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Abstract

We reformulate the Verhulst-Lotka-Volterra model of natural resource extraction under the alternative assumptions of Cournot
behaviour and perfect competition, to revisit the tragedy of commons vs the possibility of sustainable harvesting. We stress
the different impact of demand elasticity on the regulator’s possibility of driving industry harvest to the maximum sustainable
yield in the two settings. The presence of a flat demand function offers the authority a fully effective regulatory tool in the form
of the exogenous price faced by perfectly competitive firms, to drive their collective harvest rate to the maximum sustainable
yield. The same cannot happen under Cournot competition, as in this case the price is endogenous and the regulator’s policy
is confined to limiting access to the common pool.

Key words: Tragedy of commons; Sustainability; Resource extraction; Differential games; Open-loop controls.

1 Introduction

Since Gordon (1954) and Hardin (1968), a leitmotiv of
the discussion about the tragedy of commons is our
perception of the impact of market power (or the lack
thereof) on the preservation of renewable resources or
natural species. In a nutshell, considering free access and
perfect competition as equivalent, one is induced to think
that the negative impact of perfect competition on a re-
newable asset’s preservation is larger than the impact of
any less-than-perfectly competitive industry.

We revisit this issue using the logistic growth model of
Verhulst (1838), Lotka (1925) and Volterra (1931) (VLV
henceforth), under both Cournot behaviour and perfect
competition. Due to the nonlinear dynamics character-
ising the VLV model, it has been investigated in detail
under perfect competition (Pearce and Turner, 1989),
while the current literature modelling firms’ strategic
behaviour in the tragedy of commons has adopted ei-
ther a piecewise linear approximation of the original
state equation (Benchekroun, 2003, 2008; Colombo and
Labrecciosa, 2013a, 2015) or a linear approximation of
it (Fujiwara, 2008; Colombo and Labrecciosa, 2013b;
Lambertini and Leitmann, 2013; Lambertini and Man-
tovani, 2014, 2016; and Lambertini, 2016). When the

piecewise linear approximation is adopted, the maxi-
mum sustainable yield (MSY) corresponds to the non-
differentiable point of the piecewise-linear function ap-
pearing in the state equation. Both linear and nonlinear
feedback strategies can be characterised. In particular,
if the resource is relatively scarce (abundant), the stable
solution is generated by a linear feedback strategy which
is increasing (flat) w.r.t. the stock, and the flat solution
indeed coincides with open-loop one.

The use of the original VLV formulation prevents one to
analyse the feedback problem but engenders the Ramsey
rule, whereby harvest is dictated solely by discounting
and the resource growth rate. To this aim we reconstruct
the analysis appearing in Cellini and Lambertini (2008),
showing, amongst other things, that if the market-driven
harvest is lower that that associated with the Ramsey
rule, then the former is a saddle point while the latter
is unstable. The focus of our analysis is the attainment
of the MSY, the ideal target of a public authority inter-
ested in a sustainable exploitation pattern. This choice
is not obvious, as while Pearce and Turner (1989) discuss
the conditions under which a monopolist (or a cartel) or
a perfectly competitive industry may perpetually har-
vest at the MSY, 1 there also exists a strand of research

1 A related but not equivalent stream of literature discusses
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focussing on the optimal number of firms in the com-
mons (see Mason et al., 1988; Mason and Polasky, 1997),
where optimal means welfare-maximising, and this, in
general, does not imply harvesting at the MSY.

Our approach is based on the strong time consistency
of the open-loop solution of the VLV model. We prove
that the game is state-redundant and admits the market-
driven harvest as a degenerate feedback control, irre-
spective of the nature or intensity of competition char-
acterising the market. In this scenario, the Ramsey rule
disappears and the model produces two steady states lo-
cated symmetrically to the left and right of the MSY.
In both cases, that lying to the right is stable, while the
other is not.

If market demand is downward sloping and firms behave
à la Cournot, there exists a parameter region in which
the regulator may limit access to the common pool so as
to drive industry harvest as close as possible to the max-
imum sustainable level, without reaching it. If instead
perfect competition prevails and demand is flat, firms’
lack of control on price offers the policy maker an addi-
tional tool to achieve the MSY for any number of firms
in the industry. Hence, what really matters is not free vs
regulated access to the commons, but rather the elastic-
ity of demand: an infinitely elastic market demand yields
the possibility of regulating the exogenously given price
to attain the goal of sustainability.

2 Setup and Cournot competition

Consider a market existing over continuous time t ∈
[0,∞) , being supplied by n ≥ 1 identical firms exploiting
a renewable resource X (t) to produce a homogeneous
final good sold to consumers. The state dynamics is as
in the VLV model,

·
X (t) = δX (t) [1− βX (t)]−Q (t) (1)

in which β and δ are positive constants, and Q (t) =∑n
j=1 qj (t) is the sum of the n firms’ individual harvest

at any instant. With an appropriate choice of measure,
qi (t) andQ (t) are also the instantaneous individual and
industry output levels. Note that, if β = 0, then (1)
collapses to the linear state dynamics used in part of the
aforementioned literature, where it is responsible of the
instability of the open-loop solution.

Let the instantaneous demand and individual cost func-
tion be p (t) = a − Q (t) and Ci (t) = cq2i (t) , respec-

the possible arising of efficient equilibria, possibly by means
of cooperation among agents. Again, efficiency does not in
general imply the attainment of the MSY (see, e.g., Dockner
and Kaitala, 1989; Ehtamo and Hämäläinen, 1993; Martin-
Herran and Rincon-Zapatero, 2005).

tively. The choice of a quadratic cost function is moti-
vated by the intent of including the possibility of de-
creasing returns and the need of generating the equilib-
rium under perfect competition with an infinitely elas-
tic demand. Parameters a, c > 0 measure the choke
price at which demand is nil and the steepness of the
cost function, respectively. Firm i’s profit function is
πi (t) = [p (t)− cqi (t)] qi (t). Firm i has to choose har-
vest qi (t) so as to maximise the value of discounted profit
Πi (t) =

∫∞
0
πi (t) e−ρtdt under the constraint (1). Firm

i’s current value Hamiltonian function is

Hi (t) = [p (t)− cqi (t)] qi (t) + λi (t)
·
X (t) (2)

to be maximised w.r.t. qi (t) , the initial condition being
X0 = X (0) > 0.

Suppose firms operate under open-loop information. The
first order condition (FOC) taken w.r.t. qi is (henceforth,
the time argument is omitted):

∂Hi
∂qi

= a− 2 (1 + c) qi −
∑
j 6=i

qj − λi = 0, (3)

and the costate equation is

·
λi = [δ (2βX − 1) + ρ]λi (4)

We may impose symmetry across firms (thereby drop-
ping index i) and then, replicating the procedure illus-
trated in Cellini and Lambertini (2008), take one of two
possible routes: either (a) solving (3) to obtain the ex-
pression of the optimal λ and proceed to the construc-
tion of the control equation; or (b) noting that (4) is
a differential equation in separable variables, admitting
the solution λi = 0 at any time, for all i = 1, 2, ...n.

In case (a), we have λ∗ = a − (n+ 1 + 2c) q and
·
q =

−
·
λ/ (n+ 1 + 2c), which, using (4) and λ∗, becomes

·
q =

[a− (n+ 1 + 2c) q] [δ (1− 2βδX)− ρ]

n+ 1 + 2c
(5)

and, together with (1), constitutes the state-control sys-
tem. The three candidate steady state points are

XR =
δ − ρ
2βδ

;QR =
δ2 − ρ2

4βδ
(6)

XCN
± =

δ (n+ 1 + 2c)±
√

Υ

2βδ (n+ 1 + 2c)
;QCN =

na

n+ 1 + 2c
(7)

where Υ ≡ δ (n+ 1 + 2c) [δ (n+ 1 + 2c)− 4βan].
Hence, XCN

± ∈ R+∀β ∈ (0, δ (n+ 1 + 2c) / (4an)]. It

is also worth stressing that QCN = nqCN monotoni-
cally increases in n while the pair

(
XR, qR

)
engendered

2



by the Ramsey rule is independent of n. Moreover,
XR < XMSY everywhere, and XR R 0 for all δ R ρ.
Scenario (a) produces five different regimes, as in Cellini
and Lambertini (2008): (I) there exist three steady state
points, E1, E2 and E3, with XCN

− < XR < XCN
+ (as

in Figure 1); (II) there exist two steady state points,
E1 ≡ E2 and E3, with XCN

− = XR < XCN
+ ; (III) there

exist three steady state points, E2, E1 and E3, with
XR < XCN

− < XCN
+ ; (IV) there exist two steady state

points,E2 andE1 ≡ E3, withXR < XCN
− = XCN

+ .This
portrays the tangency solution, on which we will say
more below; (V) there exists a unique steady state equi-
librium point,

(
XR, QR

)
. This happens when QCN lies

above the parabola. In (I), E1 and E3 are saddle points,
while E2 is an unstable focus. In (II), both steady state
points are saddles: the saddle path approaches E1 ≡ E2

from the left only, while E3 is reached along the hori-
zontal line. In (III), E2 and E3 are saddle points and E1

is an unstable focus; in (IV), E2 is a saddle, while the
tangency solution E1 = E3 is half-stable. In (V), there
exists a unique saddle point at E2.

Figure 1 The phase diagram under
Cournot competition, δ > ρ
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The phase diagram associated with ρ > δ is in Figure
2, where XR < 0. Impatience rules out the Ramsey
solution, firms behaving as quasi-static Cournot agents.
E1 is unstable, and firms approach the saddle point E3

along the flat line at QCN as shown by the horizontal

arrows, since
·
X R 0 for all δX (1− βX) R QCN .

This situation is observationally (but not conceptually)
equivalent to the case where λ = 0 at all times: if λ 6= 0,
the Ramsey rule becomes immaterial when ρ is too high
but the behaviour of the open-loop control in (3) still
depends on X, while posing λ = 0 in (3) means that
the shadow price of a resource unit is always nil (and
therefore time discounting, appearing only in (4), plays
no role). This yields a subgame perfect (or strongly time
consistent) open-loop control, although the game is not
state-linear. Indeed,

Lemma 1. The VLV Cournot game admits a state re-
dundant solution.

Figure 2 The phase diagram under
Cournot competition, δ < ρ
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This property of the VLV model was originally pointed
out by Goh et al. (1974). 2 Relying on Lemma 1, we may
proceed with the characterisation of the scenario asso-
ciated with the subgame perfect Cournot-Nash output
qCN = a/ (n+ 1 + 2c), invariant in the resource stock.
The relevant phase diagram is the same as in Figure
2, except for the absence of XR. Since ∂QCN/∂n > 0,
we have ∂XCN

− /∂n > 0 and ∂XCN
+ /∂n < 0. More

importantly, if δ (n+ 1 + 2c) − 4βan = 0, the locus
QCN is tangent to the concave locus describing the
undisturbed growth rate of the resource. Should this
happen (and it may do so in correspondence of infinitely
many values of the parameter set {β, δ, a, c, n}), then
industry harvest would correspond to the maximum

sustainable yield XMSY
def
= 1/ (2β). The tangency

solution is half-stable, as Figure 3 shows: XMSY is
attracting for X0 > XMSY , while it is repelling for
X0 ∈ (0, XMSY ). However, note that XCN

± = XMSY at
nMSY = δ (1 + 2c) / (4βa− δ) > 0 for all a > δ/ (4β) ,
and nMSY ≥ 1 for all a ≤ (1 + c) δ/ (2β) , with
(1 + c) δ/ (2β) > δ/ (4β).

Accordingly, we may formulate the following

Proposition 2. Let ñ be the largest integer which
does not exceed nMSY , and let QMSY be the har-
vest rate corresponding to XMSY . Then, for all
a ∈ (δ/ (4β) , (1 + c) δ/ (2β)), (i) the industry harvest
rate QCN |

n=ñ
is as close as possible to QMSY , and (ii)

the resulting steady state stock give by XCN
+ |

n=ñ
is

stable.

Hence, the regulator may drive the industry harvest close
to the MSY by limiting access to the commons at ñ,
which, if nMSY is an integer, will be equal to nMSY − 1.
The above proposition says that there exists an interme-
diate range of values of the choke price a such that the
maximum sustainable yield is attained by an admissible
industry structure (i.e., at least in monopoly).

2 See also Leitmann (1973); for more on state-redundant
games, see Dockner et al., (2000).
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Figure 3 The maximum sustainable yield under
Cournot competition
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Before proceeding to the analysis of the impact of per-
fect competition, it is worth observing that the Cournot
oligopoly reproduces a perfectly competitive industry in
the limit, as n tends to infinity under free entry, but does
so with a downward sloping demand function - which is
not infinitely elastic - and an endogenous market price.
These are typically not the assumptions adopted to de-
scribe a perfectly competitive industry in which firms
exert no control whatsoever on price. Moreover, if the
number of firms becomes infinitely large, the Cournot-
Nash equilibrium tends to coincide with the evolutionary
stable equilibrium (see, e.g., Weibull, 1995). However, in
both cases, limn→∞QCN = a, which implies that the
horizontal line at QCN lies above the concave locus and
therefore the resource is bound to extinction if indeed
perfect competition obtains as the limit of a Cournot
game where firms’ strategies determine market price.

3 Perfect competition

Now we turn to the case in which the n firms are perfectly
competitive and behave as price-takers, which is the
scenario examined in the debate from Smith (1969) to
Berck and Perloff (1984) and summarised in Pearce and
Turner (1989). The demand function is infinitely elas-
tic and the price p > 0 is exogenous and time-invariant.
Consequently, firm i’s instantaneous profit function is
πi (t) = [p− cqi (t)] qi (t). The current value Hamilto-
nian function is defined as in (2), but the presence of
a constant market price modifies the FOC taken w.r.t.
individual harvest as follows:

∂Hi
∂qi

= p− 2cqi − λi = 0 (8)

From a qualitative standpoint, the analysis replicates
the one outlined in section 2, whereby, if λi solves (8), we
have the Ramsey rule and a market-driven solution. For
brevity, we shall skip the details of this case, which can
be easily replicated, to focus on the scenario in which
λi = 0 always. As a result, the perfectly competitive in-
dividual harvest solving (8) is qPC = p/ (2c). This gen-
erates competitive equilibrium profits πpc = p2/ (4c) at

all times, independently of the number of firms, provided
the resource stock remains positive forever. The steady
state stock associated with qPC is

Xpc
± =

√
δc±

√
δc− 2βnp

2β
√
δc

∈ R+ ∀ p < cδ

2βn
(9)

This condition intuitively says that the resource will not
extinguish if market price is not excessively high. The
phase diagram is analogous to that in Figure 2. More-
over, as under Cournot behaviour, the steady state char-
acterised by Xpc

+ is stable, while the other is not, for
the same reasons. And, once again, ∂Xpc

− /∂n > 0 and
∂Xpc

+ /∂n < 0.

Looking at (9), it is evident that Xpc
± = XMSY iff δc −

2βnp = 0. This gives the regulator an additional de-
gree of freedom, as the price can be maneuvered to drive
Xpc

+ arbitrarily close to XMSY , still preserving the sta-
bility of the resulting steady state, for any number of
firms. Indeed, from the policy maker’s standpoint, the
problem boils down to regulating np (that is, either ac-
cess to the common pool or price, or both) to minimise
the difference between Xpc

+ and XMSY . While in the
Cournot setting the integer problem must be explicitly
accounted for, here the additional tool offered by the
exogenous price opens the possibility of reaching any
Xpc

+ = XMSY + ε, with ε positive and arbitrarily small.
In this respect, it can be added that, to the best of our
knowledge, the earliest contribution studying the pos-
sibility of regulating either access (i.e., n) or price in a
competitive model is that of Smith (1969), and this as-
pect has been largely neglected in the following litera-
ture. Moreover, regulating price has a similar flavour as
taxing emissions produced by the same industry when
the problem is posed by pollution instead of resource ex-
traction. The difference lies in the fact that here price
can be manipulated by a public authority to force firms
to get as close as possible to XMSY , while the Pigouvian
tax induces firms to efficiently internalise the marginal
cost associated with the environmental externality. 3

The foregoing discussion can be summarised in the fol-
lowing:

Proposition 3. Under perfect competition, there exist
infinitely many pairs (n, p) satisfying np = δc/ (2b) , such
that industry harvest equals XMSY .

The joint assessment of Propositions 2-3 deserves some
additional remarks. First, one has to consider that, un-
der Cournot competition, the integer problem must ex-
plicitly be accounted for, while the presence of an arbi-
trarily large number of firms in a perfectly competitive

3 A tax on extraction is used by Karp (1992) as a regulatory
tool in an oligopoly exploting a common nonrenewable pool.
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industry poses no issue in view of the fact that the pub-
lic authority can take n as given and just regulate mar-
ket price. Second, Proposition 2 says that, by regulat-
ing access to the common pool, the regulator may drive
industry harvest close to the MSY without reaching it.
Put differently, the integer problem causes the Cournot-
Nash industry harvest QCN (even under regulated ac-
cess) to be strictly lower than that corresponding to the
MSY. This is not the case under perfect competition,
as the integer problem is no obstacle to the regulator’s
action when the demand is perfectly elastic.

This reveals a flaw in our perception of the impact of
competition (or, conversely, market power) on the re-
source stock in the long run, which has long been debated
since Smith (1969). The point is that free access and
perfect competition have been usually taken as synony-
mous in the literature on common pools’ exploitation,
while they are not. Free access to the commons implies
that there is no upper limit to the number of firms ex-
tracting the resource, other than their profit incentives.
If we conceive perfect competition as a scenario in which
firms have no control on price and demand is flat, then it
clearly appears that free access and perfect competition
are not the same thing. Indeed, free access may also char-
acterise an oligopoly game whose limit properties under
free entry include marginal cost pricing, but this does not
apply to the equilibrium configuration of such an indus-
try for any finite number of firms. The foregoing analysis
shows that the ultimate consequence of the tragedy of
commons, namely, resource exhaustion (or, the extinc-
tion of species) can be more easily avoided under perfect
competition than in any other less competitive situation
in which some population of agents do have a degree
of market power and therefore endogenously determine
price along a negatively sloped demand function.

4 Extensions

The analysis carried out in section 2 relies on a stan-
dard oligopoly model based upon linear demand and
quadratic cost functions, but its main results stretch be-
yond the limits of these assumptions. Relying, inter alia,
on Novshek (1980) and Dixit (1986), suppose the inverse
demand function is p (Q) , with ∂p (Q) /∂Q < 0, and the
individual cost function isCi (qi) ,with ∂Ci (qi) /∂qi ≥ 0
and ∂2Ci (qi) /∂q

2
i ≥ 0. Thus, firm i’s profit function is

πi = p (Q) qi − Ci (qi) , in which case it is easily proved
that the state-redundancy property holds, since λi = 0
for all i at all times.

A specific example can be figured out by looking at the
second order condition for the concavity of πi:

2
∂p (Q)

∂qi
+ qi

∂2p (Q)

∂q2i
≤ ∂2Ci (qi)

∂q2i
(10)

This admits the case of a strongly convex inverse de-
mand in each output, for which ∂2p (Q) /∂q2i > 0. For
instance, if demand is hyperbolic, with p = a/Q, and
the cost function is the same as above, (10) is satisfied
everywhere and the individual Cournot-Nash output is
qCN =

√
a (n− 1) / (2cn) which, as is known from the

debate on oligopoly models with hyperbolic demand, im-
plies excluding the case n = 1 because the monopoly op-
timum is not determined if the demand function is isoe-
lastic (see, e.g., Lambertini, 2010). The corresponding
stable steady state level of the stock is

XCN
+ =

cδ +

√
cδ
(
cδ − 2β

√
2ac (n− 1)

)
2cβδ

(11)

with XCN
+ ∈ R+ ∀ a ≤ cδ2/

[
8 (n− 1)β2

]
. When met

at the margin, this condition ensures the attainment of
XCN

+ = XMSY by nMSY = 1 + cδ2/
(
8aβ2

)
firms, and

suffices for nMSY ≥ 2. In the aforementioned parameter
range, the regulator may control access to the commons
in such a way that profit-seeking behaviour brings this
oligopoly as close as possible to XMSY .

As for perfect competition, what matters is again that in
such a case demand becomes infinitely elastic. Hence, the
results derived in section 3 hold whenever ∂πi (·) /∂X =
0 for all i = 1, 2, ...n and are qualitatively robust to the
adoption of any cost function Ci (qi), as long as it is
independent of the state; that is, the sufficient condition
for the above results to obtain is ∂Ci (·) /∂X = 0 for all
i = 1, 2, ...n, provided second order conditions are met.

5 Concluding remarks

Our reformulation of the VLV model has shown that
properly distinguishing between free access to the com-
mons and perfect competition offers the possibility of
identifying a policy based on price regulation induc-
ing a perfectly competitive industry to harvesting ar-
bitrarily close to the MSY. The analogous approach to
the same problem under Cournot competition has high-
lighted that the integer problem matters in a strategic
oligopoly, preventing the regulator to replicate the same
outcome. This is due to the endogeneity of price when
firms have market power, obliging the public authority
to explicitly regulate access to the commons.
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