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We present a model of early modified gravity (EMG) consisting in a scalar field σ with a nonminimal
coupling to the Ricci curvature of the type M2

pl þ ξσ2 plus a cosmological constant and a small effective

mass and demonstrate its ability to alleviate theH0 tension while providing a good fit to cosmic microwave
background (CMB) anisotropies and baryon acoustic oscillations (BAO) data. In this model the scalar field,
frozen deep in the radiation era, grows around the redshift of matter-radiation equality because of the
coupling to nonrelativistic matter. The small effective mass, which we consider here as induced by a quartic
potential, then damps the scalar field into coherent oscillations around its minimum at σ ¼ 0, leading to a
weaker gravitational strength at early times and naturally recovering the consistency with laboratory and
Solar System tests of gravity. We analyze the capability of EMG with positive ξ to fit current cosmological
observations and compare our results to the case without an effective mass and to the popular early dark
energy models with ξ ¼ 0. We show that EMG with a quartic coupling of the order of λ ∼OðeV4=M4

plÞ can
substantially alleviate the H0 tension also when the full shape of the matter power spectrum is included in
the fit in addition to CMB and Supernovae (SN) data.

DOI: 10.1103/PhysRevD.103.043528

I. INTRODUCTION

The longstanding success of the cosmological ΛCDM
model has been challenged in the recent years by the
growing discrepancy between direct measurements
of the Hubble constant H0 and its inference from CMB
anisotropies data [1]. The most recent measurements range
from H0 ¼ ð67.36� 0.54Þ km s−1 Mpc−1 for ΛCDM
and Planck 2018 data release [2] and H0 ¼ ð73.5�
1.4Þ km s−1 Mpc−1 [3] for SH0ES, showing a 4.1σ tension
on the H0 parameter. However, the tension is not restricted
to these two datasets. With the recent progress, it is now
clear that, rather than being only between Planck and
SH0ES, the H0 tension is in general between indirect, or
early time, measurements obtained by inferring H0 assum-
ing a model (usually ΛCDM) and analyzing it with
cosmological data such as the CMB [2] or the combination
of clustering and weak lensing data with BAO and big bang
nucleosynthesis ones [4], and direct, or late time, mea-
surements of H0, which are instead model independent.

A number of H0 probes belonging to the latter class are in
tensionwith estimates fromCMBup to∼4σ level, see [1] for
a review. Another independent determination of H0,
important for this paper, is obtained with the strong-lensing
time delay by the H0LiCOW team [5], i.e., H0 ¼
ð73.3þ1.7

−1.8Þ km s−1 Mpc−1, which is in a 3.2σ tension
with CMB (see however [6,7] for implications on early
time solutions of the H0 tension). By combining SH0ES
and H0LiCOW measurements the estimate H0 ¼
ð73.4� 1.1Þ km s−1Mpc−1 is obtained, raising the tension
with CMB to the 4.9σ level. Given the relevance of this
tension, several groups have investigated whether it might be
due to unaccounted effects such as uncertainties in calibra-
tion [8–11] or in the luminosity functions of SNIa [8–14].
Although unaccounted systematic effects might alter its

statistical significance, these discrepant determinations of
H0 spark interest toward new physics beyond ΛCDM [15].
This point of view has stimulated the proposal of a wealth
of physical mechanisms leading to a large H0 through
modifications of both the early [16–21] and the late time
[22–29] expansion history of the Universe. The former
ones, however, seem to be preferred over since reduce the
value of the comoving size of the sound horizon at baryon
drag rs, without spoiling the fit to CMB and BAO data [30–
32]. Two well studied frameworks to modify the early time
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dynamics of the Universe and inject the required energy
into the cosmic fluid to lower rs with respect to the ΛCDM
one are modified gravity (MG) [33–45] and early dark
energy (EDE) models [46–63].1 In this paper, we extend
the model with a scalar field on-minimally coupled to the
Ricci scalar of the form FðσÞ ¼ M2

pl þ ξσ2 in presence of a
cosmological constant Λ [41,42], by providing it with a
small effective mass. For the sake of simplicity we consider
a quartic potential, i.e., VðσÞ ¼ λσ4=4, as effective mass: in
this early modified gravity (EMG) model, the scalar field
starts to move around the redshift of matter-radiation
equality driven by the coupling to nonrelativistic matter,
and then rolls faster when the effective mass become larger
than the Hubble parameter and ends in a regime of coherent
oscillations around the minimum of the potential. The
choice of a quartic potential is dictated by the fact that
coherent oscillations of σ are in conformal time and
therefore tractable by an Einstein-Boltzmann code, without
ad-hoc modifications, see e.g., Ref. [67]. Thanks to the fast
rolling of σ toward the bottom of the potential, the tight
constraints on Geff from laboratory experiments and Solar
System measurements on post-Newtonian parameters are
automatically satisfied by the small cosmological values of
σ within the EMG model, as it happens in the range of
ξ < 0 in the massless case where σ is decreased just by
coupling to nonrelativistic matter [37,41,42]. The small
effective mass and the consequent naturally achieved
consistency of cosmology with laboratory and Solar
System constraints are particularly important for positive
values of the coupling, since σ would grow for ξ > 0 for
λ ¼ 0, and therefore we mainly focus on this range in
this paper.
In our EMG model, we consider the two possible

dimensionless couplings for a cosmological scalar field,
which rule the coupling to the Ricci scalar (ξ) and its self-
interaction (λ), respectively. Note that our model differs
from previously introduced ones also named early modified
gravity [68–70].
Another interesting feature of this EMG is that the

effective Newtonian constant Geff grows with time, as
opposed to nearly massless models [37,41–43], implying a
weaker gravity at early times. As we show in this paper,
such an effect implies different predictions on Large Scale
Structure (LSS) observables that can help disentangle EMG
and EDE. The latter models have indeed been recently
claimed not to be able to solve the H0 tension when LSS
data are included in the analysis [71–73]. As we show in
this paper, the suppression of the matter power spectrum
induced by the positive coupling helps us obtain a value for

H0 larger than EDE with ξ ¼ 0, thanks to a better fit to
LSS data.
Our paper is organized as follows. We introduce our

model and describe in details its background evolution,
as well as its imprints on CMB and LSS observables in
Sec. II. We describe the dataset and the methodology used
in our MCMC exploration in Sec. III, present our results in
Sec. IVand compare them with existing works on the EDE
and NMC models in Secs. V and VI, before concluding in
Sec. VII. We collect the tables with the results of our
MCMC analysis in Appendix.

II. THE MODEL

The model we consider is described by the following
action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
FðσÞ
2

R −
gμν

2
∂μσ∂νσ − Λ − VðσÞ

�
þ Sm;

ð1Þ

where FðσÞ ¼ M2
pl þ ξσ2, R is the Ricci scalar, and Sm is

the action for matter fields. In the following, we consider a
quartic potential for the scalar field of the form
VðσÞ ¼ λσ4=4, where λ is a dimensionless constant.
With these conventions, our model reduces to the NMC
model considered in Ref. [42] for λ ¼ 0 and to the rock ’n’
roll (RnR) model of Ref. [48] for ξ ¼ 0. Since the latter is
an example of early dark energy models, we refer to it as
EDE in the following and use the acronym EMG for the
general case with ξ ≠ 0.
The Friedmann and Klein-Gordon equations are

given by:

3FH2 ¼ ρþ _σ2

2
þ Λþ V − 3 _FH ≡ ρþ ρσ; ð2aÞ

σ̈ þ 3H _σ ¼ Fσ

2F þ 3F2
σ

�
ρ − 3pþ 4Λþ 4V

− 2
FVσ

Fσ
− ð1þ 3FσσÞ _σ2

�
; ð2bÞ

where ρ≡ ρm þ ρr (p≡ pr) denotes the sum of the matter
and radiation energy density (pressure) and a subscript σ
denotes the derivative with respect to the scalar field σ. For
theories described by the action (1), it is useful to define an
effective dark energy density as follows [74,75]:

ρDE ¼ F0

F
ρσ þ ðρm þ ρrÞ

�
F0

F
− 1

�
; ð3Þ

where the subscript 0 denotes that a quantity is evaluated at
z ¼ 0. The energy fraction of the scalar field is simply
given by Ωσ ≡ ρDE=3H2F0.

1See also Refs. [64–66] for ways to constrain EDE or more in
general dark energy models with a time varying equation of state
based on the reconstruction of the Universe expansion from the
density growth factor redshift dependence.
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The coupling between gravity and the scalar degree of
freedom induces a time varying Newton’s gravitational
constant GN , which is given by GN ¼ 1=ð8πFÞ. This
quantity is usually named the cosmological Newton’s
gravitational constant, as opposed to the one that is actually
measured in laboratory Cavendish-type experiments which,
for a nearly massless scalar tensor theory of gravity, is
rather given by [74]:

Geff ¼
1

8πF
2F þ 4F2

σ

2F þ 3F2
σ
: ð4Þ

Note that, strictly speaking, given the nonvanishing poten-
tial for the scalar field VðσÞ ¼ λσ4=4, we would have
scale-dependent fifth forces corrections in Geff that are
proportional to Vσ and Vσσ (see, e.g., Refs. [76,77]).
However, since Vσ ≃ Vσσ ≃ 0 at lat times for the models
considered in this paper (see also Fig. 1), such scale

dependent corrections vanish and so we will use Eq. (4)
throughout this paper.
The deviations from general relativity (GR) can also be

parametrized by means of the so-called post-Newtonian
(PN) parameters [78], which are given within NMC by the
following equations [74]:

γPN ¼ 1 −
F2
σ

F þ 2F2
σ
; ð5Þ

βPN ¼ 1þ FFσ

8F þ 12F2
σ

dγPN
dσ

: ð6Þ

Note that γPN < 1 in our models. Solar-system experiments
agree with GR predictions, for which both γPN and βPN
are identically equal to unity, at a very precise level.
Measurements of the perihelion shift of Mercury constrain
βPN − 1 ¼ ð4.1� 7.8Þ × 10−5 at 68% CL [78] and Shapiro
time delay constrains γPN − 1 ¼ ð2.1� 2.3Þ × 10−5 at

FIG. 1. Top: we plot the evolution of the scalar field (left) and the energy injection Ωσ defined in the main text. Bottom: we plot the
evolution of the variation of the effective Newton constant ðGeff − GÞ=G (left) and of the post-Newtonian parameter γPN − 1 (right).
The model parameters used in the plot are σi ¼ 0.54Mpl and V0 ¼ 2 and we vary the value of the nonminimal coupling ξ according to
the legend in the top-left panel. For a comparison, we also plot two examples for λ ¼ 0 in Eq. (9) and ξ ¼ 0.1 (−1=6) in red (green).
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68% CL [79]. As we will see below, such limits are
automatically satisfied in our model.

A. Background evolution

The evolution of relevant background quantities is
shown in Fig. 1. For our comparison, we consider the best
fit cosmological parameters given in Table III of Ref. [48],
that is

θs ¼ 1.0417; 100ωb ¼ 2.264; ωc ¼ 0.1267;

τreio ¼ 0.081; ln 1010As ¼ 3.105; ns ¼ 0.981;

σi½Mpl� ¼ 0.54; V0 ¼ 2 ð7Þ

for EMG, where σi is the initial condition on the scalar field
and for which we vary the nonminimal coupling ξ accord-
ing to the legend in the figures, and

θs ¼ 1.0422; 100ωb ¼ 2.236; ωc ¼ 0.1177;

τreio ¼ 0.077; ln1010As ¼ 3.080; ns ¼ 0.969 ð8Þ

for the ΛCDM model to which we compare our results.
Note that the constant V0 is related to λ by2

λ ¼ 102V0=ð3.516 × 10109Þ: ð9Þ

We stress that these values are only used to build our
intuition and will be superseded the cosmological param-
eter estimation that we present in Sec. IV. As can be seen
from the top-left panel, the addition of the effective mass
makes EMG more similar to EDE models with respect to
nearly massless NMC models [37,41,42]. Indeed, σ starts
frozen deep in the radiation era and, when its effective mass
becomes larger than the Hubble flow, eventually rolls down
the potential and starts oscillating around its effective
minimum located at σ ¼ 0. It is clear from Fig. 1, that
the corrections to the effective mass of the scalar field
induced by the nonminimal coupling FðσÞ modify the
dynamics of σ, which, for ξ ≥ 0, experiences a temporary
growth before falling down the potential. Because of this
initial growth, the oscillations around σ ¼ 0 have a visibly
larger amplitude and their phase is slightly shifted com-
pared to the case with ξ ¼ 0.
The importance of such a modification to the dynamics

for ξ ¼ 0 can be understood by looking at the shape of Ωσ

in the top-right panel of Fig. 1. For the same values of
fσi; V0g, a larger ξ sizeably increases the energy that the
scalar field injects into the cosmic fluid once it starts to roll
down its potential, an effect which, at a fixed value of ξ, can
also be obtained by increasing the initial value of the scalar
field σi. On the other hand, for larger values of ξ, we

observe that Ωσ becomes gradually more negative, there-
fore suppressing HðzÞ, with respect to the ξ ¼ 0 case,
before σ starts to thaw, reducing the degeneracy of the
nonminimal coupling ξ with the initial condition σi (see
also next subsection). Therefore our model offers a broader
phenomenology than EDE ones, which is interesting since
the exact shape in redshift of the energy injection plays a
crucial role in physical models that aim at solving the H0

tension [32]. We stress that having Ωσ < 0 is not a physical
problem as Ωσ only parmeterizes the contribution of the
scalar field to the total expansion rate when the Friedmann
equations are recast in Einstein gravity form [74,75].
Although the main focus of this paper is the ξ ≥ 0 regime,
it is also instructive to show the behavior of Ωσ when the
coupling is negative. We take the conformal coupling ξ ¼
−1=6 as an example (see also Sec. VI). For such a large and
negative ξ, the profile of the energy injection is continuous
and resembles the one in models with extra dark radiation,
exactly as the massless case with λ ¼ 0 [37,41,42].
We stress again that the quartic potential drastically

modifies the scalar field evolution compared to the case in
which λ ¼ 0. By the addition of the effective mass,
consistency of Geff and PN parameters with Cavendish-
type measurements and Solar System constraints, respec-
tively, can be obtained without any fine tuning for ξ > 0, as
can be seen from the bottom panels of Fig. 1. Note also that,
thanks to the potential VðσÞ, we have that Geff grows with
time, which is not possible in standard scalar-tensor models
involving only the coupling FðσÞ, for which Geff decreases
with time regardless of the sign of the nonminimal coupling
[37,42]. However, in the conformally coupled case, Geff
decreases as in the massless case [42].

B. Imprints of the nonminimal coupling
on CMB and LSS

We now show the imprints of EMG on CMB and LSS
observables. The temperature and E-mode polarization
CMB angular power spectra are shown in the top panels
of Fig. 2, from which it can be seen that the coupling
sizeably affects the acoustic peaks structure of the CMB
spectra, as a consequence of the modification to gravity
around recombination. However, note that thanks to the
potential VðσÞ and the different cosmological evolution of
σ, the imprint of ξ is drastically reduced with respect to the
massless case with λ ¼ 0. Indeed, in the latter case, relative
changes in ΔCl=Cl of the same magnitude of the ones
shown in the top panels of Fig. 2 can be obtained with much
smaller values of ξ, see e.g., Fig. 9 of Ref. [37]. We also
note that the modifications to acoustic peaks for ξ ¼ −1=6
are out of phase with respect to the ξ > 0 case.
As discussed, the nonminimal coupling ξ enhances the

energy injection of the scalar field into the cosmic fluid,
similarly to what can be obtained with a larger σi. In order
to compare the two effects, in the bottom panels of Fig. 2,
we fix ξ ¼ 0 and plot the residual CMB spectra for a set of2

3.516 × 10109 is the numerical value of M4
pl in eV4

BRAGLIA, BALLARDINI, FINELLI, and KOYAMA PHYS. REV. D 103, 043528 (2021)

043528-4



initial conditions σi that give the same maximum energy
injection of the curves presented in the top panel. Although
both parameters modify the acoustic structure of the CMB,
the pattern of the CMB residuals is different. In particular,

given the same energy injection obtained by varying ξ or σi
with ξ ¼ 0 respectively, the former has a stronger impact on
the CMB since, thanks to the nonminimal coupling, the
scalar field modifies the expansion history already while it

FIG. 2. Top: we plot the lensed CMB TT (left) and EE (right) angular power spectrum as a function of the nonminimal coupling ξ.
Center: we plot the lensed CMB TT (left) and EE (right) angular power spectrum as a function of the initial condition on the scalar field
σi with ξ ¼ 0. Bottom: we plot the lensed CMB TT (left) and EE (right) angular power spectrum as a function of the potential parameter
V0 keeping the nonminimal coupling fixed to ξ ¼ 0.1. We utilize the set of parameters used to produce Fig. 1.
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is frozen, slightly decreasingHðzÞ since its effective energy
density is negative (see Fig. 1).
In the perspective of future experiments dedicated to

CMB polarization, it is also instructive to show the imprints
of EMG on primordial B-mode polarization. These are
shown in Fig. 3, where we vary ξ in the top panel. In the
bottom panel, in order to better understand which effects
are due to the shift of the cosmological parameters in
Eqs. (7) and (8) and the ones of varying the coupling, we
also plot the residuals obtained by fixing the cosmological
parameters to Eq. (7) and changing the coupling ξ and fix
ξ ¼ 0 and vary σi in the right one. Note that a nonminimal
coupling modifies the propagation equation for the two

polarization states of the gravitational waves hþ;× as
(neglecting anisotropic stresses for simplicity)3:

ḧþ;× þ
�
3þ

_F
HF

�
H _hþ;× þ k2

a2
hþ;× ¼ 0: ð10Þ

As shown in Refs. [70,82,83], the additional friction term
induced by the nonminimal coupling may leave interesting
observational signatures. In the case of VðσÞ ¼ 0, the
impact on B-mode polarization was analyzed in
Ref. [37], where it was found the effects increase with
jξj. In our model, where the potential VðσÞ enlarge the
range of ξ which is compatible with the data (see next
section), the effects can indeed be larger, as can be seen
from the left panel of Fig. 3. The effect of an increasing ξ is
twofold. First it changes the acoustic structure of the Cl’s
for l≳ 100, with a pattern which cannot be mimicked by a
change in σi, similarly to what happens with the other CMB
spectra, as can be appreciated by looking at the right panel
of Fig. 3. Second, it also decreases the power in the range
10≲ l≲ 100 compared to the ΛCDM model. Our plots
also show a bump at very large scales. This, however, is a
feature which is not directly ascribed to the EMG model or
the EDE one. In fact, such a peak comes from the interplay
of the different cosmological parameters in Eqs. (7) and (8).
Nevertheless, we have verified that such a bump also occurs
when considering the relative differences between the best
fit values for ΛCDM and EMG/EDE cosmologies shown in
the next section, and thus it may constitute an indirect
signature of EMG and EDE models that can be tested with
future CMB B modes experiments.
Since EDE scenarios have been recently shown to be

constrained by the matter power spectrum at low redshift
[71–73,84,85], it is important to investigate the imprints of
our model also on LSS and compare them to the ones of
NMC and EDEmodels. We plot the ratio between the linear
matter power spectra for our EMG model and the ΛCDM
one in the left panel of Fig. 4. As previously studied in [33–
37], the matter power spectrum is enhanced at small scales
in effectively massless scalar-tensor models aiming at
alleviating the H0 problem since gravity was relatively
stronger at early times. Analogously, EDE models also
enhance the matter power spectrum at small scales com-
pared to the ΛCDM one, as can be seen from the orange
line in the plot. It is however important to understand that
this effect is not due to the EDE component itself, but rather
by the shift toward a larger ωc that is needed to maintain the
fit to the CMB data, see Eqs. (7) and (8). In fact, the larger
is the fraction of EDE, the greater is the suppression of the
growth of the perturbations within the horizon during the
epoch when EDE is not negligible. We see from the top
panel of Fig. 4 that, fixing all the other parameters, the

FIG. 3. We plot the CMB BB angular power spectrum due to
tensor perturbations. In order to clarify the distinction between
effects due to the shift in cosmological parameters and the
genuine effects of the nonminimal coupling, we plot both the
relative differences between the EDE and ΛCDM baselines in
Eq. (7) and (8) (top) and the ones obtained by fixing the EDE
parameters in Eq. (7) and varying ξ (bottom). We set the
tensor-to-scalar ratio to r0.05 ¼ 0.05. The lensing spectra are
almost unaffected by varying our parameters, so the relative
differences for the total spectra do not change from the ones in
our plots.

3The term _F=HF is sometimes referred to as αM or δ in the
literature [80,81].
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nonminimal coupling ξ goes instead in the direction of
suppressing the power at small scales, as it weakens the
strength of gravity during the EMG epoch, see Fig. 1. This
is not true anymore for the ξ ¼ −1=6 case in which a
stronger gravity (Geff=G > 1) at early times leads to an
enhancement of the power at smaller scales. Again, the
results are completely different from the case with λ ¼ 0,
for which the Geff always decreases with time, leading to a
stronger gravity at early times and a consequent larger
power in PðkÞ at small scales [37].
The results in Fig. 4 can be better understood by looking

at the evolution of dark matter perturbations. For this
purpose, we plot the evolution of the ratio of the dark matter

perturbation δρc for the EMG and the ΛCDMmodel for the
mode k ¼ 0.1 h=Mpc in the bottom panel of Fig. 4. As can
be seen, for a positive ξ, initially scalar field perturbations
enhance the growth of dark matter perturbations with
respect to the ΛCDM case, overcoming the suppression
factor due to having Geff=G < 1. The opposite occurs for a
negative value, as can be seen from the brown line. On even
smaller scales (larger k), we also have a fifth force (scale
dependent) contribution from the scalar field perturbations
that further enhances the growth of dark matter perturba-
tions at very early times with respect to the ΛCDM case,
which explains the raise in the PðkÞ at small scales for
ξ ¼ 0.5 in the left panel of Fig. 4.
Once the scalar field starts to roll down the potential,

however, the scalar field perturbations become negligible
and the only effect of the modification to gravity is to
suppress (enhance) the gravitational potentials by a factor
of FðσÞ < 1 (> 1) depending on the sign of ξ, leading to

FIG. 5. We plot the 1 loop l ¼ 0 (left) and l ¼ 2 (right)
multipole moments of the galaxy power spectrum as a function of
the nonminimal coupling ξ. We utilize the set of parameters used
to produce Fig. 1. We also plot the ΛCDM results in magenta
dotted lines for a comparison.

FIG. 4. We plot the ratio of the EMG and ΛCDM linear matter
power spectra at z ¼ 0 (top) and the evolution of the dark matter
perturbation δρc for k ¼ 0.1 h=Mpc divided by the one for the
ΛCDMmodel (bottom) as a function of the nonminimal coupling
ξ. As in the previous plot, for solid lines, we utilize the set of
parameters used to produce Fig. 1 and we compute relative
differences between the EDE and ΛCDM baselines in Eq. (7) and
(8). In the lower half of the top panel, in order to make clear
which are the effects due only to the variation of ξ, we fix the
EDE baseline parameters in Eq. (7) and plot PðkÞ varying ξ using
dashed lines.
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the observed suppression (enhancement) in the left panel
of Fig. 4.
Furthermore, it is instructive to show the effects on the

observed redshift-space galaxy-spectrum. We plot the
multipole moments in Fig. 5 where we show the monopole
l ¼ 0 (left panel) and the quadrupole l ¼ 2 (right panel)
resummed at 1 loop order in perturbation theory, which we
have produced with the publicly available code PYBIRD

4

[86]. Although PYBIRD works in the framework of aΛCDM
effective field theory of LSS, the deviations from General
Relativity at the relevant redshift considered by PYBIRD are
so small that its use in this context is safe (see Fig. 1). As an
example we have considered the multipole moments at
z ¼ 0.38, which corresponds to the redshift of the low-z
NGC BOSS data (see next section). Note that the effect of ξ
is to reduce the amplitude of both P0ðkÞ and P2ðkÞ. It is
very interesting to note that, starting from the parameters in
Eqs. (7) and (8), we recover very similar spectra for ΛCDM
and the EMG model with ξ ¼ 0.1, suggesting that the
nonminimal coupling can help reconcile EDE models with
LSS observations.

III. METHODOLOGY AND DATASETS

We perform a Markov-chain Monte Carlo (MCMC)
analysis using a modified version of the HICLASS code
[87–90] interfaced to the publicly available sampling code
MONTEPYTHON-v35 [91,92] and to the PYBIRD code for the
calculation of the full shape of the galaxy power spectrum in
the effective field theory of large scale structure [86]. We
obtain plots using theGetDist package6 [93]. For all our runs,
we set the initial velocity of the scalar field to zero, use
adiabatic initial conditions for the scalar field perturbations
[37,94] and consider massless neutrinos (Neff ¼ 3.046)7

We sample over the cosmological parameters fωb;ωcdm;
θs; ln 1010As; ns; τreio; ξ; σi; V0g using the Metropolis-
Hastings algorithm and with a Gelman-Rubin [95] con-
vergence criterion R − 1 < 0.03. For the extra parameters
we consider flat priors ξ ∈ ½0; 1�, σi=Mpl ∈ ½0; 0.9� and
V0 ∈ ½0.6; 3.5�. Note that EDE models are usually para-
metrized with two parameters describing the redshift at
which the scalar field starts to roll down the potential,
usually denoted as critical redshift zc, and the maximum
energy injection fscf [46–48]. For the particular case of the
RnR model, the correspondence between fV0; σig and
fzc; fscfg is unique under the assumption of the same
initial velocity of the scalar field. However, as explained in

Sec. II, this one to one correspondence is not possible in our
model, where also ξ contributes to the energy injection into
the cosmic fluid. For this reason, we prefer to use the
physical parameters describing our model (1) as previously
done [42]. Nevertheless, we quote log10zc and fscf ≡Ωscf
as derived parameters. Note that we model the nonlinear
power spectra using HALOFIT [96,97]. In this respect, see
also Ref. [98] for a comparison between of HALOFIT and
HMCODE [99] in the context of EDE.
For each run, we also compute the best-fit values

extracted using the MINUIT algorithm [100] implemented
in the IMINUIT python package8 and quote the difference
in the model χ2 with respect to ΛCDM one, i.e.,
Δχ2 ¼ χ2 − χ2ðΛCDMÞ, where negative values indicate
an improvement in the fit of the given model with respect to
the ΛCDM for the same dataset.
In order to quantify to what extent the improvement in

the fit to the data warrants the increase in the model
complexity compared to the baseline ΛCDM model, we
compute the Bayes factor defined as the ratio of the
evidences for the extended model ME with respect to
the baseline ML as [101]:

BEL ≡
R
dθEπðθEjMEÞLðxjθE;MEÞ;R
dθLπðθLjMLÞLðxjθL;MLÞ;

; ð11Þ

where πðθE;LÞ is the prior for the parameters θE;L and
LðxjθE;LÞ the likelihood of the data given the modelME;L.
The extent to what the extended model ME is preferred
over the baseline ML can be qualitatively assessed using
the Jeffreys scale reported in Table I [102]. We compute
the evidence directly from our MCMC using the
method introduced in Ref. [103] implemented in the
MCEVIDENCE code.9

We constrain the cosmological parameters using several
combination of datasets. Our CMBmeasurements are those
from the Planck 2018 legacy release (hereafter P18) on
temperature, polarization, and weak lensing CMB anisot-
ropies angular power spectra [104,105]. The high-multi-
poles likelihood l ≥ 30 is based on Plik likelihood. We
use the low-l likelihood combination at 2 ≤ l < 30:
temperature-only Commander likelihood plus the
SimAll EE-only likelihood. For the Planck CMB lensing
likelihood, we consider the conservative multipoles range,
i.e., 8 ≤ l ≤ 400. We marginalize over foreground and
calibration nuisance parameters of the Planck likelihoods
[104,105] which are also varied together with the cosmo-
logical ones. We refer to this CMB dataset as P18.
We use the baryon acoustic oscillation (BAO) of

Baryon Spectroscopic Survey (BOSS) DR12 [106] post-
reconstructed power spectrum measurements in three red-
shift slices with effective redshifts zeff ¼ 0.38, 0.51, 0.61

4https://github.com/pierrexyz/pybird
5https://github.com/brinckmann/montepython_public
6https://getdist.readthedocs.io/en/latest
7We have tested that the differences with respect to having one

massive neutrino with mν ¼ 0.06 eV in the estimate of the
cosmological parameters are small except for a shift in H0

toward larger values and a smaller σ8 (though S8 does not change
appreciably).

8https://iminuit.readthedocs.io/en/stable/
9https://github.com/yabebalFantaye/MCEvidence
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[107–109], in combination with the “small-z” measure-
ments from 6dF [110] at zeff ¼ 0.106 and the one from
SDSS DR7 [111] at zeff ¼ 0.15. We refer to this combi-
nation of BAO data as BAO.
We also use the full shape of the BOSS DR12 pre-

reconstructed galaxy clustering measurements [112] using
the Effective Field Theory (EFT) of LSS analysis of
Refs. [113,114]. In particular we consider the combination
of the monopole and quadrupole of the power spectra of the
three different sky-cuts CMASS NGC and CMASS SGC at
effective redshift zeff ¼ 0.57 and LOWZ NGC at zeff ¼
0.32 and we follow the conventions of Refs. [86,113,114]
for the maximum wave number that we consider (kmax ¼
0.23 h=Mpc for CMASS and kmax ¼ 0.20 h=Mpc for
NGC). We combine this dataset with the Hrs and DA=rs
parameters measured from the post-reconstructed power
spectra corresponding to the same sky-cuts, see Ref. [86]
for an explanation of how the covariances between these
datasets are calculated. We refer to such a dataset, com-
bined with small-z BAO mentioned in the previous para-
graph as BAOþ FS.
Additionally, we use the Pantheon supernovae dataset

[115], which includes measurements of the luminosity
distances of 1048 SNe Ia in the redshift range 0.01 <
z < 2.3. We refer to Pantheon data as SN. As discussed in
[42], we do not consider any corrections due to the change in
the peak luminosity of SNe induced by the time evolution of
the gravitational constant [116–119], since they should lead
to a negligible effect for the models considered here.
We also consider the combination with a Gaussian like-

lihood based on the latest determination of the Hubble
constant from Hubble Space Telescope (HST) observations
(hereafter R19), i.e., H0 ¼ ð73.5� 1.4Þ km s−1Mpc−1 [3]
and from time delay from gravitationally lensed quasars
from the H0LiCOW collaboration [5], that is H0 ¼
ð73.3þ1.7

−1.8Þ km s−1 Mpc−1. Since there is no correlation
between the two measurements, they can be combined again
in an inverse-variance weighted Gaussian prior as H0 ¼
ð73.4� 1.1Þ km s−1Mpc−1. We refer to this prior simply
as H0.
Finally, in order to include weak lensing data from

photometric surveys, we follow Refs. [71,72] and imple-
ment them through a Gaussian prior on the parameter

S8 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
. Compressing a large amount of data in

a single data point obtained for ΛCDM is just an approxi-
mation and the correct way would be to perform a full
fledged analysis with the correct likelihood. However, it
was demonstrated in Ref. [71], that, when combined with
CMB, BAO, SN, the DES-Y1 likelihood from two-point
correlations of photometric galaxy clustering, galaxy-
galaxy lensing and cosmic shear is well approximated
by a Gaussian prior on S8 ¼ 0.773� 0.026 in ΛCDM and
EDE models. Note also that another thorough analysis of
EDE models with weak lensing surveys is performed in
Ref. [98]. In that paper, the analysis with the full KiDSþ
VIKING likelihood and the one where the joint KiDSþ
VIKING and DES data are approximated by a Gaussian
prior again show a qualitative agreement between the two
approaches, although the joint KiDSþ VIKING and DES
data are somewhat more constraining. Given these results,
we use as a proxy for complementary measurements on S8
from galaxy weak lensing a Gaussian prior for the inverse-
variance weighted combination of the measurements of
DES [120], KV-450 [121,122] and HSC [123], i.e.,
S8 ¼ 0.770� 0.017. We refer to this prior simply as S8.
We leave the task of a full weak lensing analysis to assess
the reliability of our approximation to a future work.
As a final comment, note that also big bang nucleosyn-

thesis data constrain the variation of the GN from the early
times to today. As discussed more in depth in Refs. [41,42],
in our model this translates into a constraint on the quantity
ξσ2i , which is constrained to be ΔGN=GN ¼ ðGNðtBBNÞ −
GNðt0ÞÞ=GNðt0Þ ≃ ξσ2i ¼ 1.010.20−0.16 at a 68% CL level
[124,125]. A tighter constraint was also derived more
recently in Ref. [126], which found ΔGN ¼ 0.02� 0.06.
As we will show in the next section, constraints from the
dataset introduced above are always tighter or nevertheless
consistent with BBN ones, so we do not need to include
BBN data in our analysis.10

IV. RESULTS

In this section, we present the results of our MCMC
analysis performed using several combinations of the
datasets introduced in the previous section. We comment
on each combination in turn and we only present plots of
the posterior distribution of the cosmological parameters
varied in the analysis and refer the reader to Appendix for
the tables containing their mean and best-fit values, as well
as the χ2 for each dataset and the Bayes factors.

TABLE I. Revised Jeffreys scale used to interpret the values of
lnB obtained when comparing two competing models through
their Bayesian evidence [102]. A value of lnB > 0 indicates that
the extended model is favored with respect to the ΛCDM baseline
model.

lnB≡ lnBEL Strength of preference for model Mi

0 ≤ lnB < 1 Weak
1 ≤ lnB < 3 Definite
3 ≤ lnB < 5 Strong
lnB ≥ 5 Very strong

10In our model, the σ field is frozen deep in the radiation era.
Although we do not consider this possibility in our paper,
quantum mechanically, it is possible that the scalar field random
walks and ends up at a larger values at earlier times. This leads to
a larger H, which becomes in tension with BBN constraints. A
way out to this problem can be to assume a different nonminimal
coupling of the form FðσÞ ¼ M2

pl þ ξsin2½fðσÞ� so that it never
gets too large.
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We start by discussing the results obtained using the
datasetP18þBAOþ FSþ SNþH0, which are presented
in Fig. 6 and Table II. They clearly show that in the EMG
model a large value of H0 ¼ 71.00þ0.87

−0.79 km s−1 Mpc−1 at
68% CL is obtained, reducing the tension with SH0ESþ
H0LiCOW at 1.7σ, better than the 2.1 (4) σ reduction for the
EDE (ΛCDM) obtained for H0 ¼ 70.57þ0.77

−0.98 ð68.82�
0.39Þ km s−1Mpc−1 at 68% CL. This reduction comes both
from the larger mean value of H0 and the larger errors
compared to ΛCDM. As for other models aiming at solving
theH0, we obtain a largerωc and ns compared to theΛCDM
model.11

It is interesting to note that EMG helps fitting CMB data
better with respect to EDE (and also to the ΛCDM). This is
reflected in our 68% CL estimate for ξ ¼ 0.15þ0.06

−0.07 , its
95% CL upper limit ξ < 0.42, and a best-fit value of

ξ ¼ 0.178. We also get σi ¼ 0.49þ0.11
−0.06 at 68% CL, or

equivalently fscf ¼ 0.084þ0.030
−0.021. Note however the remarks

in Sec. II about the meaning of fscf in the context of EMG.
Compared to ΛCDM, both the EMG and the EDE model

exacerbate the tension with measurements of σ8 and S8.
We get consistent results in terms of σ8 for EMG and
EDE, i.e., σ8 ¼ 0.830� 0.008 at 68% CL for EMG and
σ8 ¼ 0.832þ0.009

−0.011 at 68% CL for EDE. However, the larger
ωc and H0 leads to essentially the same S8 ¼ 0.829�
0.011ð�0.13Þ at 68% CL for EMG (EDE).
Overall, the EMG models fits the data much better than

the ΛCDM model with an improvement of Δχ2 ¼ −16.0.
Such an improvement (better than Δχ2 ¼ −9.3 for the EDE
model) is largely due to the better fit to the H0 prior, but
there is also some improvement in the fit to CMB data, in
particular to high-l TTTEEE data. As for LSS data, there is
only a very small degradation compared to ΛCDM due to
the Δχ2 ¼ þ2.5 in the fit to BAO DR12 FSþ BAO, high-z
NGC. The suppression of the matter power spectrum given

FIG. 6. 1D and 2D posterior distributions of a subset of parameters for ΛCDM, EDE and EMG obtained using the dataset
P18þBAOþ FSþ SNþH0. Red contours show the results obtained for EMG with a larger prior on V0 (see main text), for which we
use the dataset P18þBAOþ SNþH0. 2D contours contain 68% and 95% of the probability. We also plot the 68% and 95% CL for
the priors on H0 and S8 described in Sec. IV.

11Note that, taken at face value, a larger ns would have
profound implications on inflationary physics [127–129].
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by the large positive coupling ξ helps fit FSþ BAO data
keeping the value of H0 large at the same time. This large
improvement in the fit corresponds to a Bayes factor of
lnBij ¼ þ1.0 for EMG. The EDE model, which leads to a
smaller improvement in the fit, i.e., Δχ2 ¼ −9.3, has
nevertheless a slightly larger Bayes factor of lnBij ¼
þ1.5 due to the smaller number of extra parameters
compared to EMG. Note that, from its definition in
Eq. (11), the Bayes factor depends on the prior range of
the extra parameter ξ and as such has to be interpreted with
some caution. In fact, especially if a parameter is not well
constrained (as for the case of some the EMG parameters as
V0 and ξ, see next Section) one could enhance the evidence
for the EMG model by reducing the prior range and
therefore the sampling volume. For attempts toward model
selection techniques which are less dependent on the
specific choice of the prior see e.g., Ref. [130].
With the choice of V0 prior as above, however, it is not

possible to recover the model studied in Ref. [42] as the
particular λ → 0 limit. The reason of this choice is to make
sure that for every possible combination of parameters the

scalar field always decreases toward σ ¼ 0, so to be able to
safely use the FS data. Indeed, for λ ¼ 0, the deviation from
GR grows at late times, invalidating the use of the FS
likelihood and PYBIRD for a large portion of the para-
meter space.
On the other hand, it is instructive to study the effects of

widening the V0 prior to see if the data constrain the model
with λ ¼ 0. For this purpose we perform an MCMC
analysis with the dataset P18þBAOþ SNþH0 that
does not suffer from the issue raised above and we set
the prior range V0 ∈ ½−4; 3.5�. We have checked that for
V0 ≤ −3, the potential is essentially negligible.
The posteriors obtained for this MCMCs analysis are

shown as red contours in Fig. 6 and they show that data do
not prefer the small V0 region for which the scalar field
grows. The results also show another interesting feature of
the EMG model, i.e., there is only a small difference in
constraints on the EMGmodel when using BAO in place of
the more complete BAOþ FS data. As can be seen, the
only effect of using BAO is have slightly larger posteriors,
but with the same mean as those obtained with BAOþ FS

FIG. 7. 1D and 2D posterior distributions of a subset of parameters for ΛCDM, EDE and EMG obtained using the dataset
P18þ SNþH0. 2D contours contain 68% and 95% of the probability. We also plot the 68% and 95% CL for the priors on H0 and S8
described in Sec. IV.
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data. Note that this is in agreement for the findings of
Ref. [61] in the context of the new early dark energy model.
In order to further assess the role of BAOþ FS data, we

also perform anMCMC analysis without considering them,
and use the data set P18þ SNþH0. The results are
presented in Fig. 7 and Table III. As can be seen, removing
BAO and FS data leads to a somewhat larger value ofH0 ¼
70.85� 0.92 km s−1Mpc−1 for the EDE (and a much
larger best fit of H0 ¼ 71.38 km s−1Mpc−1), confirming
that BAOþ FS have the power to constrain these models,
as shown in12 Refs. [71–73]. On the other hand, H0 for the

EMG model increases only a bit to H0 ¼ 71.21�
0.93 km s−1 Mpc−1, since BAOþ FS data constrain it less
than they constrain EDE models. It is very interesting to
note that the best-fit value for the coupling ξ ¼ 0.17 is very
close to the one found including BAOþ FS data.
The EMG model fits most of the data, with the exception

of CMB lensing, better than both the EDE and the ΛCDM
model, leading to a Δχ2 ¼ −17.1. This time, however, the
improvement in the fit does not warrant the increase in the
model complexity compared to ΛCDM and we obtain a
Bayes factor of lnBij ¼ −0.2.
We have shown that the EMG model leads to a larger

value of S8 compared to the ΛCDM one. Therefore, we
would like to test it against weak lensing data. Strictly
speaking, this would require using data from e.g., the
KiDS-VIKING galaxy shear measurements. However, it
was claimed in Refs. [71,72] that the same results can be
obtained by implementing weak lensing data through a
Gaussian prior on the parameter S8 ¼ 0.770� 0.017 (see
also Ref. [98] for a thorough comparison of this method to
the correct use of cosmic shear measurements). With these
caveats, we follow Refs. [71,72] and present in Fig. 8 and

FIG. 8. 1D and 2D posterior distributions of a subset of parameters for ΛCDM, EDE, and EMG obtained using the dataset
P18þBAOþ FSþ SNþH0 þ S8. 2D contours contain 68% and 95% of the probability. We also plot the 68% and 95% CL for the
priors on H0 and S8 described in Sec. IV.

12Note that our results slightly differ from the ones in Ref. [73].
The main reason is that we use a different H0 prior which has a
stronger impact on our MCMC analysis, whereas they used a
prior obtained from earlier SH0ES results, i.e., H0 ¼ 74.03�
1.42 km s−1 Mpc−1 [131]. Also, we fix Neff ¼ 3.046 in our
analysis which leads results slightly different from the ones
obtained with the Planck assumption of one massive neutrino
with mν ¼ 0.06 eV (see main text). Finally, we do not use high
redshift Lyman-α forest data from eBOSS DR14 measurements
[132,133]. We have checked that we recover the results that are
consistent with Ref. [73] when using the EDE model with ξ ¼ 0
and their dataset and conventions.
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Table IV the results for the data set P18þBAOþ
FSþ SNþ S8 þH0. Note, despite being far from a
resolution to the S8 tension, the EMG model shows now
a much smaller S8 ¼ 0.809� 0.009 and a best fit value of
S8 ¼ 0.807, lower than the one obtained for ΛCDM, i.e.,
S8 ¼ 0.811. This confirms the conclusion of Ref. [98] for
EDE models that, even though it is true that the S8 tension
is not resolved within this model, the same holds for the
ΛCDM model which, however, is not able to address
the H0 tension, as opposed to the EMG model, for which
we obtain a mean H0 ¼ 70.63þ0.80

−1.00 and a best fit of
H0 ¼ 71.59 km s−1Mpc−1.
Even in this case, however, we note that the large

improvement in the fit (not followed by a preference from
the model-selection point of view) is coming mainly from
the substantial improvement in the fit to H0. It is therefore
natural to ask what happens when we removeH0 prior from
the dataset.
We present the results obtained without the combined

SH0ES-H0LiCOW determination of H0 in Fig. 9 and

Table V for the data set P18þ BAOþ FSþ SN.13 The
results show that the mean value for H0 in the EMG model
(and in the EDE one) is only slightly larger then the one in
ΛCDM, as also found in previous studies of effectively
massless models of scalar-tensor theories [33,34]. This can
be appreciated by looking at the larger posterior distribu-
tions ofH0 and ωc for the EMG and EDEmodels in Figs. 9.
The incapability of EDE to solve theH0 tension when prior
information on H0 is not included, has been recently
discussed in the literature [71]. A similar result holds
for EMG.14

Although the best-fit parameters shown in the third
column of Table V do not lead to a very large H0, we

FIG. 9. 1D and 2D posterior distributions of a subset of parameters for ΛCDM, EDE, and EMG obtained using the dataset
P18þBAOþ FSþ SN. 2D contours contain 68% and 95% of the probability. We also plot the 68% and 95% CL for the priors onH0

and S8 described in Sec. IV.

13We have checked that the addition of a prior on S8 to this data
set does not change appreciably the results.

14However, it has also been proposed in Refs. [98,134] (see
also next section), that a distinction should be made between
looking at the posterior distributions and the fact that there are
some parameters that fit the data in a way that is statistically
indistinguishable from ΛCDM and still lead to a large H0.
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confirm the results of Refs. [98,134] for EMG and find
some set of parameters exist that lead to a large H0 without
a significant change in Δχ2. For example, we find that
100ωb ¼ 2.285, ωc ¼ 0.1308, 100 � θs ¼ 1.04089, τreio ¼
0.057 ln1010As ¼ 3.066 ns ¼ 0.9840, ξ¼ 0.151, V0¼ 2.19,
and σi ¼ 0.57 leads to Δχ2 ¼ 0.7, fitting the data very
similarly to ΛCDM, with an improvement in the fit
to CMB data and a slight worsening to the fit to BAO
DR12 FSþ BAO, high-z NGC data. Such a parameter
set, leads to a large fscf ¼ 0.081 and a large H0 ¼
70.15 km s−1Mpc−1.

V. ANALYSIS OF THE 1 PARAMETER
EXTENSION

The ΛCDM model predictions can be recovered in both
the EDE and the EMG models when σi, or equivalently the
energy injection of the scalar field into the cosmic fluid, goes
to zero. In this regime, bothV0 and the coupling ξ essentially
play no role. When using the Metropolis-Hasting algorithm,
this can give rise to a large portion of the parameter space that

can artificially enhance the statistical weight of ΛCDM
models. This issue has been recently addressed, within
EDE models, in Refs. [51,54,55,59,73].
Here, we take a similar, but somewhat alternative

approach, and follow the lines of Refs. [98,134], where
it was shown that by fixing15 log10 zc (or V0 in our
convention) it is possible to extend the fscf −H0 degen-
eracy even for a choice of datasets without prior informa-
tion on H0, avoiding problems related to the volume
sampling and to the choice of a prior that allows for a
ΛCDM limit. Such a degeneracy is clearly disrupted (see
Fig. 9) when a prior onH0 is not included in the dataset and
a tight upper bound on fscf is obtained.
Note, however, that in absence of theoretical motiva-

tions, this must be seen only as a purely phenomenological
approach, which is rather unorthodox from the standard
Bayesian point of view, for which all the parameters has to
be varied altogether. Nevertheless, in the class of MG

FIG. 10. 1D and 2D posterior distributions of a subset of parameters for the EMG model. Blue and dark red contours are drawn from
the samples in Fig. 6 and 9 respectively, while the green ones are drawn from the sample obtained by using the data set P18þ
BAOþ FS þ SN and fixing V0 and ξ to their best-fit values in the third column of Table II. 2D contours contain 68% and 95% of the
probability. We also plot the 68% and 95% CL for the prior on H0 described in Sec. IV.

15In the EDE model of Refs. [98,134] also a second parameter
related to the axion decay constant f, namely Θi, has to be fixed.
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considered here, there is however the possibility to reduce
the number of parameters by restricting to ξ ¼ −1=6, which
corresponds to the theoretical value for conformal coupling
[37] (see more in the following section).
Based on the former argument, we perform an analysis

similar to the one of Ref. [59,98] for the EMG model, for
which we fix V0 and ξ to their best-fit values in the third
column of Table II and leave σi free to vary. We do not
include H0 data and we use the P18þBAOþ FSþ SN
data set. The results are presented in Fig. 10, where we
confront our results to ones for EMG obtained in the
previous section considering the data sets P18þ BAOþ
FSþ SN and P18þ BAOþ FSþ SNþH0.
From the plot, it is easy to see that the degeneracy

between σi andH0 is nowmore visible leading to a larger of
H0 ¼ 69.18þ0.79

−1.00 km s−1Mpc−1 at 68% CL and slightly
reducing the tension with SH0ESþ H0LiCOW (3.2σ vs
4.2σ in the 3 parameter case using the same data set).
However, the value of σi remains consistent with σi ¼ 0
and most of the improvement in reducing the tension is

ascribed to a larger error on H0 compared to the 3
parameters case. In fact, the best-fit value for H0 that
we obtain is H0 ¼ 68.79 km s−1 Mpc−1, corresponding to
σi ¼ 0.30Mpl. The best-fit cosmology for the 1 parameter
EMG leads to a total χ2 of 4001.5, i.e., Δχ2 ¼ 1.8, nearly
indistinguishable from the 3 parameters one. Compared to
the 3 parameters models we have a Δχ2 ∼ −1.3 and a
Δχ2 ∼ −0.9 gain in the fitting Planck high-l TTTEEE data
and BAO DR12 FSþ BAO, low-z NGC and high-z SGC
respectively, whereas the fit to BAO DR12 FSþ BAO,
high-z NGC is worsen by a factor of ∼þ 1.6, all the other
partial χ2s being essentially the same.
It is interesting to note that now there is only 1 extra

parameter and the model is not as penalized as for the case
with 3 parameters. In fact, the Bayes factor is now lnB ¼
1.4 and for the data set P18þ BAOþ FSþ SN, the
model results slightly preferred over ΛCDM according
to the Jeffreys scale in Table I.
We therefore conclude that by fixing two parameters

does not help much alleviate the H0 tension, which is only

FIG. 11. 1D and 2D posterior distributions of a subset of parameters for the EDE (orange), EMG (blue) and conformally coupled EMG
(brown) using the data set P18þBAOþ FSþ SNþH0. We also show in green the results for the case with ξ ¼ −1=6 and λ ¼ 0 for a
comparison. Note that for the latter case the data set P18þ BAOþ SNþH0 is instead used. 2D contours contain 68% and 95% of the
probability. We also plot the 68% and 95% CL for the priors on H0 and S8 described in Sec. IV.
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addressed when additional prior information from local
measurements of the Hubble constant is added, as shown in
the previous section. As in Sec. IV, though, we note that we
do find some choices of parameters for which the fit to the
data is not substantially different from the one in the
ΛCDMmodel, but lead to a larger H0, as in Refs. [98,134],
with which we qualitatively agree. A fully quantitative
comparison with Refs. [98,134] is however not possible
because of the presence of the nonminimal coupling and the
different potential considered.
Indeed, potentials with a different curvature such as

those with flattened wings and power-law minima are well
known to lead to a larger value of H0 compared to the
simpler quartic potential [47,54,55,57].
As a last comment, note that it would be an interesting

exercise to fix also ξ to search for the σi that exactly solves
the H0 tension, as proposed in Ref. [24]. However, this is
not the purpose of this paper and we hope to return to this
point in a future work.

VI. THE ξ = − 1=6 CASE

So far, we have focused on the case of a positive
coupling ξ ≥ 0. As a representative example of the para-
meter space with ξ < 0, we also show the results obtained
by fixing ξ ¼ −1=6 [37].
From Fig. 1 in Sec. II, we see that the energy injection is

not sharp in redshift anymore, but rather we observe a
continuous energy injection in the early Universe, until the
scalar field contribution redshits away.
The similarity between the background dynamics of this

model and the one of a model with extra dark-radiation
parametrized by Neff and the consequent difficulty in
constraining the coupling ξ has been studied in Ref. [42].
Here, the contribution of the scalar field to the total energy
budget is similar so we do not expect significant differences
between the results here and the ones found in Ref. [42].
However, note that thanks to the small effective mass, the
scalar field decreases more rapidly compared to the massless
case with λ ¼ 0, see, e.g., Fig. 1 of Ref. [42].
For our MCMC analysis we use the data set P18þ

BAOþ FSþ SNþH0 and we fix ξ ¼ −1=6. Our results
are shown in Fig. 11, where we compare to results of the
previous section and show also the results for the case with
ξ ¼ −1=6 and λ ¼ 0 obtained with the same prior on σi for
a comparison (for simplicity we refer to it as CC). Note that,
for the λ ¼ 0, we have used the data set P18þBAOþ
SNþH0, since for a large portion of the σi prior we have
Geff=G − 1 ∼ 10−3 and the use of the FS likelihood might
be less accurate.
Fig. 11 shows that the EMG case with ξ ¼ −1=6 leads to

H0 ¼ 70.11� 0.79 km s−1Mpc−1 at 68% CL a value
smaller than the one obtained in the EDE and EMG model
with ξ ≥ 0. This is expected, as the ability of the EDE and
EMG model with ξ ≥ 0 to alleviate the H0 tension relies
on an energy injection very localized in redshift, a feature

that is not shared by the EMG model with ξ ¼ −1=6.
The best fit value of σi ¼ 0.46Mpl leads to H0 ¼
70.30 km s−1Mpc−1, again smaller than the ξ ¼ 0 and
ξ ≤ 0 case. The improvement in the fit is Δχ2 ¼ −9.0
accompanied by a Bayes factor of lnBij ¼ −1.4, as in the
EDE case, which has the same number of parameters. The
main improvement in the Δχ2 comes from a better fit to
Planck high-l data compared to the other EMG and EDE
models, but it is compensated by a degradation in the fit to
LSS and H0 data.
On the other hand, in the latter model, the energy density

of the scalar field redshifts away much faster than for λ ¼ 0,
since the scalar field is driven toward σ ≃ 0 by the quartic
potential. This is the reason why the H0 in this model is
larger than H0 ¼ 69.78� 0.66 km s−1Mpc−1 at 68% CL,
obtained for λ ¼ 0, for which the scalar field contribution is
not completely negligible after recombination. For the very
same argument, we observe that a larger jξσ2i j, which is a
measure of the scalar field contribution to the fractional
ΔHðzÞ=HðzÞ before recombination when ξ < 0, is allowed
in the EMGmodel compared to the CC one. Also, the value
of γPN is orders of magnitude larger in the CC model, i.e.,
γPN > −2.1 × 10−5 at 95% CL, compared to the EMG case
with ξ ¼ −1=6 in which γPN > −3.5 × 10−9 at 95% CL. If
the former is comparable to Solar System experiments, the
latter is much smaller.
Furthermore, as expected from the discussion in Sec. II

and Fig. 4, the negative coupling leads to larger σ8. We get
σ8 ¼ 0.837þ0.013

−0.021 and σ8 ¼ 0.835� 0.010 for λ ≠ 0 and
λ ¼ 0, respectively, larger than the EDE or EMG model
with a positive coupling (see Table II). However, this is
accompanied by a comparable S8 ¼ 0.833þ0.016

−0.022 for EMG
with ξ ¼ −1=6 and a smaller S8 ¼ 0.822� 0.011 for
ξ ¼ −1=6, λ ¼ 0, since H0 is smaller and therefore the
shift in the value of ωc necessary to restore the fit with
CMB data is slightly smaller as well. This is again in line
with the observation that models that lead to a larger H0

modifying the sound horizon inevitably lead to a larger ωc
and therefore S8 [135].

VII. CONCLUSIONS

We have presented a model of early modified gravity
(EMG) where a scalar field with a nonminimal coupling to
the Ricci scalar of the typeM2

pl þ ξσ2 has a self-interacting
potential. In this model, which extends the massless one of
Ref. [42] and reduces to the rock’n’roll early dark energy
(EDE) model of Ref. [48] for ξ ¼ 0, the scalar field σ,
which is frozen during radiation era, grows around the time
of recombination driven by the coupling to pressureless
matter and is subsequently driven into damped oscillations
around its minimum at σ ¼ 0 by the small effective mass
induced by the quartic potential. The rolling of the field
toward σ ¼ 0 suppresses the modification to gravity at late
times, recovering an excellent agreement of the laboratory
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experiments and Solar System tests with general relativity.
The addition of the effective potential has the virtue of
reconciling the ξ > 0 branch of the model studied in [42]
with GR without any fine tuning.
The modification to gravity at early times, however, has

the important consequence of alleviating theH0 tension as it
modifies the redshift profile of the energy injected into the
cosmic fluid when the scalar field thaws. Our MCMC
analysis, performed with a variety of cosmological data,
shows that the tension can be reduced substantially and at the
same time a positive coupling ξ > 0 suppresses the small
scale matter power spectrum and thus helps fit the full shape
of the matter power spectrum data, that has recently claimed
to constrain the EDE resolution of the H0 tension. In
particular, the tension with the combination of recent
SH0ES and H0LiCOW measurements, i.e., H0 ¼ 73.4�
1.1 km s−1Mpc−1, is reduced at the 1.7σ level when this is
added to cosmic microwave background, SNe, baryonic
acoustic oscillations and the full shape of the matter
power spectrum data. For this data set, we obtain H0 ¼
71.00þ0.87

−0.79 km s−1Mpc−1 at 68%CLwhich is larger than the
one we get for EDE for ξ ¼ 0 i.e., H0 ¼
70.57þ0.77

−0.98 km s−1Mpc−1.
Performing the MCMC analysis with different combi-

nations of the data mentioned above helps us trace the
origin of the largerH0 back to the suppression of the power
spectrum caused by the nonminimal coupling ξ, for which
we get a mean value of ξ ¼ 0.15þ0.06

−0.07 at 68% CL (however
it is only an upper bound ξ < 0.39 at 95% CL). In fact, for
all the dataset that we use we get a similar constrain on the
parameter ξ. Although the fit to data is always improved,
however, the Bayesian model selection for EMG depends
on the data set considered, and is penalized by the larger
number (3) of extra parameters compared to ΛCDM,
therefore never resulting in a strong preference.
In order to confirm the argument above we have

performed the same analysis fixing ξ to the conformal
coupling ξ ¼ −1=6. In this case rather than a suppression
we have an enhancement of the matter power spectrum and
the capability of the model to ease the tension is therefore
reduced, with H0 ¼ 70.11� 0.79 km s−1Mpc−1, smaller

than the ξ ¼ 0 case, showing a clear hierarchy for negative,
null and positive couplings. Note, however, that the
addition of the small effective mass to the ξ ¼ −1=6 case
leads to larger H0 than the one for the conformally coupled
massless case of Ref. [42] for which H0 ¼ 69.78�
0.66 km s−1 Mpc−1 (see Sec. VI).
As a last comment, in this paper we have considered two

dimensionless couplings for a cosmological scalar field,
which rule the coupling to the Ricci scalar (ξ) and its self-
interaction (λ). A quartic potential for the scalar field σ,
implies that we recover the RnR model [48] for ξ ¼ 0.
However, it is known that potentials with flattened wings
that have a different curvature around the minimum at
σ ¼ 0, such as those in the original EDE proposal of
Ref. [47] or in the α-attractor EDE model of Ref. [57],
provide a better fit to Planck polarization data and lead to an
even larger H0. It would be interesting to explore different
choices of the potential in the EMG framework.
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APPENDIX: TABLES

TABLE II. [Upper table] Constraints on main and derived parameters considering the data set P18þ BAOþ FSþ SNþH0 for
ΛCDM, ξ ¼ 0 and ξ ≥ 0. We report mean values and the 68% CL, except for the case of upper or lower limits, for which we report the
95% CL. We also report the best-fit values in round brackets. [Lower table] Best-fit χ2 per experiment for the data set P18þ BAOþ
FSþ SNþH0 for ΛCDM, EDE and EMG model.

ΛCDM EDE EMG

102ωb 2.256� 0.013 (2.255) 2.280� 0.018 (2.286) 2.273� 0.017 (2.281)
ωc 0.1182� 0.0009 (0.1184) 0.1253þ0.0033

−0.0038 (0.1242) 0.1282þ0.0042
−0.0033 (0.1302)

100 � θs 1.04209� 0.00028 (1.04216) 1.04152� 0.00036, (1.04170) 1.04118þ0.00040
−0.00046 (1.04120)

τreio 0.058� 0.007 (0.052) 0.058þ0.007
−0.008 (0.059) 0.056� 0.007 (0.057)

(Table continued)
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TABLE II. (Continued)

ΛCDM EDE EMG

ln ð1010AsÞ 3.049� 0.014 (3.038) 3.059� 0.016 (3.059) 3.061� 0.015 (3.067)
ns 0.9701� 0.0036 (0.9710) 0.9783þ0.0054

−0.0061 (0.9813) 0.9782� 0.0055 (0.9849)
σi [Mpl] � � � <0.70 (0.48) 0.49þ0.11

−0.06 (0.53)
V0 � � � 2.21þ0.07

−0.38 (2.09) 2.21þ0.10
−0.15 (2.25)

ξ � � � � � � <0.42 (0.18)
H0 [km s−1 Mpc−1] 68.82� 0.39 (68.74) 70.57þ0.77

−0.98 (70.90) 71.00þ0.87
−0.79 (71.59)

rs [Mpc] 147.37� 0.22 (147.33) 143.5� 1.8 (143.78) 142.2þ1.5
−2.0 (141.21)

σ8 0.821� 0.006 (0.818) 0.832þ0.009
−0.011 (0.831) 0.830� 0.008 (0.850)

S8 0.817� 0.010 (0.815) 0.829� 0.013 (0.820) 0.829� 0.011 (0.847)
log10 zc � � � 3.58þ0.04

−0.16 (3.53) 3.60þ0.06
−0.05 (3.63)

fscf � � � <0.119 (0.057) 0.084þ0.030
−0.021 (0.099)

ξσ2i [M2
pl] � � � � � � <0.067 (0.050)

γPN − 1 � � � � � � > −1.7 × 10−9 ð−8.9 × 10−9Þ
Δχ2 � � � −9.3 −16.0
lnBij � � � þ1.5 þ1.0

P18þ BAOþ FSþ SNþH0 ΛCDM EDE EMG

Planck high-l TTTEEE 2350.07 2352.08 2347.75
Planck low-l EE 395.70 396.69 396.37
Planck low-l TT 22.32 21.51 21.52
Planck lensing 9.37 9.36 9.17
BAO BOSS low-z 2.21 2.74 2.06
BAO DR12 FSþ BAO, high-z NGC 65.13 65.15 67.64
BAO DR12 FSþ BAO, high-z SGC 62.63 63.29 62.83
BAO DR12 FSþ BAO, low-z NGC 70.06 70.53 69.89
Pantheon 1026.86 1026.93 1026.88
H0 18.57 5.35 2.81
Total 4022.94 4013.64 4006.92

TABLE III. [Upper table] Constraints on main and derived parameters considering the data set P18þ SNþH0 for ΛCDM, ξ ¼ 0 and
ξ ≥ 0. We report mean values and the 68% CL, except for the case of upper or lower limits, for which we report the 95% CL. We also
report the best-fit values in round brackets. [Lower table] Best-fit χ2 per experiment for the data set P18þ SNþH0 for ΛCDM, EDE
and EMG model.

ΛCDM EDE EMG

102ωb 2.261� 0.014 (2.263) 2.283� 0.018 (2.292) 2.275� 0.018 (2.284)
ωc 0.1175� 0.0011 (0.1170) 0.1253þ0.0036

−0.0044 (0.1285) 0.1288� 0.0046 (0.131)
100 � θs 1.04216� 0.00029 (1.04200) 1.04153� 0.00038 (1.04135) 1.04114� 0.00048 (1.04107)
τreio 0.061þ0.007

−0.008 (0.060) 0.060þ0.007
−0.008 (0.061) 0.058þ0.007

−0.008 (0.056)
ln ð1010AsÞ 3.053þ0.014

−0.016 (3.050) 3.062� 0.016 (3.072) 3.067� 0.016 (3.067)
ns 0.9707� 0.0040 (0.9733) 0.9788� 0.0061 (0.9849) 0.9800� 0.0059 (0.9870)
σi [Mpl] � � � 0.48þ0.14

−0.09 (0.58) 0.50þ0.12
−0.07 (0.56)

V0 � � � 2.23þ0.10
−0.45 (1.97) 2.22þ0.11

−0.13 (2.24)
ξ � � � � � � <0.39 (0.17)
H0 [km s−1 Mpc−1] 69.13� 0.49 (69.25) 70.85� 0.92 (71.38) 71.21� 0.93 (71.87)
rs [Mpc] 147.49� 0.25 (147.61) 143.4� 1.9 (141.83) 141.9þ1.9

−2.2 (140.70)
σ8 0.820� 0.006 (0.818) 0.833� 0.011 (0.842) 0.833� 0.008 (0.836)

(Table continued)
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TABLE III. (Continued)

ΛCDM EDE EMG

S8 0.811� 0.011 (0.806) 0.827� 0.016 (0.838) 0.831� 0.014 (0.833)
log10 zc � � � 3.59þ0.06

−0.19 (3.50) 3.60þ0.06
−0.04 (3.64)

fscf � � � <0.134 (0.083) 0.088þ0.033
−0.025 (0.107)

ξσ2i [M2
pl] � � � � � � <0.072 (0.053)

γPN − 1 � � � � � � > − 1.7 × 10−9 ð−1.8 × 10−9Þ
Δχ2 � � � −11.5 −17.1
lnBij � � � þ1.8 −0.2

P18þ SNþH0 ΛCDM EDE EMG

Planck high-l TTTEEE 2351.75 2352.22 2349.25
Planck low-l EE 396.94 397.51 396.23
Planck low-l TT 22.08 21.41 21.29
Planck lensing 9.59 9.07 9.32
Pantheon 1026.96 1026.87 1026.86
H0 14.76 3.50 2.00
Total 3822.08 3810.58 3804.97

TABLE IV. [Upper table] Constraints on main and derived parameters considering the data set P18þ BAOþ FS þ SNþH0 þ S8
for ΛCDM, ξ ¼ 0 and ξ ≥ 0. We report mean values and the 68% CL, except for the case of upper or lower limits, for which we report
the 95% CL. We also report the best-fit values in round brackets. [Lower table] Best-fit χ2 per experiment for the data set P18þ
BAOþ FS þ SNþH0 þ S8 for ΛCDM, EDE and EMG model.

ΛCDM EDE EMG

102ωb 2.262� 0.013 (2.265) 2.277� 0.016 (2.276) 2.272� 0.016 (2.275)
ωc 0.1174� 0.0008 (0.1178) 0.1218þ0.0022

−0.0034 (0.1228) 0.1234þ0.0028
−0.0047 (0.1262)

100 � θs 1.04213� 0.00029 (1.04229) 1.04160þ0.00052
−0.00034 () 1.04154� 0.00043 (1.04148)

τreio 0.055� 0.007 (0.057) 0.055� 0.007 (0.058) 0.054� 0.007 (0.057)
ln ð1010AsÞ 3.041� 0.014 (3.047) 3.044� 0.015 (3.042) 3.047� 0.015 (3.058)
ns 0.9716� 0.0035 (0.9719) 0.9756þ0.0043

−0.0053 (0.9752) 0.9755þ0.0046
−0.0054 (0.9791)

σi [Mpl] � � � <0.60 (0.47) 0.39þ0.15
−0.10 (0.50)

V0 � � � 2.59þ0.72
−0.64 (3.21) 2.44þ0.76

−0.50 (2.05)
ξ � � � � � � <0.63 (0.14)
H0 [km s−1 Mpc−1] 69.17� 0.35 (69.09) 70.40� 0.76 (70.75) 70.63þ0.80

−1.0 (71.59)
rs [Mpc] 147.51� 0.21 (147.38) 145.0þ1.7

−1.3 (144.43) 144.3þ2.3
−1.5 (142.75)

σ8 0.815� 0.005 (0.819) 0.819þ0.006
−0.008 (0.81682) 0.819þ0.006

−0.007 (0.820)
S8 0.805� 0.008 (0.811) 0.808� 0.010 (0.804) 0.809� 0.009 (0.807)
log10 zc � � � 3.72þ0.37

−0.26 (4.12) 3.66þ0.04
−0.20 (3.52)

fscf � � � <0.101 (0.064) <0.121 (0.085)
ξσ2i [M2

pl] � � � � � � <0.054 (0.030)
γPN − 1 � � � � � � > −1.8 × 10−9 ð−8.0 × 10−10Þ
Δχ2 � � � −11.0 −11.5
lnBij � � � −0.4 −0.12

P18þ BAOþ FSþ SNþH0 þ S8 ΛCDM EDE EMG

Planck high-l TTTEEE 2351.17 2351.13 2351.51
Planck low-l EE 396.43 396.47 396.48
Planck low-l TT 22.36 21.70 22.19
Planck lensing 9.32 10.09 10.46

(Table continued)
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TABLE IV. (Continued)

P18þ BAOþ FSþ SNþH0 þ S8 ΛCDM EDE EMG

BAO BOSS low-z 2.65 2.96 2.91
BAO DR12 FSþ BAO, high-z NGC 64.76 64.08 65.53
BAO DR12 FSþ BAO, high-z SGC 63.11 63.23 63.00
BAO DR12 FSþ BAO, low-z NGC 70.57 71.14 70.54
Pantheon 1026.89 1026.97 1026.98
H0 15.88 6.00 2.90
S8 5.66 4.02 4.82
Total 4028.81 4017.81 4017.35

TABLE V. [Upper table] Constraints on main and derived parameters considering the data set P18þBAOþ FSþ SN for ΛCDM,
ξ ¼ 0 and ξ ≥ 0. We report mean values and the 68% CL, except for the case of upper or lower limits, for which we report the 95% CL.
We also report the best-fit values in round brackets. [Lower table] Best-fit χ2 per experiment for the data set P18þ BAOþ FSþ SN for
ΛCDM, EDE and EMG model.

ΛCDM EDE EMG

102ωb 2.243� 0.013 (2.251) 2.245þ0.015
−0.016 (2.240) 2.244� 0.015 (2.247)

ωc 0.1195� 0.0009 (0.1186) 0.1206þ0.0008
−0.0019 (0.1200) 0.1206þ0.0011

−0.0019 (0.1234)
100 � θs 1.04193� 0.00029 (1.04199) 1.04182� 0.00032; (1.04181) 1.04181þ0.00033

−0.00029 (1.04168)
τreio 0.054� 0.007 (0.059) 0.054� 0.007, (0.054) 0.054� 0.007 (0.54)
ln ð1010AsÞ 3.043� 0.014 (3.050) 3.045� 0.014 (3.044) 3.045� 0.014 (3.0491)
ns 0.9666� 0.0037 (0.9699) 0.9678þ0.0037

−0.0047 (0.9663) 0.9673� 0.0044 (0.9686)
σi [Mpl] � � � <0.50 (0.05) <0.45 (0.31)
V0 � � � 2.14� 0.78 (0.69) 2.47þ0.86

−0.39 (2.28)
ξ � � � � � � <0.81 (0.18)
H0 [km s−1 Mpc−1] 68.16� 0.41 (68.55) 68.46þ0.42

−0.68 (67.90) 68.39þ0.50
−0.67 (68.94)

rs [Mpc] 147.16� 0.22 (147.32) 146.53þ0.94
−0.23 (147.08) 146.59þ0.90

−0.38 (145.17)
σ8 0.822� 0.0058 (0.823) 0.823þ0.006

−0.007 (0.824) 0.822� 0.007 (0.824)
S8 0.830� 0.010 (0.823) 0.831� 0.011 (0.836) 0.830� 0.011 (0.834)
log10 zc � � � 3.26þ0.65

−0.72 (2.07) 3.44þ0.52
−0.17 (3.54)

fscf � � � <0.0617 (0.0004) <0.0726 (0.037)
ξσ2i [M2

pl] � � � � � � <0.0381 (0.0172)
γPN − 1 � � � � � � > −1.7 × 10−8 ð−5.0 × 10−10Þ
Δχ2 � � � −1.2 −2.6
lnBij � � � −1.3 −2.7

P18þ BAOþ FSþ SN ΛCDM EDE EMG

Planck high-l TTTEEE 2347.99 2346.77 2345.32
Planck low-l EE 396.89 396.00 396.04
Planck low-l TT 22.69 23.23 23.34
Planck lensing 8.82 8.86 8.80
BAO BOSS low-z 2.00 1.33 1.44
BAO DR12 FSþ BAO, high-z NGC 65.78 67.86 67.91
BAO DR12 FSþ BAO, high-z SGC 62.42 61.76 61.69
BAO DR12 FSþ BAO, low-z NGC 69.82 69.25 69.17
Pantheon 1026.89 1027.09 1027.02
Total 4003.30 4002.15 4000.74
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