,z5. The

bracket between a vector field and a form is given by the Lie derivative and for f,g €
Fl[x1,...,zs]] we have
[fdzi A daj, gday N di] = i f 9O,

where, for i,7,k,1 € {1,2,3,4,5}, €5 and t;;; are defined as follows: if {4, j, k,l}| = 4 we let
tiji € {1,2,3,4,5} be such that [{4,7,k,],t;.}| =5 and g5 be the sign of the permutation
(4,4, k, U tajrr). I [{4,7,k,1}] < 4 we let g5, = 0. From now on we shall denote dx; A dx;
simply by d;;.

The Lie superalgebra E(5,10) has a consistent Z-gradation of depth 2, called principal,
where, for k£ > 0,

E(5,10)9;_2 = <f8:vl li=1,... 5,f€FH:U1,.. ]]k>ﬁS5
E(5,10)2k-1 = (fdij | i,j = 1,...,5,f € Fl[z1,..., ws5][) N
where by F[[x1,...,z5]]x we denote the homogeneous component of F[[z, ... ,335]] of degree k.

Note that E(5,10) = sl5, and its modules E(5,10)_; and E(5,10)_5 are isomorphic to the
exterior square and to the dual, respectively, of the standard sls-module.

Definition 6.1. We denote by EL\?(B, 10) the free F[8]-module (where 8 = (01,...,05)) gen-
erated by even elements 0., and odd elements dj, with 7,7,k € {1,2,3,4,5}, j < k. We set
d;j; = 0 and d;i = —dy; if j > k. We consider on @(5, 10) the following A-bracket:

d [8%)\8161] _(81 + )‘1)830] - )‘jaxi;

° [8xi)\djk] = —(81‘ + )\i>djk + 5@' Zh Andnk — Oki Zr )\,«drj;

° [ jk)\axi] = —/\idjk + (5@‘ Zh()‘h + 8h)dhk — O ZrO‘T + ar)drj
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o [dij dnk] = [dij, dni]
extended on the whole RE(5,10) by properties (6) and (7) of Definition 2.1.

Remark 6.2. One can verify that the A-bracket defined on RE (5,10) satisfies the conformal
skew-symmetry in Definition 2.1 but it does not satisfy the conformal Jacobi identity.

Note that the A-bracket [0,,,0;,] differs in sign from that given in Definition 4.1, but is
more natural in this context. In order to explain how Definition 6.1 arises we make a short
detour on formal distribution algebras. We adopt the same notation and terminology as in [15].
All variables in this context are even. For this reason we indicate monomials with the usual
multi-exponent notation, namely, for N = (ny,...,ns) and = (21,...,25), " = 2' - 22°.
For two variables w, z define the formal d-function

Oz —w)= Z w2,
i.j|i+j=—1
Recall that it satisfies the following properties:
(i) d(z —w) =d0(w — 2),
(i) 0,0(z —w) = —0wd(z — w),

(i) f(2)d(z —w) = f(w)d(z — w) for any formal distribution f(z).

We let w = (wy,...,ws), 2 = (21,...,25) and A = (A1,...,As5), and introduce the formal
d-function in 5 variables (the discussion below holds for any finite number of variables)

5z —z) = Hé(mi — ).

The properties of §(z — w) imply similar properties of it:
(31) f(x)d(x —w) = f(w)d(x — w), for any formal distribution f in 5 variables,

in particular:

(32) d(x—2z)d(x —w) =6(w — 2z)d(x —w).
Also
(33) Oz, 0(x — w) = —0y,0(x —w),

and 6(x — w) = 6(w — x).
Lemma 6.3. We have
d(x — 2)0z,0(x — w) = —6(w — 2)0y,d(x — w) — (Oy,d(w — 2))d(x — w).
Proof. Using Equations (33) and (32) we have
d(x — 2)0z,0(x — w) = —6(x — 2)0y,0(x — w)
= —0u, (0(x — 2)0(x — w))
= —0u, (6(w — 2)é(z — w)).
O

Now we consider the free F[[z1, ... ,3:5]][371_1, . ,xgl]—module As with basis 0,1 =1,...,5,
and d;j, 1 <1i < j < 5. Define the skew-supersymmetric bracket on As by the same formulas
as for F'(5,10). Then Aj; is a superalgebra containing F(5, 10) as a subalgebra, but the bracket
on Aj does not satisfy the Jacobi identity.
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Recall that two formal distributions a(z),b(z) € As[[z*!]], i.e. bilateral series with coeffi-

cients in As in the variables z1, ..., z5, are called local if
1
[a(2),b(w)] = Y o (W) 0w = 2),
Nez5,

where cy(w) are formal distributions in As[[w*!]] and only a finite number of cy(w) are
nonzero. We say in this case that [a(z))b(2)] = cn(2) is the N-product of a(z) and b(2)
and we define their A-bracket by

a(2)ab(2)] = 3 sren ()N,

N
For all a € A5 we let a[z] = 6(x — z)a € As[[zT!]]. It follows from the lemmas below that
these formal distributions are pairwise local.
Lemma 6.4. For alli,j € {1,2,3,4,5} we have

[0z [2], Or; [w]] = =0, (O, [w])6(w — 2) — O, [W] 0w, 0 (W — 2) — Op, [W] ;6 (w — 2).
In particular
(02, (21200, [2]] = = 0:,(x; [2]) = Ou;[2]1Ni = O [2]y-

Proof. We have

[0x, 2], Og; [w]] = [6(x — 2)0y,,0(x — w)@mj]
=60(x — 2)(01,6(x — w))0y; — 0(x — w)(0z,;6(x — 2))0s,
= —6(w — 2)(0u;6(x — w))0y; — (Ow,0(w — 2))d(x — W)0y,
—6(x — w) (O, 0(w — 2))0q,,

by Equation (33) and Lemma 6.3.

O
Lemma 6.5. For all k,l,r, s we have [di[z]xdrs[2]] = [dii, drs][2]-
Proof. We have by (32)
[0(z — 2)di1, 6(x — w)dys] = 6(x — 2)0(x — w)[dp1, drs] = 0(w — 2)6(x — w)[d1, dys].
O

Lemma 6.6. We have

[aﬂh [z]7 djk[w]] = - (awidjk[ ])5(’[1) - z) - djk[w}awié(z - w)
+6i5 Y dpi[w]0u, 6(2 — w) — 6k; Y _ dj[w]0u, 6(z — w)
h#k r#j
and so
[0, [z]adji[2]] = =0z, dji[2] — X 0ij Y dpklzIAn — Oki Y drjlz

h#k r#j
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Proof. We have, by Lemma 6.3,
[0(x — 2)0s,;, 0 (x — w)d,i]
=6(x — 2)(0p,0(x — w))dji + 6(x — w) (0;;d(6(x — 2)day) — Sird(6(x — 2)dz;))
= —(Ow;0(x — w))djpo(w — 2) — §(x — w)dj (0w, 6 (w — 2))
+ (@ — w)(0i > (02,06(x — 2))dpnk — 6 »_ (D, 6(x — 2))drj),
h#k T#]
and the statement follows by (32). O

Let us denote by Z the F[8.]-module generated by the formal distributions 0, [2] and d;;[z].

Lemma 6.7. The F[0.]-module Z is free of rank 15 on generators 0y, [z] and dj[2], i,7,k €
{1,2,3,4,5}, j < k.

Proof. We first notice that if P(9,) is any polynomial in F[@] such that P(8;)d(x —z) =0
then P(8;) = 0. Now let

Y Pi(8:)0s,[z] + ) Qu(02)d;ulz] =0
i i<k
for some P;(8;),Qjx(8z) € F[;]. Since the set {xN9,, : N € Z5 i =1,...,5} U{zNdj :

N eZP jk=1,...,5 j <k} is a linear basis of A5, we have that P;(8,)d(x — z) = 0 and
Q;1(02)d(x — z) = 0 and the result follows. O

By Lemma 6.7 we can identify the F[8]-module RE(5, 10) with the F[d,]-module Z. More-

over the A-brackets on RE (5,10) correspond to brackets of the corresponding formal distribu-
tions in Z via the formal Fourier transform thanks to Lemmas 6.4, 6.5 and 6.6. We restrict
our attention to the following subspace of RE(5,10):

Definition 6.8. Let RE(5,10) be the F[@]-submodule of EE(S, 10) generated by the following
elements:

® a;j = 0;0;; — 00y, for all i,5 € {1,2,3,4,5};
o by =, Ondpy for all k € {1,2,3,4,5}.
One can also give the following abstract presentation of RE(5,10).

Proposition 6.9. RE(5,10) is generated as a F[O]|-module by elements a;j;, by, where i, j, k €
{1,2,3,4,5}, subject to the following relations:
(1) aij + aj; = 0;
(2) ﬁhaij + 6iajh + 8jahi =0
(3) 2k Okbr = 0.
Proof. It is a simple verification that the generators a;; and by, satisfy the stated relations. By

construction the elements d;, (j < k) and 0,, are free generators of RE [5,10]. Assume we
have a relation

(34) > Pu(@)br + Y Qij(8)ai; = 0.
k ij
Using relation (1), we can assume Q;; = —Q;; and in particular Q; = 0. Then we have

> Pu(8)0hdnk + > Qij(8)(0:0x, — 0;0,) =0

k h#k i,J



24 NICOLETTA CANTARINI, FABRIZIO CASELLI, AND VICTOR KAC

and so

> (Pe(8)0h — Pu(@)0k)dnr — > (D 2Qi;(8)9;) s, = 0.
J

h<k i

In particular we have for all h # k that Pp,(0)0, = Px(8)0, and hence there exists a polynomial
P(9) such that P(8) = P(0)0 for all k, hence the relation involving the b;’s in (34) is a
consequence of relation (3).

Using relation (2) systematically, we can assume that if ¢ < j the polynomial Q;; is actually a
polynomial in the variables 9, with h < j. With this assumption we show that all polynomials
Qi; vanish by induction on the lexicographic order of the pair of indices (i, j).

If (7,7) = (1,2) the relation Q1202 + Q1303 + Q1401 + Q1505 = 0 implies Q12 = 0 since
Q12 € F[01,02]. Let (i,h) # (1,2) with ¢ < h be such that Qs = 0 for all (r,s) < (i, h).
Relation above provides

> Qij(8)9; =0
j

which becomes

Z Qijaj =0

j>h

and since )y, is not a polynomial in J; for all j > h we deduce that Q;, = 0. U

In the next result we compute the A-brackets among generators of RE(5,10).

Proposition 6.10. We have
L4 [aij)\ars] = )\j)\rasi + Ai)\rajs + )\i)\sarj + )\j)\sair + )\iazjars + )\jaziasr;

o [aij\bk] = (N0, — AjO2,)bi + (SikAj — 0jiAi) D2, Arbys

o [binbi] =0;

o if i # j, [biabj] = €ijnri(Anars + Mg + Nani) where {i,5,h, k, 1} ={1,2,3,4,5}.
Proof. Using properties (6), (7), (8) of Definition 2.1 and Definition 6.1, we have:

[aiaxj)\araxs] = _)\i()\r + ar)[axj)\azs}
= ()\i)\raj + )\i)\j)\r + )\Z‘arﬁj + /\i)\j&n)é)xs + (>\i)\7‘>\s + )\iAsé)T)E)xj.

Using four times this relation we obtain

[aijAaTS] = [8iazj)\8raxs] - [8j8xi>\araﬂcs] - [81'81’]- Aasaxr] + [8jaa:i>\asaxr]
= ()\i)\raj — Aj/\r&» + Aiarf)j — Aj&,o%)ﬁms + ()\i)\sar - )\i)\ras)é)xj
+ (—)\Z)\s@j + /\j)\sai — )\,f)saj + )\jc‘)sﬁi)&gr + (_)\j)\sar + /\j)\ras)axi
= )\j)\rasi + )\Mrajs + )\1')\3&77' + )\j)\sa@'r + Aiﬁjars + Ajaz-aﬂ.
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In order to compute [a;;,by] we first assume that i, j, k are distinct. We have

aiiab) = (00, = 0,00,)7 > Onclne

ho£k
==\ Z(@h + Ah)[&rj/\dhk] + A Z(@h + /\h)[azudhk}
hAk h£k

=X > _(On 4+ M) (05 + Aj)dnk — Xi(05 + X)) D Avdr
ho£k rk

=X D (O 4 M) (05 4 M)k + (05 + Ni) D Andr
hotk rk

= Xi(05 + Aj) Z Ondpr — Aj (05 + Ai) Z Ondnk

hotk h£k

= ()\Z-é)j — )\jai)bk.

Now we assume that 4, j, k are not distinct and with no loss of generality we can assume
that k =i # j. We have

laij\bi] = {(aiaxj — 0;0z,)a Z ahdhi]

h#i
=—Ai Z(ah + )‘h)[axj )\dhi] + ) Z(&h + An)[0z; xdhil
h#i hti
=\ Z(ah + An) (05 + ANj)dri — Ai(0; + Aj) Z Ml
h#i r#i
=25 ) (On + M) (05 + Ao)dni + Y Asdsn)
hti =
= Xi(0j + Aj) Z Ondpi — Aj(0; + \i) Z(@h + An)dni — Aj Z Z(ah + An)Asdsh
hd h#i h#i sth
= Xi(0; 4+ Aj)bi = Aj (D5 + Ai)bi = Aj(Di+ Ni) D Andn
hti
o )‘j Z Z OnAsdsh — )\j Z Z AnAsdsh
hti s#h hti s#h

In the last sum all terms with s # i cancel out and so we have

laijabil = (Nidj — X;0)b — Aj0i Y Andni — Aid; > Andhi
hti hti

— N A D Ondan — A Y Mnhidin

s hi,s h#i

= (X0 — X0)bi = A > As > Ondan
s h#s

= (Xidj — X;0)bi + A; > Asbs.
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Now we compute

[bixbs] [ > Ondnin Y 31@%}

h#i k#i
== Mk + Op)[dnindri] =0
hk

Now we compute [b;zb;] for i # j. Let h, k,l be such that e;;,, = 1. We have:

binb] = [ D2 0rdrin Y- s

r#£i s#j
S Z Ar(As + 0s)[drinds;]

= (AhAk + A0k — Ap A — )\kah)axl + ()\l)\h + ANOp — Ap\ — )\hal)axk
+ (Ak/\l + A0 — N AL — )\lﬁk)axh
= )\h(f)kaxl — 8[89%) + )\k(alaxh — 8;,,890,) + )\l(ahaxk — 8k8$h).
O

Theorem 6.11. The F[8]-module RE(5,10) with the A-bracket induced from }/BE'(S, 10) and
given in Proposition 6.10 is a Lie conformal superalgebra of type (5,0).

Proof. By Proposition 6.10 the A-bracket actually restricts to a linear map

[.x.]: RE(5,10) x RE(5,10) — F[A] ® RE(5,10)
satisfying conformal sesquilinearity and conformal skew-symmetry. We need to prove the
conformal Jacoby identity for the triple (a,b, c) in the following four cases

(1) ((Z, ba C) = (aijaaT'Sa(lmn);
( ) ((l, ba C) = (bwb],bk)v

( ) (CL, ba C) = (a’ij’a’rsabk);
(4) (a,b,¢) = (aij, bn, by).

(1) Since the elements a;; belong to the submodule of RE (5,10) generated by the elements
Oz;’s it is enough to consider the Jacobi identity for elements Oy,,0y;, 0y, and this can be
verified as in Proposition 4.2.

(2) We have to show that

[bix[bjubr]] = [[bixbjIa+pubr] — [bju[binbe]]-
For distinct ¢, j, k let r, s be such that ;5.5 = 1. We have:

3
4
)

[bz)\[b]”bk]] = [biA(Niars + prag + ,usair)}
= — (= Ar0s + AsOr)bi + e (= NiOsbi + AsOibi + (Xs + 05) D> (A + On)bn)
h
— ps(=Ni0bi + Apdibi + (A + 1) Y (An + On)b)

h
= ()\sﬂrai - )\Z,U/ra + Ail”’sa”" - 7"/1/88' + A7”;“/2‘85 - Asuiar)bi

+ ()\s,ur + Mras — Apfhs — Z Anbp.
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Similarly we can compute
Hbi}\bj]AJrubk] = (/\kﬂras - AkUsar + )\rﬂsak - /\rﬂkas + Asﬂkar - )\sﬂrak)bk

+ ()\sﬂr - )\r,UJs) Z()‘h + ,uh)bh
h
and

[bju[bi}\bk] = _(()\Tﬂsaj - )\rﬂjas + )\sﬂjar - )\sﬂraj + )\jﬂras - )\jﬂsar)bj

+ ()\rﬂs + )\7”88 - ASMT‘ - Asar) Z ,U/hbh)-
h

So we have

[Dia[0jbr]] = [[Diabj]atpubr] + [0 u[binbr]]
= (Aot 0i = XiptrOs + XiptsOp — ApftsO; + Apf1iOs — AsptiOr )by
+ (=Xt Os + NeptsOp — ArpisOk 4 Atk Os — AsptOr + Aspir Ok )by,
+ ( — A fbs05 + ApprjOs — AsptjOr + Asptr 05 — Ajp1rOs + )\jusar)bj

+ (105 — 11s0r) > Mbp + (= Aes + As0p) D by,
h h

= ()\sﬂrai - Arﬂsaz)bz + (Asﬂrak - )\rﬂsak)bk + (/\sﬂraj - )\Tﬂsaj)bj
+ ()\sﬂrar - )\r,usar)br + (Asﬂras - Arﬂsas)bs

= ()\s,ur - )\r,us) Z Onbn
h

=0.
(3) First assume i, j, 7, s, k are distinct. We have
[aijxlarspbr]] = [aija(prOs — 11s0r )by
((Mr<8s + As) — ps(0r + Ar)) (N0 — /\jai))bk
= ((r0s — p1s0r) — (Arpts — Aspin)) (Ni0; — X;;) )by,

and
[[aij)\aTS])\+ubk] = [()‘j)‘rasi + )\i)\rajs + )\i>\sa7“j + )\j)\sair + ()\a )\ a ars) bk]
= (MM (A + 15)0i — (N + 13)0s) + XA (A + 15)0s — (As + ps)0;)
+ XA (A + 10)05 — (Nj + 15)00) + MjAs(Ni + pi)0r — (A + 1))
+ ()\i(_)‘j - :uj) - )‘j(_)\i - Hz))(()‘r + ,ur)as - ()\s + Ms)ar))bk
—()\1'8]- - )‘jai)()\rﬂs — Aspir) — ()\iﬂj - )‘jﬂi)(ﬂras — ps0r)
and finally
[arsplaijube]] = ((Nidj — X;0i) — (idj — pihi)) (urOs — p150r)) by

and so the conformal Jacobi identity follows also in this case.
The other cases can be carried out similarly. O

We observe that RE(5,10) is a Z-graded Lie conformal superalgebra if we set
deg(aij) = —4, deg(by) = —3.
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Proposition 6.12. Let k> 0. Then
1
dim g(RE(5,10))2x—4 < gk(kz +1)(k+2)(k+4)

and
dim g(RE(5,10))o¢ 5 < <h(k +2)(k + 3)(F +4).

Proof. Consider the elements a;;y" with |R| = k which generate g(RE(5,10))o;—4. Since
a;; = —a;; we can always assume that ¢ < j. We show that the set
B={ainy™e: M| =k—-1,i=1,..., 4} U{apy™ 2 IN|=k-1, 4y "}
spans g(RE(5,10))ak-4.
To show this we choose a total order < on the monomials aiij with ¢ < j such that
o if h <i < j<kthen a;;y? < apy® for all R, S.
e if i < j < k then aiij < ajkys for all R, S.

We prove that for every element aiij that is not in B there exists a relation
(35) aijayhyM + ajhayin + ahiayij =0,

which expresses it as a linear combination of smaller elements.
LetaiijgéB. If j—i>2weleti<h<jand we have

1
R _ B R _ . Ry . R
QY = mazjayhyhy = + 1(azhayj (yhy ) a]ha i(yhy ))
Let us consider the case j =i 4+ 1. If 4, y;41 do not divide y® we have
1
ajiv1yt = (ain0y;, (Yny™) — ait1 10y, (yny™)) = 0,

rn, +1

where h is any index distinct from 4, ¢ + 1. So we can assume that ¢ > 1 and that y;11 is a
divisor of y* but y; is not (otherwise a;;;1y® € B). We have

_ _

Ti—1 =+ 1 Ti—1 + 1

So the dimension of g(RE(5,10))2x_4 is less than or equal to the cardinality of B, i.e.
54+k—2 4+k—2 1

4< +4 >+( +4 >:6k(k+1)(k+2)(k+4).

One can similarly show that the set

B = {by": yj|yM for some j > i, |M| =k}

aii+1yR = (ai iflayiﬂ(yiflyR)_aiJrlifla i(yiflyR)) = az‘fliayiﬂ(yz‘flyR)-

is a generating set of g(RE(5,10))2x—3. The proof is analogous and simpler than in the former
case and is based on the observation that if b;y™ ¢ B’ then

o 1 o 1 1

b; = Oy, Yi =— b0y, yiyM = — b0, yiy™.
Yy m; + 1 y: YilY mi"i_l; 7 %; YiY mi—i-l; 7 %y; YiY

So the dimension of g((5,10))2x—_3 is at most

4<k13> +3(k;r2> +2<k;1> + <’1“> _ %k(k+2)(k+3)(k:+4).
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Corollary 6.13. For alld € Z
dim E(5,10)4 > dim g(RE(5,10))q4.

Proof. Using that all homogeneous components FE(5,10), are irreducible E(5,10)9 = sl5-
modules with known highest weights (|11]), one can check that the dimension of E(5,10)ax_4
is tk(k+1)(k+2)(k+4) and the dimension of E(5,10)o_3 is $k(k +2)(k + 3)(k+4). Hence
corollary follows from Proposition 6.12. 0

Theorem 6.14. The annihilation algebra g(RE(5,10)) is isomorphic, as a Z-graded Lie su-
peralgebra, to E(5,10) with principal gradation under the following map ®:

M M—e; M—e;
a;jy” — —m;x 6181«]. +m;x™ "0,

bkyM — Z myx™ e dy,..
r#£k

Proof. Let R = RE(5,10). By construction and Proposition 6.9, g(R) is spanned by the
elements az-ij and bryM subject to the following relations:
(i) aiij + ajin =0;
(i) aijayhyM + ajhayin + ahiayj yM = 0;
(iii) > b0y, y™ = 0.
In particular a;;4° = 0 and bgy" = 0. It is easy to check that relations (i), (ii), (iii) are
preserved by the map ® and that ® is surjective. Injectivity of ® follows from Corollary 6.13.
The proof that ® is an homomorphism is a straightforward verification based on the following
observation

[aiija arsyN] = asi(ayj 8yryM)yN + ajs (ayiayryM)yN + arj (8yiays yM)yN
+ air (0,0, y™ YN — ars0y, (0, 9™ )yN) — asrdy, (8,5 y™).

The following corollary answers a question raised in [6].

Corollary 6.15. Let F be a finite-dimensional sl5-module and let M (F') be the corresponding
E(5,10)-Verma module. Then M (F)* is isomorphic to M(F*).

Proof. By Theorem 6.14 we have g(RE(5,10))—2 = (Oy,,...,0y;) and RE(5,10) satisfies As-
sumptions 3.3. Since the 0-th degree component of E(5, 10) is isomorphic to sl5 which has only
zero characters, by Theorem 3.17 the conformal module M (F)* is isomorphic to M (F*). O

7. THE LIE CONFORMAL SUPERALGEBRA RFE(3,6).

In this section we introduce the infinite-dimensional (linearly compact) Lie superalgebra
E(3,6) and realize it as the annihilation superalgebra of a Lie conformal superalgebra of type
(3,0). This is used to show that M (F)* = M(F*) for every finite-dimensional representation
F of E(3,6)o.

Recall the construction of F(3,6) in [11]. The even part of E(3,6) is the semidirect sum of
W(3,0) and Q°(3) ® slo, where QY(3) denotes the space of formal power series in three even
indeterminates x1, x2, 3 and W (3,0) acts on it in the standard way. Besides, for f,g € Q°(3)
and cq, ¢y € slo we have:

[f®c1,0® ] = fg® e, ca].
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The odd part of E(3,6) is Q'(3)~/2 @ F? where Q'(3)~1/2 is the space of 1-forms in x1, zo, 3
and —1/2 refers to the action of W(3,0) on Q!(3); namely, for X € W(3,0) and w ® v €
Q'(3)"Y2 @ F? we have:

1
(X,w®v]=Lx(w)®@v— idiV(X)w@)v

where Ly denotes the Lie derivative and div the usual divergence. Besides, for f € Q°(3) and
¢ € sly, we have:

[fRcw®v]=fw®cv

where c.v denotes the standard action of ¢ on v. The bracket between two odd elements is
defined as follows: we identify Q2(3)~! with W (3,0) via contraction of vector fields with the
standard volume form, and 23(3)~1 with Q%(3). Then, for wy,ws € 91(3)7%, uy,us € F?, we
have:

1
[w1 & U1, w2 ®U2] = (w1 /\(.UQ) &® (u1 /\UQ) + §(dw1 N we + w1 /\dwg) R uq - u2

where w1 - up denotes an element in the symmetric square of F?, i.e., an element in sly, and
w1 A ug an element in the skew-symmetric square of F2, i.e., a complex number. Let us denote
by H,E, F the standard basis of sly and by e, es the standard basis of F2. Then E = 612/2,
F=—e?/2 H=—e;-e3and e; Aeg = 1.

For i,j € {1,2,3}, ;; and t;; are defined as follows: if i # j we let ¢;; € {1,2,3} be such
that |{¢,7,t;;}| = 3 and €;; be the sign of the permutation (4, j,t;;). If i = j we let g;; = 0.

We consider on E(3,6) the principal gradation given by degx; = —degd,, = 2, deg(e;) =
deg(ez) = 0, deg(E) = deg(F') = deg(H) = 0, deg(dz;) = —1 for all i = 1,2,3. Observe that
the 0-th graded component is isomorphic to sls®sly @F, E(3,6)_1 = (dz;®e; : i =1,2,3, j =
1,2) and E(3,6)—2 = (O,, Ozy, Ozy)-

The strategy to construct the Lie conformal superalgebra Rg for g = F(3,6) and E(3,8)
(see Section 8), such that the annihilation Lie superalgebra of Rg is g, is the same as for g =
E(5,10) in Section 6 (see also the Introduction). Namely, we construct a formal distribution
Lie superalgebra g by localizing the formal power series in x1,x2, x3 by these variables, and
show that g is spanned by the coefficients of pairwise local formal distributions a;(z). Next,
we compute the brackets [a;(z),aj(w)] as linear combinations of the delta function and its
derivatives with coefficients the formal distributions ay(w) and their derivatives. Applying the
formal Fourier transform, we obtain the Lie conformal superalgebra Rg of type (3,0). The
annihilation Lie superalgebra of Rg has a canonical surjective map ¢ to g, and it remains
to show that the kernel of ® is zero. In the case when all the coefficients of all the formal
distributions a;(z) are linearly independent, like for g = F(3,6), this is immediate. But
for E(5,10) and E(3,8) this does not hold, and it requires some effort to prove that ® has
zero kernel. (The case of Lie conformal superalgebras of type (1,0) is easy since any finitely
generated module over F[8] is a direct sum of a free module and a torsion module.)

So let g = E(3,6) and g be defined as above. In order to construct the conformal superalge-
bra RE(3,6) we consider the following formal distributions in the variable z with coefficients in
g: ai(z) =0(x—2)0y, , c(z) = d(x—2)®c, and bpi(z) = 0(x — z)dr, ey, for all i, h = 1,2, 3,
k =1,2, ¢ € sls. The computation of the formal Fourier transform of the brackets between
these formal distributions leads us to the following definition.

Definition 7.1. We set RE(3,6) = F[0y, 02, 33](A® B ® C), where A = (a1, a2, as) is even of
degree —2, B = (b, b, b3) ® F? is odd of degree —1 and C' = sly is even of degree zero, and
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the following A-brackets: for ¢, € C, v € F? and by, = by, ® ez,
laira;] = (0; + )\-)aj + Aja;
aixbnk] = (0; + )\ )bk — Oin(Mbik + A2bog + Asba)

[

[bmAbhk] (4 — k)glhatih
[aixc] = (05 + \i)c
[ea
[ex

(‘s

extended on the whole RE(3,6) by properties (6) and (7) of Definition 2.1.
Proposition 7.2. RFE(3,6) is a Lie conformal superalgebra of type (3,0).

Proof. The only nontrivial verification is the conformal Jacobi identity which can be verified
directly if one considers Definition 7.1 as an abstract definition, or as a consequence of the
fact that we constructed RE(3,6) as a space of formal distributions with coefficients in the Lie
superalgebra g. O

Theorem 7.3. The annihilation algebra g(RE(3,6)) is isomorphic, as Z-graded Lie superal-
gebra, to E(3,6) with principal gradation via the following map:

ayM - —:BM&;Z.;
bhkyM — chdmh & ek;
cyM — M ®ec.

Proof. The map is clearly a linear isomorphism. We need to check that the Lie bracket is
preserved. We have:

3 iy e,
laiy™, buy™] = Oibpay™ N + imz‘bhkyMJrN “—Sin Y mybipy TN
j=1
3

1 e e
Sma)bky™ T — 5,y mbpy TN

= (—m + 5 ‘
7j=1

1
[:CM({)xi, xNdzy, @ er] = nie™ N ide, @ e + :cN(éz-hd(:nM) ®ex — —miz™M %idz;, @ ek)

2
1 3
= (n; — §mi)ch+N_eid:r;h @ e+ 0y ma N "Cda; @ ey
j=1
The verification in the other cases is simpler and left to the reader. O

Remark 7.4. Let R = RE(3,6). Observe that R satisfies Assumption 3.3 and so Theorem
3.17 applies. Note that g(R)g = sls @ sly @ Fz where z is its non-zero central element such
that ad z acts as j on g(R);. Since dimg(R)_; = 6, dimg(R)_2 = 3 and the depth of the
gradation is 2, we see that str (ad Z|a(R) <O) = 0 and this is consistent with the classification of
degenerate Verma modules of E(3,6) given in [16], [17] and [19].
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8. THE LIE CONFORMAL SUPERALGEBRA RF(3,8)

The Lie superalgebra E(3,8) has the following structure [11, 7, 8]([7] corrected [11], and [8]
further corrected [7]): it has even part F(3,8)5 = W(3,0) + Q%(3) @ sly + dQ!(3) and odd part
E(3,8)1 = Q°(3)"2@F2+02(3)"1/2@F2. W (3,0) acts on Q°(3) ®sl, in the natural way and
on dQ'(3) via Lie derivative. For X,Y € W(3,0), f,g € Q°(3), A, B € sly, wi,ws € dQ'(3),
we have:

Y] = XY - VX — %d(div(X)) A d(div(Y)),

f®A, wl]—O
® A,g® B] = fg® [A, Bl + tr(AB)df A dg,
w1, ws] = 0.

X,
[
f
[

Besides, for X € W3, f € Q%(3)"1/2, g ¢ QO(?)) vEF? Acsl, wed(3), 0 Q3)"1/2

X, fouv=(X.f+ d(dlv( ) Ndf) ® v,

[
g@ A, fv] = (f—I—dg/\df)@Av,
[g® A o®v]=go® Av,

W, fRv] = fw®w,

[w,0®v] =0,

where W (3,0) acts on Q2(3) via Lie derivative. Finally, we identify W3 with Q2(3)~! and

00(3) with Q3(3)~!. Besides, we identify Q%(3)~ 2 with W3 and we denote by X, the vector
field corresponding to the 2-form w under this identification. Then, for wi,ws € Q2(3)~ 1/2

u1, us € F?, we have:

(w1 ® Uy, ws @ ug] = (X, (w2) — (div(Xy, ))wi)ur A ue,
[f1 ®u1, fo @ uz] = df1 Adfs @ uy Aug,

. 1
[f1 ®ui, w1 @ ug] = (frwr + dfi A d(div(Xy,))) ® up Aug — §(f1dw1 — widf1) ® uy - ug,

where, as in the description of E(3,6), uj - ug denotes an element in the symmetric square of
F2, i.e., an element in sly, and u; A up an element in the skew-symmetric square of F2, ie., a
complex number. Let {e1, ez} be the standard basis of F? and E, F, H the standard basis of
sly. We shall often simplify notation by writing elements of E(3,8) omitting the ® sign.

The so-called principal gradation of E(3,8) is defined by:

degz; = —deg 0y, =2, degE =degF =degH =0, degdx; =2, dege; = —3.

It is a gradation with 0-th graded component spanned by the elements x;0,;, £, F and H,
and isomorphic to sls @ sly @ F. Besides, F(3,8)_1 = (rje1,miea | i = 1,2,3), E(3,8)_2 =
(Og; |1 =1,2,3) and E(3,8)_3 = (e1, e2).

In order to define the Lie conformal superalgebra RE(3, 8) we let g = F(3,8) and we proceed
as in Section 7. We consider the following formal distributions in the variables z1, zo, z3 with
coefficients in §: a;(z) = 0(x — 2)0y,, bi(z) = 32,4 0.,0(x — 2)dij, c(z) = d(x — 2) ®c,
el(z) = d(x — z) ® ¢ and diji(z) = 0(x — z)d;j @ e for all 4,5 = 1,2,3, ¢ € sly and | = 1,2.
The formal Fourier transform of the brackets between these formal distributions lead us to the
following definition.
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Definition 8.1. We consider the free F[0;, 02, J5]-module generated by the following elements:
- a1,a2,as even of degree —2,
- b1, b9, b3 even of degree 2,
- E,F, H even of degree 0, which are identified with the standard generators of sls,

- e1,eo odd of degree —3, which are identified with the canonical basis of F2,
- dpp with b,k =1,2,3, 1 =1,2, odd of degree 1,
and define RE(3,8) as its quotient by the following relations:
o 0101 + O2by + O3b3 =0,
o dnki = —dkni,
with the following A-brackets:

laixa;] = —(Ai + 0i)a; — Ajai + >\ (N +0)> " Nebr
k
[aixnc] = —(0; + \i)c

[aixbk] = —(0; + Xi)br + O Z Arby

[C)\bj] =0
[bixbe] =0
leixes] = (5 =) > enrAiOnar,

h,k
. . 1
[ei)\djkh] = 5jk((h - Z)atjk + (i — h)()\tjk + atjk) Z Arby + 5(2)\tjk + atjk)ei “en)

[djkh)\djsl] = e’:‘jk(l — h)(l — (5k5)b'
3

[ai)\ej] ( )\ + 8 Z Ak/\ 8 dkrj
k,r
[C)\ej] =ce; — Z )\i(?hdih ® ce;
ih
leadijn] = [c, dijn)
]/\ek Z by dz]k
[bixdjr] = 0
[exd] = [e, ] + Ztr(cc’))\kbk.

k
3
[aixdnr] = — (5)\1' + 0;) dpit + Gin Z ik — ik Z Ardyrn,
J r
for every ¢, c € sl.

Proposition 8.2. RE(3,8) is a Lie conformal superalgebra of type (3,0) which satisfies As-
sumptions 3.35.

Proof. 1t is enough to check that the A-brackets are consistent with the relations and, as in
the case of F(3,6), that the conformal Jacobi identity holds. This follows from a long and
tedious but elementary computation and also from the fact that we constructed RE(3,8) as a
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space of formal distributions with coefficients in the Lie superalgebra g. Assumptions 3.3 are
immediate. O

Theorem 8.3. The annihilation algebra g(RE(3,8)) is isomorphic, as Z-graded Lie superal-
gebra, to E(3,8) with principal gradation via the following map:

ayM o~ scMc()wi

bkyM = = Zr;ﬁk (8xrmM)dT’k
cyM = M ®c

djklyM — :I)Mdjk X ep

elyM — M X ey

forallcesly, i,5,k=1,2,3,1=1,2 .

Proof. 1t is immediate to check that the map is well-defined. The proof that it is a linear
isomorphism is similar to the case of E(5,10). The fact that it is a Lie superalgebra homo-
morphism follows from the following relations which can be verified by direct computations:

1 la:uM.a. N]:n.a. M+N—ei _ .. M+N—ej_;z b (a_a M)(a_ N
J

(1) [aiy™, ajy ia;Y jaiY 3 2.k VE\Oy; Oy, Y YY)

(1b) [2M0,,, a:Naxj] = nimM+N_ei8xj —mja:MJFN_ej@g;i + % ka(@xiakaM)(axTaxj xN)d,

M+N—e;
M+N767;c

= Nn;Ccy
[®M0,,, 2Nc] = nx

)

)
(3) [aig™, bey™] = by N6 4 61 3 mybyyM TN
(3b) [wMaxl’ - Zr?ﬁk nTwN_erdrk] = —"Nn; Zr (8xr $M+N_ei)drk:_5k:i Zr,s my (8x5 -'13M+N_er)ds7‘

(4) [aiy™, ey™] = (ni — gmi)ejy™ TN 4 357, dirj(8y, 05, 9™) (8, y™)
— gmy)aM N 33 00, 0 (M) Dy (2N )k )

(5) [aiy™, dpuy™] = (ni—3m;)dpy™ N =145y, > mdjy™M TN =5 Y mpdyy™M TN e
(5b) [:BMazi, :dehk@el] = (ni—%mi)xM+Nfei dpii+0in Ej mijJerej djkl—éik ZT mer+N76T drni

(6) [CyM7 c/yN] — [C, C/]yM+N + tr(cc’) Zk mkbkyM+N_ek
(6b) [xMc, 2N = &MHN (e, ] + tr(cd) ka myn,aMtN-ex—erq,

(7) [ey™ bry™] =0
(7b) [xMe, — D ortk N d,.] = 0;

(8) ley™, ejy™] = cejy™ N + 37, ) minndip @ cejy e
(Sb) [ch, a;'NeJ] = (mM+N + ann mknrmM+N_ek_erdkr) ® Cej

(11) [bry™, ejyN] = — 32, midigy™M Ve
(11b) [= X e dre eg) = 50, 4y mpa Ny
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(12) [bry™, djry™] =0
(12b) [= 22,4 myxM=erdy, 2N dj ® e = 0
(13) [ey™, ejy™] = (5 = 0) Yop, Errmpnpar, yM TN e
(13b) [xMe;,xNej] = (j — i) Dk eprmynyxM TN =—er=erg,

(14) lesy™, djeny™] = eji( (b — ) (a, y™™* + 32, 009y, y™) (0., y™))
+%(mtjk — ntjk)yM+N_etjk €; - eh)
(14b) [#Me;, 2N djp ® ep] = e <(h — )@Y+ 5, om0, 0y, (1Y) dys)
+%(mtjk — ntjk)a:M+N_etjk e; - eh)

(15) [djrny™, djsy™] = eji(l — h)(1 — Ss)bjy™M TN

(15b) [dejk®eha 93Ndj5®el] = (l_h) (5jk((ntjk_%mtjk)wM—’—N_etjk djs_(stjks Zr mer—‘rN_erde)
—€jsntjsmN+M_eth djk)~

g

Remark 8.4. Let R = RE(3,8). As in the case of E(3,6), E(3,8)p = sl3 & sly & FY where
we can choose Y = 2 3. 2;0; (see [18]). Note that ad Y acts on g(R); as multiplication by j/3
and since dim g(R)_; = 6, dimg(R)_2 = 3 and dim g(R)_3 = 2, we have str(ad Y|gr)_,) = 2.
This is consistent with the results of [18] on degenerate F(3,8)-modules.
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