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Abstract: Arsenic is found in groundwater above regulatory limits in many countries and its origin is
often from natural sources, making the definition of Natural Background Levels (NBLs) crucial. NBL
is commonly assessed based on either dedicated small-scale monitoring campaigns or large-scale
national/regional groundwater monitoring networks that may not grab local-scale heterogeneities.
An alternative method is represented by site-specific monitoring networks in contaminated/polluted
sites under remediation. As a main drawback, groundwater quality at these sites is affected by
human activities. This paper explores the potential for groundwater data from an assemblage of
site-specific datasets of contaminated/polluted sites to define NBLs of arsenic (As) at the meso-scale
(order of 1000 km2). Common procedures for the assessment of human influence cannot be applied
to this type of dataset due to limited data homogeneity. Thus, an “unorthodox” method is applied
involving the definition of a consistent working dataset followed by a statistical identification and
critical analysis of the outliers. The study was conducted in a highly anthropized area (Ferrara,
N Italy), where As concentrations often exceed national threshold limits in a shallow aquifer. The
results show that site-specific datasets, if properly pre-treated, are an effective alternative for the
derivation of NBLs when regional monitoring networks fail to catch local-scale variability.

Keywords: natural background levels; arsenic; groundwater quality; sites under remediation; site-
specific data; Ferrara

1. Introduction

Heavy metals and metalloids affect the quality of groundwater in many parts of
the world [1] and are by far the most abundant group of contaminants and pollutants
affecting European groundwaters [2]. Among them, arsenic is a well-known threat to
human health and ecosystems due to its toxicity and carcinogenicity. Arsenic is found
in groundwater above local regulatory limits in many countries [3]. Its origin is often
from natural sources, such as arsenic-bearing minerals occurring in sediments and rocks,
with release to groundwater driven by certain geochemical conditions that favor the As
mobilization [4]. For this reason, the assessment of the Natural Background Level (NBL) of
arsenic in groundwater is crucial, especially in urbanized and industrialized areas, where
natural arsenic pollution should be distinguished from contamination caused or triggered
by human activities in order to set proper remediation goals [5]. Moreover, the definition of
NBLs supports the correct management of groundwater resources by highlighting potential
issues related to chronic human exposure to naturally occurring arsenic.

Essential for the definition of NBLs, besides methods and protocols, is the availability
of a set of hydrogeochemical data representative of the pristine groundwater composition,
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including the concentration of the pollutant/contaminant of interest and major ions, as
well as the physicochemical parameters of water. The higher the quality, quantity, and
homogeneous distribution of the data, the more accurate the NBL definition and the dis-
entanglement of processes that cause pollutant release in groundwater [6–8]. The dataset
is most often acquired with dedicated monitoring campaigns in pre-existing or new bore-
holes and springs (feasible for relatively small areas in the order of 100 km2) [9–13] or from
groundwater quality monitoring networks implemented at the national level [14–18] or,
as for Italy, at the scale of administrative regions [8,19–24]. In many European countries,
national or regional groundwater quality networks were developed in the last decades
to fulfill the requirement of the European Groundwater Directive (2006/118/EC) for a
systematic assessment of the chemical status of groundwater bodies. Some authors recently
pointed out that the definition of arsenic NBLs at the scale of the groundwater body may
provide unreliable results, due to local-scale geological and geochemical variability influ-
encing As release to groundwater [25,26]. To overcome this limitation, new approaches
have been proposed, representing an improvement of the two commonly used methodolo-
gies (i.e., the preselection and component separation methods) defined by the EU BRIDGE
research project (Background cRiteria for the IDentification of Groundwater thrEsholds),
that provided guidelines aimed at harmonizing the methods for estimating NBLs at the
European level [27]. The preselection approach involves the use of indicator chemical
species, such as NO3, NH4, Cl, and K [15,28,29], to identify samples with most likely
anthropogenic influences [14,19,30–34]. The component separation approach involves the
subdivision of the working dataset into normally and log-normally distributed populations,
considering the latter as representative of the natural background [8,20,35–37]. The new
approaches mentioned above involve the combination of the preselection or component
separation methods with geostatistical tools that take into account the actual distribution
of the contaminant of concern and its correlation with other environmental parameters
(e.g., indicator kriging [21,23,38–40] or object-oriented statistics [24]). These approaches
allow for a spatial enhancement of the high-quality information provided by national
or regional monitoring networks by producing maps of NBLs or associated probability
of exceedance, instead of assigning a single background value or a range of values for
the whole groundwater body. However, the regional-scale monitoring networks upon
which the geostatistical approaches are based remain unable to grab the potential spatial
complexity caused by local-scale natural heterogeneities, since they can only provide point
data with relatively large mesh (i.e., a few km).

A pervasive and extensive source of information on groundwater chemical compo-
sition is related to contaminated/polluted sites under remediation. These sites are com-
monly found in urbanized and industrialized areas and are generally managed through
site-specific monitoring networks made of densely spaced piezometers that are typically
monitored over a timespan of years to decades [41,42]. Notwithstanding the large amount
of monitoring data associated with contaminated and polluted sites, an obvious drawback
towards the use of these data for the definition of NBLs is that groundwater quality at these
sites is most likely affected by human activities to some degree. Some authors recently
put effort into distinguishing between natural (or, in a broad sense, background) and
anthropogenic arsenic and other compounds in the aquifers below urban landfills [43,44] or
tried to identify unimpacted monitoring locations within the network of a large industrial
complex to assess background concentrations [45]. These authors performed thorough
analyses at the scale of individual contaminated sites using very well-informed databases.
To the best of our knowledge, the potential for an aggregation of monitoring networks of
sites under remediation to assess NBLs at a meso-scale (i.e., areas in the order of 1000 km2)
has never been explored in the literature. Given the large availability of this type of data
in urbanized and industrialized settings, their potential is worth investigating at least for
assessing NBLs of compounds of likely natural origin, being infrequently associated with
common human activities, such as arsenic [4].
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In the case of groundwater quality data collected from an assemblage of site-specific
monitoring networks whose original scope was different from NBL definition, data pre-
processing is of pivotal importance [8]. The first issue that should be dealt with is the
variability of sample collection and analysis methods, since each site-specific network is
managed independently, possibly following different strategies. This variability necessarily
reflects on concentration data that should be critically evaluated in order to identify a work-
ing dataset as consistent as possible. The second major issue is the identification of possible
anthropic impacts on NBLs, involving the contaminant of concern. The most common
strategies recently used to distinguish anthropic from natural contributions (i.e., preselec-
tion and component separation) hardly apply to assemblages of site-specific datasets for
the following reasons: (1) the preselection approach barely operates because the monitoring
of sites under remediation generally involves the sole analysis of specific contaminants
and pollutants, excluding some major ions which are frequently used as indicator species
(e.g., NO3, NH4, Cl, and K); (2) the component separation can be inappropriate because
different sites could be subjected to different geochemical processes, leading to different
types of data distribution and generating, on the whole, a multi-modal distribution, for
which the assumptions “lognormal component = natural background dataset” and “normal
component = human-influenced dataset” hardly apply. In addition, natural background
populations are often not lognormal [8,46,47]. With the inapplicability of such standardized
procedures, careful statistical identification and critical analysis of the outliers of the com-
pound of concern for NBLs can be a reasonable way to eliminate the most likely anthropic
inputs [48].

This paper aims at assessing the potential for publicly available groundwater quality
data from sites under remediation to define NBLs of As at the meso-scale (i.e., in the
order of 1000 km2). Since standardized procedures, such as the preselection and compo-
nent separation cannot be applied to a dataset formed by an assemblage of site-specific
datasets, an “unorthodox” method is here applied, involving statistical identification and
critical analysis of the outliers, based on the conceptual model elaborated for the inves-
tigated system. This study was performed in a highly anthropized area (Ferrara, in the
Po Plain, northern Italy), where As concentrations exceeding the national threshold limits
(10 µg/L [49]) are often detected in the shallowest aquifer of a complex multilayered
system. This shallow aquifer is made of alluvial or coastal deposits locally enriched in
peat, which is well known to drive As release in groundwater in the Po Plain [50,51] and
worldwide [3]. Thus, a potential issue of surficial natural pollution subsists in the area,
that must be addressed carefully. In the study area, the shallow aquifer is monitored by
an institutional regional network dedicated to groundwater quality monitoring, which
consists of only 18 monitoring points. The lack of an adequate number of monitoring points
from the regional monitoring network motivated the use of an assemblage of site-specific
monitoring networks (leading to a total number of 980 monitoring points). This approach
can be potentially applied to other anthropized areas worldwide, where many site-specific
monitoring networks exist and the regional monitoring is not able to grab the existing
hydrogeochemical heterogeneity.

2. Materials and Methods
2.1. Conceptual Model of the Investigated System

The investigated area is located in the southeastern sector of the lower Po River
Plain and corresponds to the administrative Province of Ferrara (Emilia Romagna Region,
northern Italy). It covers an area of about 2600 km2 bounded by the Po River to the north,
the Adriatic Sea to the east, and the Reno River to the south (Figure 1).
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Figure 1. Surficial deposits in the administrative province of Ferrara (modified from the Geological Map of the Emilia
Romagna plain 1:250,000) and sampling sites. In particular, sites under remediation are labeled as Sxx whereas the sampling
points of the regional monitoring network are labeled as FE-Fxx-xx.

The subsurface stratigraphy of the study area consists of sub-horizontal alternations
of coarse-grained (sand) and fine-grained (silt and clay) sediment bodies, tens of m thick,
down to around 200 m below ground surface (bgs) that form the Pliocene-Pleistocene infill
of the Po Plain foreland basin [52]. From a hydrogeological standpoint, such configuration
corresponds to a number of vertically stacked aquifer-aquitard systems [53]. Our research
is focused on the shallowest 10 m bgs, hosting heterogeneous Holocene deposits that
constitute the shallowest aquifer system, known as “A0” [54]. Above the Pleistocene–
Holocene boundary, the A0 system is made up of poorly interconnected sandy ribbons and
lenses (aquifer) encased into a silty or clayey matrix (aquitard) [55]. Facies associations in
the A0 aquifer system are part of three distinct depositional systems (Figure 1). The western
sector is occupied by alluvial plain deposits supplied by the Po River and other Northern
Apennine river systems south of Ferrara. Several facies associations have been recognized
along a detailed cross-section cutting this sector [56]: fluvial-channel sands, crevasse splay
and levee sand-silt alternations, and poorly-drained to well-drained floodplain silts and
clays (thorough descriptions of facies associations are provided in the cited literature).
The central sector corresponds to a delta plain depositional system mainly fed by the
Po River. It is characterized by thick, laterally extensive mud-prone facies associations,
including swamp, salt marsh, and lagoon/bay clays and silts. Distributary-channel sands
and related overbank deposits form isolated lens-shaped bodies [57,58]. A peculiar feature
of this sector is the abundance of organic matter, especially in fine-grained swamp and
salt marsh facies showing frequent peat intercalations, several dm thick. Vegetal material,
such as plant remains, plant debris, or roots, is typically associated with peat layers. The
easternmost sector is a coastal plain facing the Adriatic Sea that consists almost exclusively
of coastal sands, interpreted as beach-ridge or delta front facies associations [55]. Unlike
the other two sectors, fine-grained deposits in the shallow subsurface of the coastal area
are highly subordinate and correspond to thin, surficial paludal deposits that accumulated
in topographic lows between individual sand ridges.
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The aquifer is unconfined to semiconfined depending on the stratigraphic architec-
ture and thickness of the encasing fine-grained deposits. Horizontal groundwater flow
directions, hydraulic conductivity, and hydraulic gradients are extremely variable due to
aquifer heterogeneity and complex sand-body geometry. The hydraulic head is close to
the ground surface (max depth of about 1 m bgs) [59,60] and is generally dominant with
respect to the deeper confined aquifers. Recharge of A0 is almost exclusively vertical, by
rainfall or irrigation [61]. These features make the aquifer vulnerable to surface sources of
pollution.

As for the most part of the Po River Plain, the Ferrara area is highly impacted by
farming, with 70% of cultivated lands, and by industrial and urban activities occupying 8%
of the territory [62–64], causing, in many cases, the deterioration of shallow groundwater
quality. Among many organic and inorganic pollutants, arsenic is often detected in the
A0 groundwater at concentrations exceeding the Italian regulatory limit of 10 µg/L. The
study area hosts 45 sites under remediation supervised by local public authorities, i.e., the
former Environmental Office of the administrative Province of Ferrara and the Regional
Agency for Prevention, Environment, and Energy of Emilia-Romagna (ARPAE). These sites
are listed in the Supplementary Material (SM) and their locations are shown in Figure 1.
The sites are impacted by a number of different anthropic activities, such as gas stations
(14 sites), urban (six sites), and inert (three sites) waste landfills, sugar factories (five
sites), one large petrochemical complex, and other smaller industrial plants or various
activities (16 sites) causing groundwater contamination. To the best of our knowledge, no
direct anthropogenic inputs of As to soils and groundwater were registered in these sites.
Thus, As occurrence is likely related to mobilization from sediments due to the reductive
dissolution of Fe and Mn oxyhydroxides driven by the oxidation of organic matter (OM).
The main source of OM in this aquifer is buried peat, as previously observed in other
sectors of the Po Plain [65–67] and in similar fluvial systems around the world [3], however,
additional anthropogenic sources of OM (e.g., hydrocarbons or landfill leachate spills)
cannot be excluded. More specifically, some spills/leaks of hydrocarbons were reported for
a sugar factory (site S02) and most likely occurred in the petrochemical complex (site S45).

Eh values between +150 and −385 mV, with a prevalence of negative values around
–200 mV, have been previously detected in A0 all around the investigated area [68–72],
confirming the occurrence of reducing conditions. The occurrence of the peat-rich facies in
the central sector is expected to favor much higher arsenic concentrations in groundwater
with respect to the western and eastern sectors.

2.2. Available Dataset

Hydrochemical data of the 45 sites were collected from a public registry of sites
under remediation. The registry was managed by the former Environmental Office of
the administrative Province of Ferrara until 2015 and is currently handled by ARPAE.
Each site is equipped with 1 to 463 piezometers screened in the A0 aquifer, with variable
screen depths ranging within 1.5 and 10 m bgs. For this study, arsenic concentrations were
retrieved from 980 piezometers distributed in the 45 sites, over a variable timespan between
1997 and 2015, for a total of 4305 As values. Concentration analyses were performed
either by private labs or by the public ARPAE labs, following a variety of sampling and
analytical protocols. In a few instances (126 samples), reference samples were counter-
analyzed by two different labs. Although details on sampling and analytical protocols
were often unavailable, samples have been labeled as “filtered at 45 µm” or “unfiltered”
when the information was retrievable. In some cases (363 samples), duplicate filtered and
unfiltered samples were analyzed by the same lab. Data on major water ions and the specific
contaminants affecting the sites were often incomplete or unavailable. When feasible,
the location of the piezometer with respect to the source of contamination was defined
based on groundwater flow directions provided by site-specific reports. Piezometers
unequivocally located up-gradient to the source or labeled as “blanks” by site investigators
were considered not affected by the site-specific anthropic contamination. When the
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location with respect to the source of contamination was unknown, piezometers were
labeled as “internal”, i.e., within the boundaries of the site as defined for remediation
purposes, or “external”. Internal piezometers were considered plausibly affected by the
site-specific contamination due to likely proximity to the source of contamination.

Concerning the regional monitoring network, managed by ARPAE and aimed at
supporting the periodic determination of the chemical status of groundwater bodies, As
concentrations were available from the 18 monitoring points tapping aquifer A0 (locations
in Figure 1) for the period 2010–2018, with a maximum of 20 values per point (four samples
in 2010 and two samples per year from 2011 to 2018; the data are presented in the SM).

2.3. Data Pre-Processing and Calculation of Natural Background Levels of Arsenic

Since the entire database of As concentrations in groundwater was derived from the
registry of sites under remediation, where some indirect anthropogenic influences on As
concentrations (i.e., hydrocarbons and/or landfill leachate spills/leaks) cannot be excluded,
the data were pre-processed prior to NBL calculation, following a slightly unconventional
(unorthodox) procedure aimed at minimizing data shortcomings caused by the variability
of sampling and analytical techniques and/or possible anthropic interferences. This pro-
cedure is described step-by-step in the following subsections and involves: (1) treatment
of non-detects, (2) data quality assessment and preparation of the working dataset, (3)
identification and treatment of outliers, and (4) calculation of NBL. The common pro-
cedure of considering a charge balance error below 10% as the criterium for evaluating
data quality [27] could not be applied in the present study since the full set of major ions
analyses were not available in the site-specific datasets. Instead, data quality was evaluated
through the analysis of duplicate filtered/unfiltered samples and counter-analyzed (public
and private labs) samples (i.e., the only information available for a significant number of
samples), as described in detail in Section 2.3.2.

2.3.1. Treatment of Non-Detects

Non-detects (i.e., samples with an As concentration lower than the limit of detection—
0—LOD) are 14.8% of the total As dataset. The literature suggests assigning a value of
LOD/2 to the non-detects when these are a small proportion (<15%) of the total number of
observations, without the need for further analyses [73]. The use of different sampling and
analytical protocols in the considered dataset produced nine different LODs between 0.01
and 5 µg/L. To avoid a fabricated spatial and temporal variability of As concentrations,
the lowest LOD that had a significant recurrence in the database (>5% of the non-detects)
was selected, corresponding to 0.01 µg/L (23.1% of total non-detects), and its half value
(0.005 µg/L) was assigned to all the non-detects.

2.3.2. Data Quality Assessment and Preparation of the Working Dataset

Different sampling strategies and sample pre-treatment and preservation may induce
significant variability in As concentration measures, much larger than that expected from
the application of different analytical methods, as long as the analyses follow standard
protocols validated under national accreditation bodies [74]. In particular, field filtration
of samples was reported to influence the measured concentration of several trace ele-
ments in water [75]. Filtered samples generally cause less variability of groundwater As
concentration in a well compared to unfiltered samples [76].

The dataset of this study was split into three different categories based on field filtra-
tion of the sample: filtered, unfiltered, and unknown. In the last category, the information
on field filtering was unavailable and the associated As data could not be considered for
further observations on data quality. Duplicate filtered/unfiltered samples were employed
to compare the first two categories. The alignment with respect to the 1:1 line of the two
types of data was checked and the nonparametric Mann–Whitney U test [77] was applied
to assess whether the data of the two groups were ascribable to the same statistical popula-
tion. Counter-analyzed samples were used to assess the variability within each of the two
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categories. Scatter plots were employed to check whether the couples of counter-analyzed
data were affected by analytical variability.

The aim of such comparisons was to assess data quality in order to identify a consistent,
reliable, and robust working dataset of As concentration to be considered in the further
steps.

2.3.3. Identification and Treatment of Outliers

The identification of anthropogenic inputs that may have affected the composition
of shallow groundwater is crucial in the current study given the human-impacted nature
of the considered database. The most widely used approaches at the EU level for the
identification of such impacts are pre-selection and component separation [8,27]. These
approaches could not be applied in the present case study for the reasons discussed in
Section 1.

Therefore, potential impacts deriving from human activities were assessed here
through a careful analysis of temporal and spatial outliers of As concentration informed
by the knowledge on the conceptual model described in Section 2.1. The idea behind this
choice is that impulsive anthropogenic influences may generate one or more outliers within
the time series of a monitoring point (temporal outliers), whereas constantly impacted
monitoring points may constitute an outlier with respect to the surrounding unaffected
monitoring points (spatial outliers).

As a first step, a temporal analysis of the outliers was performed at each monitoring
point. The low number of As data available for each piezometer (max six) did not allow for
the statistical identification of the outliers. Instead, the interquartile range (IQR) approach
was employed to analyze the temporal series [78]. The upper outliers (C) were defined as
follows [79]:

C > Q3 + 1.5 × IQR (1)

where IQR corresponds to the difference between the 75th percentile (Q3) and 25th per-
centile (Q1) of the series. The lower outliers (i.e., < Q1—1.5 × IQR) were not considered,
since they are not of interest in the definition of NBLs, being uninformative of possible
anthropic impacts. After the exclusion of temporal outliers, each series was tested for the
occurrence of a temporal trend using the nonparametric Mann–Kendall test [80,81], since
the occurrence of such trends could be a further indication of anthropic influences [82].
Eventually, the outliers were critically analyzed on the basis of the site conceptual model,
with a focus on the geology and location of the monitoring points with respect to the source
of contamination and groundwater flow, to discern between natural or anthropic anomalies.
The latter were excluded from the database prior to NBL calculation. As a general rule,
upper outliers with arsenic concentrations ≤5 µg/L, i.e., half of the national regulatory
limit, were maintained in the working database, since they were considered unaffected by
relevant anthropogenic influences [83].

A similar procedure was followed for the identification of spatial outliers. In this case,
a representative As concentration was considered for each piezometer corresponding to the
median value of the temporal series [25] and the outliers were searched within each site, i.e.,
the IQR was calculated from the median values of each piezometer at a site. The use of the
median as a representative value of a temporal series is suggested in several protocols for
the estimation of NBLs [27,82], although it may lead to an underestimation of NBLs when
the peak values of the series are unequivocally related to natural processes [83]. However,
the median value was considered as a precautionary choice in the current research because
the presence of anthropogenic influences on the extreme As values of some piezometers
cannot be definitively excluded by the sole analysis of outliers.

2.3.4. NBL Calculation

For the definition of the NBLs of As in the A0 groundwater, the pre-processed database
was split into three sub-populations corresponding to the three depositional systems
identified in the conceptual model of Section 2.1. Indeed, the literature for the Po Plain
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area shows evidence of a strong control of the local geology (i.e., presence/absence of
natural buried organic matter) on natural As release processes operating in the shallow
aquifers [65]. The distinct groups of data were first checked with the Mann–Whitney U test
to assess whether they could be statistically ascribed to different populations. Then, the
NBL was calculated as the 90th percentile of the distribution of each distinct population
in agreement with the BRIDGE protocol [27]. The choice of the 90th percentile (instead of
higher suggested percentiles, e.g., 95th [84] or 97.7th [27]) aimed at mitigating the intrinsic
uncertainty associated with possible undetected anthropic influences in the peak values of
the distribution.

2.3.5. Comparison with NBLs Calculated from the Regional Monitoring Network

As a final step, the NBLs calculated with the methodology presented above, i.e., from
the assemblage of site-specific datasets, were compared with the NBLs calculated using
the data from the 18 points of the regional groundwater quality monitoring network of
the same study area (see Section 2.2). Assuming, reasonably, that the regional monitoring
points are located out of contaminated/polluted sites (in order to determine a chemical
status representative of the whole groundwater body), the NBL was calculated as the 90th
percentile of the median values calculated for each monitoring point omitting preliminary
analyses on possible anthropic influences. The choice of the 90th percentile, rather than
higher percentiles (e.g., 95th or 97th), is motivated by two reasons: (1) to have comparable
NBL results (the same percentile used) between the regional dataset and the site-specific
dataset, since the 90th percentile was used for the latter; (2) to adopt a precautionary
approach: although we can reasonably assume that the regional monitoring points are
unaffected by anthropogenic influences, we cannot definitely exclude it.

3. Results and Discussion
3.1. Identification of a Higher Quality Working Dataset

Statistical parameters for the total As dataset and for the sub-datasets made on the
basis of the filtration procedure, i.e., filtered or unfiltered (see Section 2.3.2), are shown in
Table 1 (the complete database is presented in the SM). Arsenic concentrations measured
from unfiltered samples are generally higher than those from filtered samples, with mean
values of 34.3 and 18.7 µg/L, respectively, and similar medians of 3.8 and 3.6 µg/L. The
standard deviation is much higher for the unfiltered samples (304.7, compared to 55.7 of
filtered data), suggesting higher variability within the unfiltered group. The scatter plot
comparing filtered and unfiltered analyses from double sampling (Figure 2) shows a rather
good alignment for many samples but, at the same time, a poor correlation for a significant
number of samples, with unfiltered samples often providing higher concentrations. A
reason for that may be the occurrence of solid particulates in unfiltered samples, comprising
Fe-oxides [85] on which some As may be adsorbed.

Table 1. Statistics for the total, filtered, and unfiltered As datasets.

TOT Filtered Unfiltered

max (µg/L) 9626.00 594.00 9626.00
min (µg/L) 0.005 1 0.005 1 0.005 1

mean (µg/L) 26.04 18.70 34.28
median (µg/L) 2.80 3.80 3.60
st. dev. (µg/L) 245.00 55.74 304.71
75 perc. (µg/L) 10.70 12.70 13.30
25 perc. (µg/L) 0.50 0.70 1.00

n. of observations 4305 815 2698
n. of non-detects 966 135 425

1 LOD/2.
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Figure 2. Scatter plot of filtered vs unfiltered As concentrations from the same samples.

The counter-analyzed As concentrations (Figure 3) show good alignment on the 1:1
line between the public and private labs in the case of filtered samples, even if very few
data were available for the comparison (11 samples). On the contrary, the unfiltered data,
available in a larger number (115 samples), indicate a much larger variability. In most cases,
the unfiltered concentration from the private labs is lower than that of the public lab. This
highlights the poor reliability of the unfiltered data.

Figure 3. Scatter plot of counter-analyzed samples by private and public labs.

The Mann–Whitney U test [77] applied to the two groups of filtered and unfiltered
data from double samples rejects the null hypothesis that the two groups pertain to the
same population, with a p-value of 6.8 × 10−10. This result confirms that filtered and
unfiltered data should be considered separately for the calculation of NBLs.

Given the higher variability and uncertainty (i.e., lower data quality) that appears
to be associated with the unfiltered samples, only the dataset of As concentrations from
filtered samples was considered as the working dataset for the further steps of NBL calcu-
lation. Samples for which the information on filtration was missing were also excluded,
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since these may be affected by the same limitations as for unfiltered data. These choices
cause a significant decrease in the number of available sites (from 45 to 25), monitoring
points (from 980 to 392), and samples (from 4305 to 815; see Figure 1 and the SM for
details on the availability of filtered samples). On the other hand, the reliability of the
final NBLs is expected to increase since filtered concentrations represent higher quality
data, as demonstrated by the above observations. Also, the exclusive use of filtered data
allows defining background values that are consistent with national guidelines [84], which
suggests field filtration of samples for the analysis of metals and metalloids.

3.2. Identification and Removal of Outliers Likely Representing Anthropogenic Influences

A total of 21 arsenic concentration values from 5 out of 25 sites (S02, S06, S11, S15, and
S45) were identified as outliers from the IQR of the time series of each monitoring point
(Table 2). Each outlier was critically evaluated, according to the conceptual model of the
site, to assess whether the anomaly was most likely related to natural or anthropic causes.
Six outliers were identified in the piezometers of site S02, a sugar factory in which some
hydrocarbons spills/leaks were reported (see Section 2.1). The anomalous values ranged
between 8.8 and 594.0 µg/L, pertaining to six different piezometers classified as “internal”
and thus plausibly affected by the hydrocarbon contamination at the site. Moreover,
the site is located in the western sector of the study area, which is made up of fluvial
deposits that are expected to contain only rare peat deposits and vegetal material. For these
reasons, the six outliers were considered to be the effect of anthropogenic influences on
As concentrations and were deleted from the working database. The five outliers of site
S06, another sugar factory in the western sector, were identified in five piezometers whose
location with respect to the source of contamination is unknown. The outliers ranged from
2.4 to 66.0 µg/L. Two of the five outliers had As <5 µg/L and thus could not be related
to relevant anthropogenic impacts (see Section 2.3.3). In the same site, four piezometers
labeled as blanks showed As concentrations up to 40.2 µg/L, comparable to those of the
outliers. For this reason, the outliers of this site were considered as natural anomalies
and kept in the working database. The same criterion was applied to site S11, a small
engine company in the western sector, showing three outliers ranging between 7.8 and 29.5
µg/L in three piezometers with unknown location, whereas blank piezometers at the same
site had higher concentrations (up to 123.0 µg/L). Site S15 is a disused municipal landfill
located in the central sector, made of deltaic deposits enriched in peats. The four outliers of
this site range from 15.0 to 76.9 µg/L and pertain to four piezometers, three of which were
downgradient to the source of contamination and one upgradient. The values were kept in
the working database since the anomalous concentrations downgradient to the source (15.0
to 51.0 µg/L) were lower than those from the upgradient piezometer (76.9 µg/L) and other
blank samples from the same site (up to 78.0 µg/L). The last site that showed anomalously
high concentrations was S45, a large petrochemical complex located in the western sector.
The three outliers (ranging from 11.6 to 27.8 µg/L) detected in three piezometers were
cautiously excluded from the working database since, at this site, some hydrocarbons
spills/leaks most likely occurred.

Table 2. Summary of the temporal As outliers.

Site ID Geological
Sector No. Outliers No.

Piezometers
Location of
Piezometers

S02 W 6 6 Internal
S06 W 5 5 Undefined
S11 W 3 3 Undefined

S15 E 4 4 3 downgradient, 1
upgradient

S45 W 3 3 Undefined
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The Mann–Kendall test [80,81] applied to all the time series with sample size ≥3 (the
minimum to let the test working) did not allow for detecting any significant temporal
trend. This may be partly due to the small number of values available for each series,
i.e., up to six, which is below the recommended minimum sample size of 10 [86–88],
possibly spanned over at least 5−10 years [89,90], to obtain a statistically acceptable trend
identification. Notwithstanding the above limitation, the absence of temporal trends agrees
with the hypothesized mainly natural origin of arsenic in groundwater in the study area
(Section 2.1).

For the analysis of spatial outliers, the median value of the time series, cleaned from
the temporal outliers likely representing anthropogenic influences, was calculated for each
piezometer. Spatial outliers were identified in 13 sites (S01, S02, S06, S11, S15, S18, S20,
S23, S26, S28, S35, S40, and S45), in a variable number of piezometers, between 1 and 10
(Table 3). The outliers found in sites S06, S11, and S15 (ranging from 9.6 to 73.7 µg/L)
were kept in the working database since the highest concentrations were detected in blank
piezometers, and thus all values can be considered to reflect natural As contents. Sites S26,
S28, S35, and S40 showed one to two spatial outliers. These four sites are located in the
central (deltaic) sector. The values identified as outliers in these sites, ranging from 5.0 to
27.3 µg/L, were lower than the values observed in other sites in the same sector that did
not display spatial outliers, such as 95.0 µg/L in site S17, or 95.0, 157.0, and 181.0 µg/L
in site S21, or 90.6 µg/L in S34. Thus, the spatial outliers in sites S26, S28, S35, and S40
were kept in the working database because they were considered to be consistent with
the natural background. Site S18 in the eastern sector is a former sugar factory showing
six spatial outliers with the maximum value of 18.5 µg/L. This value is lower than the
values calculated in other sites of the eastern sector for blank piezometers, e.g., 73.7 µg/L
in site S15. For this reason, the outliers of site S18 were kept in the working database. One
outlier was identified in each of the sites S01 and S20 in the central sector. In both cases, the
anomaly is clearly related to one single sample of the temporal series, that the IQR criterium
was unable to detect due to the small size (two samples) of the time series. Here, the choice
was to delete these two anomalous samples, in order to increase data consistency within
the two sites. The same reasoning was applied to the outlier in site S23 in the western
sector, which was related to one anomalous value in the temporal series. The outliers
of sites S02 and S45 in the western sector (3 and 10 values, respectively) were cautiously
deleted from the database because some anthropogenic influences on As concentrations
may have occurred in these two sites (see Section 2.1).

Table 3. Summary of the spatial As outliers.

Site ID Geological Sector No. Out-
liers/Piezometers Location of Piezometers

S01 C 1 Undefined
S02 W 3 Internal
S06 W 2 1 undefined, 1 blank
S11 W 7 5 undefined, 2 blank
S15 E 4 1 downgradient, 2 upgradient, 1 blank
S18 E 6 Internal
S20 C 1 Undefined
S23 W 1 Undefined
S26 C 1 Undefined
S28 C 1 Internal
S35 C 2 Undefined
S40 C 2 Undefined
S45 W 10 Undefined

3.3. Derivation of Natural Background Levels

The population of median arsenic concentrations purged of temporal and spatial out-
liers was employed for the calculation of NBLs. Data were split into three sub-populations
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corresponding to three distinct (western, central, and eastern) geological sectors. These
populations are represented in the probability plots of Figure 4. The range of median
concentrations is larger in the central sub-population (0.005 to 181.0 µg/L) compared to the
western and eastern sub-populations that show similar ranges between 0.005 and 108 µg/L
and between 0.005 and 73.7 µg/L, respectively. The probability plots of Figure 4 show
unimodal asymmetric distributions in the eastern and western sectors, whereas a bimodal
distribution characterizes the central sector. All the three distributions have one or two
extreme values which, following outlier analysis, can be considered as natural hot spots.
The upper segment of the bimodal distribution of the central sector, identifiable between 40
and 100 µg/L, is missing in the plots of the other two sectors and likely represents, together
with the two hot spots at 157 and 181 µg/L, the effect of stronger natural arsenic release
triggered by the local occurrence of peaty layers and vegetal material in the shallow sub-
surface. In the eastern and western sectors, there is also evidence of natural mobilization of
arsenic, reaching values above the regulatory limit (10 µg/L) in several instances. However,
the lower ranges and different shapes of the distributions compared to the central sector
suggest the occurrence of conditions less favorable to arsenic mobilization in these two
sectors, consistently with the conceptual model of Section 2.1.

Figure 4. Probability plots of median As concentrations for each piezometer from all the sites (filtered
As data), after the removal of outliers likely representing anthropogenic influences; the data are
divided with respect to the three geological sectors (C: central, E: eastern, W: western).

A similar shape of data distribution (Figure 4) and results of a Mann–Whitney U test
(p-value of 4.03 × 10−6) suggest that the eastern and western datasets pertain to the same
population, confirming the lithologic similarities (paucity of buried OM), whereas the data
from the central sector represent a distinct population.

For these reasons, two NBLs were calculated for the study area, one pertaining to the
central sector and corresponding to the 90th percentile of the distribution of the central
dataset, whereas a second one was calculated for the eastern and western sectors, as the
90th percentile of the distribution of the two combined datasets. The two resulting NBLs
correspond to 68 and 21 µg/L, respectively, confirming the serious issue of arsenic in
shallow groundwater in the central sector.

3.4. Comparison with NBLs Derived from the Regional Monitoring Network

The 18 monitoring points of the regional network (Figure 1) were divided into two
populations, corresponding to the eastern plus western sectors and the central sector,
consistently with observations in Section 3.3. Thus, two NBLs were calculated following
the methodology described in Section 2.3.5. The NBL for the eastern and western sectors
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was calculated on 15 out of the total 18 monitoring points of the network and was equal to
21 µg/L. The same value was obtained using the aggregation of site-specific datasets. The
NBL for the central sector was calculated on 3 out of 18 monitoring points and was 6 µg/L,
slightly below the regulatory limit of 10 µg/L and one order of magnitude below the NBL
of 68 µg/L obtained from the aggregation of site-specific datasets.

The fact that distinct NBLs obtained from the regional network and from the as-
semblage of site-specific datasets had the same value for the eastern and western sectors
(21 µg/L) suggests the following considerations: (1) the NBL value is robust, since it was
obtained by two different and independent datasets; (2) the regional network is dense
enough to catch the natural geochemical heterogeneity influencing As distribution in these
two sectors; (3) the use of an aggregation of site-specific datasets derived from sites under
remediation represents a valid alternative for calculating NBLs, after proper depuration
from anthropogenic influences.

On the other hand, the significantly different NBLs obtained in the central zone
(6 µg/L from the regional network and 68 µg/L from the assemblage of site-specific
datasets) highlights two important aspects: (1) the inadequacy of the regional network
to grab the geochemical heterogeneity of this sector, which led to an unreliably low NBL
value. Such a value may lead to erroneous evaluations of potentially contaminated sites,
attributing high As concentrations found in this sector to anthropogenic sources instead
of natural sources; (2) the importance and the validity of the methodology proposed
here, involving the use of site-specific datasets to fill the gap left by regional monitoring
networks, which proved to be unable to catch the local-scale heterogeneity.

4. Conclusions

The present study involved the derivation of NBLs for groundwater As at the meso-
scale (2600 km2, corresponding to the administrative Province of Ferrara in the Po Plain, N
Italy) for the shallow aquifer, using an aggregation of site-specific datasets collected from a
public registry of sites under remediation. The use of this kind of data was motivated by
the lack of an adequate number of monitoring points in the regional groundwater quality
network able to grab the local-scale hydrochemical heterogeneity.

In the study area, the NBLs obtained for As were:

• 68 µg/L in the central sector, characterized by the abundance of buried OM, and
thus, by a stronger potential for release of As to groundwater due to the reductive
dissolution mechanism;

• 21 µg/L in the eastern and western sectors, characterized by a lower content of buried
OM.

More general conclusions of this study are:

• Site-specific datasets can represent a cost-effective source of data useful for the deriva-
tion of NBLs, when regional monitoring networks fail to catch local-scale variability;
however, the main disadvantage of using an assemblage of site-specific datasets is
limited data quality, due to the likely application of different sampling and analytical
methodologies;

• The lack of complete information on major ions and specific pollutants/contaminants
for the sites, which prevents the application of conventional methodologies (e.g.,
pre-selection), can be overcome through a critical analysis of outliers that allows
identification of possible anthropogenic influences; the analysis of outliers, however,
must be supported by a robust conceptual model of each site, which must contain a
description of the site (a) geology, (b) hydrogeology (type and depth of the aquifer
involved, groundwater flow direction), and (c) contamination/pollution (chemical
species and compounds involved, location of monitoring points with respect to the
contamination/pollution sources);

• The design of regional monitoring networks of groundwater quality must consider
local-scale geological heterogeneities that can generate local and high natural concen-
trations of particular chemical species, such as arsenic, in order to avoid the calculation
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of unreliably low NBL values that might lead to erroneous evaluation of potentially
contaminated sites.

The approach presented in this study is based on a local case study, but it can be
reproduced in other areas worldwide where the abundance of different site-specific datasets
can counterbalance the limitation of regional monitoring networks in detecting local-scale
heterogeneity.
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