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ARTIFICIAL INTELLIGENCE, ALGORITHMIC PRICING AND COLLUSION1 

Emilio Calvano, Giacomo Calzolari, and Vincenzo Denicolo, and Sergio` Pastorello 

May 2020 

Increasingly, algorithms are supplanting human decision-makers in 
pricing goods and services. To analyze the possible consequences, we 
study experimentally the behavior of algorithms powered by Artificial 
Intelligence (Q-learning) in a workhorse oligopoly model of repeated 
price competition. We find that the algorithms consistently learn to 
charge supra-competitive prices, without communicating with one 
another. The high prices are sustained by collusive strategies with a finite 
phase of punishment followed by a gradual return to cooperation. This 
finding is robust to asymmetries in cost or demand, changes in the 
number of players, and various forms of uncertainty. 

Keywords: Artificial Intelligence, Pricing-Algorithms, Collusion, Reinforcement Learning, 

Q-Learning. 

J.E.L. codes: L41, L13, D43, D83. 

Software programs are increasingly being adopted by firms to price their goods and 

services, and this tendency is likely to continue.2 In this paper, we ask whether pricing 

algorithms may “autonomously” learn to collude. The possibility arises because of the 

recent evolution of the software, from rule-based to reinforcement learning programs. 

                                                        
1  Calvano: Bologna University, Toulouse School of Economics and CEPR (emilio.calvano@unibo.it). 

Calzolari (corresponding author): European University Institute, Bologna University, Toulouse School of 
Economics and CEPR (giacomo.calzolari@eui.ei). Denicol: Bologna University and CEPR 
(vincenzo.denciolo@unibo.it). Pastorello: Bologna University (sergio.pastorello@unibo.it). We are grateful 
to the Editor, Jeffrey Ely, and three anonymous referees for many detailed and helpful comments. We also 
thank, without implicating, Susan Athey, Ariel Ezrachi, Joshua Gans, Joe Harrington, Bruno Jullien, Timo 
Klein, Kai-Uwe Ku¨hn, Patrick Legros, David Levine, Wally Mullin, Yossi Spiegel, Steve Tadelis, Emanuele 
Tarantino and participants at numerous conferences and seminars. Financial support from the Digital Chair 
initiative at the Toulouse School of Economics is gratefully acknowledged. 

2 While revenue management programs have been used for decades in such industries as hotels and 

airlines, the diffusion of pricing software has boomed with the advent of online marketplaces. For example, 

in a sample of over 1,600 best-selling items listed on Amazon, Chen, Mislove and Wilson (2016) find that in 

2015 more than a third of the vendors had already automated their pricing. But pricing software is 

increasingly used also in traditional off-line sectors such as gas stations: see e.g. “Why do gas station prices 

constantly change? Blame the algorithms,” The Wall Street Journal, May 8, 2017. 



 AI, ALGORITHMIC PRICING AND COLLUSION 3 

The new programs, powered by Artificial Intelligence (AI), are indeed much more 

autonomous than their precursors. They can develop their pricing strategies from scratch, 

engaging in active experimentation and adapting to changing environments. In this 

learning process, they require little or no external guidance. 

In the light of these developments, concerns have been voiced, by scholars and 

policymakers alike, that AI pricing algorithms may raise their prices above the 

competitive level in a coordinated fashion, even if they have not been specifically 

instructed to do so and even if they do not communicate with one another.3 This form of 

tacit collusion would defy current antitrust policy, which typically targets only explicit 

agreements among would-be competitors (Harrington, 2018). 

But how real is the risk of tacit collusion among algorithms? That is a difficult question to 

answer, both empirically and theoretically. On the empirical side, collusion is notoriously 

hard to detect from market outcomes,4 and firms typically do not disclose details of the 

pricing software they use. On the theoretical side, the interaction among 

reinforcementlearning algorithms in pricing games generates stochastic dynamic systems 

so complex that analytical results seem currently out of reach.5 

To make some progress, this paper takes an experimental approach. We construct AI 

pricing agents and let them interact repeatedly in computer-simulated marketplaces. The 

challenge of this approach is to choose realistic economic environments, and algorithms 

representative of those employed in practice. We discuss in detail how we address these 

challenges as we proceed. Any conclusions are necessarily tentative at this stage, but our 

findings do suggest that algorithmic collusion is more than a remote theoretical 

possibility. 

The results indicate that, indeed, relatively simple pricing algorithms systematically learn 

to play collusive strategies. The algorithms typically coordinate on prices that are 

somewhat below the monopoly level but substantially above the static Bertrand 

                                                        
3 For the scholarly debate see, for instance, Ezrachi and Stucke (2016, 2017), Harrington (2018), Ku¨hn 

and Tadelis (2018) and Schwalbe (2019). As for policy, the possibility of algorithmic collusion has been 
extensively discussed, for instance, at the 7th session of the FTC Hearings on competition and consumer 
protection (November 2018) and has been the subject of white papers independently issued in 2018 by the 
Canadian Competition Bureau and the British Competition and Market Authority. 

4 With rich enough data, however, the problem may not be insurmountable (Byrne and De Roos (2019)). 
5  One notable theoretical contribution is Salcedo (2015), who argues that optimized algorithms will 

inevitably reach a collusive outcome. But this claim hinges crucially on the assumption that each algorithm 

can periodically observe and “decode” the others, which in the meantime stay unchanged. The practical 

relevance of Salcedo’s result thus remains controversial. 



4 E. CALVANO, G. CALZOLARI, V. DENICOLO, S. PASTORELLO` 

equilibrium. The strategies that generate these outcomes crucially involve punishments 

of defections. 

Such punishments are finite in duration, with a gradual return to the pre-deviation prices. 

The algorithms learn these strategies purely by trial and error. They are not designed or 

instructed to collude, they do not communicate with one another, and they have no prior 

knowledge of the environment in which they operate. 

Our baseline model is a symmetric duopoly with deterministic demand, but we conduct 

an extensive robustness analysis. The degree of collusion decreases as the number of 

competitors rises. However, substantial collusion continues to prevail when the active 

firms are three or four in number. The algorithms display a stubborn propensity to collude 

even when they are asymmetric, and when they operate in stochastic environments. 

Other papers have simulated reinforcement-learning algorithms in oligopoly, but ours is 

the first to clearly document the emergence of collusive strategies among autonomous 

pricing agents. The previous literature in both computer science and economics has 

focused on outcomes rather than strategies.6 But the observation of supra-competitive 

prices is not, per se, genuine proof of collusion. To us economists, collusion is not simply 

a synonym of high prices but crucially involves “a reward-punishment scheme designed 

to provide the incentives for firms to consistently price above the competitive level” 

(Harrington (2018), p. 336). The reward-punishment scheme ensures that the supra-

competitive outcomes may be obtained in equilibrium and do not result from a failure to 

optimize. 

The difference is important. For example, in their pioneering study of repeated Cournot 

competition among Q-learning algorithms, computer scientists Waltman and Kaymak 

(2008) find that the algorithms reduce output, and hence raise prices, with respect to the 

Nash equilibrium of the one-shot game. 7  They refer to this as collusion. When the 

algorithms are far-sighted and are able to condition their current choices on past actions, 

so that defections can be punished, their findings could indeed be consistent with 

                                                        
6 Moreover, the vast majority of the literature does not use the canonical model of collusion, where firms 

play an infinitely repeated game, pricing simultaneously in each stage and conditioning their prices on past 
history. Rather, it uses frameworks similar to Maskin and Tirole (1988) model of staggered pricing. In this 
model, two firms alternate in moving, commit to a price level for two periods, and condition their pricing 
only on rival’s current price. (See the recent contribution of Klein (2018), which provides also a survey of 
the earlier literature.) The postulate of price commitment is however controversial, as software algorithms 
can adjust prices very quickly. And probably the postulate is not innocuous. Commitment may indeed 
facilitate coordination, as argued theoretically by Maskin and Tirole (1988) and experimentally by Leufkens 
and Peeters (2011). 

7 Other papers that study reinforcement learning algorithms in a Cournot oligopoly include Kimbrough 
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collusive behavior according to economists’ usage of the term. But Waltman and Kaymak 

consider also the case where algorithms are myopic and have no memory of past actions 

– conditions under which collusion is either unfeasible or cannot emerge in equilibrium – 

and find that in these cases the output reduction is even larger. This raises doubts that 

what they observe may not be collusion but a failure to learn an optimal strategy.7 

Verifying whether the high prices are supported by equilibrium strategies is not just a 

theoretical curiosity. Algorithms that grossly fail to optimize would, in all likelihood, be 

dismissed quickly and thus could hardly become a matter of antitrust concern. The 

implications are instead very different if, as we show, the supra-competitive prices are set 

by optimizing, or quasi-optimizing, programs. 

Yet, there is an important caveat to keep in mind. To present a proof-of-concept 

demonstration of algorithmic collusion, in this paper we concentrate on what the 

algorithms eventually learn and pay less attention to the speed of learning. Thus, we focus 

on algorithms that by design learn slowly, in a completely unsupervised fashion, and in 

our simulations we allow them to explore widely and interact as many times as is needed 

to stabilize their behavior. As a result, the number of repetitions required for completing 

the learning is typically high, on the order of hundreds of thousands. In fact, the algorithms 

start to raise their prices much earlier. However, the time scale remains an open issue; it 

will be discussed further below. 

The rest of the paper is organized as follows. The next section provides a self-contained 

description of the class of Q-learning algorithms, which we use in our simulations. Section 

3 describes the economic environments where the algorithms operate. Section 4 shows 

that collusive outcomes are common and are generated by optimizing, or quasi-

optimizing, behavior. Section 5 then provides a more in-depth analysis of the strategies 

that lead to these outcomes. Section 6 reports on a number of robustness checks. Section 

7 discusses the issue of the speed of learning. Section 8 concludes with a brief discussion 

of the possible implications for policy. 

 
and Murphy (2009) and Siallagan et al (2013). 

7According to Cooper, Homem-de-Mello and Kleywegt (2015), such “collusion by mistake” may 

sometimes emerge also among revenue management systems that do not condition their current prices on 

rivals’ past prices. This may happen in particular when the programs disregard competitors altogether in 

the process of demand estimation, which biases the estimated elasticity downwards. 
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1. Q-LEARNING 

Following Waltman and Kaymak (2008), we concentrate on Q-learning algorithms. Even 

if reinforcement learning comes in many different varieties,8 there are several reasons for 

this choice. First, one would like to experiment with algorithms that are commonly 

adopted in practice, and although little is known on the specific software that firms 

actually use, Q-learning is certainly highly popular among computer scientists. Second, Q-

learning algorithms are simple and can be fully characterized by just a few parameters, 

the economic interpretation of which is clear. This makes it possible to keep possibly 

arbitrary modeling choices to a minimum, and to conduct a comprehensive comparative 

statics analysis with respect to the characteristics of the algorithms. Third, Q-learning 

algorithms share the same architecture as the more sophisticated programs that have 

recently obtained spectacular successes, achieving superhuman performances in such 

tasks as playing the ancient board game Go (Silver et al., 2016), the Atari video-games 

(Mnih et al., 2015), and, more recently, chess (Silver et al., 2018).9 The downside of Q-

learning is that the learning process is slow, for reasons that will become clear in a 

moment. 

In the rest of this section, we provide a brief introduction to Q-learning. Readers familiar 

with this model may proceed directly to section 3. 

1.1. Single agent problems 

Like all reinforcement-learning algorithms, Q-learning programs adapt their behavior to 

past experience, taking actions that have proven successful more frequently and 

unsuccessful ones less frequently. In this way, they may learn an optimal policy, or a policy 

that approximates the optimum, with no prior knowledge of the particular problem at 

hand.9 

Originally, Q-learning was proposed by Watkins (1989) to tackle Markov decision 

processes. In a stationary Markov decision process, in each period t = 0,1,2,... an agent 

observes a state variable st ∈ S and then chooses an action at ∈ A(st). For any st and at, the 

                                                        
8 For a thorough treatment of reinforcement learning in computer science, see Sutton and Barto (2018). 

9These more sophisticated programs might appear themselves to be a natural alternative to Q-learning. 

However, they require many modeling choices that are somewhat arbitrary from an economic viewpoint. 

We shall come back to this issue in Section 7. 
9 Reinforcement learning was introduced in economics by Arthur (1991) and later popularized by Roth 

and Erev (1995), Erev and Roth (1998) and Ho, Camerer and Chong (2007), among others. 
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agent obtains a reward πt, and the system moves on to the next state st+1, according to a 

time-invariant (and possibly degenerate) probability distribution F(πt,st+1|st,at). Q-

learning deals with the version of this model where S and A are finite, and A is not state-

dependent. 

The decision maker’s problem is to maximize the expected present value of the reward 

stream: 

(1)  , 

where δ < 1 represents the discount factor. This dynamic programming problem is usually 

attacked by means of Bellman’s value function 

(2) V (s) = max{E [π|s,a] + δE[V (s0)|s,a]}, 
a∈A 

where s0 is a shorthand for st+1. For our purposes it is convenient to consider instead a 

precursor of the value function, namely the Q-function representing the discounted payoff 

of taking action a in state s.10 It is implicitly defined as: 

(3) Q(s,a) = E(π|s,a) + δE[maxQ(s0,a0)|s,a], 
a0∈A 

where the first term on the right-hand side is the period payoff and the second term is the 

continuation value.11 The Q-function is related to the value function by the simple identity 

V (s) ≡ maxa∈A Q(s,a). Since S and A are finite, the Q-function can in fact be represented as 

an |S| × |A| matrix. 

1.1.1. Learning 

If the agent knew the Q-matrix, he could then easily calculate the optimal action for any 

given state. Q-learning is essentially a method for estimating the Q-matrix without 

knowing the underlying model, i.e. the distribution function F(π,s0|s,a). 

                                                        
10 The term Q-function derives from the fact that the Q-value can be thought of as an index of the “Quality” 

of action a in state s. 

11 This is uniquely defined even if the maximization problem does not have a unique solution. 
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Q-learning algorithms estimate the Q-matrix by an iterative procedure. Starting from an 

arbitrary initial matrix Q0, after choosing action at in state st, the algorithm observes πt 

and st+1 and updates the corresponding cell of the matrix Qt(s,a) for s = st, a = at, according 

to the learning equation: 

(4)  . 

Equation (4) tells us that for the cell visited, the new value Qt+1(s,a) is a convex 

combination of the previous value and the current reward plus the discounted value of 

the state that is reached next. For all other cells s 6= st and a 6= at, the Q-value does not 

change: 

Qt+1(s,a) = Qt(s,a). The weight α ∈ [0,1] is called the learning rate. 

1.1.2. Experimentation 

To have a chance to approximate the true matrix starting from an arbitrary Q0, all actions 

must be tried in all states. This means that the algorithm has to be instructed to 

experiment, i.e. to gather new information by selecting actions that may appear 

suboptimal in the light of the knowledge acquired in the past. Plainly, such exploration is 

costly and thus entails a trade-off between continuing to learn and exploiting the stock of 

knowledge already acquired. Finding the optimal resolution to this trade-off may be 

problematic, but Q-learning algorithms do not even try to optimize in this respect: the 

mode and intensity of the exploration are specified exogenously. 

The simplest possible exploration policy – sometimes called the ε-greedy model of 

exploration – is to choose the currently optimal action (i.e., the one with the highest Q-

value in the relevant state, also known as the “greedy” action) with a fixed probability 1 − 

ε and to randomize uniformly across all actions with probability ε. Thus, 1 − ε is the 

fraction of times the algorithm is in exploitation mode, while ε is the fraction of times it is 

in exploration mode. Even if more sophisticated exploration policies can be designed,13 in 

our analysis we shall mostly focus on the ε-greedy specification. 

Under certain conditions, Q-learning algorithms converge to the optimal policy (Watkins 

and Dayan, 1992).14 However, completing the learning process may take quite a long time. 

Q-learning is slow because it updates only one cell of the Q-matrix at a time, and 

approximating the true matrix generally requires that each cell be visited many times. 

The larger the state or action space, the more iterations will be needed. 
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13For example, one may let the probability with which sub-optimal actions are tried depend on their 

respective Q-values, as in the so-called Boltzmann experimentation model. In this model, actions are chosen 

with probabilities 

Qt(st,a)/T 
Pr( 

a0∈A 

where the parameter T is often called the system’s “temperature.” As long as T > 0, all actions are chosen 

with positive probability. When T = 0, however, the algorithm chooses the action with the highest Q-value 

with probability 1. 
14A sufficient condition is that the algorithm’s exploration policy belong to a class known as Greedy in the 

Limit with Infinite Exploration (GLIE). Loosely speaking, this requires that exploration decreases over time; 

that if a state is visited infinitely often, the probability of choosing any feasible action in that state be always 

positive (albeit arbitrarily small); and that the probability of choosing the greedy action go to one as t →∞. 

1.2. Repeated games 

Although Q-learning was originally designed to deal with stationary Markov decision 

processes, it can also be applied to repeated games. The simplest approach is to let the 

algorithms continue to update their Q-matrices according to (4), treating rivals’ actions 

just like any other possibly relevant state variable.12 

But in repeated games stationarity is inevitably lost, even if the stage game does not 

change from one period to the next. One source of non-stationarity is that if the state st 

included players’ actions in all previous periods, the set of states S would increase with 

time. But this problem can be avoided by bounding players’ memory. With bounded recall, 

a state s will include only the actions chosen in the last k stages, implying that the state 

space may be finite and time-invariant. 

A more serious problem is that in repeated games the per-period payoff and the transition 

to the next state generally depend on the actions of all the players. If a player’s rivals 

change their actions over time – because they are experimenting or learning, or both – the 

player’s optimization problem becomes inherently non-stationary. 

Such non-stationarity is at the root of the lack of general convergence results for Q-

learning in games. 13  There is no ex ante guarantee that several Q-learning agents 

                                                        
12  In the computer science literature, this approach is called independent learning. An alternative 

approach, i.e. joint learning , tries to predict other players’ actions by means of some sort of equilibrium 

notion. However, the joint learning approach is still largely unsettled (Nowe et al. (2012)). 
13 Non-stationarity considerably complicates the theoretical analysis of the stochastic dynamic systems 

describing Q-learning agents’ play of repeated games. A common approach uses stochastic approximation 
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interacting repeatedly will settle on a stable outcome, nor that they will learn an optimal 

policy (i.e., collectively, a Nash equilibrium of the repeated game with bounded memory). 

Nevertheless, convergence and equilibrium play may hold in practice. This can be verified 

only ex-post, however, as we shall do in what follows. 

2. EXPERIMENT DESIGN 

We have constructed Q-learning algorithms and let them interact in a repeated Bertrand 

oligopoly setting. For each set of parameters, an “experiment” consists of 1,000 sessions. 

In each session, agents play against the same opponents until convergence as defined 

below. 

Here we describe the economic environment in which the algorithms operate, the 

exploration strategy they follow, and other aspects of the numerical simulations. 

2.1. Economic environment 

We use the canonical model of collusion, i.e. an infinitely repeated pricing game in which 

all firms act simultaneously and condition their actions on history. We depart from the 

canonical model only in assuming a bounded memory, for the reasons explained in the 

previous section. 

We take as our stage game a simple model of price competition with logit demand and 

constant marginal costs. This model has been applied extensively in empirical work, 

demonstrating that it is flexible enough to fit many different industries. 

There are n differentiated products and an outside good. In each period t, the demand for 

product i = 1,2,...,n is: 

                                                        
techniques (Benveniste, Metivier and Priouret, 1990), with which one can turn stochastic dynamic systems 
into deterministic ones. This approach has made some progress in the analysis of memoryless systems. The 
resulting deterministic system is typically a combination of the replicator dynamics of evolutionary games 
and a mutation term that captures the algorithms’ exploration. See e.g. Borgers and Sarin (1997) for the 
reinforcement learning model of Cross (1973), Hopkins (2002) and Beggs (2005) for that of Erev and Roth 
(1998), and Bloembergen et al. (2015) for memoryless Q-learning. The application of stochastic 
approximation techniques to AI agents with memory is more subtle and is currently at the frontier of 
research, both in computer science and in statistical physics (Barfuss, Donges and Kurths, 2019). To the 
best of our knowledge, there are no results yet available for ε-greedy Q-learning. But what we know for 
simpler algorithms suggests that, eventually, the dynamic systems that emerge from the stochastic 
approximation would have to be integrated numerically. If this is so, however, there is little to gain 
compared with simulating the exact stochastic system a large number of times so as to smooth out 
uncertainty, as we do in what follows. 
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(5) . 

The parameters ai are product quality indexes that capture vertical differentiation. 

Product 0 is the outside good, so a0 is an inverse index of aggregate demand. Parameter µ 

is an index of horizontal differentiation; the case of perfect substitutes is obtained in the 

limit as µ → 0. 

Each product is supplied by a different firm, so n is also the number of firms. The perperiod 

reward accruing to firm i is then πi,t = (pi,t − ci)qi,t, where ci is the marginal cost. 

As usual, fixed costs are irrelevant as long as firms stay active. 

2.2. Action space 

Since Q-learning requires a finite action space, we discretize the model as follows. For each 

value of the parameters, we compute both the Bertrand-Nash equilibrium of the one-shot 

game and the monopoly prices (i.e., those that maximize aggregate profits). These are 

denoted by pN and pM, respectively. Then, we take the set A of the feasible prices to be 

given by m equally spaced points in the interval [pN − ξ(pM − pN),pM + ξ(pM − pN)], where ξ 

> 0 is a parameter. So prices range from below Bertrand to above monopoly. 

This discretization of the action space implies that the exact Bertrand and monopoly 

prices may not be feasible, however, so there may be mixed-strategy equilibria both in the 

stage and in the repeated game. Since by design our algorithms play pure strategies (as a 

tie-breaking rule, they are instructed to choose the lowest price), they might then oscillate 

around a target that is not feasible. 

2.3. Memory 

To ensure that the state space is finite, we posit a bounded memory. Thus, the state is the 

set of all past prices in the last k periods: 
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(6) st = {pt−1,...,pt−k}, where k is the 

length of the memory.14 

Our assumptions imply that for each player i we have |A| = m and |S| = mnk. 

2.4. Exploration 

We use the ε-greedy model with a time-declining exploration rate. Specifically, we set 

(7) εt = e−βt, 

where β > 0 is a parameter. This means that initially the algorithms choose in purely 

random fashion, but as time passes, they make the greedy choice more and more 

frequently. 

The greater β, the faster the exploration diminishes. 

2.5. Baseline parametrization and initialization 

Initially, we focus on a baseline economic environment that consists of a symmetric 

duopoly (n = 2) with 1 and a 

one-period memory (k = 1).15 For this specification, the price-cost margin is ≈ 47% in the 

static Bertrand equilibrium, and about twice as large under perfect collusion. 

As for the initial matrix Q0, our baseline choice is to set the Q-values at t = 0 at the 

discounted payoff that would accrue to player i if opponents randomized uniformly: 

(8) . 

This is in keeping with the assumption that at first the choices are purely random. In a 

similar spirit, the initial state s0 is drawn randomly at the beginning of each session. 

                                                        
14 The assumption here is perfect monitoring, which is reasonable for many online marketplaces. For 

example, Amazon’s APIs allow sellers to recover current and past prices of any product with a simple 

query. 
15 It is worth noting that while the assumption of a one-period memory is restrictive, it might have a 

limited impact on the sustainability of collusion, because the richness of the state space may substitute 
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Starting from this baseline set up, we have performed extensive robustness analyses, the 

results of which are reported in Section 6 and the supplementary material file. 

3. OUTCOMES 

In this section, we focus on our baseline environment and explore the entire grid of the 

100 × 100 points that are obtained by varying the learning and experimentation 

parameters α and β as described presently.19 The aim of this exercise is to show (i) that 

non-competitive outcomes are common, not obtained at just a few selected points, and (ii) 

that these outcomes are generated by optimizing, or quasi-optimizing, behavior. Once 

these conclusions are established, in the next section we shall focus on one point of the 

grid to provide a deeper analysis of the mechanism of collusion. 

3.1. Parameter grid 

The learning parameter α may in principle range from 0 to 1, but it is well known that high 

values of α may disrupt learning when experimentation is extensive, as the algorithm 

would forget too rapidly what it has learned in the past. To be effective, learning must be 

persistent, which requires that α be relatively small. In the computer science literature, a 

value of 0.1 is often used. Accordingly, our initial grid comprises 100 equally spaced points 

in the interval [0.025,0.25]. 

As for the experimentation parameter β, the trade-off is as follows. On the one hand, the 

algorithms need to explore extensively, as the only way to learn is multiple visits to every 

state-action cell (of which there are 3,375 in our baseline experiments with 

 
for the length of the memory. Indeed, folk theorems with bounded memory have been proved by Barlo, 

Carmona and Sabourian (2009) for the case of infinite action space, and by Barlo, Carmona and Sabourian 

(2016) for the case where the action space is finite. 
19In this paper, we regard α and β as exogenous parameters. It might be interesting, however, to consider 

a game of delegation where α and β (and possibly also the initial matrix Q0) are chosen strategically by firms. 

n = 2, m = 15 and k = 1, and many more in more complex environments). On the other 

hand, exploration is costly. One can abstract from the short-run cost by considering long-

run outcomes. But exploration entails another cost as well, in that if one algorithm 

experiments more extensively, this creates noise in the environment, which makes it 

harder for the other to learn. This externality means that in principle experimentation 

may be excessive even discounting the short-term cost. 
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To get a sense of what values of β might be reasonable, it may be useful to map β into the 

expected number of times a cell would be visited purely by random exploration (rather 

than by greedy choice), over an infinite time horizon. This number is finite as exploration 

eventually fades away and is denoted by ν.16 We take as a lower bound ν = 4, which seems 

barely sufficient to guarantee decent learning. For example, with α = 0.25 the initial 

Qvalue of a cell would still carry a weight of more than 30% after 4 updates, and the weight 

would be even greater for lower values of α. (In fact, later we shall mostly focus on larger 

values of ν.) 

When n = 2 and m = 15, the lower bound of 4 on ν implies an upper bound for β of 

(approximately) β¯ = 2 × 10−5. As we did for α, we then take 100 equally spaced points in 

the interval from 0 to β¯. The lowest value of β we consider proceeding in this way 

corresponds to ν ≈ 450. 

3.2. Convergence 

As mentioned, for strategic games played by Q-learning algorithms there are no general 

convergence results: we do not know whether the algorithms converge at all; or, if they 

do, whether they converge to a Nash equilibrium. But while they are not guaranteed, 

convergence and optimization are not ruled out either, and they can be verified ex post. 

To verify convergence, we use the following practical criterion: convergence is deemed to 

be achieved if for each player the optimal strategy does not change for 100,000 

consecutive periods. That is, if for each player i and each state s the action ai,t(s) = 

argmax[Qi,t(a,s)] stays constant for 100,000 repetitions, we assume that the algorithms 

have completed the learning process and attained stable behavior. We stop the session 

when this occurs, and in any case after one billion repetitions. 

Nearly all sessions converged. Typically, a great many repetitions are needed to converge. 

The exact number depends on the level of exploration, ranging from about 400,000 when 

exploration is rather limited to several millions when it is very extensive (details in 

section A4.1 of the supplementary material file). For example, with α = 0.125 and β = 10−5 

(the mid-point of the grid) convergence is achieved on average after 850,000 periods. So 

                                                        
16 The exact relationship between ν and β is 

. 
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many repetitions are required for the simple reason that with β = 10−5, the probability of 

choosing an action randomly after, say, 100,000 periods is still 14%. If the rival is 

experimenting at this rate, the environment is still too non-stationary for the algorithm to 

converge. In practice, convergence is achieved only when experimentation is nearly 

terminated. 

It must be noted that only in some of the sessions both algorithms eventually charge a 

constant price period after period. A non-negligible fraction of the sessions displays price 

cycles (details in section A4.2). As shown in Table I below, the vast majority of these cycles 

have a period of two. We shall discuss the cycles more extensively later. 

3.3. Profits 

Having verified convergence, we focus on the limit behavior of our algorithms. We find, 

first of all, that the algorithms consistently learn to charge supra-competitive prices, 

obtaining a sizable extra-profit compared to the static Nash equilibrium. To quantify this 

extra-profit, we use the following normalized measure: 

(9) ∆  , 

where π is the average per-firm profit upon convergence, πN is the profit in the 

BertrandNash static equilibrium, and πM is the profit under full collusion (monopoly). 

Thus, ∆ = 0 corresponds to the competitive outcome and ∆ = 1 to the perfectly collusive 

outcome. Taking πM as a reference point makes sense when δ is sufficiently high that 

perfect collusion is attainable in a sub-game perfect equilibrium, as is the case in our 

baseline specification.17 We shall refer to ∆ as the average profit gain. 

The average profit gain achieved upon convergence is represented in Figure 1 as a 

function of α and β. Over our grid, ∆ ranges from 70% to 90%. The corresponding prices 

are almost always higher than in the one-shot Bertrand-Nash equilibrium but rarely as 

high as under monopoly (details in section A4.2). 

                                                        
17 In fact, the largest attainable ∆ is slightly lower than 1 as pM can at best be approximated. However, the 

difference is immaterial as the profit function is flat at pM. On the other hand, ∆ can be negative as the action 

set includes prices lower than pN. In particular, we have ∆ ≈−2% if the Nash price is approximated by defect, 

whereas ∆ ≈ 12% if it is approximated by excess. 
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Figure 1: Average profit gain ∆ for a grid of values of α and β. 

The profit gain does not seem to be particularly sensitive to changes in the learning and 

experimentation parameters. It tends to be largest when α and β are both low, i.e., 

exploration is extensive and learning is persistent, but reducing either α or β too much 

eventually backfires. 

3.4. Equilibrium play 

Even if the algorithms almost always converge to a limit strategy, this may not be an 

optimal response to that of the rival. Optimality is guaranteed theoretically for singleagent 

decision making but not when different algorithms are involved. 

But again, this property can be verified ex post. We proceed as follows. In each session, for 

each algorithm we calculate the theoretical Q-matrix under the assumption that the rival 

uses his limit strategy. This assumption serves to pin down the last term in equation (3), 

producing a system of linear equations that can be solved for the “true” Q-matrix. With 

these Q-matrices at hand, we then determine the algorithms’ optimal strategies, i.e., the 

best responses to the rival’s limit strategy, and compare them to their own limit strategies. 

The comparison may be limited to the states that are actually reached on path (verifying 

whether a Nash equilibrium is played), or extended to all states (verifying subgame 
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perfection). When an algorithm is not playing a best response, we can also compute the 

forfeited payoff. We express this in percentage terms and refer to it as the “Q-loss”. 

 

β×105 

Figure 2: Fraction of sessions converging to a Nash equilibrium, for a grid of values of α and β. 

Figure 2 plots the frequency of equilibrium play, i.e., the fraction of sessions where both 

algorithms play a best response to the rival’s limit strategy, on path. Lack of equilibrium 

is quite common when β is large (that is, exploration is limited). This should not come as 

a surprise. As noted, when β is close to the upper bound of the grid, exploration is too 

limited to allow good learning. Nevertheless, even when the algorithms do not play a best 

response, they are not far from it. Most often, the Q-loss is below 0.5%, and in no point of 

the grid does it exceed 1.2% (details in section A4.3). 

When experimentation is more extensive (i.e., towards the left side of the grid), 

equilibrium play becomes much more prevalent. For example, when α = 0.15 and β = 0.4 

× 10−5 (meaning that each cell is visited on average 20 times just by random exploration), 

about half the sessions produce equilibrium play on path, and the Q-loss is a mere 0.2% 

on average (see Table I below). In many cases, the reason why the algorithms are not 

exactly optimizing is that they approximate the price, which would be the best response 

in a continuous action space, by excess rather than by defect, or vice versa. A key 
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implication is that once the learning process is completed, there is very little scope for 

exploiting the algorithms, no matter how smart the opponent is.18 

Off path, things are somewhat different. Very rarely do the algorithms play a subgame 

perfect equilibrium. Again, this is not surprising, given that the algorithms learn purely by 

trial and error, and sub-game perfection is a very demanding requirement when the state 

space is large.19 Nevertheless, with enough experimentation we observe clear patterns of 

behavior even off path, as we shall see in the next section. 

Summarizing, we have seen that once they are trained, our algorithms consistently raise 

their prices above the competitive level. These supra-competitive prices do not hinge on 

sub-optimal behavior: prices are high even if both algorithms play an optimal strategy, or 

come quite close to it. In fact, a comparison of Figures 1 and 2 suggests a positive, albeit 

modest, correlation between profit gain and equilibrium play: to be precise, Pearson’s 

coefficient of correlation is 0.12.20 

4. ANATOMY OF COLLUSION 

In this section, we analyze the strategies that generate the anti-competitive outcomes 

described above. A natural question that arises when prices exceed the Nash-Bertrand 

level is why firms do not cut their prices. Is it because they are missing an opportunity to 

increase their payoff? Or is it because they realize that cutting the price would not be 

profitable given the rival’s response in subsequent periods? And in this latter case, what 

would that response look like? These are the questions addressed in what follows. 

To ease the exposition, we shall often focus on one point of the grid, namely α = 0.15 and 

β = 4 × 10−6 but the results are robust to changes in these parameters. With these 

parameter values, for each cell we have on average about 20 updates just by random 

exploration (i.e., ν ≈ 20), so even for cells that are visited purely by chance, the initial Q-

value counts for just 3% of their final value. 

Table I reports various descriptive statistics for the experiment chosen, both jointly for all 

sessions and separately for those that converged to a symmetric price, to asymmetric 

                                                        
18  In the computer science literature, the Q-loss is indeed called “exploitation.” Whether Q-learning 

algorithms can be exploited during the learning phase is an interesting question for future study. 
19 However, Table I below shows that the algorithms are not far from optimizing even off path, with an 

average Q-loss of less than 2% for the chosen experiment (details in section A4.3). 
20 The correlation is even higher, i.e. 0.24, if equilibrium play is measured by the fraction of cases in which 

at least one algorithm is playing a best response to the rival’s limit strategy. 
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prices (but still constant over time), or to cycles of differing length. The last column 

focuses instead on those sessions in which the algorithms have learned to play a Nash 

equilibrium. Two remarks are in order. First, while in almost all sessions the algorithms 

manage to coordinate, the exact form of the coordination varies. For example, even if the 

algorithms are fully symmetric ex ante, only in little more than a fourth of the sessions do 

they end up charging exactly the same price period after period. All the other sessions 

display either asymmetries or cycles, or both. Second, the cycles are associated with less 

equilibrium play and lower profit gain. This is true to a lesser extent for cycles of period 

2, which could be interpreted as orbits around a target that is not feasible because of our 

discretization.21 However, for cycles of period 3 or longer the effects are quite significant. 

These cycles, which might reflect the difficulty of achieving coordination purely by trial 

and error, are not very frequent, however: they materialize in about a tenth of the 

sessions. 

TABLE I 

 Sessions by cycle length  Nash 

equilibria 
1-

Sym. 

1-Asym. 1 2 ≥3 All 

Frequency 0.277 0.366 0.643 0.238 0.119 1 0.505 

Avg. Profit 

Gain 

0.866 0.855 0.860 0.846 0.793 0.849 0.854 

S.D. Profit 

Gain 

0.115 0.114 0.114 0.104 0.097 0.112 0.108 

Freq. of 

Nash 

Equilibria 

0.686 0.661 0.672 0.294 0.025 0.505 1.000 

Avg. Q-

Loss (on 

path) 

0.001 0.001 0.001 0.002 0.004 0.002 0.000 

S.D. Q-

Loss (on 

path) 

0.002 0.004 0.003 0.003 0.006 0.004 0.000 

Avg. Q-

Loss (all 

states) 

0.018 0.018 0.018 0.018 0.018 0.018 0.018 

                                                        
21 For period-2 cycles, the fall in the profit gain is indeed small. As for equilibrium play, the decrease is 

more substantial but in part it may be due to the mechanical effect of doubling the number of states that are 

reached on path. 
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S.D. Q-

Loss (all 

states) 

0.006 0.007 0.006 0.006 0.006 0.006 0.006 

 

4.1. Competitive environments 

Before inquiring into how cooperation is sustained, we show that the algorithms learn to 

price competitively, at least approximately, when this is the only rational strategy. In 

particular, collusion is not feasible when k = 0 (the algorithms have no memory and thus 

cannot punish deviations), and it cannot be an equilibrium phenomenon when δ = 0 (the 

algorithms are short-sighted and thus the immediate gain from defection cannot be 

outweighed by any loss due to future punishments). 

Consider first what happens when the algorithms are short-sighted. Figure 3 shows how 

the average profit gain varies with δ. The theoretical postulate that lower discount factors 

impede collusion is largely confirmed by our simulations. The profit gain indeed 

decreases smoothly as the discount factor falls, and when δ = 0.35 it has already dropped 

from over 80% to a modest 16%.22 (To appreciate this value, remember that with our 

discretization of the price space, the average profit gain would already be close to 12% if 

the NashBertrand prices were just approximated by excess rather than by defect.) 

 

δ 

                                                        
22 The fall in ∆ actually starts well before δ gets so low that the monopoly outcome is no longer attainable 

in a subgame perfect equilibrium. With grim-trigger strategies, for instance, the critical threshold of δ is 

about 40% for our baseline specification. 

0.0 0.2 0.4 0.6 0.8 1.0 
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Figure 3: The average profit gain ∆ as a function of the discount factor δ in our representative 

experiment. 

At this point, however, something perhaps surprising happens: the average profit gain 

turns back up as δ decreases further. Although the increase is small, it runs counter to 

theoretical expectations. We believe that this “paradox” arises because changing δ affects 

not only the relative value of future versus present profits, but also the effective rate of 

learning. This can be seen from equation (4), which implies that the relative weight of new 

and old information depends on both α and δ.23 In particular, a decrease in δ tends to 

increase the effective speed of the updating, which as noted may impede learning when 

exploration is extensive.24 At any rate, the profit gain remains small. 

For the case of memoryless algorithms, we again find modest profit gains, only slightly 

higher than what is entailed by the discretization of the action space (details in section 

A5.1). All of this means that our algorithms learn to play, approximately, the one-shot 

equilibrium when this is the only equilibrium of the repeated game. If they do not price so 

competitively when other equilibria exist, it must be because they have learned other, 

more sophisticated strategies. 

4.2. Deviations and punishments 

Providing a complete description of these strategies is not straightforward. The problem 

is not that they must somehow be inferred from observed behavior, as is typically the case 

in experiments with humans. Here, at any stage of the simulations we know exactly not 

only what the algorithms do but also what they would do in any possible circumstances. 

The difficulty lies instead in the description of the strategies. For one thing, strategies are 

complicated objects (in our baseline experiment, they are mappings from a set of 225 

elements to a set of 15 elements). For another, the limit strategies display considerable 

variation from session to session, and averaging masks relevant information. 

                                                        
23  Loosely speaking, new information is the current reward πt, and old information is whatever 

information is already included in the previous Q-matrix, Qt−1. The relative weight of new information in a 

steady state where  then is α(1 − δ). 
24 A similar problem emerges when δ is very close to 1. In this case, we observe that the average profit 

gain eventually starts decreasing with δ. This reflects a failure of Q-learning for δ ≈ 1, which is well known 

in the computer science literature. 
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We therefore start by asking, specifically, whether unilateral price cuts are profitable or 

not in view of the rival’s reaction. To this end, we focus once again on the algorithms’ limit 

strategies. As discussed above, these generally entail supra-competitive prices. Starting, 

in period τ = 0, from the prices the algorithms have converged to, we step in and 

exogenously force one algorithm to defect in period τ = 1. The other algorithm instead 

continues to play according to his learned strategy. We then examine the behavior of the 

algorithms in the subsequent periods, when the forced cheater reverts to his learned 

strategy as well. 

Figure 4 shows the average of the impulse-response functions derived from this exercise 

for all 1,000 sessions of our representative experiment.25 It shows the prices chosen by 

the two agents after the deviation. In particular, Figure 4 depicts the evolution of prices 

following a one-period deviation to the static best-response to the rival’s pre-deviation 

price.26 

Clearly, the deviation gets punished. As Table III below shows, in more than 95% of the 

cases the punishment makes the deviation unprofitable; that is, “incentive compatibility” 

is verified. 

The dynamic structure of the punishment is very interesting. After an initial price war, the 

algorithms gradually return to their pre-deviation behavior. This pattern looks very 

different from the one that would be implied, for instance, by grim-trigger strategies.27 

These latter strategies, which are the workhorse of many theoretical analyses of collusion, 

are never observed in our experiments. The reason for this is simple: with 

experimentation, one algorithm would sooner or later defect, and when this happened 

both would be trapped 

                                                        
25 When the algorithms converge to a price cycle, we consider deviations starting from every point of the 

cycle and take the average of all of them. 
26 We have also considered the case of an exogenous deviation that lasts for 5 periods. The dynamic 

pattern is similar to that of one-period deviations (details in section A5.2). 
27 Strictly speaking, grim-trigger strategies require unbounded memory, but it is easy to define their one-

period memory counterpart. 
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Time 

Figure 4: Prices charged by the two algorithms in period τ after an exogenous price cut by one of 

them in period τ = 1. The forced cheater deviates to the static best response, and the deviation 

lasts for one period only. The figure plots the average prices across the 1,000 sessions. For sessions 

leading to a price cycle, we consider deviations starting from every point of the cycle and take the 

average of all of them. This counts as one observation in the calculation of the overall average. 

in a protracted punishment phase that would last until further (joint) experimentation 

drove the firms out of the trap. Our algorithms, by contrast, consistently learn to re-start 

cooperation after a deviation. This seems necessary in an environment characterized by 

extensive experimentation, where coordination would inevitably be disrupted if it were 

not robust to idiosyncratic shocks.28 

The pattern of punishment we observe is more similar to the “stick-and-carrot” strategies 

of Abreu (1984). However, there are differences with Abreu’s strategies as well: the initial 

punishment is not as harsh as it could be (prices remain well above the static Bertrand-

Nash equilibrium), and the return to the pre-deviation prices is gradual rather than 

abrupt. 

To show that the pattern depicted in Figure 4 is not an artifact of the averaging, Figure 5 

reports more information on the distribution of the impulse responses.29 While there is 

                                                        
28  This is not a foregone conclusion, however, as the algorithms may start to cooperate only after 

experimentation had already faded away. That cooperation begins earlier is confirmed by the analysis in 

Section 7. 
29 Here we restrict attention to sessions that converge to constant prices to avoid spurious effects that 

may arise because of the averaging across different initial conditions. 
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considerable variation across sessions, especially in the first periods after the deviation, 

the pattern is robust. (See also the fan chart in section A5.2.) 

 

 Time Time 

Figure 5: For each period τ, the figure shows the mean (black line), the 25th and 75th percentiles 

(shaded rectangles), and the ranges (dashed intervals) of the prices charged after an exogenous 

price cut in period τ = 1. To be precise, the variable on the vertical axis is the difference between 

the current and the long-run price. 

Figures 4 and 5 focus on deviations that maximize the short-run gain from defection. 

However, we have performed the same type of exercise for all possible price cuts. Table II 

reports the prices charged by the two algorithms immediately after the defection (i.e., in 

period τ = 2). The initial punishment tends to be slightly harsher for bigger price 

reductions, but the effect is small and non-systematic. What is systematic is the return to 

the initial prices; in most of the cases, the punishment ends after 5-7 periods. (See table 

A2 in section A5.2.) Table III shows that these deviations, too, are almost always 

unprofitable. 

For example, consider a pre-shock price of 1.78 (this is the 10-th price of the grid, and it 

accounts for almost 20% of the cases where both algorithms converged to the same price). 

Table II shows that, irrespective of the size of the rival’s exogenous deviation in period τ 
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= 1, the non-deviating algorithm would cut the price in period τ = 2 by approximately the 

same percentage amount (i.e. 13%, leading to a price of approximately 

1.54). The deviating algorithm, in contrast, raises his price if the deviation was big and 
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Time 

Figure 6: This figure is similar to Figure 4, except that the exogenous price cut is smaller. As a 

result, prices fall further down in period τ = 2. In other words, the impulse-response function 

exhibits “overshooting.” 

further lowers the price if the deviation was small, pricing on average just above its 

rival.30Table III shows that even if the algorithms manage to re-start cooperation pretty 

soon, the deviation reduces the forced cheater’s discounted profits by 3-4% on average. 

Only in a tiny fraction of the cases the deviation is profitable. 

For small price cuts, the pattern just described represents a form of “overshooting:” that 

is, both algorithms cut their prices further in period τ = 2, below the exogenous initial 

reduction of period τ = 1. This is illustrated in Figure 6, which shows the average 

impulseresponse corresponding to one of these smaller deviations. The overshooting 

would be difficult to rationalize if what we had here was simply a stable dynamic system 

that mechanically returns to its rest point after being perturbed. But it makes perfect 

sense as part of a punishment. 

As mentioned, these results do not depend on the specific values chosen for α and β: we 

observe punishment of deviations over the entire grid considered in the previous section. 

To illustrate, Figure 7 plots an index of the intensity of the punishment (i.e., the average 

percentage price cut of the non-deviating agent in period τ = 2) as a function of α and β. 

The figure confirms that punishment is ubiquitous. The harshness of the punishment is 

                                                        
30 It is tempting to say that the deviating algorithm is actively participating in its own punishment. At the 

very least, the deviating algorithm is anticipating the punishment – otherwise it would have no reason to 

reduce its price as soon as it regains control, i.e. in period τ = 2, given that the rival’s price was still high in 

period τ = 1. 
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strongly correlated with the profit gain: the coefficient of correlation is 76.2%. This is one 

more sign that the supra-competitive prices are the result of genuine tacit collusion. 

 

β×105 

Figure 7: Average percentage price reduction by the non deviating agent in period τ = 2, 

for a grid of values of α and β. 

4.3. The graph of strategies 

Let us now face the problem of describing the limit strategies more fully. Generally 

speaking, with a one-period memory strategies are mappings from the past prices 

(p1,t−1,p2,t−1) to the current price pi,t: pi,t = Fi(p1,t−1,p2,t−1). In our experiments, the algorithms 

systematically coordinate on one pair of prices (or a cycle) and punish any move away 

from the agreed upon prices. However, these prices vary from session to session, and the 

intensity of the punishment is variable as well, depending rather capriciously on the 

distance from the long-run prices. For this reason, one cannot derive a representative 

strategy by simply averaging across different functions Fi (details in appendix A5.3).31 

One obvious way to work around this problem would be to average only across those 

sessions where the algorithms converge to the same pair of supra-competitive prices. In 

this case, the average function F must obviously exhibit a spike at that point. Elsewhere 

                                                        
31 The average function would be almost flat, ranging over prices that are fairly competitive. 
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prices must be much lower, reflecting the punishment of deviations. But apart from these 

obvious properties, even such conditional averages display no recognizable pattern. 

Evidently, there is considerable variation not only in the prices on which the algorithms 

converge to but also in their limit behavior off path. In other words, the exact way the 

algorithms achieve coordination depends on the specific history of their interactions. One 

 

Figure 8: The directed graph of the limiting strategies in one session of the representative 

experiment. The absorbing node (corresponding to the long-run prices) is represented by the 

square, all other nodes by circles. The brightness of the nodes represents the profit gain (the 

darker the node, the higher the profit gain), while the size represents the node’s centrality (as 

measured by betweenness centrality). 

could not, perhaps, expect anything else from agents that learn purely by trial and error. 

This suggests that limit strategies may be better studied in pairs, looking at the combined 

behavior of those algorithms that interacted with one another. This combined behavior 

may be described using the directed graph produced by any pair of strategies. For 

example, Figure 8 depicts the graph of the limit strategies obtained in one session of our 
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representative experiment. In any graph like this, the node corresponding to the long-run 

prices (which is marked as a square in the figure) is absorbing.32 

The graph is quite complex but exhibits a few remarkable properties. First and foremost, 

all the nodes eventually lead to the absorbing node. This means that the algorithms 

 

Figure 9: Phase portrait of the limiting strategies. The Bertrand-Nash price is best approximated 

by the third lowest price, the monopoly price by the third highest. Form, size and brightness of the 

nodes are as in Figure 8. 

systematically re-start cooperation not only after unilateral but also after bilateral 

deviations. Second, there are a few key nodes that act as gateways, either directly or 

indirectly, to the absorbing node. Third, the paths to the absorbing node are generally 

rather short: the average length of the path is 6, and the maximum length is 18. The 

supplementary material file (section A5.3) shows that the properties exhibited by this 

example are in fact much more general. For example, in 92% of the sessions the system 

converges to the long-run prices starting from any possible node; and in 98% of the 

                                                        
32 For sessions that converge to a price cycle, the system would cycle around two or more nodes. 
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sessions there are fewer than 3 nodes, out of 225, that do not eventually lead to the long-

run prices. 

Figure 9 represents, for the same example, the limit strategies in a way that facilitates the 

economic interpretation of the nodes. Nodes are ordered according to the level of the 

prices charged by algorithm 1 (horizontal axis) and 2 (vertical axis). The arrows starting 

from each node indicate the direction of the price change, but to make the figure easier to 

read they do not extend as far as the next node that is reached. The figure shows that 

starting from any node other than the absorbing one, the system initially moves towards 

the low part of the main diagonal and then climbs up to the long-run prices. This suggests 

that cooperation does not re-start immediately but only after a punishment phase, and 

that bilateral deviations are punished in pretty much the same way as unilateral 

deviations. 

5. ROBUSTNESS 

How robust are our baseline results to changes in the economic environment? In this 

section, we consider a number of factors that may affect firms’ ability to sustain a tacit 

collusive agreement. Throughout, we continue to focus on our chosen values for the 

learning and experimentation parameters, α = 0.15 and β = 4 × 10−6. The supplementary 

material file provides more details and presents several other robustness exercises. 

5.1. Number of players 

Theory predicts that collusion is harder to sustain when the market is more fragmented. 

We find that, indeed, the average profit gain ∆ decreases from 85% to 64% in simulations 

with three firms. With four agents, the profit gain is still a substantial 56%. The decrease 

in the profit gain seems slower than in experiments with human subjects.33 

                                                        
33 The early experimental literature indeed found that in the lab, tacit collusion is “frequently observed 

with two sellers, rarely in markets with three sellers, and almost never in markets with four or more sellers” 
(Potters and Suetens (2013) p. 17). More recently analyses paint a more nuanced picture, though. In some 
experiments, three or four human subjects manage to achieve levels of coordination comparable to our 

algorithms: see Horstmann (2018) and Friedman et al (2015). 



 AI, ALGORITHMIC PRICING AND COLLUSION 33 

These results are all the more remarkable because the enlargement of the state space 

interferes with learning. Indeed, moving from n = 2 to n = 3 or n = 4 enlarges the Q-matrix 

dramatically, from 3,375 to around 50,000 or over 750,000 entries. Since the parameter 

β is held constant, the increase in the size of the matrix makes the effective amount of 

exploration much lower. If we reduce β so as to compensate for the enlargement of the 

matrix, at least partially, the profit gain increases. For example, with three firms we find 

values of ∆ close to 75%.34 

The impulse-response functions remain qualitatively similar to the case of duopoly. We 

still have punishments, which however tend to be more prolonged and generally harsher 

than in the two-firms case. 

TABLE IV 

Cost asymmetry (c1 = 1). 

c2 1.000 0.875 0.750 0.625 0.500 0.250 

2’s Nash market 

share 

0.500 0.545 0.588 0.627 0.662 0.722 

∆ 0.849 0.841 0.812 0.781 0.759 0.713 

 
0.997 1.050 1.121 1.193 1.265 1.442 

 

5.2. Asymmetric firms 

The conventional wisdom has it that asymmetry impedes collusion. Firms contemplating 

a tacit collusive agreement must solve a two-fold problem of coordination: they must 

choose both the average price level, which determines the aggregate profit, and the 

relative prices, which determine how the total profit is split among the firms. Achieving 

coordination on both issues without explicit communication is often regarded as a 

daunting task. 

To see how Q-learning algorithms cope with these problems, we considered both cost and 

demand asymmetries of different degrees. Table IV reports the results for the case of cost 

asymmetry (the case of demand asymmetry is similar). 

                                                        
34 In order to make the learning process more effective, the increase in the amount of experimentation is 

matched by a decrease in the learning rate. The increase in the profit gain goes hand in hand with the 

increase in the frequency of equilibrium play. 
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As the table shows, asymmetry does reduce the average profit gain, but only to a limited 

extent. In part the decrease is simply a consequence of the absence of side payments. To 

see why this is so, consider how the two algorithms divide the aggregate profit. As the last 

row of the table shows, the gain from collusion is split disproportionately in favor of the 

less efficient firm. 

This division clearly has an impact on the joint profit level. The maximization of joint profit 

indeed requires that the more efficient firm expand and the less efficient one contract 

relative to the Bertrand-Nash equilibrium. 35  However, this would produce a division 

strongly biased in favor of the more efficient firm. Conversely, a proportional division of 

the gain, or one that favors the less efficient firm, entails a cost in terms of the total profit. 

This by itself explains why the average profit gain decreases as the degree of asymmetry 

increases. In other words, it seems that asymmetry doesn’t actually make the 

coordination problem tougher for the algorithms but simply leads them to coordinate on 

a solution that does not maximize total profit. 

5.3. Stochastic demand 

While the baseline model is deterministic, in principle each of the model parameters could 

be subject to random shocks. In particular, here we investigate the case where the level of 

demand (a0) is stochastic, and the case of stochastic entry and exit. 

Consider first the case where the aggregate demand parameter a0 varies stochastically. 

Specifically, a0, which in the benchmark is nil, is now assumed to be an i.i.d. random 

variable that may take on three values, i.e. , 0 and , with the same probability, 

thus generating both negative and positive demand shocks. The algorithms do not 

observe the value of a0 before making their choices. The shocks are purely idiosyncratic 

and have no persistency – a challenging situation for the algorithms. 

When 15, the average profit gain under uncertainty decreases slightly, from 85% 

to 80%; and even when 25 the average profit gain is still 70%. Apparently, then, 

demand variability does hinder collusion among firms, as one would have expected, but it 

does not eliminate it. 

                                                        
35 This effect may be so pronounced that the less efficient firm may actually earn less under joint profit 

maximization than in the Bertrand-Nash equilibrium. 
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5.4. Variable market structure 

Next, we analyze the impact of a variable market structure. In particular, we repeat the 

simulations with one firm (the “outsider”) entering and exiting the market in random 

fashion. This exercise is performed both for the case of two players (the market thus 

alternating between monopoly and duopoly) and of three players (duopoly and triopoly). 

We take entry and exit to be serially correlated. Formally, let It be an indicator function 

equal to 1 if the outsider is in the market in period t and to 0 otherwise. We set 

(10) prob{It = 1|It−1 = 0} = prob{It = 0|It−1 = 1} = ρ. 

This implies that the unconditional probability of the outsider’s being in at some random 

time is 50%. Equivalently, the market is a duopoly half the time on average. The 

probability of entry and exit ρ is set at 0.1% or at 0.01%, so that when the outsider enters, 

it stays in the market for an average of 1,000 (resp., 10,000) periods. Since in 

marketplaces where algorithmic pricing is commonly adopted periods can be very short, 

these levels of persistency are actually rather low. 

The state s now includes the prices of the previous period if all firms were active, or the 

prices of the active firms and the fact that the outsider was not active. 

This turns out to be the extension where collusion is most seriously hindered. The average 

profit gain decreases to less than 60%, equilibrium play is observed on path in less than 

10% of the sessions, and punishments are rather mild, making deviations profitable in a 

sizeable fraction of cases. All of this is the combined effect of the increase in the size of the 

matrix, which as noted impedes learning, and uncertainty. Still, we remain far from the 

competitive benchmark. 

5.5. Product substitutability 

In the logit model, a decrease in µ means that the demand for each particular variety 

becomes more price-sensitive. That is, the reduction in µ captures an increase in product 

substitutability. In principle, the impact of changes in substitutability on the likelihood of 

collusion is ambiguous: on the one hand, when products are more substitutable the gain 

from deviation increases, but at the same time punishment can be harsher. This ambiguity 

is confirmed by the theoretical literature (see e.g. Tyagi, 1999). 
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In our setting, we test the consequences of changing parameter µ from 0.25 (baseline) up 

to 0.5 and down to 0, where products are perfect substitutes. The average profit gain 

decreases slightly when µ decreases, but when the products are perfect substitutes (µ = 

0) it is still greater than 77%. 

5.6. Initialization 

Our baseline choice was to initialize the Q-matrix in accordance with the fact that the 

algorithms start by randomizing uniformly across all possible actions. As a robustness 

check, we also study other initializations, such as setting Q0 to the value corresponding to 

the rival always playing the Nash-Bertrand price,36 or a grim-trigger strategy, or else 

setting Q0 at constant, large values. In this last case, the value of any cell that is visited 

inevitably decreases at first, so different actions are tried next. Thus, the updating of the 

matrix in itself induces the algorithms to explore systematically, in addition to the random 

experimentation entailed by the ε-greedy model. That is, one could set ε = 0 and still have 

“experimentation” and learning. 

The average profit gain is somewhat sensitive to the initialization but always remains well 

above 70%. The average profit gain is lowest when the Q-matrix is initialized at Nash, or 

at grim-trigger strategies. When instead the matrix is initialized at a large, constant value, 

and exploration is shut down, the algorithms learn to collude almost perfectly. 

5.7. Action set 

We have explored the consequences of enlarging the price grid by increasing ξ, enlarging 

the grid only downwards so that the lowest feasible price is just below the marginal cost, 

and making the grid finer (raising the number of feasible prices m from 15 to 50 or 100). 

The greater flexibility in price setting - below Bertrand or above monopoly - turns out to 

have a limited impact. This is not surprising, given that the players never converge on 

these very low or very high prices. Enlarging the grid only in the downwards direction 

decreases the profit gain, confirming that the way in which coordination is achieved is 

history dependent. However, the profit gain remains above 60%. 

The increase in the number of actions, in principle, could engender misunderstandings in 

the absence of explicit communication and thus could prevent cooperation. Indeed, the 

                                                        
36 In fact, this may produce two different initializations depending on whether the Bertrand price, which 

is not available on our price grid, is approximated by excess or by defect. We have chosen the closest 

approximation. 
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average profit gain decreases with m, but with m = 100 it is still a substantial 70%. In 

interpreting this result, one should also keep in mind that with m = 100 the Q-matrix is 

much larger than in the baseline model, but β is held constant. To achieve the same level 

of learning, instead, more experimentation would be required. 

The supplementary material file reports the results of more robustness checks, 

including the case of longer memory, linear demand, Boltzmann experimentation, and 

asymmetric algorithms. 

6. TIME SCALE 

So far we have focused on limit outcomes and strategies; that is, on what the algorithms 

do once they have attained stable behavior. But convergence requires a very large number 

of periods, on the order of hundreds of thousands. Even if a “period” lasted just a few 

minutes, this would correspond to several years or more. In this section, we discuss the 

extent to which this limits the practical implications of our results. 

6.1. Transition 

To begin with, note that the algorithms start to collude long before convergence is 

achieved. This is illustrated in Figure 10, which shows the evolution of the average profit 

gain in our representative experiment. The profit gain starts from a fairly large value, but 

this is simply because the algorithms initially randomize uniformly across prices that, on 

average, exceed the competitive level. This effect disappears as experimentation draws 

towards a close. One can abstract from this effect by taking as a competitive benchmark 

not ∆ = 0 but the profit gain that would result if the algorithms set the Bertrand price 

 

Time 

0 500000 1000000 1500000 
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Figure 10: The average profit gain as a function of the number of repetitions (moving average 

over the last 100 repetitions). The dashed line is the profit gain that results from exogenous 

exploration, on the assumption that when they do not explore, the algorithms set the 

BartrandNash price (approximated by defect). 

whenever they do not explore. This is represented by the smoothly declining curve in 

Figure 10. 

Even against this benchmark, our algorithms begin to increase their profits very soon. The 

gain is modest initially but gradually increases. Thus, a non-negligible degree of collusion 

may emerge well before the algorithms have completed their learning. 

6.2. Off-line training 

Typically, algorithms are trained in artificial environments before being put to work in the 

real world. For example, AlphaGo was trained for several weeks in self-play mode before 

facing professional human players. 37  Likewise, firms presumably train their pricing 

algorithms off-line before deploying them in real marketplaces. If much of the learning 

process can be completed off-line, the algorithms might start to collude the moment they 

engage in real action. 

However, there is an important difference between zero-sum board games and games of 

pricing. For the former, almost everything that has been learned off-line can be directly 

applied in real contests (the only problem being that human opponents may adopt a 

 

                                                        
37 By way of comparison, the “training” of our algorithms takes just a few seconds of CPU time in any 

session. 
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Time 

Figure 11: The average profit gain as a function of the number of repetitions for pairs of 

algorithms re-matched as described in the text (moving average over the last 100 repetitions). 

different style of play). But games of pricing involve coordination in an essential way, and 

different sets of players may learn to coordinate in different ways. Moreover, the training 

environment may not exactly reflect the reality of the markets in which the algorithms 

will be deployed. This implies that what an algorithm has learned off-line may be of little 

help in colluding in real life. 

To see how far the knowledge gained in playing against one opponent can be transferred 

to interacting with another, we re-match the algorithms once they have converged and let 

them start to play again. In the newly formed pairs, we shut exploration down by setting 

ε = 0. Nevertheless, faced with the “unexpected” choices made by the new competitor, the 

algorithms change their strategies. In an initial phase, they keep trying actions that 

performed well in the past but are no longer good in the new environment. After this 

learning phase, however, they once again stabilize their behavior. 

Figure 11 shows the evolution of the average profit gain for such re-matched pairs. At first 

the average profit gain falls from 85% to about 20%, confirming that coordination is 

almost completely pair-specific. As the algorithms adapt to the new environment, 

however, the profit gain rises quite rapidly. Learning ends in less than one tenth of the 

time it took in the original interactions, even though the eventual profit gain is somewhat 

lower. (The original levels of collusion can be re-produced by re-activating exploration.) 

This suggests that even in games of pricing, off-line learning may not be completely 

useless after all. 

6.3. Financial markets 

In financial markets, both price adjustments and transactions occur much more 

frequently than in goods markets. In other words, a “period” is much shorter. As a result, 

millions of interactions could easily take place in days, or even just hours. 

Naturally, however, our analysis cannot be applied to financial markets as it stands. 

Demand and supply need to be modelled in a different way, and market power is typically 
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more limited in financial than in goods markets. On the other hand, even a modest price 

effect could result in large extra-profits and thus become a matter of antitrust concern. 

6.4. More advanced algorithms 

As noted, Q-learning algorithms learn slowly by design, as they update only one cell of the 

Q-matrix at a time. This is clearly inefficient when the matrix is in fact the discrete 

approximation of a smooth function, as in our model, because it totally neglects the 

topological structure of the function. 

There exist more efficient algorithms, capable of taking advantage of that structure. For 

example, value-function-approximation algorithms estimate the Q-function by iterative 

updating methods similar to (4) and then derive the Q-matrix by discrete approximation. 

In this case, at each period the algorithm would update not only the most recently visited 

cell of the matrix but also a number of neighboring cells, thus possibly speeding up the 

learning process. The downside of these faster algorithms is that they require modeling 

choices that are somewhat arbitrary from an economic viewpoint, in this respect 

resembling black boxes.38 This is, in our opinion, a good reason to start the analysis of 

algorithmic collusion from Q-learning, as we have done here. But extending the analysis 

to algorithms that learn more quickly is clearly an important objective for future research. 

In particular, it is crucial to address the issue of the time scale of collusion. 

7. CONCLUSIONS 

We have shown that Q-learning pricing algorithms systematically learn to collude. 

Collusion is typically partial and is enforced by punishment in case of deviation. The 

punishment is of finite duration, with a gradual return to pre-deviation prices. The 

algorithms learn to play these strategies by trial and error, requiring no prior knowledge 

of the operating environment. They leave no trace whatever of concerted action: they do 

not communicate with one another, nor have they been designed or instructed to collude. 

From the standpoint of competition policy, these findings should probably ring an alarm 

bell. Today, the prevalent approach to tacit collusion is relatively lenient, in part because 

tacit collusion among human decision-makers is regarded as extremely difficult to 

                                                        
38 To begin with, one must specify a functional form for the Q-function. Further, these methods are often 

implemented by means of neural networks organized on several layers (deep learning). In a model of deep 
learning one must also specify the number of estimation layers and the structure of the neural network in 

each layer. The arbitrariness of these modeling choices may make it hard to interpret the results. 
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achieve. 39  While we have no direct comparative evidence for algorithms relative to 

humans, our results suggest that algorithmic collusion might not be that improbable. If 

this is so, then the advent of algorithmic pricing could well heighten the risk that tolerant 

antitrust policy will produce too many false negatives. 

On the other hand, algorithmic pricing may open the way to new forms of antitrust 

intervention. When they suspect collusive conduct, agencies and the courts can subpoena 

and test pricing algorithms in environments that closely replicate the particular industry 

under investigation. With humans this was not possible, so the risk of aggressive antitrust 

enforcement producing too many false positives may be reduced. Therefore, the advent 

of AI pricing could alter the balance between the two types of error, possibly calling for 

policy adjustment. 

More research is needed, however, to confirm the robustness and external validity of our 

findings. Several issues stand out. First, the realism of the economic environment: we have 

considered a good many extensions of the baseline model, but all separately, so the model 

remains quite highly stylized. In particular, we have not yet considered persistent, firm-

specific demand or cost shocks. In the presence of such shocks, it is not clear how a rival 

firm ought to respond to a price cut. In principle, this depends on whether the price cut is 

driven by exogenous shocks or represents a deviation from the implicit agreement. But 

when a firm’s shocks are part of its state but not of the rival’s one, the rival faces a non 

trivial inference problem. The difficulty of “interpreting” price cuts might then pose a 

challenge to the sustainability of collusion. 

Another important issue is the diversity of the competing algorithms. There are many 

different forms of reinforcement learning, and Q-learning algorithms themselves come in 

different varieties. Since tacit collusion is, essentially, a problem of coordination, one may 

wonder that the problem is easier when the programs belong to the same class. It would 

seem therefore necessary to extend the analysis to the case of player heterogeneity. 

A third issue is the speed of learning. As discussed above, further inquiry into this problem 

must use algorithms that learn faster. It would also be interesting to move away from 

algorithms that adopt a purely model-free approach to learning, considering algorithms 

that incorporate some economic structure. 

On a more general note, we need a better understanding of the dynamics of the learning 

process. This is important not only conceptually but also practically, as it could help 

identify factors that may destabilize collusion. 

                                                        
39 Another reason is the difficulty of devising proper remedies (Harrington (2018)). 
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All of these challenging but important tasks are left for future research.  
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