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Abstract

We propose a non-recursive identification scheme for uncertainty shocks which exploits

breaks in the volatility of macroeconomic variables and is novel in the literature on un-

certainty. This approach allows us to simultaneously address two major questions in the

empirical literature: Is uncertainty a cause or effect of decline in economic activity? Does

the relationship between uncertainty and economic activity change across macroeconomic

regimes? Results based on a small-scale VAR with U.S. monthly data suggest that (i) un-

certainty is an exogenous source of decline of economic activity, (ii) the effects of uncertainty

shocks amplify in periods of economic and financial turmoil.
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1 Introduction

Since the aftermath of the recent Global Financial Crisis (GFC), there has been revamped

attention on the role played by uncertainty as a driver of the business cycle. Three main findings

have emerged from the extant literature: first, heightened uncertainty triggers a contraction in

real activity; second, uncertainty tends to be higher during economic recessions; third, the

effects of uncertainty shocks are not constant over time. The first finding is consistent with the

theoretical literature that shows why uncertainty can have negative macroeconomic effects. The

prevailing view is that uncertainty is recessionary in presence of real options effects (e.g. Bloom,

2009) or financial frictions (e.g. Christiano et al., 2014). However, uncertainty appears also to

endogenously increase during recessions, as lower economic growth induces greater dispersion

at the micro level and higher aggregate volatility. This second finding is consistent with the

theoretical literature on ‘endogenous uncertainty’, which contends that uncertainty is rather

a consequence, not a cause, of declining economic activity, as in e.g. Van Nieuwerburgh and

Veldkamp (2006), Bachmann and Moscarini (2012), Fajgelbaum et al. (2017), Gourio (2014),

Navarro (2014) and Plante et al. (2018). The fact that the relationship between uncertainty and

real activity may not be constant over time is consistent with theoretical models that show how

the effects of heightened uncertainty can be amplified in extreme conditions like high financial

stress (e.g. Gilchrist et al., 2014; Alfaro et al., 2018; Arellano et al., 2018) or when monetary

policy is constrained by the zero lower bound (Basu and Bundick, 2017).

Whether causality runs from uncertainty to real activity, or from real activity to uncertainty,

or in both directions, and whether this relationship changes under different macroeconomic

conditions are issues which can be investigated empirically within a Structural VAR (SVAR)

framework. The first issue requires moving away from recursive identification schemes, which

are by construction ill suited to shed light on the reverse causality issue. This topic has been

explicitly analyzed in Ludvigson et al. (2018a) and Carriero et al. (2018b), reporting mixed

evidence. The second issue requires moving away from linear SVARs which would not allow

to uncover possibly regime-dependent effects of uncertainty shocks. This concern has been

addressed in the recent literature, and evidence that uncertainty shocks have time-varying effects

has been provided by, among others, Alessandri and Mumtaz (2018), and Caggiano et al. (2014,

2017a). These early attempts of examining causality and time variation of uncertainty shocks

have looked at the two issues in isolation. In light of the findings in the literature, however,

this seems to be a strong limitation: if the relationship between uncertainty and real activity is

indeed time-varying (or regime-dependent), it may very well be the case that also the direction

of causality might change over time, something which a time-invariant SVAR would be unable

to uncover.
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This paper fills this gap by proposing a non-recursively identified SVAR model which exploits

breaks in the (unconditional) volatility of post-WW2 U.S. macroeconomic variables. Within

this framework, we can allow both for on-impact effects of uncertainty on real activity, and

vice versa, and for regime-dependence in these effects. As discussed in Magnusson and Mavroei-

dis (2014), structural breaks induced by policy shifts and/or the occurrence of financial crises,

provide exogenous identifying information which can be fruitfully used for inference. The iden-

tification strategy we apply extends the standard ‘identification-through-heteroskedasticity’ ap-

proach, popularized in the empirical macroeconomic literature by Rigobon (2003), Rigobon

and Sack (2003) and Lanne and Lütkepohl (2008), to the case where the structural parame-

ters (on-impact coefficients), and hence the associated impulse response functions (IRFs), may

vary across volatility regimes, see Bacchiocchi and Fanelli (2015) and Bacchiocchi et al. (2018).

In this setup, changes in the VAR covariance matrix can be also ascribed to variations in the

structural parameters and identification is achieved by imposing restrictions on the changes that

characterize these parameters across volatility regimes. This opens up interesting possibilities

for practitioners relative to ‘standard’ SVARs. In general, there are more moment conditions

which can be used to identify the shocks jointly with theory-based restrictions, and the method

is flexible enough to jointly allow for recursive and non-recursive structures across volatility

regimes, provided a necessary and sufficient rank condition is respected. This is particularly im-

portant when addressing the issue of exogeneity/endogeneity of uncertainty, since it endows us

with a formal test for exogeneity with the highly desirable property of accounting for potential

dependence to macroeconomic (volatility) regimes.

We estimate, as in Ludvigson et al. (2018a), a small-scale SVAR with three variables: a mea-

sure of real activity, Yt; an index of macroeconomic uncertainty, UMt; and an index of financial

uncertainty, UFt. Real activity is proxied by either industrial production or employment, and

the indices of macroeconomic and financial uncertainty are taken from Jurado et al. (2015) and

Ludvigson et al. (2018a), respectively.1 As argued in Ludvigson et al. (2018a), the joint use of

macroeconomic and financial uncertainty indices is crucial to correctly uncover the relationship

between uncertainty and real activity, since they can display substantially different properties.

Data are monthly, and span the 1960-2015 sample. Using recursive and rolling-windows esti-

mates of the VAR covariance matrix, we show that two main volatility breaks are consistent with

the pattern of data, and can be associated with two important episodes of the U.S. history: one

is the onset of the Great Moderation, and the other is the GFC of 2007-2008. This leads to the

1Other measures of macro uncertainty available in the literature have been proposed by Rossi et al. (2016) and

Scotti (2016). We use the measure proposed by Jurado et al. (2015) to be consistent with the VAR specification

in Ludvigson et al. (2018a), see below. In Carriero et al. (2018a) uncertainty and its effects are instead estimated

in a single step within the same model.
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identification of three broad volatility regimes in the data, which correspond to three well-known

macroeconomic regimes: the ‘Great Inflation’ period (1960M8-1984M3), the ‘Great Moderation’

period (1984M4-2007M12) and the ‘Great Recession+Slow Recovery’ period (2008M1-2015M4).2

We then identify shocks by specifying a non-recursive structural model which exploits the differ-

ences in the average level of volatility displayed by macroeconomic variables in the three different

sub-samples.

Our main findings can be summarized as follows. First, macroeconomic uncertainty can be

better described as an exogenous driver of the U.S. business cycle. Macroeconomic uncertainty

shocks trigger a decline of U.S. real economic activity, whose magnitude and persistence is

estimated to be larger during Great Recession+Slow Recovery period, while the opposite is

not supported by the empirical evidence. This finding holds true in all three macroeconomic

regimes and is robust to several perturbations of the baseline model, such as the use of alternative

measures of real activity and macroeconomic uncertainty, and also controlling for financial stress.

Second, from the Great Moderation onwards, the pass-through of financial uncertainty to real

economic activity is found to be indirect: financial uncertainty shocks trigger macroeconomic

uncertainty and, via this channel, a contraction in real activity, with effects which amplify

after the GFC. Financial uncertainty does not respond to real economic activity shocks nor to

macroeconomic uncertainty shocks. Third, the estimated impulse responses differ substantially

from those coming from a benchmark represented by a SVAR identified with heteroskedasticity

along the lines of Lanne and Lütkepohl’s (2008) method, i.e. by imposing that the autoregressive

and the structural parameters are fixed across volatility regimes.

Overall, our findings support the claim that uncertainty, both macro and financial, is an

exogenous driver of the business cycle, with contractionary effects on real activity that change

over time. While we share the exogeneity of financial uncertainty with other contributions

(e.g., Ludvigson et al., 2018a), one key finding of our paper is the exogeneity of macroeconomic

uncertainty. We explicitly test this assumption in our structural model, and do not reject it.

To this end, we consider two overidentified non-recursive SVARs, one featuring ‘endogenous’

macroeconomic uncertainty in the three volatility regimes, and a restricted (nested) version in

which macroeconomic uncertainty does not respond contemporaneously to real activity shocks

in the three volatility regimes. The SVAR with ‘endogenous’ macroeconomic uncertainty (and

exogenous financial uncertainty) is rejected at the 5% significant level, while the SVAR featuring

‘exogenous’ macroeconomic uncertainty (and exogenous financial uncertainty) is supported by

the data. Both specifications implicitly assume that financial uncertainty does not respond on

2Given the strong and well established association between the (average) volatility of most macroeconomic

variables and specific macroeconomic regimes of U.S. economic history (e.g. McConnel and Perez-Quiros, 2000),

throughout the paper we use the terms ‘volatility regime’ and ‘macroeconomic regime’ interchangeably.
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impact to negative economic shocks. It is important to stress that this assumption, which is

required to jointly identify economic activity and macro uncertainty shocks, is not arbitrary but

is supported by the reduced form evidence associated with the estimated SVAR, which suggests

that financial uncertainty is poorly correlated with real economic activity until the beginning of

the Great Recession+Slow Recovery period, and is correlated with macroeconomic uncertainty

only starting from the beginning of the 1980s.

The closest papers to ours are Ludvigson et al. (2018a) and Carriero et al (2018b). Both

papers deal with the issue of exogeneity/endogeneity of uncertainty. Similarly to Ludvigson et

al. (2018a), our results are consistent with the view that financial uncertainty is exogenous to

the business cycle. However, in stark contrast with their findings and in line with Carriero et

al. (2018b), we find strong evidence that macroeconomic uncertainty is an exogenous driver of

the business cycle.3

Ludvigson et al. (2018a) propose a novel set-identification strategy in a time-invariant frame-

work, that allows the joint identification of uncertainty and real activity shocks, without impos-

ing any restrictions on the contemporaneous relations (see also Ludvigson et al., 2018b). Their

identification strategy uses two types of shock-based restrictions. The first is what they label

‘event constraints’, which require that the identified financial uncertainty shocks must be large

enough during two major financial disruptions, e.g. the 1987 stock market crash and the 2007-09

financial crisis. The second set of constraints are ‘correlation constraints’, which require that (i)

macroeconomic and financial uncertainty shocks must be negatively correlated with aggregate

stock market returns, and (ii) financial uncertainty shocks must be more highly correlated with

stock market returns than macroeconomic uncertainty shocks. Using the same VAR specifi-

cation as ours, they find that only financial uncertainty can be considered exogenous to the

business cycle, while macroeconomic uncertainty should be treated as an endogenous response

to business cycle fluctuations. They also find that while financial uncertainty shocks are con-

tractionary shocks, macro uncertainty shocks have positive effects on real activity, in line with

‘growth-options’ theories. This major difference on the role of macroeconomic uncertainty can

be explained by considering the different identification methods. In Ludvigson et al. (2018a),

identification is based on external information, which is used asymmetrically between the two

types of shocks: event constraints are imposed only on financial uncertainty shocks, and it is

therefore unclear what is the actual identification information behind macroeconomic uncer-

tainty. Moreover, relative to their analysis, the flexibility of our SVAR allows us to uncover

relevant regime-dependent effects: financial uncertainty becomes a crucial factor for business

3To save space, a more comprehensive discussion of how our paper is connected to the large empirical literature

on the identification of uncertainty shocks can be found in the Technical Supplement.
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cycle developments only after the 1980s. This result lines up with Ng and Wright (2013)’s argu-

ment that financial factors have played a crucial role in driving the U.S. business cycle after the

mid 1980s, and is consistent with Caldara et al. (2016) and Caldara and Scotti (2018). Inter-

estingly, our non-recursive SVAR shows that financial uncertainty affects real economic activity

mostly indirectly, by fostering greater macroeconomic uncertainty.

Carriero et al. (2018b) jointly identify real activity and uncertainty shocks by using a

novel stochastic volatility approach in the context of bivariate VARs which feature measures of

macroeconomic and financial uncertainty (one at a time), along with measures of real economic

activity. Accordingly, they do not separately identify the effects of macroeconomic and financial

sources of uncertainty on economic fluctuations. Their empirical evidence is partly consistent

with ours: they also document that macroeconomic uncertainty is broadly exogenous to busi-

ness cycle fluctuations, while they find that financial uncertainty might, at least in part, arise

as an endogenous response to some macroeconomic developments. The identification approach

in Carriero et al. (2018b) is based on a stochastic volatility mechanism, hence it is inherently

different from our heteroskedasticity-based approach to identification. Our method requires

the occurrence of separate variance regimes which must be either known or inferred from the

data, and this may possibly affect the inference and identification results if the volatility breaks

are misspecified. The stochastic volatility approach in Carriero et al. (2018b) hinges on the

specification of an independent stochastic process which governs the changes of the variances

over time. This adds flexibility to the model and facilitates identification issues, but also raises

computational issues. For instance, the extension of Carriero et al. (2018b)’s approach to the

case of three-variate SVARs, which would allow to separately identify the effects of macroeco-

nomic and financial uncertainty shocks, may become computationally demanding. Moreover,

our approach allows, without imposing, regime-specific effects of uncertainty shocks, which may

uncover important changes in the transmission mechanism over time, as we find for the effects

of financial uncertainty.

The paper is organized as follows. Section 2 introduces the identification problem and

presents our non-recursive identification approach. Section 3 discusses the data and the empir-

ical results obtained from the estimated SVAR. Section 4 provides some concluding remarks.

Additional technical details and empirical results and robustness checks are confined in an on-line

Technical Supplement.4

4Available online at https://drive.google.com/file/d/1cK3HPPWPEc7fG7J VNafNalDYy0n66 g/view
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2 Econometric framework

In this Section, we outline our econometric methodology to deal with both regime-dependence

and the joint identification of uncertainty and real activity shocks. Subsection 2.1 presents the

general setup and discusses the nature of the problem one faces in ‘standard’ SVARs, while

Subsection 2.2 extends the analysis to the ‘identification-through-heteroskedasticity’ method

exploited in the paper.

2.1 Identifying uncertainty and real economic activity shocks under homoskedas-

ticity

Consider the following SVAR:

Xt = c+ Φ1Xt−1 + ....+ ΦpXt−p +Bet = ΠWt +Bet , et ∼WN(0n×1, In) , t = 1, ..., T (1)

where T is the sample length, p is the system lag order, Xt is the n × 1 vector of endogenous

variables, c is a n×1 constant, Φi, i = 1, ..., p are n×nmatrices of parameters, Π := (Φ1, ...,Φp, c),

Wt := (X ′t−1, ....X
′
t−p, 1)′, B is a n × n non-singular matrix containing what we call ‘structural

parameters’, and et is the vector of mean zero, (normalized) unit variance and uncorrelated

structural shocks. It is assumed that the autoregressive polynomial Φ(L):=In−Φ1L− ...−ΦpL
p

is such that the solutions to det(Φ(z)) = 0 satisfy |z| > 1. Let

ηt = Bet (2)

be the n × 1 vector of reduced form innovations, with (unconditional) covariance matrix Ση =

BB′.

Suppose we are interested in the dynamic effects of the structural shocks in et. Let A be the

VAR companion matrix, Xc
t :=(X ′t, X

′
t−1, ..., X

′
t−p+1)

′ the state vector associated with the VAR

companion form and R:=(In, 0n×n, ..., 0n×n) a selection matrix such that Xt=RX
c
t , RR

′ = In.

As is known, the dynamic response of Xt+h to shock ejt to the variable Xjt is summarized by

the (population) IRF:

IRFj(h) := R (A)hR′bj , h = 0, 1, 2, ..., j = 1, ..., n (3)

where bj is the j-th column of B, i.e. B:=(b•j : bj : bj•), and b•j and bj• are the sub-matrices

that contain the columns that precede (if any) and follow (if any) the column bj , respectively.

Absent further restrictions on the coefficients, the IRF in eq. (3) requires that bj is identified

in the sense that it contains independent information relative to the columns in b•j and/or in

bj•. For h = 0, the IRF in eq. (3) is such that, up to possible normalizations of the shocks, the
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element blj of the B matrix in eq. (2) captures the instantaneous (on-impact) effect of the j-th

structural shock on the l-th variable of the system.

Consider now our specific case, where n = 3. Let Yt denote a (scalar) measure of real activity,

and let UMt and UFt be two (scalar) measures of macro and financial uncertainty, respectively,

so that Xt:=(UMt, Yt, UFt)
′. In the absence of further restrictions, the structural relationship in

eq. (2) is given by the following system of equations
ηMt

ηY t

ηFt


ηt

=


bMM bMY bMF

bYM bY Y bY F

bFM bFY bFF


B


eMt

eY t

eFt


et

(4)

where we conventionally call eMt ‘macroeconomic uncertainty shock’, eFt ‘financial uncertainty

shock’ and eY t ‘real economic activity shock’. As is known, at least three restrictions are needed

in eq. (4) to identify the shocks in a ‘Gaussian setup’.5 The covariance matrix Ση = BB′

provides n(n+1)/2 = 6 symmetry restrictions to identify the 9 elements of B, leaving 3 element

unidentified. A common solution to this problem is to specify B as a triangular matrix, which

provides the 3 zero (identifying) restrictions. The empirical literature on the identification of

uncertainty shocks largely relies on the use of recursive SVARs because the interest typically

lies on the effect of uncertainty shocks on Yt, while it is presumed that UMt (UFt) responds

to shocks to Yt only with lags. If one imposes an upper (lower) triangular structure on B, or

‘conventional’ zero restrictions, it is not possible to identify simultaneously the parameters of

interest bYM , bY F , bMY and bFY , meaning that ‘reverse causality’ cannot be addressed.

The reverse causality issue and the related identification problem can in principle be tack-

led by using valid external instruments that permit to increase the number of useful moment

conditions other than Ση = BB′, without further restricting B; see e.g. Stock and Watson

(2012, 2018) and Mertens and Ravn (2013); see also Carriero et al. (2015). Ludvigson et al.

(2018a) discuss the peril of such an approach in the uncertainty framework, and improve upon

this methodology by arguing that if UMt and UFt are potentially endogenous (i.e. they may

respond to eY t), then it is difficult to find credible observable exogenous external instruments

for the uncertainty shocks.

While the combined use of external instruments and set-identification methods allow to

address the reverse causality issue, it does not help dealing with the problem of possibly regime-

5It is worth stressing that regardless of the type of identifying restrictions we impose on B, we do not have

enough information in this stylized small-scale model to claim that eY t is a demand or supply shock. In general,

eY t could be a combination of technology, monetary policy, preferences and government expenditures. For this

reason, and in line with Ludvigson et al. (2018a), we refer to eY t as ‘real activity shock’. Likewise, we do not have

enough information to disentangle whether uncertainty shocks originate from economic policies and/or technology.
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dependent effects of uncertainty shocks, which is the issue analyzed next.

2.2 Using heteroskedasticity to identify uncertainty and real economic activ-

ity shocks

In order to jointly address the reverse causality and possible regime-dependent effects of uncer-

tainty shocks, one needs to combine a non-recursive structure for B with the case where the

elements in B may change across macroeconomic regimes with the changes in the unconditional

covariance matrix Ση, generating regime-dependent IRFs. We solve this problem by exploiting

the heteroskedasticity displayed by the reduced form errors ηt across different macroeconomic

regimes that characterize the U.S. business cycle. Our identification methodology is based on

the existence of different volatility regimes in the post-WW2 U.S. business cycle, i.e. different

values that Ση may take across sub-samples. Allowing for changes in the structural parameters

B represents a major generalization relative to the ‘standard’ identification approach based on

heteroskedasticity developed in Rigobon (2003), Lanne and Lütkepohl (2008) and Lanne et al.

(2010); see also Lewis (2018).6

Going back to the SVAR forXt:=(UMt, Yt, UFt)
′ defined in eq. (1), consider the unconditional

covariance matrix Ση:

Ση = E(ηtη
′
t):=


σ2M σM,Y σM,F

σ2Y σY,F

σ2F

 , (5)

where, σM,Y = E(ηMtηY t), σM,F = E(ηMtηFt) and σY,F = E(ηY tηFt). For ease of exposition,

assume that there are two structural changes in this unconditional error covariance matrix, which

correspond to the existence of three distinct volatility regimes.7 If t=TB1 and t=TB2 denote the

dates of the two structural breaks, with 1 < TB1 < TB2 < T , then the reduced form VAR in eq.

(1) can be generalized to:

Xt = Π(t)Wt + ηt , Ση(t):=E(ηtη
′
t) , t = 1, ..., T (6)

6We refer to Lütkepohl (2013), Lütkepohl and Netšunajev (2017) and Kilian and Lütkepohl (2017, Chap. 14)

for a review of this literature. Chen and Netšunajev (2018) provide an application of such methodology in the

context of uncertainty shocks.
7This is the case we will deal with in our empirical section. Our analysis, however, can be easily generalized

to the case in which there are m structural breaks in the unconditional error covariance matrix, corresponding

to m + 1 volatility regimes in the data. The inferential issues that arise when the break dates are misspecified

is a topic which has not been yet explicitly analyzed in the identification-through-heteroskedasticity literature,

and is the subject of future research. Podstawki and Velinov (2018) have extended the identification approach we

present and apply in this paper to the case in which the VAR parameters switch endogenously across volatility

regimes.
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where Wt := (X ′t−1, ..., X
′
t−p, 1)′ contains lagged regressors and a constant, Π(t) is the matrix of

associated slope (autoregressive) coefficients given by

Π(t):=Π1 × 1 (t ≤ TB1) + Π2 × 1 (TB1 < t ≤ TB2) + Π3 × 1 (t > TB2) (7)

and, finally, the error covariance matrix Ση(t) is given by

Ση(t):=Ση,1 × 1 (t ≤ TB1) + Ση,2 × 1 (TB1 < t ≤ TB2) + Ση,3 × 1 (t > TB2) (8)

where 1 (·) is the indicator function. Key to our identification approach is that Ση,1 6= Ση,2 6=
Ση,3. Important for our analysis, notice that the specification in eq.s (6)-(8) covers the case in

which also the slope (autoregressive) parameters vary across volatility regimes (Π1 6= Π2 6= Π3).

We assume that the system described by eq.s (6)-(8) is subject to a set of regularity assump-

tions (Assumptions 1-3 in the Technical Supplement) which allow standard inference. Given the

existence of three volatility regimes, the SVAR is defined by the structural specification:

ηt = Bet 1 ≤ t ≤ TB1

ηt = (B +Q2) et TB1 < t ≤ TB2

ηt = (B +Q2 +Q3) et TB2 < t ≤ T
(9)

where B, Q2 and Q3 are 3×3 matrices containing structural parameters and et:=(eMt, eY t, eFt)
′

is the vector of structural shocks such that E(et)=03×1 and with normalized covariance ma-

trix E(ete
′
t):=I3.

8 As before, we call eMt ‘macroeconomic uncertainty shock’, eFt ‘financial

uncertainty shock’ and eY t ‘shock to real activity’. In eq. (9), B is the non-singular matrix

which governs the structural contemporaneous relationships (on-impact responses) between the

variables and the shocks in the first volatility regime. The matrix Q2 captures the changes

in the structural parameters, if any, from the first to the second volatility regime, hence the

non-singular matrix (B +Q2) captures the structural contemporaneous relationship (on-impact

responses) between the variables and the shocks in the second volatility regime. The matrix Q3

captures the change in the structural parameters, if any, from the second to the third volatil-

ity regime, hence the non-singular matrix (B +Q2 +Q3) captures the structural relationship

(on-impact responses) between the variables and the shocks in the third volatility regime.

8An alternative and equivalent parametrization of the SVAR in eq. (9) is discussed in the Technical Supplement,

and is based on the assumptions that the structural shocks have a diagonal matrix covariance matrix which changes

across volatility regimes, i.e. E(ei,te
′
i,t):=Λi:=diag(λi,1, ..., λi,n), where ei,t is the vector of structural shocks at

time t in the regime volatility i, and λi,j is the variance of the structural shock to variable j in the volatility

regime i. The IRFs presented and discussed in eq. (15) below can be ‘scaled’ accordingly. To keep exposition as

simple as possible, in the paper we refer, without loss of generality, to the parametrization of the SVAR in eq.

(9).
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Eq. (9) leads to the system of second-order moment conditions

Ση,1 = BB′ (10)

Ση,2 = (B +Q2) (B +Q2)
′ (11)

Ση,3 = (B +Q2 +Q3) (B +Q2 +Q3)
′ (12)

which link the reduced form to the structural parameters. Equations (10)-(12) provide r =
3
2n(n + 1) identifying restrictions on B, Q2 and Q3 induced by symmetry. The total number

of elements in B, Q2 and Q3 is 3n2, hence it is necessary to impose at least 3n2 − r additional

constraints to achieve identification. These 3n2 − r identifying constraints are provided by eco-

nomic reasoning about the way the on-impact coefficients may change across regimes, which

means that the suggested identification approach combines both data properties (i.e. the het-

eroskedasticity provided by the data) and theoretical considerations reflected in the specification

of the structure of the matrices B, (B +Q2) and (B+Q2 +Q3). Let ψ be the vector defined as

ψ:=(vec(B)′, vec(Q2)
′, vec(Q3)

′)′. The set of theory-based linear identifying restrictions on B,

Q2 and Q3 can be represented compactly in explicit form by:

ψ = Gθ + d (13)

where θ is the vector containing the ‘free’ elements in B, Q2 and Q3, G is a known 3n2×dim(θ)

selection matrix of full column rank, d:=(d′B, d
′
Q2
, d′Q3

)′ is a 3n2 × 1 vector containing known

elements.9 The moment conditions in eq.s (10)-(12) along with the constraints in eq. (13) can

be conveniently summarized in the expression

σ+ = g(θ) (14)

where σ+:=(vech(Ση,1)
′, vech(Ση,2)

′, vech(Ση,3)
′)′ is r×1, and g(·) is a nonlinear (differentiable)

vector function (see Bacchiocchi and Fanelli, 2015 for details). It turns out that the necessary

and sufficient rank condition for identification is that the Jacobian matrix J(θ) := ∂g(θ)
∂θ′ be

regular and of full column rank when evaluated in a neighborhood of the true parameter value

θ0. The necessary order condition is dim(θ) ≤ r. The Jacobian J(θ) can be derived analytically

or evaluated numerically. Thus, in order to identify the shocks it is necessary that the restrictions

in eq.s (10)-(13) satisfy also the necessary and sufficient rank condition.

We denote with B̃ = B(θ), Q̃2 = Q2(θ) and Q̃3 = Q3(θ) the counterparts of B, Q2 and

Q3 which fulfill the identification conditions. Interestingly, B̃ (first regime), (B̃ + Q̃2) (second

9Other than accounting for (possibly) non-homogeneous restrictions (meaning that the vector d can be non-

zero), eq. (13) allows for cross-regime constraints, i.e. simultaneous restrictions which involve the elements of the

matrices B, Q2 and Q3 like, for example, b12 + q2,12 = 0 or b12 + q2,12 + q2,12 = 1, where b12, q2,12 and q3,12 are

the (1,2) elements of B, Q2 and Q3, respectively.
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regime) and (B̃ + Q̃2 + Q̃3) (third regime), may be either triangular or ‘full’ depending on

the specification at hand, therefore reverse causality phenomena can in principle be modeled.

Notably, in this setup overidentified SVARs, i.e. those for which dim(θ) < r, can be tested

against the data.

The so-identified SVAR generates regime-dependent IRFs. Let Ai, i = 1, 2, 3 be the reduced

form companion matrices associated with the system in eq. (6). The dynamic response of Xt+h

to a one-standard deviation shock in variable j at time t is summarized by the (population)

IRFs:

IRFj(h):=


R′(A1)

hRb̃j t ≤ TB1

R′(A2)
hR(b̃j + q̃2j) TB1 < t ≤ TB2

R′(A3)
hR(b̃j + q̃2j + q̃3j) t > TB2

h = 0, 1, ..., hmax

j = M,Y, F

(15)

where R is the selection matrix introduced in Section 2.1, b̃j is the j-th column of the matrix B̃,

b̃j + q̃2j is the j-th column of the matrix B̃ + Q̃2, b̃j + q̃2j + q̃3j is the j-th column of the matrix

B̃ + Q̃2 + Q̃3, respectively, and hmax is the largest horizon considered. Even in the special case

in which the slope (autoregressive) coefficients do not vary across volatility regimes, i.e. when

A1 = A2 = A3 (meaning that Π1 = Π2 = Π3 in eq. (7)), the IRFs in eq. (15) change across

volatility regimes because of the changes in the on-impact response coefficients.

3 Model specification and empirical results

In this section, we apply the SVAR for Xt:=(UMt, Yt, UFt)
′ presented in eq. (1) and discussed

in the previous section to address our two main research questions: (i) Does the response of Yt

to shocks to (UMt, UFt) vary across macroeconomic regimes? (ii) Are UMt and UFt exogenous

sources of fluctuations in Yt, or do UMt and UFt respond endogenously to shocks in Yt? In

Section 3.1 we present the data and in Section 3.2 we provide evidence for the existence of three

broad volatility regimes. In Section 3.3 we specify and discuss the baseline non-recursive SVAR

and in Section 3.4 we test for exogenous uncertainty and analyze the resultant IRFs.

3.1 Data

Our VAR includes three variables; UMt(f), UFt(f) and Yt, where Yt is a measure of real economic

activity, UMt(f) is a measure of f -period-ahead macroeconomic uncertainty and UFt(f) is a

measure of f -period-ahead financial uncertainty, where f = 1 (one-month) or f = 12 (one-year).

Our measure of real economic activity is the growth rate of the log of real industrial production,

denoted ∆ipt. The real industrial production index is taken from the FRED database. The

measure of financial uncertainty is taken from Ludvigson et al. (2018a), while the index of
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macroeconomic uncertainty is taken from Jurado et al. (2015).10 The data are monthly and

cover the period 1960M8-2015M4 for a total of T = 653 observations. As discussed in Ludvigson

et al. (2018a), jointly modeling financial and macroeconomic uncertainty is key to obtain a

correct understanding of the relationship between uncertainty and the business cycle.

3.2 Volatility breaks

Two crucial features of our VAR are that the identification approach requires breaks in the

unconditional volatility of the data, and that a small-scale system like ours is not affected by

nonfundamentalness, which implicitly amounts to claim that it does not omit important vari-

ables. Our major hypothesis is that the relationship between uncertainty and real activity vary

across the main macroeconomic regimes of post-WW2 U.S. business cycle because of changes in

the unconditional variance of Yt. To provide evidence in favour of volatility breaks, we proceed

in two steps. First, we provide suggestive evidence of time variation by looking at recursive and

rolling windows estimates of the residual variances and covariances in our baseline VAR. Second,

we formally test for the existence of two structural breaks using Chow-type tests, with possible

break dates identified in the previous step. Next, we deal with potential nonfundamentalness of

our VAR by testing for its ‘informational sufficiency’ using the procedure by Forni and Gambetti

(2014) and factors extracted from the McCracken and Ng (2015)’s large set of macroeconomic

and financial variables. The detailed investigation of this last issue, sketched in the Technical

Supplement, is important in light of the small dimension of Xt:=(UMt, Yt, UFt)
′ because nonfun-

damentalness is best seen as an informational deficiency problem. The empirical analysis shows

that we do not reject the informational sufficiency of Xt:=(UMt, Yt, UFt)
′, meaning that we can

correctly estimate the effects of uncertainty shocks through IRFs.

We start by estimating our baseline VAR for Xt:=(UMt, Yt, UFt)
′ with four lags (p = 4)

both recursively and over 10- and 15-years rolling-windows. The estimates of the six elements

of the unconditional VAR error covariance matrix Ση are plotted in Figure 1. The graphs on

the diagonal report the estimated variances while the off-diagonal terms report the estimated

covariances for the recursive (blue line), the 10-years (red line) and the 15-years (yellow line)

rolling windows VARs. The graph in the position (2,2) reports the unconditional variance of the

residuals of the second equation of our VAR, the one associated with Yt, i.e. σ2Y in Ση in eq. (5).

The graph clearly shows that the average volatility level is time-varying, being higher during the

seventies and eighties, declining from the mid-eighties until the end of 2007, and then increasing

again after the financial crisis of 2007–08 before stabilizing. All the remaining graphs in Figure

1 broadly confirm the presence of three volatility regimes. As expected, the two main changes of

10The Technical Supplement discusses at length how the two proxies of uncertainty have been constructed.
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volatility occur in correspondence of the beginning of the Great Moderation and Great Recession

periods, respectively. The two dashed vertical lines correspond to the possible break dates, i.e.

TB1 = 1984M3 and TB2 =2007M12. These two break dates would partition the whole sample

period 1960M8-2015M4 into three different sub-samples: the Great Inflation period (1960M8-

1984M3, T = 280), the Great Moderation period (1984M4-2007M12, T = 285), and the Great

Recession+Slow Recovery period (2008M1-2015M4, T = 88).11 It is worth noting, however,

that while the unconditional variance associated with the proxy of macroeconomic uncertainty

roughly follows the same volatility pattern as the unconditional volatility of Yt (position (1,1) in

Figure 1), the unconditional variance associated with the proxy of financial uncertainty increases

until the beginning of the nineties, probably because of the process of financial innovation which

characterizes U.S. financial markets (position (3,3) in Figure 1). Interestingly, these differences

in volatility patterns provide identification information in our approach.

The evidence reported in Figure 1 is broadly consistent with the information conveyed in

Table 1.12 The second column of Table 1 summarizes the OLS-based estimates of the VAR

covariance matrix Ση on the whole sample, i.e. under the null hypothesis that there are no

volatility regimes in the data (H ′0 : Ση,1 = Ση,2 = Ση,3), and then separately on the three

volatility sub-periods.13 As already shown in Figure 1, these results confirm that unconditional

variances and covariances have changed over time. Table 1 also summarizes some diagnostic

statistics associated with the estimated models, which suggest that VAR residuals tend to be

not Gaussian but not serially correlated within regimes. The non-normality of VAR disturbances

is detected, as expected, on the overall sample period but also within macroeconomic regimes

and is fully consistent with the analysis in e.g. Cúrdia et al. (2014). We remark that the possible

11As concerns the third volatility regime, according to the U.S. National Bureau of Economic Research the

Great Recession began in December 2007 and ended in June 2009, thus extending over 19 months. Thus, we treat

TB2 =2007M12 as the date in which the Great Moderation ends. Considering three distinct volatility regimes

does not necessarily rule out the possibility that the VAR for Xt:=(UMt, Yt, UFt)
′ might display unconditional (or

possibly conditional) heteroskedastic disturbances within regimes, other than across them. This is clearly seen

from the graphs in Figure 1 but, as discussed below, does not represent a major obstacle to the implementation

of our identification approach.
12Admittedly, the evidence in Figure 1 could also support a time-varying specification. We refer to Mumtaz

and Theodoridis (2018) and Carriero et al. (2018a, 2018b) for different views on how time-varying specifications

can be fruitfully exploited to address empirically the role of uncertainty. As already stressed, crucial to our

identification approach is the existence of broad volatility regimes in the data.
13The OLS estimates in Table 1 correspond to maximum likelihood estimates generated by maximizing Gaussian

densities within each of the considered samples. In the Technical Supplement, we also discuss a classical minimum

distance (CMD) estimation approach which does not require any distributional assumption. We prefer to stick to

Gaussian maximum likelihod estimation of our SVAR to be as close as possible to the more familar identification-

through-heteroskedasticiy approach put forth by Lanne and Lütkepohl (2008) in the context of SVARs.
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presence of within-regimes heteroskedasticity (conditional or unconditional), while affecting the

full efficiency of our estimates, does not represent a major obstacle to the identification strategy

presented below.

To verify formally the hypothesis that there are two main structural breaks in the VAR

error covariance matrix at the dates TB1 =1984M3 and TB2 = 2007M12, we compute a set of

Chow-type tests and misspecification-type tests. We first test whether the joint null hypothesis

of absence of structural breaks in all VAR coefficients:

H0 :

(
Π1

Ση,1

)
=

(
Π2

Ση,2

)
=

(
Π3

Ση,3

)
=

(
Π

Ση

)
(16)

is rejected and, conditional on the rejection of H0, we test the null hypothesis of absence of

volatility regimes

H ′0 : Ση,1 = Ση,2 = Ση,3 (17)

under the maintained restriction: Π1 = Π2 = Π3 = Π on slope coefficients. Results are sum-

marized in the bottom panel of Table 1 which reports the LR tests for the hypotheses H0 and

H ′0, respectively. Both H0 and H ′0 are strongly rejected by the data. As a final check, we inves-

tigate to what extent the detected regime-dependence in the residual covariance matrix can be

ascribed to the regime-dependence that characterizes the autoregressive parameters. To do so,

we estimate the VAR in eq. (6) by allowing the autoregressive parameters to change as in eq.

(7) with TB1 =1984M3 and TB2 = 2007M12, keeping the covariance matrix Ση constant. In the

so-estimated model, we perform a test for the null hypothesis of (unconditional) homoskedastic-

ity in the residuals (H ′′0 ), which is reported in the lower panel of Table 1. Results show that the

hypothesis of homoskedasticity is strongly rejected by the data. This evidence confirms that the

changes that characterize the unconditional covariance matrix Ση can not be solely ascribed to

the changes in the autoregressive parameters. Overall, our results are consistent with Aastveit

et al. (2017) who, using a wide range of econometric techniques, provide substantial evidence

against the stability of common VARs in the period since the Great Recession.

Other than documenting the existence of three broad volatility regimes in the data, Table

1 provides some rough evidence about the changing nature of the relationships between our

proxies of uncertainty, UMt and UFt, and real economic activity, Yt. Although it is not possible

to infer any causality direction from the correlations in Table 1, the data clearly point towards

changing relationships. The information provided by the correlations in Table 1 will be used to

inform the structural specification in the next section.

Overall, the estimated reduced form system for Xt:=(UMt, Yt, UFt)
′ provides a reasonable fit

to the data and is ‘informational sufficient’. We consider it a statistically satisfactory reduced

form representation of the non-recursive SVAR specified next.
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3.3 Non-recursive SVAR specification

In this section we discuss the specification of the matrices of structural parameters B̃ = B(θ),

Q̃2 = Q2(θ) and Q̃3 = Q3(θ) in eq. (9). The vector of structural shocks is et:=(eMt, eY t, eFt)
′,

and we call conventionally eMt ‘macroeconomic uncertainty shock’, eFt ‘financial uncertainty

shock’ and eY t ‘real activity shock’, see the discussion in Section 2.

To inform the structural specification, valuable indications may be inferred from the VAR

residuals correlation matrices sketched in Table 1. Three main empirical facts emerge from this

table. First, the negative correlation between (the residuals associated with) macroeconomic

uncertainty and industrial production growth increases by about 50%, from -14% to -21%, when

moving from the Great Moderation to the Great Recession+Slow Recovery period. This reduced

form evidence is consistent with the structural analysis in e.g. Caggiano et al. (2017a) and

Plante et al. (2018). Second, the correlation between (the residuals associated with) financial

uncertainty and industrial production growth turns negative only in the Great Recession+Slow

Recovery period (3.8%, 3.2% and -8.9%, respectively) and is not significant. Third, the correla-

tion between (the residuals associated with) macroeconomic and financial uncertainty increases

substantially across the three volatility regimes (12%, 32% and almost 40%, respectively), sug-

gesting that the two sources of uncertainty developed in a relatively independent way during

the Great Inflation period, and started to be much more correlated thereafter, when periods

of financial turmoil have become more prominent. These three empirical facts suggest that the

(negative) relationship between macroeconomic uncertainty and real economic activity is likely

regime-dependent and intensifies after the GFC. On the other hand, the channel which connects

financial uncertainty and real economic activity appears to be indirect: since financial uncer-

tainty is virtually uncorrelated with real activity, its effects on the business cycle, if any, might

work only via its correlation with macroeconomic uncertainty. This latter correlation is almost

irrelevant in the first subsample, and increases only after the mid-1980s.

Based on these considerations, we formulate our hypotheses on the structural parameters.

The three volatility regimes detected in the previous section provide us with r = 3/2(n)(n +

1) =18 moment conditions. In the absence of restrictions, B, Q2 and Q3 contain 3n2=27

elements, hence it is necessary to place at least 3n2−r =9 parameter constraints on these matrices

in order to achieve identification. These restrictions, which can be represented compactly as in

eq. (13), must satisfy the necessary and sufficient identification rank condition discussed in

Section 2.2, i.e. the Jacobian matrix associated with the function in eq. (14) must be regular

and full column rank. We consider a total of 11 identifying restrictions (which lead to 11-9=2
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overidentification restrictions) and the following matrices B̃, B̃ + Q̃2 and B̃ + Q̃2 + Q̃3:

Great Inflation:

B̃:=


bMM bMY 0

bYM bY Y 0

0 0 bFF


Great Moderation:

B̃ + Q̃2:=


bMM + q2,MM bMY q2,MF

bYM + q2,Y M bY Y + q2,Y Y 0

q2,FM 0 bFF + q2,FF


Great Recession + Slow Recovery:

B̃ + Q̃2 + Q̃3:=


bMM + q2,MM bMY q2,MF + q3,MF

bYM + q2,Y M + q3,Y M bY Y + q2,Y Y + q3,Y Y q3,Y F

q2,FM 0 bFF + q2,FF + q3,FF

 ,

(18)

so that the vector of structural parameters θ contains 16 non-zero elements (dim(θ)=16).

The specification of the matrix B̃ (Great Inflation) in eq. (18) is based on one crucial

hypothesis. Inspired by Ng and Wright (2013) and the already commented reduced-form evidence

in Table 1, we maintain that heavily regulated financial markets before the 1980s slowed down

the response of financial markets to non-financial dynamics on the one hand, and the response

of macroeconomic variables to the uncertainty generated by financial markets on the other

hand. Thus, financial uncertainty is assumed not to respond on-impact to real activity shocks

(bFY = 0) nor to macro uncertainty shocks (bFM = 0), and real activity is assumed not to

respond on-impact to financial uncertainty shocks (bY F = 0), though lagged responses are not

ruled out and depend on the estimated dynamics. Likewise, it is also assumed that financial

uncertainty does not exert contemporaneous effects on macroeconomic uncertainty (bMF = 0).

Overall, according to the B̃ matrix in eq. (18), macroeconomic uncertainty can be potentially

endogenous, depending on the significance of the parameter bMY , while financial uncertainty is

treated as a variable that can react only with lags.

Moving to the second volatility regime (Great Moderation), the non-recursive structure of the

matrix B̃+Q̃2 in eq. (18) is still consistent with the idea that macroeconomic uncertainty shocks

may affect real economic activity instantaneously through the parameter bYM + q2,Y M (q2,Y M

captures the change of impact relative to the Great Inflation) and, in turn, real activity shocks

may affect macro uncertainty through the parameter bMY + q2,MY (again, q2,MY captures the

change relative to the Great Inflation). Differently from the Great Inflation period, however, we

now admit that causation among the two sources of uncertainty may run both ways through the
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parameters q2,FM (position (3,1)) and q2,MF (position (1,3)), respectively. This is done to infer

whether the increased correlation between UMt and UFt observed during the Great Moderation

relative to the Great Inflation can be ascribed to financial or macro uncertainty shocks, or to both

types of shocks. For instance, with q2,FM = 0 and q2,MF 6= 0 (q2,MF > 0) in eq. (18) we might

conclude that causality runs from financial uncertainty shocks to macroeconomic uncertainty

alone.

Finally, the causality relationships entailed by the structure of the matrix B̃+Q̃2+Q̃3 (Great

Recession+Slow Recovery) in eq. (18) is similar to that of the Great Moderation, the main

difference being that we now allow financial uncertainty shocks to affect real economic activity

both directly (through the parameter q3,Y F ) and indirectly through its effect on macroeconomic

uncertainty (through the parameter q2,MF + q3,MF where, recall, q3,MF captures the possible

change of effect relative to the Great Moderation).

Overall, the SVAR based on the specification in eq. (18) is identified in the sense that it

satisfies the rank condition discussed in Section 2.2, and gives rise to r − dim(θ) =2 (testable)

overidentification restrictions. Financial uncertainty is given the ‘passive’ role of merely amplify-

ing the shocks before the 1980s, while the role of financial markets and the uncertainty stemming

from them are brought back to the center-stage of business cycle after the mid-1980s.14 No-

tably, the specified structural model features possibly endogenous uncertainty, since it allows

the structural parameter bMY to be non-zero. Hence, testing bMY = 0 amounts to testing for

exogeneity of macroeconomic uncertainty.

Our testing procedure compares the specification in eq. (18) with a restricted version which

features two additional hypotheses about the pass-through from uncertainty to real economic ac-

tivity: one is the hypothesis of ‘exogenous’ macroeconomic uncertainty, bMY = 0, and the other

is the hypothesis that macroeconomic uncertainty shocks do not trigger financial uncertainty,

q2,FM = 0, so that their structural relationship is unidirectional. Jointly, the two restrictions

bMY = 0 ‘exogenous’ macro uncertainty

q2,FM = 0 ‘one-way’ causality from financial to macro uncertainty
(19)

imply, when imposed in eq. (18), an overidentified system which features r−dim(θ) =4 (testable)

overidentification restrictions.

14Our choice is also supported by institutional facts, in particular the changes in the norms regulating financial

markets which occurred in the early 1980s, like the Depository Institutions Deregulation and Monetary Control

Act in 1980, particularly the termination of regulation Q, and the Garn-St. Germain Act of 1982, which granted

easier access to financial liquidity to households and firms only from the mid-eighties onwards.
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3.4 On-impact and dynamic causal effects

The non-recursive SVAR specified in eq. (18) is based on the idea that the changes in the

covariance matrices Ση,1 6= Ση,2 6= Ση,3 associated with the break dates TB1 = 1984M3 and

TB2 =2007M12, are explained by the occurrence of breaks in the structural parameters. As

already observed in Section 2.2, the main difference between our approach and Lanne and

Lütkepohl (2008)’s approach is that in the latter the autoregressive parameters in eq. (7) are

kept constant, and the changes in the unconditional covariance matrix in the three volatility

regimes are modelled by the simultaneous diagonalization:

Ση,1 = BB′ , Ση,2 = BΛ2B
′ , Ση,3 = BΛ3B (20)

where the elements of B are fixed, Λ2 6= Λ3 6= In are two diagonal matrices with positive elements

on the diagonal which satisfy a set of identification conditions discussed in detail in Lanne et al.

(2010). Eq. (20) gives rise to dynamic causal effects which are invariant to volatility regimes.

Hence, before moving to the estimation of our structural model, it seems natural to test to what

extent the specification in eq. (20) is supported/rejected by the data. The model in eq. (20)

entails an overidentified system which incorporates three (testable) restrictions (indeed there

are r = 18 reduced form covariance parameters and 9+6=15 distinct elements in B, Λ2 and

Λ3). The likelihood ratio test for the overidentification restrictions implied by the specification

in eq. (20) is equal to 10.11 with associated p-value of 0.0176, hence the model is rejected

at the 5% level of significance. We interpret this result as supportive of the fact that the on-

impact coefficients of SVARs in the uncertainty framework can possibly change across major

macroeconomic regimes of the U.S. economic history. In the analysis that follows, in order to

highlight the importance of regime-dependent coefficients, the IRFs implied by the SVAR in eq.

(20) will serve as comparative benchmark against our model.

The non-recursive SVAR specified in eq. (18) is estimated on the period 1960M8-2015M4

by imposing the three volatility regimes associated with the two break dates TB1 = 1984M3

and TB2 =2007M12. The (quasi-)maximum likelihood estimates of the structural parameters

θ that enter the matrices B̃, B̃ + Q̃2 and B̃ + Q̃2 + Q̃3 are reported, for f = 1 (one-month

uncertainty), in Table 2, along with analytic and bootstrap standard errors.15 The upper panel

15Bootstrap standard errors are computed using Kilian’s (1998) bootstrap-after-bootstrap method, keeping the

break dates TB1 = 1984M3 and TB2 =2007M12 fixed and resampling (non-parametrically) separately within

each volatility regime. This method is also used to compute 90% bootstrap confidence bands for the IRFs that

follow. Brüggemann et al. (2016) have shown that estimation uncertainty in IRFs produced by SVARs may

increase dramatically in the presence of conditional heteroskedasticity compared to an i.i.d setup, depending

especially on the persistence characterizing the underlying conditional heteroskedasticity processes. In our setup,

the occurrence of conditional heteroskedasticity within the three volatility regimes is an issue which can not be
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of Table 2 refers to the the specification in eq. (18), while the lower panel refers to the same

model estimated under the two additional restrictions in eq. (19). The estimated structural

parameters θ̂ in Table 2 correspond to the on-impact responses featured by our IRFs.

We first discuss the reverse causality/exogeneity issue, then we analyze the dynamic causal

effects implied by the estimated IRFs.

Reverse causality/exogeneity. The estimates in the two panels of Table 2 deliver an

answer to our first research question, i.e. whether macroeconomic uncertainty is an exogenous

source of economic fluctuations or an endogenous response to it, or both. We first analyze the

model in the upper panel of Table 2, which allows for ‘endogenous’ macroeconomic uncertainty

(bMY 6= 0) and bidirectional causality between macroeconomic and financial uncertainty from

the Great Moderation onwards (q2,FM 6= 0, q2,MF 6= 0, q3,MF 6= 0). The LR test for the two

overidentification restrictions featured by this model is equal to 7.35 and has a p-value of 0.025,

hence the model is not supported by the data at the 5% level of significance.

The parameter bMY , which captures the on-impact response of macroeconomic uncertainty

to real economic activity shocks in the three volatility regimes, is not statistically significant.

The hypothesis of ‘exogenous’ macroeconomic uncertainty is largely supported by the data as the

LR test for bMY = 0 is equal to 0.056 and has a p-value of 0.94. The estimated parameter q2,FM

proves to be not strongly significant, confirming our intuition that since the 1980s the pass-

through between the two sources of uncertainty is unidirectional: from financial uncertainty

shocks to macroeconomic uncertainty. The estimated structural model in the lower panel of

Table 2 incorporates these two additional restrictions, see eq. (19). In this case, the LR test

for the four overidentification restrictions featured by the SVAR is equal to 8.03 with associated

p-value of 0.091, which does not lead us to reject the model at the 5% significance level. A LR

test for the structural model in the lower panel against the one in the upper panel of Table 2

is equal to 0.672 and has p-value equal to 0.713. Overall, our empirical evidence supports the

specification in eq.s (18)-(19).16

ruled out a priori, given the diagnostic tests in Table 1. Brüggemann et al. (2016) have also shown that the

residual-based moving block bootstrap results in asymptotically valid inference, see also Kilian and Lütkepohl

(2017, Ch. 12). Since available simulation results suggest that the performance of different bootstrap methods is

often hardly distinguishable in finite samples, Brüggemann et al. (2016) recommend that practitioners should be

aware of the fact that reported impulse response intervals may understate the actual estimation uncertainty in the

presence of conditional heteroskedasticity. With this in mind, and in the absence of a detailed quantification of

the extent of conditional heteroskedasticity in our SVAR (which is beyond the scopes of this paper), we interpret

all reported bootstrap confidence bands for IRFs with caution.
16As a Referee has pointed out, the increase of the p-value that characterizes the two LR tests can also

be explained by the fact that the latter can be less powerful than the former due to the increased number
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It could be argued that macroeconomic and financial uncertainty are treated asymmetrically

in our model. Indeed, although the reduced form evidence speaks loudly about the role of

financial uncertainty, the non-response of financial uncertainty to real economic activity shocks

has been imposed in the structural specification. To address this issue, we re-estimate the SVARs

in eq.s (18)-(19) by inverting the positions of UM,t and UF,t in the vector Xt. This leads to a

radical change in the role played by the two sources of uncertainty in the system and the way they

transmit to the business cycle. In this case, the LR test for the overidentification restrictions

is equal to 28.47 with a p-value of 0.00, which strongly rejects the model. We interpret this

evidence as fully consistent with the pass-through of financial and macroeconomic uncertainty

to real economic activity hypothesized in our baseline model. In particular, the data seem to

support the fact that in the Great Moderation and Great Recession+Slow Recovery periods

financial uncertainty shocks foster greater uncertainty about future economic growth.

These findings on reverse causality allow us to make direct contact with Ludvigson et al.

(2018a), the closest paper to ours in this respect. In line with their results, our analysis is

consistent with the view that financial uncertainty is a driver of the business cycle, not a re-

action to it. According to our identification scheme, however, financial uncertainty affects the

business cycle indirectly by triggering greater macroeconomic uncertainty on-impact. Instead

we find remarkable differences with Ludvigson et al. (2018a) when we look at the behavior of

macroeconomic uncertainty: while they report that macroeconomic uncertainty shocks could

be characterized as an endogenous response to business cycle fluctuations and have positive

effects on real activity, we find that macroeconomic uncertainty is exogenous to the business

cycle and has a negative on-impact effect on real activity. Ludvigson et al. (2018a) base their

conclusions on a novel methodology which combines the external instruments approach with the

mechanics of set-identification (see also Ludvigson et al., 2018b). The endogeneity of macroe-

conomic uncertainty they document might reflect the ‘asymmetric’ characterization of financial

and macroeconomic uncertainty shocks implicit in their approach, i.e. the fact that the ‘event

constraints’ are imposed on financial uncertainty only, and that the ‘correlation constraints’

employ aggregate stock market returns as the only external variable with informational content

about uncertainty shocks. Our analysis unveils important time-variation (regime-dependency) in

the dynamic responses to uncertainty shocks which could further explain the differences between

of restrictions being tested. In the robustness section of the Technical Supplement, we show that all p-values

associated with the LR tests discussed in this section increase dramatically once we replace, ceteris paribus, the

measure of macroeconomic uncertainty, UMt, with an alternative one obtained by ‘purging’ UMt from a subset

of financial variables, denoted Up
Mt. Our choice of using UMt and not directly Up

Mt in the estimation of our

baseline SVAR is motivated by the idea of using the same information set as Ludvigson et al. (2018a) to facilitate

comparison.
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their results and ours.

Our empirical evidence fully lines up with Carriero et al. (2018b) as concerns the exogeneity

of macroeconomic uncertainty. Carriero et al. (2018b) identify the shocks by a novel stochastic

volatility approach based on non-recursive SVARs which include measures of macroeconomic

and financial uncertainty, one at a time. In their model the on-impact coefficients are constant

but an independent stochastic process drives the volatility of the system and facilitates the

identification of the shocks compared to our regime-dependent method. The extension of their

approach to the case of three-equations systems is computationally demanding, and this fact

probably explains why they do not separately identify the effects of macroeconomic and financial

sources of uncertainty on economic fluctuations, and why in their analysis financial uncertainty

is not ‘as exogenous’ as we find in our setup.

IRFs. The implied IRFs are computed as in eq. (15) by replacing A1, A2 and A3 and

B̃, B̃ + Q̃2 and B̃ + Q̃2 + Q̃3 with their estimates, and are plotted in Figures 2-5 over an

horizon of hmax =60 periods (5 years). Figure 2 plots the IRFs obtained on the three volatility

regimes for f = 1 (one-month uncertainty). Figures 3-5 plot the IRFs separately for each

regime, disentangling the case f = 1 (one-month uncertainty) from the case f = 12 (one-year

uncertainty).17 All plots show responses to one standard deviation changes in ejt, j = M,Y, F

in the direction that leads to an increase in its own variable Xit, i = M,Y, F , where XMt = UMt,

XY t = Yt and XFt = UFt, respectively. This normalization allows us to directly compare the

responses of real economic activity in the three volatility regimes.

In Figure 2 (which can be fully appreciated in color), the blue IRFs refer to the Great

Inflation period, the red IRFs to the Great Moderation period and the yellow IRFs to the

Great Recession+Slow Recovery period. The first row reports the response of macroeconomic

uncertainty to the three structural shocks, the second row reports the response of industrial pro-

duction, and the third row reports the response of financial uncertainty. In this case, confidence

bands have not been reported to ease reading.18 In order to compare results with a benchmark,

Figure 2 also plots the IRFs generated by the SVAR identified by the Lanne and Lütkepohl’s

(2008) method, discussed at the beginning of this section, i.e. the structural model based on

the specification in eq. (20) and regime-invariant autoregressive coefficients.

The graphs in Figure 2 suggest four main comments. First, there is evidence of substantial

time variation in the impulse responses: the estimated IRFs differ quantitatively and quali-

17To save space, a detailed comment of the IRFs in Figures 3-5 can be found in the Technical Supplement
18Recall that the reduced form analysis in Section 3.2 shows that there are significant differences between all VAR

coefficients (autoregressive parameters and covariance matrices) across the three volatility regimes. Accordingly,

the three IRFs in each graph of Figure 2 read as transformations of parameters which have been established to

be statistically different in their population values.
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tatively across the three volatility regimes. Although uncertainty shocks curb industrial pro-

duction growth in all three macroeconomic regimes, the persistence of the response and the

number of periods after which the negative peak is reached vary across regimes. Second, the

effects of macroeconomic uncertainty shocks on all variables are larger and more persistent in

the Great Recession+Slow Recovery period. In particular, macroeconomic uncertainty seems

to have played a sizable role in driving persistently down economic activity during this period.

Third, while real economic activity reacts negatively and persistently to uncertainty shocks, un-

certainty reacts only mildly to real activity shocks, if anything. Fourth, there exist differences,

as expected, between the IRFs estimated with our non-recursive SVAR and the IRFs produced

by keeping the structural parameters fixed.

Overall, combined with the reduced form evidence in Section 3.2, Figures 2-5 provide a posi-

tive answer to our second research question: the short-run relationship between uncertainty and

real economic activity changes qualitatively and quantitatively across macroeconomic regimes.

A researcher who ignores the regime-dependent nature of uncertainty shocks is likely to estimate

compounded effects, which hide the different dynamics displayed in the data.

The estimated IRFs can also be framed in a recent debate on the role of uncertainty during

the zero lower bound. According to Plante et al. (2018), during the zero lower bound, which

roughly coincides with the Great Recession+Slow Recovery period, macroeconomic variables

were more responsive to negative shocks hitting the economy because of the inability of the

Fed to use conventional instruments to stabilize the economy, inducing a general increase in

the uncertainty surrounding future growth. The IRFs in Figures 4 and 5 show that there is

indeed a difference in the response of uncertainty to real economic shocks when moving from

the Great Moderation to the Great Recession+Slow Recovery period. However, while this effect

helps to explain why the correlation between uncertainty and real economic activity increases

after the GFC (see the correlations in Table 1), it is not sufficient to claim that uncertainty is an

endogenous (causal) response to real economic activity shocks because according to our analysis

the response is at most lagged of one period, but is not instantaneous.

Finally, the estimated IRFs also line up with several contributions in the literature which

highlight how uncertainty shocks have had larger effects after the GFC. This can be due to

large financial frictions, as in Alfaro et al. (2018), Caggiano et al. (2017b), and Gilchrist et

al. (2014), or to the presence of the zero lower bound, as in Caggiano et al. (2017a) and Basu

and Bundick (2017). They also support theoretical and empirical research that highlights how

uncertainty shocks might have time-varying effects which depend on different macroeconomic

conditions like, e.g. the level of financial frictions (Alfaro et al., 2018; Gilchrist et al., 2014,

Alessandri and Mumtaz, 2014), the stance of the business cycle (Cacciatore and Ravenna, 2016;
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Caggiano et al., 2014), or the stance of monetary policy (Basu and Bundick, 2017, Caggiano et

al., 2017a).

4 Concluding remarks

This paper has addressed two controversial issues that characterize the empirical literature on

uncertainty: whether time-variation in uncertainty should be considered as an exogenous driver

of the business cycle or, rather, an endogenous response to it, and whether the real effects of

uncertainty shocks have changed over time with the changes in macroeconomic conditions. The

two issues have been analyzed simultaneously with a small-scale non-recursive SVAR estimated

on U.S. post-WW2 data, by resorting to an ‘identification-through-heteroskedasticity’ approach

which is novel in the literature on uncertainty. Unlike other existing identification approaches,

our framework allows us to jointly estimate regime-dependent effects of uncertainty shocks, and

is general enough to account for reverse causality, i.e. to allow for a contemporaneous response

of both real activity to uncertainty shocks and of uncertainty to real activity shocks.

Empirical results suggest that there are important differences in the impact and propagation

mechanism of uncertainty shocks across the three main macroeconomic regimes that characterize

the U.S. business cycle, and that uncertainty, both macro and financial, is better approximated

as an exogenous source of economic decline rather than an endogenous response to it. We

find that macroeconomic uncertainty shocks have always had a contractionary impact on real

activity, but that these effects have become larger since the GFC. In turn, after the 1980s,

financial uncertainty shocks affect real economic activity by fostering greater macroeconomic

uncertainty.

Overall, our findings support the theoretical models where uncertainty is treated as an ex-

ogenous driver of economic fluctuations, as in e.g. Bloom (2009) and Basu and Bundick (2017),

and the empirical specifications where uncertainty enters recursive SVARs. In this respect, our

analysis is partially consistent with the evidence reported in Ludvigson et al. (2018a) and is not

at odds with Carriero et al. (2018b).
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TS.1 Introduction

This Technical Supplement develops/expands a number of topics only partly discussed in the

paper and provides additional empirical results.

Section TS.2 formalizes the assumptions and regularity conditions which permit standard

asymptotic inference in the VAR system with breaks in the covariance matrix, which is at the

basis of our non-recursive SVAR specification and identification approach. Section TS.3 presents

an alternative equivalent parametrization of the non-recursive SVAR and compares our approach

with the one in Lanne and Lütkepohl (2008). Section TS.4 presents an alternative estimation

approach to the likelihood-based method discussed in the paper, which re-interprets the estima-

tion of our non-recursive SVAR with volatility regimes as a classic minimum distance (CMD)

problem. Section TS.5 summarizes how the proxies of uncertainty UMt and UFt used in the

paper and taken from Jurado et al. (2015) and Ludvigson et al. (2018), respectively, have been

constructed. Section TS.6 investigates whether the VAR systems based on Xt:=(UMt, Yt, UFt)
′,

X∗t :=(CSt, Yt, UFt)
′ and X∗t :=(UMt, Yt, CSt)

′, where CSt is a measure of credit spreads, are

‘informational sufficient’ in the sense of Forni and Gambetti (2014). Section TS.7 provides a

regime-by-regime comment of the IRFs plotted in Figures 3-5 of the paper. Section TS.8 inves-

tigates whether the estimated dynamic causal effects also support significant long-run impacts

as measured by cumulated long-run multipliers. Finally, Section TS.9 provides the graphs and

detailed comments for three main robustness checks which are only briefly mentioned in the

paper. Finally, Section TS.10 frames our paper in the empirical literature on the identification

of uncertainty shocks.
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TS.2 Model assumptions

In this section we formalize the set of assumptions behind the maximum likelihood estimation of

our non-recursive SVAR with breaks in the error covariance matrix. Since maximum likelihood

estimation is based on a Gaussian likelihood function, hereafter we denote our estimator with

the acronym QML, where ‘Q’ stands for quasi-maximum likelihood. For simplicity, we focus on

the case of m = 2 breaks and m+ 1 = 3 volatility regimes in the data, which is the situation we

face in the empirical section of the paper.

Our reference model is the SVAR discussed in Section 2 of the paper. The reduced form

belongs to the class of ‘VAR models with structural changes in regression coefficients and in

covariance matrices’ considered in Bai (2000), the only difference being that throughout the

paper we treat, without limiting the scopes of our analysis, the two volatility change points

(break dates) TB1 and TB2 as known. Our identification and estimation approach, however,

can also be applied by relaxing the assumption that TB1 and TB2 are known because it is in

principle possible to infer these dates directly from the data along the lines suggested by e.g.

Qu and Perron (2007) (see also references therein).

Let Ft:=σ(Xt, Xt−1, ..., X1) be the sigma-field generated by the sequence Xt, Xt−1, ..., X1

and let ‖·‖ be the Euclidean norm. Let (Π0
i ,Σ

0
η,i) be the true values of the VAR parameters

(Πi,Ση,i), i = 1, 2, 3 in eq.s (7)-(9) of the paper. T 0
Bi

= [Tτ0
i
], 0 < τ0

i
< 1, i = 1, 2 are the true

break dates.

Assumption 1 The sequence {ηt,Ft} is a MDS (E(ηt | Ft−1) = 0n×1) which, in addition,

satisfies the condition suptE(‖ηt‖4+δ) <∞.

Assumption 2 Σ0
η,i 6= Σ0

η,i+1, i = 1, 2, 3. In addition, each entry in Σ0
η,i is different from the

corresponding entry in Σ0
η,i+1. Each true regime parameter (Π0

i ,Σ
0
η,i) corresponds to that of a

stationary process so that unit roots and explosive roots are ruled out.

Assumption 3 T 0
Bi

= [Tτ0
i
], where τ0

i
is the true fraction of the sample, i = 1, 2, are known.

Assumption 1 is a relatively standard regularity condition which models the VAR distur-

bances as MDS (conditional on past information) and requires the existence of up to fourth

moments. The first part of Assumption 2 requires that the differences of unconditional co-

variance matrices across regimes involve all elements of the covariance matrix. Actually, for

the purposes of inference on the reduced form parameters, Assumption 2 could be relaxed by

simply requiring that there exists an entry in Σ0
η,i which is different from the corresponding

entry in Σ0
η,i+1. We impose the stronger condition that all elements of the covariance matri-

ces differ across volatility regimes to guarantee the identifiability of the non-recursive SVAR.
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More precisely, Assumption 2 posits that the covariance matrices Σ0
η,1, Σ0

η,2 and Σ0
η,3 provide

enough information to identify shocks in a non-recursive framework. We refer to Magnusson and

Mavroeidis (2014) for a thorough discussion of the inferential issues, including weak identifica-

tion issues, that may arise when possible instabilities in the moments and certain heterogeneity

in the data generating process is assumed; see also Lewis (2017). The second part of Assump-

tion 2 establishes that each volatility regime is characterized by ‘asymptotically stable’ VAR

processes. Assumption 3 posits that the break dates are known to the econometrician but, as

already observed, could be relaxed.

Under Assumptions 1-3, the inference on the parameters (Πi,Ση,i), i = 1, 2, 3 in the SVAR

is standard, see e.g. Bai (2000) and Qu and Perron (2007). Therefore, also the inference on the

IRFs stemming from the associated SVAR is of standard type.

TS.3 More on the identification through heteroskedasticity

In this Section, we provide examples of SVARs identified along the lines discussed in Section

2.2 of the paper (Subsection TS.3.1), and then discuss an equivalent reparameterization of our

non-recursive SVAR (Subsection TS.3.2). Here we also show that SVARs identified through

heteroskedasticity along the lines originally proposed by Lanne and Lütkepohl (2008) and then

generalized in Lanne et al. (2010), i.e. assuming that the elements of the matrix B do not

change across volatility regimes, reads as a very special case of our approach under a particular

set of conditions. As in the paper, we focus on the case of m = 2 breaks and m+ 1 = 3 volatility

regimes.

TS.3.1 Examples

Consider, for illustration, the SVAR for Xt:=(UMt, Yt, UFt)
′ (n = 3) estimated in the paper. The

three volatility regimes are associated with the three covariance matrices Ση,1, Ση,2 and Ση,3,

respectively. Let ‘×’ denote a generic parameter different from zero. Next we provide some

cases where the specified matrices B, Q2 and Q3, denoted B̃, Q̃2 and Q̃3, respectively, lead to

identified SVARs.

Case 1

B̃ :=


× × ×
× × ×
× × ×

 , Q̃2 :=


× 0 0

× × 0

× × ×

 , Q̃3 :=


× 0 0

0 × 0

0 0 ×

 .

The specified matrices B̃ (first regime) B̃+ Q̃2 (second regime) and B̃+ Q̃2 + Q̃3 (third

regime) are non-recursive, and it is seen that in the move from the first to the second
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volatility regime only the structural parameters in the lower triangle of B̃ change, while

in the move from the second to the third volatility regime only the diagonal elements

of B̃+ Q̃2 change. In this case, dim(θ) = 18 = r = 3/2n(n + 1), hence the necessary

order condition is satisfied. Obviously, the necessary and sufficient rank condition must be

checked by evaluating the full column rank of the Jacobian J(θ) := ∂g(θ)
∂θ′ , see Bacchiocchi

and Fanelli (2015) for details.

Case 2

B̃ :=


× 0 0

× × 0

× × ×

 , Q̃2 :=


× × ×
0 × ×
0 0 ×

 , Q̃3 :=


× 0 0

0 × 0

0 0 ×

 .

The specified matrix B̃ (first regime) is recursive, while B̃+ Q̃2 (second regime) and

B̃+ Q̃2 + Q̃3 (third regime) are not. In particular, only the diagonal element change in

the move from the second to the third volatility regime. In this case, dim(θ) = 15 <

r = 3/2n(n + 1) = 18, hence the necessary order condition is satisfied and the SVAR is

overidentified (with r − dim(θ) = 3 overidentification restrictions), provided the ‘×’ that

enter the Jacobian J(θ) := ∂g(θ)
∂θ′ are such that J(θ) has full column rank rank 15.

Case 3

B̃ :=


× × 0

× × 0

0 0 ×

 , Q̃2 :=


× 0 ×
× × 0

× 0 ×

 , Q̃3 :=


0 0 ×
× × ×
0 0 ×

 .

This is the structure estimated in the paper (see the upper panel of Table 2). The spec-

ified matrices B̃ (first regime), B̃ + Q̃2 (second regime) and B̃ + Q̃2 + Q̃3 (third regime)

are non-recursive and feature ‘endogenous uncertainty’. In this case, dim(θ) = 16 < r =

3/2n(n+ 1) = 18, hence the necessary order condition is satisfied and the SVAR is overi-

dentified (with r − dim(θ) = 2 overidentification restrictions) provided the ‘×’ that enter

the Jacobian J(θ) := ∂g(θ)
∂θ′ are such that J(θ) has full column rank 16.

TS.3.2 Alternative parameterization

We discuss an alternative but equivalent parametrization of the non-recursive SVAR presented in

Section 2.2 of the paper. In Section 2.2 of the paper, the structural shocks have been normalized

such that their variance is the identity matrix in all three volatility regimes i.e. E(ei,te
′
i,t) = In,

for i = 1, 2, 3, where ei,t is the vector of structural shock at time t in regime i. Actually, it is
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possible to consider an equivalent specification of our SVAR in which the structural shocks ei,t

are allowed to have covariance matrices given by

E(ei,te
′
i,t) = Λi :=


λi,1 0 0

0 λi,2 0

0 0 λi,3

 , i = 1, 2, 3

where λi,j is the variance of the structural shock to variable j in volatility regime i. In this case,

eq. (10) in the paper becomes:

ηt = B◦Λ
1/2
1 e◦1t 1 ≤ t ≤ TB1

ηt = (B◦ +Q◦2)Λ
1/2
2 e◦2t TB1 < t ≤ TB2

ηt = (B◦ +Q◦2 +Q◦3) Λ
1/2
3 e◦3t TB2 < t ≤ T

where e◦it:=Λ
−1/2
i ei,t, i = 1, 2, 3 and with B◦, (B◦ +Q◦2) and (B◦ +Q◦2 +Q◦3) we denote the

analogs of the matrices B, (B +Q2) and (B +Q2 +Q3) in eq. (10). These matrices are subject

to the set of identifying restrictions:

ψ◦ = G◦θ + d◦

which represent the counterpart of the linear restrictions in eq. (13) of the paper. In this case,

however, ψ◦ := (vec(B◦)′, vec(Q◦2)
′, vec(Q◦3)

′, vecd(Λ1)
′, vecd(Λ2)

′, vecd(Λ3)
′)′ is 3(n2+n), where

vecd(·) is the vec operator which selects only the diagonal elements of a matrix, G◦ is a known

selection matrix of dimensions 3(n2 +n)×dim(θ), θ is the vector of free (unrestricted) elements

that enters the matrices B◦, Q◦2, Q
◦
3, Λ1, Λ2 and Λ3, and d◦ is a known vector 3(n2 + n). In

this setup, a typical identification restriction is the normalization of the diagonal elements of

the matrices B◦, (B◦ +Q◦2) and (B◦ +Q◦2 +Q◦3) to ‘1’. The vector ψ◦ will be 3n2 × 1 vector

when this normalization is incorporated in the analysis.1

With this alternative parameterization, the moment conditions in eq.s (10)-(12) of the paper

become

Ση,1 = B◦Λ1B
◦′ (TS.1)

Ση,2 = (B◦ +Q◦2) Λ2 (B◦ +Q◦2)
′ (TS.2)

Ση,3 = (B◦ +Q◦2 +Q◦3) Λ3 (B◦ +Q◦2 +Q◦3)
′ (TS.3)

1Bacchiocchi (2017) proposes a different parametrization that allows both changes in the structural parameters

and in the variances of the shocks across different volatility regimes, without normalizing the diagonal elements to

‘1’, but he considers an additional matrix of structural parameters (denoted A matrix) in the parameterization.
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and the necessary order conditions and the necessary and sufficient rank conditions for identifi-

cation are similar to the one discussed in the paper.2

Defined ιj to be the j-th column of the identify matrix, the dynamic response of Xt+h to

a shock in variable j at time t of size ej,t = δj is in this case summarized by the (population)

IRFs:

IRFj(h):=


R′(A1)

hRB◦ 1
λ1,j

Λ1ιjδj t ≤ TB1

R′(A2)
hR (B◦ +Q◦2)

1
λ2,j

Λ2ιjδj TB1 < t ≤ TB2

R′(A3)
hR(B◦ +Q◦2 +Q◦3)

1
λ3,j

Λ3ιjδj t > TB2

h = 0, 1, ..., hmax

j = M,Y, F

(TS.4)

which, apart from the scaling, mimic the ones in eq. (15) of the paper. Here, R is a selection

matrix, Ai, i = 1, 2, 3 are the VAR companion matrices in the three volatility regimes and hmax

is the largest horizon considered.

Apparently, this alternative parameterization is more general than the one used in the paper

because in this case the difference Ση,1 6= Ση,2 6= Ση,3 is (apparently) explained either by the

changes in the variance of the structural shocks eit in the three volatility regimes, or by the

different impact of the shocks across the volatility regimes if Q◦2 6= 0n×n and Q◦3 6= 0n×n or,

possibly, by a combination of these two factors. Actually, given B◦, Q◦2, Q
◦
3, Λ1, Λ2 and Λ3 that

satisfy the moment conditions in eq.s (TS.1)-(TS.3), it is always possible to find matrices B, Q2

and Q3 such that it holds

BB′ = B◦Λ1B
◦′ (TS.5)

(B +Q2) (B +Q2)
′ = (B◦ +Q◦2) Λ2 (B◦ +Q◦2)

′

(B +Q2 +Q3) (B +Q2 +Q3)
′ = (B◦ +Q◦2 +Q◦3) Λ3 (B◦ +Q◦2 +Q◦3)

′

meaning that it exists an equivalent parameterization of the SVAR which can be expressed in

the form of eq.s (10)-(12) of the paper. This is indeed obtained by choosing B,Q2 and Q3 as

B = B◦Λ
1/2
1

Q2 = (B◦ +Q◦2) Λ
1/2
2 −B◦Λ1/2

1 = B◦(Λ
1/2
2 − Λ

1/2
1 ) +Q◦2Λ

1/2
2

Q3 = (B◦ +Q◦2 +Q◦3) Λ
1/2
3 − (B◦ +Q◦2) Λ

1/2
2 = (B◦ +Q◦2)(Λ

1/2
3 − Λ

1/2
2 ) +Q◦3Λ

1/2
3

and means, for instance, that the on-impact effects of the shocks in the third period, which are

captured by the elements of the matrix (B◦ +Q◦2 +Q◦3) Λ
1/2
3 , can be equally captured by the

2It means that also in this case we have a nonlinear relationship of the form σ+ = g◦(θ) in which g◦(·) is a

nonlinear differentiable vector function such that the Jacobian matrix J◦(θ) := ∂g◦(θ)
∂θ′ must be regular and of full

column rank when evaluated in a neighborhood of the true parameter value θ0.
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matrix (B +Q2 +Q3).
3

Finally, consider the Lanne and Lütkepohl (2008)’s approach to the identification of SVARs

through heteroskedasticity, see also Lanne et al. (2010). As is known, in the case of three

volatility regimes the changes Ση,1 6= Ση,2 6= Ση,3 do not depend in this setup on the changes in

the on-impact coefficients. It is therefor possible to refer to the simultaneous diagonalization:

Ση,1 = BB′ (TS.6)

Ση,2 = BΛ2B
′ (TS.7)

Ση,3 = BΛ3B (TS.8)

in which Λ2 6= Λ3 6= In are two diagonal matrices with positive elements on the diagonal which

must satisfy a set of identification conditions discussed in detail in Lanne et al. (2010) and

Kilian and Lütkepohl (2017, Ch. 14). Since the matrix B in eq.s (TS.6)-(TS.8) is kept constant,

the IRFs produced by the so-identified SVAR do not change across volatility regimes. It is

further seen that in this case, there are r = 3/2(n)(n+ 1) reduced form elements in the matrices

Ση,1,Ση,2 and Ση,3, and n2+2n elements in the matrices B, Λ2 and Λ3, hence the system features

3/2(n)(n+ 1)− n2 + 2n =1/2(n)(n− 1) = 3 (testable) overidentification restrictions. It is then

possible to test the empirical validity of the SVAR by testing the overidentification restrictions

implied by the specification in eq.s (TS.6)-(TS.8).

Assume now that the matrix B is specified ‘full’ with its n2 elements unrestricted. We denote

this situation with B := Bf . Conditional on B := Bf , the representation in eq.s (TS.6)-(TS.8)

is equivalent to our representation in eq.s (10)-(12) of the paper if it holds the equality(
Bf +Q2

)(
Bf +Q2

)′
= BfΛ2B

f ′(
Bf +Q2 +Q3

)(
Bf +Q2 +Q3

)′
= BfΛ3B

f ′

which is valid if

Q2:=B
f (Λ

1/2
2 − In)

Q3:=B
f (Λ

1/2
3 − Λ

1/2
2 ).

This result shows that also in our approach, for B := Bf , Q2 and Q3 can be chosen such

that one obtains the same parameterization as in Lanne and Lütkepohl (2008)’s which leads to

regime-invariant IRFs.

3However, it is worth stressing that the zero identification restrictions one imposes on the parameterization

based on B◦, Q◦2 and Q◦3 (given Λ1, Λ2 and Λ3), do not necessarily have zero couterparts in the parameterization

based on B, Q2 and Q3.
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TS.4 Alternative estimation approach

In this section we sketch an alternative estimation approach for our baseline non-recursive SVAR.

The alternative estimation method reads as classical minimum-distance (CMD) approach and

does not require the Gaussian density (within regimes) assumption which characterizes the

Gaussian maximum likelihood used in the paper.

The idea is that the relationship in eq. (14) of the paper, written here as

σ+ − g(θ) = 0r×1 (TS.9)

can be interpreted as a measure of distance between the reduced form parameters (error variances

and covariances) in σ+ and the structural parameters θ. Moreover, under Assumptions 1-3 we

can estimate σ+ consistently so that eq. (TS.9) forms the basis for the CMD estimation of θ.

Our starting point is the condition

T 1/2(σ̂+T − σ
+
0 )

d−→ N(0r×1, Vσ+)

which holds under Assumptions 1-3 of Section TS.2. Here σ̂+T :=(vech(Σ̂η,1)
′, vech(Σ̂η,2)

′, vech(Σ̂η,3)
′)

is a consistent (say, OLS) estimate of σ+, σ+0 is the true value of σ+, the symbol ‘
d−→’ denotes

converge in distribution as T → ∞, and Vσ+ is a block-diagonal asymptotic covariance matrix

with form

Vσ+ :=


Vσ+

1

Vσ+
2

Vσ+
3

 , Vσ+
i

:=2D+
3 (Ση,i ⊗ Ση,i)(D

+
3 )′ , i = 1, 2, 3 (TS.10)

where D+
3 :=(D′3D3)

−1D′3 is the Moore-Penrose inverse of the duplication matrix D3 (Magnus

and Neudecker, 2007); empty spaces denote zeros. Notice that Vσ+ can be estimated consistently

by V̂σ+ by simply replacing Ση,i with their consistent estimates Σ̂η,i := 1
Ti

∑Ti
t=1(Xt−Π̂iWt)(Xt−

Π̂iWt)
′, i = 1, 2, 3 in eq. (TS.10).

We have all the ingredients to define the CMD estimation problem:

min
θ

(
σ̂+T − g(θ)

)′ (
V̂σ+

)−1 (
σ̂+T − g(θ)

)
(TS.11)

which provides a CMD estimate θ̂T . When r >dim(θ), a test of overidentification restrictions

implied by the SVAR specification is immediately available after estimation, because under the

null hypothesis σ+0 = g(θ0) it holds:

T
(
σ̂+T − g(θ̂T )

)′ (
V̂σ+

)−1 (
σ̂+T − g(θ̂T )

)
d−→ χ2(r − dim(θ)). (TS.12)
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As an example, we have reported in the two panels of Table TS.1 the CMD estimates of

the parameters of the baseline SVAR specified in eq.s (18)-(19) of the paper (with asymptotic

standard errors only), considering both the standard measure UMt of macroeconomic uncertainty

that characterizes the model presented in the paper and its ‘purged’ counterpart, UpMt, discussed

in Section TS.9.2. Comparing the estimates in the upper panel of Table TS.1 with the Gaussian

maximum likelihood estimates reported in the lower panel of Table 2 of the paper, we notice

that results are numerically similar. Accordingly, the IRFs implied by the CMD estimation will

be substantially similar to the ones reported in the paper. The analysis of the finite sample

performances of the CMD and the Gaussian maximum likelihood methods in SVARs identified

through heteroskedasticity, and their comparison in the presence of non-normal distributions

are important topics which deserve a thorough investigation which goes beyond the scopes of

the paper and of this supplementary material.

TS.5 Measures of uncertainty

In this section we briefly review how the two proxies of uncertainty used in the paper have been

built.

Following Jurado et al. (2015) and Ludvigson et al. (2018), the time series that proxy the

uncertainty indexes Uit(f), i = M,F , where f denotes the uncertainty horizon (f = 1 one-month

uncertainty and f = 12 one-year uncertainty in the paper), are estimated as the average of the

time-varying volatility, as produced by stochastic volatility models, of the forecast error of each

series in a large panel of macroeconomic (UMt(f)) and financial variables (UFt(f)), conditional

on information available.

To keep presentation as simple as possible, consider the quantity:

Uit(f):= lim
Ni→∞

1

Ni

Ni∑
j=1

U ijt(f) , i = M,F (TS.13)

where Ni is the number of time series in category i = M,F for which individual indices of the

type

U ijt(f):=
(
E
[(
eijt+f

)2 | It])1/2 , i = M,F (TS.14)

are computed. In eq. (TS.14), eij,t+f :=vij,t+f − E(vij,t+f | It); vij,t+f is the individual time

series at time t + f that belongs to the category i = M,F ; It is the information set available

at time t; E(vij,t+f | It) is the conditional forecast of vij,t+f based on information It; eij,t+f
is the associated conditional forecast error. Eq. (TS.14) defines the uncertainty associated

with the jth variable in the category i = M,F as the square root of the conditional volatility

generated by the (unpredictable) forecast error associated with that variable. Eq. (TS.13)
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aggregates all the individual uncertainties in the category i = M,F. In particular, NM = 134

‘monthly macroeconomic time series’ covering the sample 1960M7-2015M4 are used for UMt(f)

and NF = 147 ‘monthly financial indicators’ are used for UFt(f); see Ludvigson et al. (2018)

and references therein for details.

We now focus on how the individual measures of uncertainty that enter eq. (TS.14) are

estimated in practice. Jurado et al. (2015) use factor augmented autoregressive models to

estimate the conditional forecasts E(vij,t+f | It) and the decomposition eij,t+f = γij,t+fε
i
j,t+f ,

where εij,t+f is iidN(0,1) and γij,t+f is driven by stochastic volatility models of the form

log
(
γij,t+f

)2
= αij + δij log

(
γij,t+f−1

)2
+ τ ijξj.t+f , ξj,t+f ∼ iidN(0, 1) , i = M,F

where the parameters (αij , δ
i
j , τ

i
j) are subject to standard regularity conditions. Given the

estimates of (αij , δ
i
j , τ

i
j) for the jth variable in the category i = M,F , one gets the dynamics of

U ijt(f) in eq. (TS.14) and from these the measures of uncertainty in eq. (TS.13) are obtained

by aggregation.

The measures of macroeconomic and financial uncertainty UMt and UFt are plotted in Figure

TS.1 for f = 1, and are the variables which enter our baseline VAR.

TS.6 Information sufficiency and omitted variables analysis

In this section we check the ‘informational sufficiency’ of the small-scale VAR estimated in the

paper by using the testing procedure of Forni and Gambetti (2014). For each macroeconomic

regime, we consider an augmented VAR system (a FAVAR) comprising Xt plus a vector of

factors, included in the vector Vt, extracted from the McCracken and Ng (2015)’s large set

of macroeconomic and financial variables. We then test whether Vt Granger-causes Xt. We

also investigate the properties of the structural shocks estimated from our baseline structural

specification with respect to some historical events. To do this, we divide this section into

two parts. In the first part, we analyze the information sufficiency of the reduced form VARs

for Xt:=(UMt, Yt, UFt)
′, X∗t :=(CSt, Yt, UFt)

′, and X∗◦t :=(UMt, Yt, CSt)
′. In the second part, we

describe some properties of the estimated structural shocks êt obtained from the non-recursive

SVAR for Xt:=(UMt, Yt, UFt)
′, see the specification in eq.s (18)-(19) of the paper and Table 2 in

the paper, and from the estimated SVARs for X∗t :=(CSt, Yt, UFt)
′, and X∗◦t :=(UMt, Yt, CSt)

′.

Informational sufficiency and omitted information

Given our small-scale system, a natural concern is whether the VAR for Xt := (UMt, Yt, UFt)
′

satisfies the necessary and sufficient conditions which permit to correctly recover the struc-

tural shocks of interest. To do so we test the ‘informational sufficiency’ of the specified VAR.
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Indeed, in light of the small dimension of Xt, not rejecting the informational sufficiency of

Xt:=(UMt, Yt, UFt)
′ allows us to rule out problems of nonfundamentalness, so that we can cor-

rectly estimate the effects of uncertainty shocks through IRFs. In practice, we estimate a

FAVAR model for the vector Wt:=(X ′t, V
′
t )′ where Vt:=(v1, v2t, v3t, v4t)

′ contains orthogonal fac-

tors extracted from a large set of macroeconomic and financial variables which jointly account

for almost 90% of the entire variability, see McCracken and Ng (2015), and then run Granger-

causality tests of Vt on Xt. This allows to check whether there exists a substantial discrepancy

between the econometrician’s information set and the agent’s information set which, if present,

would compromise the recovering of the shocks. We estimate the FAVAR for Wt on the Great

Inflation, Great Moderation and Great Recession+Slow recovery periods, respectively and on

each macroeconomic regime test whether Vt Granger-causes Xt. The upper panel of Table

TS.2 reports bootstrapped p-values associated with the test for the null of absence of Granger-

causality, equation-wise and at the system level.4 It can be noticed that the null hypothesis is

not generally rejected at the 5% level of significance.

The mid and lower panels of Table TS.2 repeat the same exercise for the two alternative

VAR specifications based on X∗t := (CSt, Yt, UFt)
′ and X∗◦t := (UMt, Yt, CSt)

′, respectively, CSt

being a measure of financial frictions proxied with the spread between yields on Baa- and Aaa-

rated long-term industrial corporate bonds (source FRED). As for the baseline specification,

also in this case there are no rejections of the null hypotheses, at least at the system level, at

the standard 5% (equation-wise we do not reject only at the 1% critical level).

The results reported in Table TS.2 refer to a FAVAR model with four lags for the dependent

variables and eight lags for the factors. The results, however, are robust to more parsimonious

specifications with respect to the number of factors included in the analysis.5

In addition to informational sufficiency, a further simple check can be directly based on

the structural shocks êjt, j = M,Y, F estimated from the baseline non-recursive SVAR for

Xt:=(UMt, Yt, UFt)
′ (see eq.s (18)-(19) and Table 2 of the paper). The shocks are obtained

through êt = B̂−1i η̂t, i = 1, 2, 3, where B̂1 = B̂, B̂2 = (B̂ + Q̂2) and B̂3 = (B̂ + Q̂2 + Q̂3) are

fixed at the estimates reported in Table 2 of the paper. It is natural to analyze whether êt still

contains predictable information with respect to the inflation rate (πt) and the federal fund rate

(it) which are variables excluded from the baseline three-equation VAR. To do so, we regress

êt := (êMt, êY t, êFt)
′ on two lags of πt and it and then test whether the associated regression

coefficients are jointly significant equation-wise and at the system level. The results of the tests

are reported in the upper panel of Table TS.3 in the form of bootstrapped p-values. It can

4All bootstrap exercises are carried out by adapting Kilian’s (1998) method. See footnote 15 in the paper for

details.
5The complete set of results is available from the authors upon request.
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be noticed that we do not reject the null hypothesis of irrelevant regressors at the 5% nominal

significance level. We repeat the same exercise considering the structural shocks estimated from

the non-recursive SVARs for X∗t := (CSt, Yt, UFt)
′ and X∗◦t := (UMt, Yt, CSt)

′, respectively, see

Section TS.9.1 below. Results are summarized in the mid and lower panels of Table TS.3 and,

again, suggest that the structural shocks produced by our small-scale non-recursive SVARs are

not seriously affected by the omission of the inflation rate and the federal funds rate.

As a final check, we come back on the factors Vt := (v1, v2t, v3t, v4t)
′ considered before in the

informational sufficiency analysis. We first perform a regression of êt on the first two lags of

the first factor (i.e. v1t−1 and v1t−2), which account for more than 55% of the total variability.

Then, we repeat the analysis by regressing êt on the first two lags of all four factors which jointly

account for almost 90% of the entire variability. The non rejection of the null hypothesis that

Vt does not bear relevant information on êt is substantially confirmed and is also valid for the

two alternative SVARs containing the credit spread indicator. The complete set of results is

reported in Table TS.4.

Estimated structural shocks and important historical events

Having verified the ‘statistical’ properties of the estimated structural shocks êjt, j = M,Y, F ,

plotted in Figure TS.2 for the baseline specification, we analyze qualitatively whether they

reproduce important historical events characterizing the U.S. and global economy. The upper

panel of Figure TS.2 plots the estimated macroeconomic uncertainty shock, êMt, the mid panel

plots the estimated real activity shock, êY t, and the lower panel plots the estimated financial

uncertainty shocks êFt. The horizontal dotted black lines in the graphs correspond to 2 standard

deviations above/below the unconditional mean of each series, while the shaded areas summarize

NBER official recession dates.

From the graphs, it clearly emerges that the estimated shocks are systematically higher in

coincidence of the NBER recession dates (the shaded areas in the graphs). An interesting ex-

ception refers to the so-called Black Monday (October 19, 1987), when stock markets crashed

around the world. The crash, originating from Hong Kong, almost immediately spreads to Eu-

rope, hitting also the U.S. The Dow Jones Industrial Average (DJIA) fell more than 22%. Other

interesting events are the International Monetary Fund (IMF) Crisis in the United Kingdom in

1976 which forced the government to borrow $3.9 billion from the IMF, generating instabilities

in the U.S. financial market as well, and the reactions of U.S. policy authorities in late 1978

that, facing with a collapse in confidence in the dollar, announced the mobilization of more than

$20 billion to defend the currency’s value in foreign exchange markets.

The graphs in Figure TS.2 interestingly also show that the identified macro and financial

uncertainty shocks are substantially different. Prominent macro uncertainty shocks are those
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corresponding to the two oil price shocks of the 1970s and the fiscal battles in the 2010s, while

the stock market crash in 1987 and the Asian crisis in the late 1990s are examples of two major

financial uncertainty shocks which did not cause any increase in macroeconomic uncertainty.

The GFC in 2007-2009 is an example of a shock that has increased both macro and financial

uncertainty. It is also interesting to notice that the identified financial uncertainty shocks is

consistent with the ‘event constraints’ in Ludvigson et al. (2018).

TS.7 Dynamic causal effects: regime-by-regime analysis

In this section we examine in detail, and separately for the three volatility regimes, the dynamic

causal effects estimated in the paper. In particular we focus on the IRFs reported in Figures

3-5 of the paper.

The differences between these IRFs in the three macroeconomic regimes can be appreciated

by looking at the numbers in Table TS.4 which extrapolate the significant peaks of the IRFs in

the three regimes, along with the number of months necessary to achieve these peaks. Table TS.4

indicates that within each macroeconomic regime, both the magnitude and persistence of the

effects of uncertainty shocks increase with the length of the uncertainty horizon f . Moreover, the

negative effects of uncertainty shocks tend to be higher on the Great Recession+Slow Recovery

sample, which is the period characterized by higher financial frictions after the GFC of 2007-2008.

Finally, it is seen that real economic activity shocks have a significant effect on macroeconomic

and financial uncertainty one month after the shock.

We now turn more specifically on the IRFs sketched in Figures 3-5 of the paper. Recall that

shaded areas represent 90% bootstrap confidence bands.

IRFs: Great Inflation. Figure 3 in the paper plots the dynamic responses of the variables

in Xt:=(UMt, Yt, UFt)
′ to each structural shock during the Great Inflation period (1960M8-

1984M3) considering both f = 1 (one-month uncertainty, blue line) and f = 12 (one-year

uncertainty, red line). The graphs show that positive shocks to macroeconomic uncertainty

lead to a decline in industrial production growth, which is statistically significant for a large

number of months. IRFs are shorter-lived and less persistent in the case f = 1. For f = 1, the

largest effect is on impact and is equal to -0.11 percentage points, while for f = 12 the negative

significant peak is obtained 8 months after the shock and is equal to -0.072 percentage points.

Positive shocks to financial uncertainty have lagged (recall that there is no instantaneous

impact according to the specification in eq.s (18)-(19) of the paper) and slightly less persistent

negative effects on industrial production growth relative to the case of macroeconomic uncer-

tainty shocks. The effect of financial uncertainty shocks lasts for roughly 12 months after the
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shock, reaches its maximum significant negative effect 3 months after the shocks and is equal to

-0.121 (f = 1) and -0.101 (f = 12) percentage points, respectively.

Notably, regardless of whether one considers macroeconomic or financial uncertainty shocks,

industrial production growth does not overshoot its trend after recovering, suggesting that the

decline in industrial production might be permanent.6 Conversely, for both f = 1 and f = 12,

macroeconomic and financial uncertainty do not respond significantly at any lag to shocks to

real economic activity.

Overall, for the Great Inflation period, the IRFs in Figure 3 of the paper corroborate the

hypothesis that both macroeconomic and financial uncertainty shocks trigger recessionary effects

(the latter with lags only). They also support the view that uncertainty acts as a driver, rather

than a consequence, of business cycle fluctuations.

IRFs: Great Moderation. Figure 4 of the paper plots the dynamic responses of the vari-

ables in Xt:=(UMt, Yt, UFt)
′ to each structural shock on the Great Moderation period (1984M4-

2007M12). The graphs show that positive shocks to macroeconomic uncertainty lead to a decline

in industrial production growth with a slowdown which remains statistically significant for about

12 months after the shock for f = 1, and for more than 20 months after the shocks for f = 12.

The peak effect of macroeconomic uncertainty shocks is on-impact and is equal to -0.076 percent-

age points for f = 1, while it occurs 4 months after the shock and is equal to -0.041 percentage

points for f = 12.

Positive shocks to financial uncertainty lead to a delayed decline in industrial production

growth. Indeed, for both f = 1 and f = 12, the highest significant negative effect are achieved

8 and 9 months after the shocks, respectively. Also in this case, both macroeconomic and

financial uncertainty shocks seem to lead to a permanent drop in industrial growth because

the dynamics of Yt does not overshoot its trend significantly after recovering. Interestingly,

positive shocks to financial uncertainty trigger a prolonged (more than 12 months) significant

response of macroeconomic uncertainty, while financial uncertainty does not respond significantly

to macroeconomic uncertainty shocks, confirming the indirect pass-through discussed in the

paper.

The estimated IRFs further confirm that the two measures of uncertainty do not respond

significantly to real economic activity shocks at any lag, other than on-impact.7

6This phenomenon is further scrutinized in the next section in which we report the associated cumulated long-

run multipliers which quantify the final effect of uncertainty shocks on the level of industrial production once all

dynamic adjustments have been taken into account.
7Bekaert et al. (2013) find a positive response of their measure of financial uncertainty to positive shocks to

industrial production growth: they consider the sample 1990M1-2007M7, which is compatible with our Great

Moderation period, but also their IRFs are not statistically significant. Popescu and Smets (2010) show that real
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Overall, the IRFs in Figure 4 in the paper show that both macroeconomic and financial

uncertainty curb real economic activity during the Great Moderation period. However, while

macroeconomic uncertainty exerts a direct impact on industrial production growth, financial

uncertainty fosters macroeconomic uncertainty on-impact and produces more delayed effects on

real economic activity.

IRFs: Great Recession+Slow Recovery. Figure 5 of the paper plots the dynamic

responses of the variables in Xt:=(UMt, Yt, UFt)
′ to each structural shock on the Great Infla-

tion+Slow Recovery period (2008M1-2015M4). In this case, positive shocks to macroeconomic

uncertainty lead to a sharp decline in industrial production growth with a slowdown which re-

mains statistically significant for about 10 months after the shock for both f = 1 and f = 12.

The highest negative impact of macroeconomic uncertainty shocks is reached 5 months after

the shock and is equal to -0.144 (f = 1) and -0.153 (f = 12) percentage points, respectively.

Compared to the previous subsamples, the response of industrial production is more persistent

and larger in magnitude.

Positive shocks to financial uncertainty produce comparatively more jagged responses of

industrial production growth. The highest negative significant peak is obtained 3 months after

the shock and is equal to -0.190 (f = 1) percentage points and -0.151 (f = 12) percentage points,

respectively. Again, positive shocks to financial uncertainty trigger an instantaneous increase

of macroeconomic uncertainty which lasts for more than 6 months, while financial uncertainty

does not respond significantly to macroeconomic uncertainty shocks, confirming the mechanism

detected also on the Great Moderation period.

Overall, the IRFs in Figure 5 in the paper show that the real effects of uncertainty shocks

have become larger during the Great Recession+Slow Recovery period. While macroeconomic

uncertainty has a direct impact on real economic activity, financial uncertainty fosters macroe-

conomic uncertainty on-impact and produces delayed effects on real economic activity.

As a final check on the relieability of the estimated dynamic causal effects, we have carried out

an exercise in which we have forced the reduced-form autoregressive parameters of the estimated

VAR to remain constant across volatility regimes (i.e. Π1 = Π2 = Π3 = Π in our notation),

and have re-estimated the structural parameters on the so-obtained covariance matrices. This

means that we have re-estimated the structural parameters based on the moment conditions

Ση1 = BB′, Ση2 = (B + Q2)(B + Q2)
′ and Ση3 = (B + Q2 + Q3)(B + Q2 + Q3)

′, subject

to the necessary and sufficient identification rank constraint. Thus, we have ‘frozen-out’ the

industrial production shocks in Germany have significant, yet non-monotonic, effects on perceived uncertainty.

In their case, both uncertainty and risk premia initially fall in response to positive output shocks, but eventually

increase.
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effect induced by the changes in the autoregressive parameters across volatility regimes. This

exercise has produced a new set of IRFs whose differences across regimes can solely be ascribed

to the changes in the structural parameters captured by the matrices Q2 and Q3. The so-

computed new IRFs are shown, in dashed lines, in Figure TS.3 and are contrasted with the just

commented IRFs computed in the paper (solid lines) under the (statistically verified) condition

Π1 6= Π2 6= Π3. We have not reported confidence bands to improve readibility.

As expected, given the rejection of the test of the constant autoregressive parameters in Table

1 of the paper, the differences in the IRFs in Figure TS.3 are much more accentuated across

regimes relative to those with constant autoregressive parameters. This is, of course, an expected

outcome. However, it can be noticed that important differences across regimes do emerge also

when the only source of variability are the changes in the structural parameters. This can be

appreciated by looking, for instance, at the dynamic response of macroeconomic uncertainty to

financial uncertainty shocks (graph in the position (1,3)). One crucial feature of our structural

model is the pass-through of financial uncertainty: in our setup, financial uncertainty shocks

affect the economy indirectly by triggering macroeconomic uncertainty. The graph shows that

even forcing the autoregressive parameters to hold constant across regimes (against the empirical

and statistical evidence) the impact is larger on the Great Recession+Slow Recovery.

However, the main message from Figure TS.3 is that ignoring variations in the autoregressive

parameters may lead one to wrongly estimate the dynamic causal effects of uncertainty shocks.

The graphs suggest that by falsely imposing the condition Π1 = Π2 = Π3 = Π may lead one to

underestimate the effects of the uncertainty shocks.

TS.8 Long-run multipliers

As is known, IRFs provide short-run (transitory) dynamic causal effects. In addition, IRFs are

explicitly aimed at identifying ‘structural shocks’ rather than measuring causal links between

time series, see e.g. Dufour and Renault (1998), Bruneau and Jondeau (1999), Yamamoto and

Kurozumi (2006) and Dufour et al. (2006) for a thorough discussion. For instance, it can

be easily shown that zero on-impact responses may become non-zero after a certain number of

periods. In this section we complement the analysis based on the IRFs reported in the paper with

long-run total multipliers (or long-run cumulative impulse response matrix). These multipliers

capture the (cumulative) limit impact of the structural shocks on the variables, if statistically

significant, by taking into account all dynamic adjustments at work in the system.8

8Interestingly, while Granger-noncausality at all horizons implies a long-run multiplier equal to zero, the

converse does generally not hold, hence the condition of zero long-run effect is less stringent than the one of

absence of Granger-causality at all forecasting horizons, see e.g. Fanelli and Paruolo (2010).
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In our setup, long-run multipliers are given by

CIRFj=

∞∑
h=0

IRFj(h):=


R′(I3 −A1)

−1Rb̃j t ≤ TB1

R′(I3 −A2)
−1R(b̃j + q̃2j) TB1 < t ≤ TB2

R′(I3 −A3)
−1R(b̃j + q̃2j + q̃3j) t > TB2

j = M,Y, F

where we have used the same notation as in the paper. The structural specification of the SVAR

is that in eq.s (18)-(19) of the paper. Estimates are summarized in Table TS.6 for f = 1 (one-

month uncertainty) and f = 12 (one-year uncertainty), respectively. The upper panel of Table

TS.6 refers to the baseline non-recursive SVAR for Xt:=(UMt, Yt, UFt)
′, the middle panel refers

to the non-recursive SVAR based on X∗t :=(CSt, Yt, UFt)
′ , while the lower panel refers to the non-

recursive SVAR based on X∗t :=(UMt, Yt, CSt)
′, where CSt is proxied by considering the spread

between yields on Baa- and Aaa-rated long-term industrial corporate bonds. In both cases the

structural specification is summarized in eq.s (18)-(19) of the paper. Each estimated long-run

multiplier is associated with a bootstrap-based standard error. Recall that since we consider

the long-run cumulative impulse response matrix, the estimates obtained in correspondence of

‘eMt → Yt’, ‘eFt → Yt’ and ‘eCSt → Yt’ capture the long-run effect of uncertainty shocks and

credit shocks on the industrial production level.

The multipliers in Table TS.6 confirm that regardless of macroeconomic regimes and the

length of the uncertainty horizon f , macroeconomic uncertainty shocks cause a permanent de-

cline in real economic activity. The long-run total multiplier associated with macroeconomic

uncertainty shocks is negative and strongly significant. Instead, the long-run multipliers asso-

ciated with the impact of financial uncertainty shocks are not statistically significant. Overall,

Table TS.6 leads one to rule out the hypothesis that a rebound takes place after uncertainty

shocks curb economic activity. Indeed, the long-run (permanent) effect of these shocks is ei-

ther negative and significant (macroeconomic uncertainty shocks), or not significant (financial

uncertainty shocks).

Focusing instead on the reverse causality issue, the long-run multipliers in Table TS.6 show

that there are no significant long-run effects of real economic activity shocks on macroeconomic

and financial uncertainty.

Finally, results in the lower panel of Table TS.6 confirm that while credit spreads shocks

do not have permanent long-run effects on financial uncertainty, financial uncertainty shocks

trigger a strong deterioration of credit conditions. This result is particularly evident on the

Great Recession+Slow Recovery period.
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TS.9 Robustness checks

In this section we report a set of robustness checks that complement the results discussed in the

paper and above. In Section TS.9.1 we analyze the role of financial frictions. In Section TS.9.2

we replace the measure of macroeconomic uncertainty used in the paper, UMt, with a measure

of ‘real uncertainty’, denoted UpMt , which is obtained by purging UMt from variables associated

with financial markets. Finally, in Section TS.9.3 we check whether results are robust to the use

of a different proxy of real economic activity, i.e. employment (growth).

Overall, the robustness checks discussed throughout this section show that the main findings

of the paper hold true after changing the baseline specification in different directions, i.e. (i)

uncertainty, both macroeconomic and financial, is better characterized as an exogenous driver

of the business cycle rather than an endogenous response to it, (ii) financial uncertainty shocks

affect real economic activity mostly indirectly by triggering macroeconomic uncertainty on-

impact; (iii) the effects of (macroeconomic) uncertainty shocks are time-varying and depend on

the macroeconomic regime.

TS.9.1 Financial frictions

The baseline empirical analysis reported in the paper considers macroeconomic and financial

uncertainty jointly but ignores financial frictions. As argued in Bachmann et al. (2013), the

prolonged negative response of production to a surprise increase in uncertainty might indicate

that channels other than ‘wait and see’ may be relatively more important in the United States.

A number of recent papers have brought attention to such alternative channels. Arellano et al.

(2012) build a quantitative general equilibrium model in which an increase in uncertainty, in

the presence of imperfect financial markets leads firms to downsize projects to avoid default;

this impact is exacerbated through an endogenous tightening of credit conditions and leads to

a persistent reduction in output. Similarly, Christiano et al. (2014) develop a large-scale New

Keynesian model with financial frictions in which risk shocks have persistent effects on output.

The role of financial frictions as amplifiers of the effects of uncertainty shocks and cause of

possible permanent decline in economic activity is also rationalized in Gilchrist et al. (2014),

Alessandri and Mumatz (2018) and Alfaro et al. (2018). Caldara et al. (2016) and Caggiano

et al. (2017b) analyze the interaction between financial conditions and economic uncertainty

and find that uncertainty shocks have an especially negative impact in situations where they

trigger a tightening of financial conditions. Furlanetto et al. (2017) disentangle the role of

credit and uncertainty shocks and find that shocks originating in the credit markets have larger

and longer-lived effects than uncertainty shocks. A common element in these contributions is
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that uncertainty interacts with financial frictions to generate sizable and persistent reductions

in production.

We estimate non-recursive SVARs for two different vectors of endogenous variables: X∗t :=

(CSt, Yt, UFt)
′ and X∗◦t :=(UMt, Yt, CSt)

′, respectively, where CSt is the spread between yields

on Baa- and Aaa-rated long-term industrial corporate bonds (source FRED). The reduced form

analyses of these systems, not reported here but available upon request to the authors, confirm

the existence of three broad volatility regimes in the data which can be associated with the

Great Inflation, Great Moderation and Great Recession+Slow Recovery, respectively.

The identification schemes in these two cases are slightly different with respect to those

specified in the paper and can be summarized as follow:

X∗t := (CSt, Yt, UFt)
′:

B̃ :=


× 0 0

× × 0

× 0 ×

 , Q̃2 :=


× 0 0

0 × 0

× 0 ×

 , Q̃3 :=


× 0 0

0 × ×
× 0 ×

 ; (TS.15)

X∗◦t := (UMt, Yt, CSt)
′:

B̃ :=


× 0 0

× × 0

× × ×

 , Q̃2 :=


× 0 ×
× × 0

× 0 ×

 , Q̃3 :=


0 0 0

× × 0

0 0 ×

 . (TS.16)

The former (eq. (TS.15)) has the same logic as the specification in eq.s (18)-(19) of the

paper, the main difference being that macroeconomic uncertainty is replaced by the chosen

proxy of financial frictions. The SVAR is overidentified (14 structural parameters are estimated

using 18 moment conditions coming from the reduced-form residuals) and the LR test for the

overidentification restrictions has a p-value equal of 0.15. Thus, the model is not rejected by

the data. The latter (eq. (TS.16)) is based on the idea that macroeconomic uncertainty shocks

can immediately affect real economic activity since the Great Inflation, with potential different

effects across volatility regimes. Also in this case the SVAR is overidentified (with 3 degrees of

freedom) and the LR test for the overidentification restrictions has a p-value equal to 0.07, hence

we do not reject the null hypothesis at the 5% nominal level of significance. Both specifications in

eq.s (TS.15)-(TS.16) incorporate the hypothesis that financial and macroeconomic uncertainty

do not respond on-impact to real economic activity shocks, i.e. the exogeneity of the two sources

of uncertainty. This assumption is in line with the findings discussed in the paper for the main

specification.
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The estimated matrices B̃, Q̃2 and Q̃3 are not reported to save space but can be ob-

tained from the authors upon request. The implied IRFs are plotted in Figures TS.4-TS.6

(X∗t := (CSt, Yt, UFt)
′) and Figures TS.7-TS.9 (X∗◦t :=(UMt, Yt, CSt)

′), respectively. The base-

line findings discussed in the paper on the contractionary effect of uncertainty shocks are con-

firmed also controlling for first-moment financial shocks: the effect is more pronounced during

the Great Recession+Slow Recovery period.

TS.9.2 Real uncertainty

For f := 1, the proxies of uncertainty UFt(1) and UMt(1) plotted in Figure TS.1 display co-

movement but also have independent variations, as the correlation between them is ‘only’ 0.58.

Part of this correlation might be simply due, however, to the fact that UMt(f) includes by con-

struction also the uncertainty from a category of financial variables which potentially overlap

with the variables used to build the index UFt(f). For this reason, we proceed by employing a

measure of macroeconomic uncertainty which is extracted from a smaller dataset including only

real activity indicators (‘real uncertainty’, UpMt). We re-estimate our non-recursive SVAR by

simply replacing UMt(f) with UpM,t(f), adopting the same structural specification discussed in

the paper (see eq.s (18)-(19)). Results are summarized in Table TS.7, which reproduces exactly

Table 2 in the paper

The interesting fact that emerges from the results in Table TS.7 is that the empirical evidence

on reverse causality/exogeneity discussed in Section 3.4 of the paper is strengthened. Now the

LR test for the two overidentification restrictions featured by this model is equal to 1.36 and

has a p-value of 0.44, hence the model is supported by the data at the 5% level of significance.

Focusing more specifically on the parameter bMY , which captures the on-impact response of

macroeconomic uncertainty to real economic activity shocks in the three volatility regimes, it

is seen that this is not statistically significant. The hypothesis of ‘exogenous’ macroeconomic

uncertainty is largely supported by the data as the LR test for bMY = 0 is equal to 0.0012 and

has a p-value of 0.97. The estimated parameter q2,FM proves to be not strongly significant,

confirming our intuition that since the eighties the pass-through between the two sources of

uncertainty is one-way: from financial uncertainty shocks to macroeconomic uncertainty.

The estimated structural model in the lower panel of Table 2 incorporates the two restrictions

in eq. (19) of the paper. In this case, the LR test for the four overidentification restrictions

featured by the SVAR is equal to 2.36 with associated p-value of 0.50. A LR test for the

structural model in the lower panel against the one in the upper panel of Table 2 is equal to

1.01 and has p-value equal to 0.60. Overall, the empirical evidence based on Xt := (UpMt, Yt, UFt

)′ supports the specification in eq.s (18)-(19).
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The dynamic causal effects estimated in this case are qualitatively and quantitatively compa-

rable to those reported in the paper with the ‘extended’ indicator for macroeconomic uncertainty

UMt. Figures TS.10-TS.12 plot the implied IRFs for both f = 1 (yellow line) and f = 12 (green

line) and Yt = ∆ipt (industrial production growth).

TS.9.3 Real economic activity: employment growth

In this section we reproduce the analysis presented in the paper for the baseline case Xt :=

(UMt, Yt, UFt)
′ by measuring real economic activity by Yt = ∆empt, where empt is the log of

the employment level (source: FRED database).

The reduced form analysis confirms the existence of three broad volatility regimes in the data

which can be associated with the Great Inflation, Great Moderation and Great Recession+Slow

Recovery periods, respectively. The structural specification is the same as the one in Section

3.3 of the paper (see eq.s (18)-(19)). Also in this case, the overidentification restrictions are

not rejected by the data when using the one-month uncertainty horizon f = 1, and is only

marginally rejected for the one-year uncertainty horizon f = 12. The complete set of results can

be obtained from the authors upon request.

Figures TS.13-TS.15 plot the dynamic responses of the variables in Xt := (UMt, Yt, UFt)
′

to each structural shock in the Great Inflation, Great Moderation and Great Recession + Slow

Recovery periods, respectively. Albeit there are quantitative differences relative to the baseline

case, overall, the analysis confirms qualitatively the results discussed in the paper using industrial

production growth for Yt.

TS.10 Related literature

The two main research questions discussed in the paper and the empirical findings connect our

analysis to different strands of the literature. Since our approach allows for time variation, our

paper relates to the contributions that have shown that uncertainty shocks have had effects that

are not constant over time, e.g. Beetsma and Giuliodori (2012), Choi (2013), Bontempi et al.

(2018), Mumtaz and Theodoridis (2018) and Caggiano et al. (2017b). The main message from

this strand of the literature is that uncertainty shocks are more powerful if the economy is in

extreme conditions, such as an economic recession and high financial strain. In line with them,

we also find that uncertainty shocks have possibly time-varying effects which can be associated

with macroeconomic (volatility) regimes. All these contributions, however, either identify and

estimate recursive SVARs separately on different sub-samples, or estimate time-varying recursive

SVARs which cannot account for the reverse causality issue.
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Our findings on the larger effects of uncertainty shocks in the aftermath of the GFC are in

line with Basu and Bundick (2017) and Caggiano et al. (2017a), who highlight the role played by

the stance of monetary policy in magnifying the effects of uncertainty shocks. Differently from

their papers, we do not investigate the causes of why real activity reacts more in the GFC, but

we confirm their findings with a more general identification approach that, crucially in a period

of high economic and financial turmoil, does not require a recursive structure. We can also relate

to the findings by Plante et al. (2018). These authors contend that, since during the zero lower

bound the central bank was unable to offset negative shocks by applying ‘conventional’ methods,

macroeconomic variables were more responsive to the negative shocks hitting the economy and,

accordingly, the uncertainty surrounding future growth increased. According to this ‘endogenous

uncertainty’ mechanism, the response of macroeconomic uncertainty to real economic activity

shocks in the Great Moderation period should differ substantially from the response in the Great

Recession+Slow Recovery regime, which roughly coincides with the zero lower bound period.

Our empirical results support only partially this mechanism: in line with Plante et al. (2018),

our estimated IRFs show that in the Great Recession+Slow Recovery regime real economic

activity shocks trigger a significant response of uncertainty. Unlike them, however, we find that

this happens only with a lag, and not on-impact, a result that does not lend support to the

‘endogenous uncertainty’ mechanism. More generally, in our setup macroeconomic uncertainty

does not respond contemporaneously to real economic shocks in all volatility regimes.

On the methodological side, our paper is related to works that have identified uncertainty

shocks using non-recursive schemes. Recent examples are methods based on the combination

of external instruments with other restrictions (Ludvigson et al. 2017; Piffer and Podstawski,

2017; Carriero et al., 2015), methods based on the penalty function approach (Caldara et al.

2016) and methods based on sign restrictions (e.g. Furlanetto et al. 2017). None of these

contributions, however, has examined the joint issue of reverse causality and time dependence.

Finally, the links to Carriero et al. (2018) and Ludvigson et al. (2018) have been examined

exhaustively in the paper.
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TABLE TS.2. Information sufficiency: Bootstrap p-values of the Granger causality tests for the

first four factors in the FAVAR model.

GI: 1960M8-1984M3 GM: 1984M4-2007M12 GR+SR: 2008M1-2015M4

VAR for XF
t := (UMt, Yt, UFt, v1, v2, v3, v4)

′

UMt 0.20 0.06 0.99

Yt 0.05 0.02 0.88

UFt 0.20 0.61 0.88

System 0.08 0.32 0.87

VAR for X∗Ft := (CSt, Yt, UFt, v1, v2, v3, v4)
′

CSt 0.01 0.17 0.13

Yt 0.01 0.02 0.05

UFt 0.12 0.49 0.20

System 0.07 0.26 0.08

VAR for X∗◦◦Ft := (UMt, Yt, CSt, v1, v2, v3, v4)
′

UMt 0.03 0.17 0.75

Yt 0.01 0.02 0.70

CSt 0.01 0.30 0.32

System 0.02 0.12 0.43

Notes: Upper panel: the FAVAR model contains the variables XF
t :=

(UMt, Yt, UFt, v1, v2, v3, v4)
′. Mid panel: the FAVAR contains the variables X∗Ft :=

(CSt, Yt, UFt, v1, v2, v3, v4)
′. Lower panel: the FAVAR model contains the variables

X∗◦◦Ft := (UMt, Yt, CSt, v1, v2, v3, v4)
′. In all specifications, vit, i = 1, . . . , 4 are the first

four factors described in Section TS.6, Yt = ∆ipt (industrial production growth) and CSt

is the proxy of financial frictions. ‘GI’=Great Inflation, ‘GM’=Great Moderation and

‘GR+SR’=Great Recession + Slow Recovery.
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TABLE TS.3. Structural shocks and monetary policy stance: Bootstrap p-values of the Granger

causality tests for interest rate (it) and inflation rate (πt) on the estimated structural shocks.

two lags for eight lags

it and πt it and πt

SVAR for Xt := (UMt, Yt, UFt)
′

êMt 0.05 0.04

êY t 0.18 0.89

êFt 0.73 0.88

System 0.28 0.39

SVAR for X∗t := (CSt, Yt, UFt)
′

êCSt 0.62 0.12

êY t 0.24 0.61

êFt 0.39 0.47

System 0.44 0.22

SVAR for X∗◦t := (UMt, Yt, CSt)
′

êMt 0.07 0.10

êY t 0.43 0.81

êCSt 0.75 0.20

System 0.35 0.25

Notes: Upper panel: the structural shocks are estimated through a SVAR for Xt :=

(UMt, Yt, UFt)
′. Mid panel: the structural shocks are estimated through a SVAR for X∗t :=

(CSt, Yt, UFt)
′. Lower panel: the structural shocks are estimated through a SVAR form

X∗◦t := (UMt, Yt, CSt)
′. Yt = ∆ipt (industrial production growth) and CSt is the proxy of

financial frictions. Overall sample: 1960M8-2015M4.
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TABLE TS.4. Structural shocks and factors: Bootstrap p-values of the Granger causality test

for the factors (v1, v2, v3, v4)
′ on the estimated structural shocks.

Shock two lags for two lags for eight lags for

v1t (v1, v2, v3, v4)
′ (v1, v2, v3, v4)

′

SVAR for Xt := (UMt, Yt, UFt)
′

êMt 0.15 0.06 0.66

êY t 0.25 0.14 0.50

êFt 0.34 0.85 0.86

System 0.29 0.45 0.51

SVAR for X∗t := (CSt, Yt, UFt)
′

êCSt 0.85 0.55 0.43

êY t 0.03 0.17 0.43

êFt 0.19 0.74 0.69

System 0.08 0.22 0.45

SVAR for X∗◦t := (UMt, Yt, CSt)
′

êMt 0.12 0.17 0.18

êY t 0.25 0.18 0.32

êCSt 0.52 0.56 0.76

System 0.18 0.25 0.50

Notes: Upper panel: the structural shocks are estimated through a SVAR for Xt :=

(UMt, Yt, UFt)
′. Mid panel: the structural shocks are estimated through a SVAR for X∗t :=

(CSt, Yt, UFt)
′. Lower panel: the structural shocks are estimated through a SVAR form

X∗◦t := (UMt, Yt, CSt)
′. In all specifications, vit, i = 1, . . . , 4 are the first four factors described

in Section TS.6. Yt = ∆ipt (industrial production growth) and CSt is the proxy of financial

frictions. Overall sample: 1960M8-2015M4.
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TABLE TS.5. IRFs estimated from the non-recursive SVAR, negative peaks (percentage points).

GI: 1960M8-1984M3 GM: 1984M4-2007M12 GR+SR: 2008M1-2015M4

f = 1 f = 12 f = 1 f = 12 f = 1 f = 12

SVAR for Xt := (UMt, Yt, UMt)
′

eMt → Yt −0.120(0) −0.060(10) −0.076(0) −0.071(2) −0.152(5) −0.163(5)

eFt → Yt −0.127(3) −0.107(3) −0.020(8) −0.023(10) −0.172(3) −0.129(3)

eY t → UMt − − − − −0.263(1) −0.014(1)

eY t → UFt − − − − −0.749(1) −

Notes: Highest negative (significant) responses of Yt = ∆ipt (industrial production growth) to

one standard deviation change in macroeconomic (eMt) and financial (eFt) uncertainty shocks

and highest negative (significant) responses of macroeconomic (UMt) and financial (UFt) uncer-

tainties to one standard deviation change in real economic activity shocks (eY t), at the one-month

(f = 1) and one-year (f = 12) uncertainty horizons, obtained from the non-recursive SVAR for

Xt := (UMt, Yt, UFt)
′ specified in eq.s (18)-(19) of the paper. In parenthesis the number of

months after the shock at which the highest negative peak is reached.
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TABLE TS.6. Long-run total multipliers.

GI: 1960M8-1984M3 GM: 1984M4-2007M12 GR+SR: 2008M1-2015M4

f = 1 f = 12 f = 1 f = 12 f = 1 f = 12

SVAR for Xt := (UMt, Yt, UFt)
′

eMt → Yt −1.7019
(0.7348)

−2.2196
(0.7967)

−0.9397
(0.3241)

−1.3127
(0.4036)

−1.3018
(0.558)

−1.3486
(0.5708)

eMt → UFt 0.2245
(0.3248)

0.1443
(0.1366)

0.2121
(0.2997)

0.0973
(0.175)

0.7513
(0.4044)

0.2146
(0.1711)

eY t → UMt 0.0461
(0.127)

0.169
(0.157)

−0.0593
(0.0423)

0.0112
(0.034)

−0.0919
(0.1579)

−0.0427
(0.1013)

eY t → UFt 0.1197
(0.1335)

0.0583
(0.0489)

−0.0475
(0.1496)

0.0081
(0.0634)

−0.0747
(0.2769)

−0.0011
(0.0992)

eFt → UMt 0.3168
(0.2428)

−0.0435
(0.2598)

0.1209
(0.0911)

0.07
(0.0782)

0.0851
(0.158)

−0.0197
(0.1254)

eFt → Yt −1.7768
(0.6393)

−0.9368
(0.6885)

−0.3133
(0.3502)

−0.2419
(0.4122)

−0.0525
(0.4943)

0.1828
(0.5672)

SVAR for X∗t := (CSt, Yt, UFt)
′

eCSt → Yt 0.2413
(0.4589)

0.3448
(0.4717)

−0.1688
(0.2913)

−0.1487
(0.3127)

−0.5377
(0.4641)

−0.4029
(0.6328)

eCSt → UFt −0.4068
(0.2485)

−0.1225
(0.0852)

−0.1285
(0.3389)

−0.0631
(0.1575)

−0.2388
(0.3179)

−0.152
(0.2585)

eY t → CSt −0.3419
(0.4268)

−0.2923
(0.4424)

−0.201
(0.268)

−0.2194
(0.2635)

−0.7212
(0.4572)

−0.4945
(0.8146)

eY t → UFt 0.0773
(0.1049)

0.0222
(0.0363)

0.0154
(0.1619)

0.004
(0.0732)

−0.0531
(0.2962)

0.0391
(0.1789)

eFt → CSt 2.9376
(0.8616)

3.1684
(0.9147)

1.0665
(0.4584)

1.0964
(0.5196)

1.5886
(0.5726)

1.9799
(1.3223)

eFt → Yt −1.2581
(0.4496)

−1.3002
(0.5684)

−0.3622
(0.3079)

−0.382
(0.3394)

−0.6925
(0.6284)

−0.7833
(0.8836)

SVAR for X∗◦t := (UMt, Yt, CSt)
′

eMt → Yt −1.0867
(0.3997)

−1.1889
(0.4896)

−0.8748
(0.3328)

−1.1436
(0.4141)

−1.7607
(1.0005)

−2.0008
(2.1123)

eMt → CSt 2.7605
(0.575)

3.0773
(0.7324)

1.1034
(0.4959)

1.698
(0.6011)

2.1507
(1.2396)

2.3079
(2.341)

eY t → UMt 0.0425
(0.0768)

0.1667
(0.0925)

−0.04
(0.0534)

0.0246
(0.044)

−0.0276
(0.3262)

0.0402
(0.2895)

eY t → CSt 0.0349
(0.3629)

0.6716
(0.4498)

−0.2027
(0.3469)

0.2476
(0.3949)

−0.4283
(1.0714)

−0.104
(1.546)

eCSt → UMt −0.3033
(0.1141)

−0.3115
(0.1259)

0.0764
(0.0916)

0.0063
(0.0717)

−0.0289
(0.3176)

−0.2374
(0.3108)

eCSt → Yt 0.6763
(0.316)

0.8896
(0.3524)

−0.225
(0.3409)

0.1253
(0.3919)

−0.1502
(0.8412)

0.8391
(1.5468)

Notes: Estimated long-run total multipliers produced by the non-recursive SVAR (see eq.s

(18)-(19) of the paper), for Xt := (UMt, Yt, UFt)
′ (top panel), X∗t := (CSt, Yt, UFt)

′ (middle

panel), and X∗◦t := (UMt, Yt, CSt)
′ (bottom panel), at one-month (f = 1) and one-year (f = 12)

uncertainty horizons, Yt = ∆ipt (industrial production growth) and CSt is the proxy of

financial frictions. Bootstrap standard errors in parenthesis. ‘GI’=Great Inflation, ‘GM’=Great

Moderation and ‘GR+SR’=Great Recession + Slow Recovery.
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