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LEGENDRE EQUIVALENCES OF SPHERICAL BOLTZMANN MACHINES

GIUSEPPE GENOVESE AND DANIELE TANTARI

Abstract. We study either fully visible and restricted Boltzmann machines with sub-Gaussian random
weights and spherical or Gaussian priors. We prove that the free energies of the spherical and Gaussian
models are related by a Legendre transformation. Incidentally our analysis brings also a new purely
variational derivation of the free energy of the spherical models.

1. Introduction

Originally inspired by statistical physics [1], Boltzmann machines (BMs) [2, 3] are among the most
studied data generative models, playing a central role in the phenomenal progresses of machine learning
through neural networks of the last two decades. In particular restricted BMs (RBMs) constitute a
cornerstone of unsupervised learning, mainly for the very successful training algorithms developed [4, 5],
working also for many interesting deep architectures [6, 7, 8], for which RBMs are used as the basic building
blocks [9, 10].

Concretely a BM is a probability distribution of the Gibbs type which is aimed to reproduce the true
distribution of the data. In the much useful neural network interpretation the units of the machine should
mirror the data, that is typical configurations according to the BM distribution are desired to be close to
typical data. Therefore two ingredients are crucial to build up a BM: the energy function and the a priori
unit distribution. The main focus of the paper will be on fully visible BMs, namely Hopfiel models, and
RBMs with spherically symmetric priors. We will give a formula for the free energy of these BMs pointing
out a Legendre duality between rigid spherical priors and a certain quite general class of sub-Gaussian
distributions, already investigated for the Sherrington-Kirkpatrick energy [11]. This latter equivalence is
achieved by a suitable adaption of a very much established method from the statistical physics tradition,
namely equivalence of ensemble (spherical and Gaussian).

1.1. Set up. First we will introduce the models we will deal with. We start by the energy function.
Let {ξij}i=1,...,N1 ,j=1,...,N2

a doubly indexed sequence of i.i.d. centred sub-Gaussian r.vs. with

E[ξijξhk] = δihδjk ,

For definiteness we assume that
N1

N1 +N2
→ α ∈ (0, 1) .

We shall look at this sequence in two different ways, namely as entries of a N1×N2 random matrix Ξ or a
collection of N2 patterns in RN1 , defining a sample covariance matrix 1

N2
ΞΞT ∈ RN1×N1 . In either cases we

can use the following two important properties of rectangular random matrices with centred independent
subgaussian entries with unitary variance [12, 13]. For A ∈ RN×N we denote its eigenvalues as λi := λi(A),
i = 1, . . . N ; for A ∈ RN1×N2 we denote its singular values as σi := σi(A), i = 1, . . . N1.

P1) The empirical distribution of the eigenvalues of 1
N2

ΞΞT converges a.s. to the Marchenko-Pastur
law:

1

N1

N1∑
j=1

δ(λ− λi(
1

N2
ΞΞT )) ⇀ ρMP (λ;α) P− a.s.

where

ρMP (λ;α) := (2− 1

α
)+δ0(λ) +

(1− α)

2πα

√
(λ− λ−)(λ+ − λ)

λ
1[λ−,λ+](λ) (1.1)

with λ± :=
(

1±
√
α/(1− α)

)2

.
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P2) The spectrum of 1
N2

ΞΞT is localised in an interval with large probability:

P(‖ 1

N2
ΞΞT − I‖op ≥ t+

√
λ+ − 1) ≤ 2e−

N1t
2

2 . (1.2)

We will deal with two kind of Boltzmann machines: Hopfield models (HMs) and restricted Boltzmann
machines (RBMs). Their energy functions (or Hamiltonians) are

HHM
N1,N2

:= − 1

N1 +N2

N2∑
j=1

N1∑
i<k

ξijξkjxixk , (1.3)

HRBM
N1,N2

:= − 1√
N1 +N2

N2∑
j=1

N1∑
i=1

ξijxiyj (1.4)

(we will often drop all the indexes from the energies to lighten the notations).

In the Hopfield model units have one single choice for the prior distribution, while a RBM is an undi-
rected bipartite system in which we can have different priors for each layer. With this in mind, we can
now introduce the prior distributions we shall deal with. Let SN (R) be the (N − 1)-dimensional sphere in
RN with radius R

√
N . Define the following a priori probability measures on RN :{

σN,R(dx) uniform on SN (R) ;

γN,θ(dx) centred Gaussian with covariance θI .
(1.5)

Models with Gaussian priors are typically ill-defined for low temperatures and need a sub-Gaussian regu-
larisation. Let r : R 7→ R such that there is ε > 0 with

lim
x→∞

r(x)

x2+ε
=∞ .

We define the regularised prior on RN

ρN (dx) := e
−Nr

(
‖x‖√
N

)
γN,θ(dx) . (1.6)

For instance in [14] it was considered r(x) = βx4/4 while in [15, 11] r(x) = βx4/4− λx2/2.
This notion extends easily to two layer settings. We introduce some r : R2 7→ R so that

lim
x2+y2→∞

r(x, y)

x2
= lim
x2+y2→∞

r(x, y)

y2
=∞ .

Then we define the following measure on RN1 × RN2

ρ2
N1,N2

(dxdy) := e
−
√
N1N2r

(
‖x‖√
N1

,
‖y‖√
N2

)
γN1,θ(dx)γN2,θ(dy) . (1.7)

The idea is that ρ can be used to regularise a single layer, while ρ2 regularises two layers at once. A simple
example is low rank matrix factorisation with Gaussian priors in which r(x, y) = x2y2/2 [16].

One technical problem is that the support of σN,R has zero γN,θ-measure, that is γN,θ(SN (R)) = 0. For
this reason for a given ε > 0 we need to introduce the spherical shells

SN,R,ε := {x ∈ RN : R− ε ≤ ‖x‖2 ≤ R+ ε} . (1.8)

We denote (here and further |A| is the Lebesgue measure of the set A)

σN,R.ε(dx) := |Sε,N,R|−11{Sε,N,R}(x)dx

the uniform probability on a shell and note that it is a.c. w.r.t. γN,θ. We will also often make use of the
simple relation

|Sε,N,R| = ε|SN,R|+O
(
ε2
)
. (1.9)

With these definitions at hand, we can introduce the probability distributions defining our Boltzmann
machines. Let µ(·) ∈ {σ(·), γ(·), ρ(·)} and µ2

(·) ∈ {σ(·), γ(·)}⊗ {σ(·), γ(·)} ∪ {ρ2
(·)} denote one prior among the

one introduced before respectively for the one-layer and the bipartite machine. We have for β > 0

GHMN1,N2,β(dx) := Z−1
N1,N2,β

µN1
(dx)e−βH(x) GRBMN1,N2,β := Z−1

N1,N2,β
µ2
N1,N2

(dxdy)e−βH(x,y) . (1.10)
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The normalisation ZN1,N2,β is called partition function and it needs not to be the same, despite the symbol.
Moreover

AHMN1,N2
(β) :=

1

N1 +N2
logZN1,N2,β ARBMN1,N2

(β) :=
1

N1 +N2
logZN1,N2,β . (1.11)

Most interesting is to evaluate the last quantities in the so-called thermodynamic limit, namely

N1, N2 →∞ , such that lim
N1,N2

N1

N1 +N2
=: α > 0 .

The regime α 6= 0, 1 is called high-load and we will stick to that in this work.
Being Lipschitz functions of the weights, free energies always satisfies a concentration inequality which

ensures their a.s. convergence to the expected value. This self-averaging property will be exploited through-
out without further mention.

For simplicity we will assume always the distributions of the two layers to have the same parameters,
i.e. radius and variance. The general case requires a trivial extension of our formulas.

In general Aµ(X,α, β) denotes the free energy of a BM with prior µ whose parameters are X. We
will often drop the descriptive labels from the Hamiltonian, Gibbs measure and free energy when it will
be clear from the context to which one we refer to. Only exception, the quantities of interest referred to
spherical shell priors are indicated by ·̂ for all the models.

1.2. Main result and organisation of the paper. We will focus on the free energy associated to BMs
with the particular priors introduced above. We will prove the following equivalence at the level of free
energies, which can be related by a marginalisation (m) or a Legendre transform (LT):

HMσ RBMσ,γ RBMσσ RBMρ2

HMρ RBMργ

m

LT LT

LT LT

m

LT

We will not concern here about low-load (α = 0, 1), yet some of the equivalences we state hold also
in this regime. More precisely, red arrows indicate equivalences valid only in high load while blue arrow
equivalences hold regardless of α.

Marginalisation is the usual trick of RBMs. The two layers are coupled linearly, so that one can integrate
out á la Stratonovich the units from the Gaussian layer in the partition function of a RBM to obtain the
partition function of a HM (with β2 replacing β). All the relevant quantities (e.g. Gibbs measures, free
energy, order parameters etc) of one model can be computed directly from the one of the other one. For
instance the equivalence HMσ ↔ RBMσ,γ at the level of Gibbs measure reads as

Z−1
N1,N2,β

σN2,R(dx)

ˆ
RN2

γN2,θ(dy)eβH
RBM
N1,N2 = Z−1

N1,N2,β
σN1,R(dx)e

β2

θ2
HHMN1 ,

since the partition functions of the two models are numerically the same.
Legendre transforms are where the idea of equivalence of ensembles exploits and more precise statements

are given in Theorem 1.1 below. A Gaussian prior of N units concentrates on a N-dimensional sphere of
radius proportional to

√
N . To find the optimal radius we slice up the Gibbs measure at the level of

the Gaussian prior and look for the most relevant contribution to the free energy. This strategy yields
naturally a variational principle of the Legendre type relating the spherical and Gaussian free energies.
Moreover we identify the square radius of the optimal sphere R2 and the variance of the Gaussian model
θ−1 as Legendre conjugate variables.

The main idea is very simple; we briefly outline the heuristics for the equivalence RBMσσ
LT←→ RBMρ2

(the other cases are similar). By the standard disintegration of finite-dimensional Gaussian measures into
spheres we have ˆ

RN1×RN1

µ2(dxdy)e−βH(x,y)

=

ˆ ∞
0

dR1

ˆ ∞
0

dR2e
−
√
N1N2r

(
R1√
N1
,
R2√
N2

)
− R1

2θ1
− R2

2θ2

|SN1
(R1)× SN2

(R2)|
√

2πθ
N1+N2

ˆ
SN1

(R1)×SN2
(R2)

σN1,R1
(dx)σN2,R2

(dy)e−βH(x,y) . (1.12)
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We adjusted the normalisation of the inner integral so to get the partition function of RBMσσ. Thus we
continue the chain of identities as

(1.12) =

ˆ ∞
0

dR1

ˆ ∞
0

dR2e
−
√
N1N2r

(
R1√
N1
,
R2√
N2

)
− R1

2θ1
− R2

2θ2
+log

(
|SN1

(R1)×SN2
(R2)|

√
2πθN1+N2

)
+(N1+N2)Aσσ(R1,R2)

.

(1.13)
Then we can evaluate the integral by the usual Laplace method, since by a simple scaling argument the
maximum must be attained at the scale R1, R2 ∼

√
N1 +N2.

To give rigorous grounds to this heuristics we need some few properties. First, we have to control the
thermodynamic limit of the free energy of spherical models HMσ and RBMσσ. These limits are computed
in Section 2. Secondly, to properly implement the above disintegration formula, we need the regular
behaviour of the model with spherical shell prior as the thickness of the shell vanish. In other words, at
the level of free energy thermodynamics should favour those configurations on the shell which actually
lie on a given sphere into it. This is proven in sections 2 and 3. Lastly, the unit configurations outside
any ball of radius growing faster than

√
N1,
√
N2 must give vanishing contribution in the thermodynamic

limit. This is proven in Section 3, where the proof of our main result, i.e. subsequent Theorem 1.1, is
completed.

Theorem 1.1. Assume P1),P2) and let ρN , ρ2
N be defined as in (1.6), (1.7) and discussion around. Then

i) HMσ
LT←→ HMρ:

Aρ(θ, α, β) = α sup
R>0

(
α−1Aσ(R, β)− R2

2θ
+ logR− r(R)− 1

2
(log θ − 1)

)
; (1.14)

Aσ(R, β) = α inf
θ>0

(
R2

2θ
+ α−1Aρ(θ, α, β)− logR+ r(R) +

1

2
(log θ − 1)

)
. (1.15)

ii) RBMσσ
LT←→ RBMσ,γ :

Aσ,γ(θ,R2, α, β) = α sup
R1>0

(
α−1Aσσ(R1, R2, β)− R2

1

2θ
+ logR1 −

1

2
(log θ − 1)

)
; (1.16)

Aσσ(R1, R2, β) = α inf
θ>0

(
R2

1

2θ
+ α−1Aσ,γ(θ,R2, α, β)− logR1 +

1

2
(log θ − 1)

)
. (1.17)

iii) RBMσσ
LT←→ RBMρ2 :

Aρ2(θ, α, β) = sup
R1,R2>0

(
Aσσ(R1, R2)− αR2

1 + (1− α)R2
2

2θ
+ log(Rα1R

1−α
2 )−

√
α(1− α)r(R1, R2)− 1

2
(log θ − 1)

)
;

(1.18)

A(R1, R2) = inf
θ1,θ2>0

(
αR2

1

2θ1
+

(1− α)R2
2

2θ2
+Aρ2(θ1, θ2, α, β)− log(Rα1R

1−α
2 ) +

√
α(1− α)r(R1, R2) +

1

2
(log θα1 θ

1−α
2 − 1)

)
.

(1.19)

The other equivalences of the scheme above can be derived by combining i), ii), iii) and marginalisa-
tions. Albeit we will not include that in this paper, these dualities can be established also for the Gibbs
distributions (1.10).

1.3. Related literature. Once the model has been properly regularised, spherical, Gaussian or sub-
Gaussian priors are all equivalent; so we shall speak indistinctly of Gaussian BMs in what follows.

The use of Gaussian visible variables is useful to handle real data and has been suggested since the
beginning of the theory [17]. However the learning and retrieval capabilities of the fully visible BM
with Gaussian units are not as good as its ±1 counterpart at low-load [18], and at high-load they are
totally useless [19, 18]. Restricted architectures are more interesting. RBMs with Gaussian visible and
latent variables have been used for instance for factor analysis [20, 21] and collaborative filtering [22]. In
general training, through e.g. contrastive divergence, is slower than that in a Bernoulli-Gaussian machine
[23, 24, 25, 26] and also retrieval is less pronounced [18, 27].

Independently on their performances, Gaussian BMs are of great theoretical relevance from the view-
point of spin glasses, since their simpler mathematical structure helps our understanding of the, much
more complicated, discrete models. Previous results on the model have been obtained in [28] and [29]. In
[29] the authors achieve the same result as in our Theorem 2.2 and prove much more: fluctuations of the
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free energy are shown to be Gaussian in high temperature and Tracy-Widom for low temperature. The
assumptions on the weight distribution are more general then ours, as they only require finiteness of the
moments. Yet the method there employed is a sophisticated and technical random matrix argument and
our approach is certainly lighter and more accessible to non-specialists. In [28] a variational principle for
the free energy has been proven only for small β, by means of the so-called Latala method. One great merit
of the approach of this paper is to provide a clear interpretation of the replica symmetric nature of the
variational formula for the free energy (formulated in terms of the overlap), which is absent in [29] and in
the present work, even though by a direct comparison with [11] one can see that our Lagrange multipliers
(a, b below) are essentially shifted overlaps. In any case it is remarkable that the free energy of a doubly
spherical RBM satisfies a fully convex minimisation principle, which is a crucial difference compared to
the min max of Gauss-Bernoulli [30] and Bernoulli-Bernoulli RBMs [31]. The reason for that eludes our
current understanding and we must defer the discussion of this point to future works.

2. Free energy of spherical models

In this section we study the HM Hamiltonian (1.3) and RBM Hamiltonian (1.4) with the spherical prior
in (1.5). Our main results are

Theorem 2.1. Let AN1,N2 denote the free energy of HMσ. It holds P -a.s.

lim
N1,N2→∞

AN1,N2
= α min

2q≥β(1−α)λ+

(
qR2 − 1

2

ˆ
ρMP (λ;α) log(2q − β(1− α)λ)dλ− logR− 1

2

)
. (2.1)

Theorem 2.2. Let AN1,N2
denote the free energy of RBMσσ and α ≤ 1

2 . It holds P -a.s.

lim
N1,N2→∞

AN1,N2 = min
ab≥β2(1−α)λ+

(
R2

2
(αa+ (1− α)b)− 1

2
(1− 2α) log(b)

− α

2

ˆ
ρMP (λ;α) log(ab− β2(1− α)λ)dλ− logR− 1

2

)
. (2.2)

The choice α ≤ 1
2 is just a matter of convenience as it will be clear that pre-choosing the largest layer

simplifies a lot the notations. For α ≥ 1
2 one should bear in mind that the Marchenko-Pastur distribution

(1.1) has an atom in zero.
First of all we prove that the spherical shells constitute a good approximation of the spherical prior.

We recall that everywhere the quantities with ·̂ are always referred to spherical shell priors.

Lemma 2.3. Let ÂN1,N2,ε denote the free energy of HMσε , RBMσεσ or RBMσεσε . Then it is

lim
ε→0

lim
N1,N2

ÂN1,N2,ε = lim
N1,N2

lim
ε→0

ÂN1,N2,ε .

The existence of the limit in the r.h.s. will be proven below.

Proof. In this proof we write N to mean N1 or N2 and by Aσ(R;β) the free energy of a spherical model of
radius R, according to the context. No further details are needed. By Fubini and the mean value theorem
there is a R∗ε ∈ [R

√
N − ε,R

√
N + ε] for which

ÂN1,N2 = AσN1,N2
(R∗ε ;β) .

By a simple change of variables we have

AσN1,N2
(R∗ε ;β) = AσN1,N2

(R; cN,εβ) ,

with cN,ε := R2
ε/R

2N . Therefore by Lipschitz continuity of the free energy w.r.t. β

|AσN1,N2
− ÂN1,N2,ε| ≤

ε

N
.

This, combined with AσN1,N2
= limε→0 ÂN1,N2,ε, gives the assert. �

We first deal with the Hopfield model. Everywhere from now on partition function and pressure will be
referred to this model, unless otherwise specified.

The best advantage of the spherical prior is that one can diagonalise the energy (1.3):

H(x) = −(1− α)

N1∑
i=1

λix
2
i .
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Thanks to P2), we can restrict our analysis to disorder realisations with spectrum contained in (−∞, λ+].
More precisely

Lemma 2.4. For any a > λ+ there is a c > 0 such that

E[AN1,N2
(β,R)1{‖ΞΞT

N2
‖op>a}

] = O
(
e−cN1

)
. (2.3)

The proof of that follows essentially the same lines of [11]. We omit here the details. Also, the next
proof is a straightforward adaption of [11, Proof of (9)]. We give it completely in order to introduce the
argument used to prove Theorem 2.2.

Proof of Theorem 2.1. Let 2q > β(1− α)λ+. Then using (1.9) we have

εẐN1,N2,ε(β, α,R) = ε eqR
2N1

ˆ
RN1

σN1,R,ε(dz)e
−
∑N1
i (q− β(1−α)

2 λi)z
2
i (2.4)

≤ eqR
2N1

(2π)
N1
2

|SR√N1
|

ˆ
RN

dz

(2π)
N1
2

e−
∑N1
i (2q−β(1−α)λi)z

2
i /2

= eqR
2N1

(2π)
N1
2

|SR√N |
e−

1
2

∑N
i log(2q−β(1−α)λi) ,

therefore, since 1
N1

log
(
|SR√N1

|/
√

2π
N1
)
→ logR+ 1

2 and thanks to Lemma 2.3

lim sup
N1,N2

1

N1 +N2
logZN1,N2(β, α,R) ≤ αqR2− α

2

ˆ
ρMP (λ;α) log(2q−β(1−α)λ)−α logR− α

2
=: Ã(q) ,

whence, as Ã(q) is continuous,

lim sup
N1,N2

1

N1 +N2
logZN1,N2

(β, α,R) ≤ min
2q≥β(1−α)λ+

Ã(q).

Moreover for 2q > β(1− α)λ+

∂2
q Ã(q) = 2α

ˆ
dλ

ρMP (λ;α)

(2q − β(1− α)λ)2
> 0,

thus Ã(q) is convex and the minimum is attained in a unique point q̄.
Now the reverse bound. Let ε > 0 and ScN1,R,ε

the complementary set of the shell SN1,R,ε. It holds

εẐN1,N2,ε = eqR
2N1

(2π)
N1
2

|SR√N1
|

ˆ
RN1

dz

(2π)
N1
2

e−
∑N1
i (q− β(1−α)

2 λi)z
2
i−eqR

2N1
(2π)

N
2

|SR√N1
|

ˆ
ScN1,R,ε

dz

(2π)
N1
2

e−
∑N1
i (q− β(1−α)

2 λi)z
2
i .

For any η > 0 small enough we have
ˆ
ScN1,R,ε

dz

(2π)
N1
2

e−
∑N1
i (q− β(1−α)

2 λi)z
2
i ≤ exp

N1

η(R2 − ε

N1

)
− 1

2N1

∑
j

log(2q − βλj + 2η)


+ exp

N1

−η(R2 +
ε

N1

)
− 1

2N1

∑
j

log(2q − βλj − 2η)

 .
Note now that the r.h.s. is o(e−N ) if ε

N → ∞ as N → ∞. So the greatest contribution is at the scale
ε = ε̃N , ε̃ > 0 independent on N1. Therefore

lim inf
N1,N2

ÂN1,N2,ε̃ ≥ max
(
Ã(q), A1

ε̃(η; q), A2
ε̃(η; q)

)
, (2.5)

with

A1
ε̃(η; q) = α(q + η)R2 − αε̃η − α

2

ˆ
dλρMP (λ;α) log(2(q + η)− βλ)− α logR− α

2
; (2.6)

A2
ε̃(η; q) = α(q − η)R2 − αε̃η − α

2

ˆ
dλρMP (λ;α) log(2(q − η)− βλ)− α logR− α

2
. (2.7)

Now we show that if q̄ is the unique minimiser of Ã(q) it is for η small enough

Ã(q̄) = max
(
Ã(q̄), A1

ε̃(η; q̄), A2
ε̃(η; q̄)

)
,
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which will conclude the proof.
To do so we introduce

∆−(q; η) := Ã(q)−A1
ε̃(η; q) = −αη(R2 − ε̃) +

α

2

ˆ
dλρMP (λ;α) log

(
2(q + η)− βλ

2q − βλ

)
; (2.8)

∆+(q; η) := Ã(q)−A2
ε̃(η; q) = αη(R2 + ε̃) +

α

2

ˆ
dλρMP (λ;α) log

(
2(q − η)− βλ

2q − βλ

)
. (2.9)

As a function of η, ∆±(q; η) are continuous and differentiable, vanishing in η = 0 and with limη→+∞∆±(q, η) =
±∞. Moreover ∆+(q; η) is uniformly convex and ∆−(q; η) uniformly concave. Thus ∆−(q; η) assumes a
positive maximum iff the derivative in η = 0 is positive, that is

0 < −(R2 − ε̃) +

ˆ
dλ
ρMP (λ;α)

2q − βλ
= ε̃− ∂qÃ(q) . (2.10)

Likewise for ∆+(q; η) is always positive iff ∂η∆+(q; η)|η=0 ≥ 0, i.e.

0 ≤ (R2 + ε̃) +

ˆ
dλ
ρMP (λ;α)

2q − βλ
= ε̃+ ∂qÃ(q). (2.11)

Combining (2.10) and (2.11) we get
−ε̃ ≤ ∂qÃ(q)

∣∣∣
q=q̃

< ε̃ , ,

that is q̃ is the unique stationary point of Ã(q). With this choice of q, relation (2.5) gives

lim inf
N1,N2

ÂN1,N2.ε̃ ≥ min
q≥βλ+

Ã(q) . (2.12)

As ε̃ can be taken arbitrarily small, we recover (2.1). �

Now we pass to compute the free energy of RBMσσ by adapting the same method as before. Until the
end of this section, Hamiltonian, partition function etc will be referred to the RBMσσ. First step is to use
the singular value decomposition of the matrix {ξij} to write

1√
N1 +N2

(x, ξy) =
√

1− α
∑
i∈[N1]

σix̃iỹi , (2.13)

where x̃, ỹ are related respectively to x, y by an orthogonal transformation. Note that this decomposition
removes automatically N2 −N1 cyclic coordinates of the second layer.

First of all we show that the part of the spectrum which falls away the support of the Marchenko-Pastur
law is negligible for the free energy. The proof is adapted from [11] and we will stress only the most salient
points of it.

Lemma 2.5. There exists c, C > 0 so that

E[AN1,N2
1{maxi∈[N1] σi>σ̄}] ≤ Ce

−cN1 ,

where σ̄ := 1 +
√

α
1+α .

Proof. For any a > σ̄ we compute

E[eαβ
∑
i∈[N1] σix̃iỹi ] = E[eβ

∑
i∈[N1] σix̃iỹi1{maxi∈[N1] σi≤a}] + E[eβ

∑
i∈[N1] σix̃iỹi1{maxi∈[N1] σi>a}] .

The first summand is easily estimated by

E[eβ
∑
i∈[N1] σix̃iỹi1{maxi∈[N1] σi≤a}] ≤ E[eβa

∑
i∈[N1] x̃iỹi ] ≤ E[eβa‖x̃‖‖ỹ‖] . (2.14)

Arguing as in the proof of [11, Proposition 1] we can write for a C > 0

E[eβ
∑
i∈[N1] σix̃iỹi1{maxi∈[N1] σi>a}] ≤ Ca

√
2π(N1 +N2)e

β2

2(N1+N2)
‖x̃‖2‖ỹ‖2

. (2.15)

Then (2.14) and (2.15) give an annealed bound for the free energy:

lim sup
N1,N2

AN ≤ max

(
σ̄β
√
α(1− α)R2 ,

1

2
β2α(1− α)R2

1R
2
2

)
<∞ . (2.16)

With this bound at hand, we repeat mutatis mutandis the steps of the proof of [11, Lemma 1] to get

E[AN1,N21{maxi∈[N1] σi>σ̄}] ≤
√
α(1− α)β2R4 + a2

√
P (‖ΞΞT /N2 − I‖op ≥ t+

√
λ+ − 1) (2.17)

and the assert follows from (1.2). �
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Proof of Theorem 2.2. Now start from (2.13) and write for any a, b such that ab > β2(1− α)λ+

ZN1,N2 =

ˆ
σ1(dx)σ2(dy) exp

√1− αβ
∑
i∈[N1]

xiyiσi −
a

2
‖x‖2 − b

2
‖y‖2 +

a

2
R2N1 +

b

2
R2N2


= exp

(
R2

2
(aN1 + bN2)

)ˆ
σ1(dx)σ2(dy) exp

(
−1

2

N2∑
i=1

(zTi ,Mizi)

)
, (2.18)

where we have defined

zTi :=

{
(xi, yi) i = 1, . . . , N1 ,

(0, yi) i = N1 + 1, . . . , N2

and the 2× 2 symmetric positively defined matrix

Mi :=

(
a −β

√
1− ασi

−β
√

1− ασi b

)
, i ∈ [N1] Mi := diag(0, b) , i = N1 + 1, . . . , N2 .

Thus by (1.9)

ε2ẐN1,N2,ε ≤ exp

(
R2

2
(aN1 + bN2)

)
(2π)

N1
2 (2π)

N2
2

SRN1
SRN2

ˆ
dxdy
√

2π
N

exp

(
−1

2

N2∑
i=1

(zTi ,Mizi)

)
,

= exp

(
R2

2
(aN1 + bN2)

)
(2π)

N1
2 (2π)

N2
2

SRN1
SRN2

b−
N2−N1

2

N1∏
i=1

(ab− β2(1− α)σ2
i )−

1
2 . (2.19)

We introduce

Ā(a, b) :=
R2

2
(aα+ b(1− α))− logR− 1

2
− 1− 2α

2
log b− α

2

ˆ
ρMP (dλ;α) log(ab− (1− α)β2λ) . (2.20)

and
lim sup

N1,N2

AN1,N2
≤ Ā(a, b) , ∀a, b > 0 : ab > (1− α)β2λ+ .

A direct inspection shows that A(a, b) is jointly uniformly convex for any α ∈ [0, 1/2] if ab > (1−α)β2λ+,
therefore

lim sup
N1,N2

AN1,N2 ≤ min
ab>(1−α)β2λ+

Ā(a, b) . (2.21)

We record for later use the gradient coordinates

∂aĀ(a, b) =
αR2

2
− α

2

ˆ
ρMP (dλ;α)

b

ab− (1− α)β2λ
; (2.22)

∂bĀ(a, b) =
(1− α)R2

2
− 1− 2α

2b
− α

2

ˆ
ρMP (dλ;α)

a

ab− (1− α)β2λ
. (2.23)

For the reverse bound consider again spherical shells around SR,N1 and SR,N2 of thickness ε, that we
name respectively S1,ε and S2,ε. We split S1,ε = RN1 \Sc1,ε and S2,ε = RN2 \Sc2,ε and set Sε := S1,ε×S2,ε.
We have

ε2ẐN1,N2,ε := ε2

ˆ
σN1,R,ε(dx)σN2,R,ε(dy)e−βHN (x,y)

= exp

(
R2

2
(aN1 + bN2)

)ˆ
RN1×RN2

dxdy

|S1||S2|
exp

(
−1

2

N2∑
i=1

(zTi ,Mizi)

)

− exp

(
R2

2
(aN1 + bN2)

)ˆ
Scε

dxdy

|S1||S2|
exp

(
−1

2

N2∑
i=1

(zTi ,Mizi)

)
, (2.24)

where we used again the representation (2.18). The free energy associated to the first summand was already
computed above in the thermodynamic limit. Therefore we have to upper bound the second summand.
We consider four contributions according to the following decomposition. Let κ ∈ {−1, 1} and put

Sκ,1ε := {x ∈ RN1 , y ∈ RN2 : κ(‖x‖2 −R2N1) ≥ εN1 } ,
Sκ,2ε := {x ∈ RN1 , y ∈ RN2 : κ(‖y‖2 −R2N2) ≥ εN2 } .
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Thus Scε =
⋃
κ∈{−1,1},j∈{1,2} S

κ,j
ε . Moreover we pick η > 0 small enough and set

M
(κ,j)
i (η) :=

(
a+ (2− j)κη −β

√
1− ασi

−β
√

1− ασi b+ (j − 1)κη

)
, i ∈ [N1]

M
(κ,j)
i (η) := diag(0, b+ (j − 1)κη) , i = N1 + 1, . . . , N2 .

Also, we put

Zκ,jN1,N2,ε
:= exp

(
R2

2
(aN1 + bN2) +

(2− j)N1κηa

2
+

(j − 1)N2κηb

2
− ηεNj

)
ˆ
Sκ,jε

dxdy

|S1||S2|
exp

(
−1

2

N2∑
i=1

(zTi ,M
(κ,j)
i (η)zi)

)
(2.25)

so that
(2.24) = −

∑
κ∈{−1,1},j=1,2

Zκ,jN1,N2,ε
.

We conclude that for any η > 0 sufficiently small and a, b with ab > (1− α)β2λ+

lim sup
N1,N2

ÂN1,N2,ε ≥ max(Ā(a, b), {Aκ,jε (η; a, b)}κ∈{−1,1},j∈{1,2}) , (2.26)

where

Aκ,jε (η; a, b) := −ηε+
1

2
αa(R2 + (2− j)κη) +

1

2
(1− α)b(R2 + (j − 1)κη)

− logR− 1

2
− 1− 2α

2
log(b+ (j − 1)κη)

− α

2

ˆ
ρMP (dλ;α) log((a+ (2− j)κη)(b+ (j − 1)κη)− (1− α)β2λ) .

In analogy with the proof of Theorem 2.1 we define

∆κ,j
ε (η) := Ā(a, b)−Aκ,jε (η; a, b)

= ηε− (2− j)κηαa
2
− (j − 1)κ

η(1− α)b

2
+

1− 2α

2
log(b+ (j − 1)κη)

+
α

2

ˆ
ρMP (dλ;α) log

(
(a+ (2− j)κη)(b+ (j − 1)κη)− (1− α)β2λ

ab− (1− α)β2λ

)
.

We need to show that ∆κ,j
ε (η) ≥ 0 for η > 0 small. As before, to do so it suffices to prove the derivative

in the origin to be non-negative uniformly in ε > 0. Bearing in mind (2.22), (2.23) we have

d

dη
∆κ,j
ε (η)

∣∣
η=0

= ε+ (2− j)κ
(
−aαR

2

2
+
α

2

ˆ
ρMP (dλ;α)

(
b

ab− (1− α)β2λ

))
+ (j − 1)κ

(
−b(1− α)R2

2
+

1− 2α

2b
+
α

2

ˆ
ρMP (dλ;α)

(
a

ab− (1− α)β2λ

))
= ε− (2− j)κ∂aĀ− (j − 1)κ∂bĀ ≥ 0 .

Since the inequality must hold for any ε > 0, κ ∈ {−1, 1} and j ∈ {1, 2}, we have to pick (ā, b̄) = arg min Ā.
Therefore

lim sup
N1,N2

AN1,N2,ε ≥ max(Ā(ā, b̄), {Aε,κ1,κ2(η; ā, b̄)}κ1,κ2∈{−1,1}) = min
ab>β2(1−α)λ+

Ā(a, b) ∀ε > 0 ,

which combined with (2.21) proves the theorem. �

3. Legendre equivalences of priors

In this section we explain the Legendre equivalence of spherical models on general terms. First of all
we prove some a priori estimates ensuring the boundedness of the free energy in the thermodynamic limit.
This will be used to cut the tails of the Gaussian distributions of the prior.

The first quick remark is that combining Theorem 2.1 and a marginalisation we have

Corollary 3.1. Let AN be the free energy of RBMσ,γ . Then limN AN exists P -a.s.
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Next we focus on the Hopfield model with Gaussian prior previously defined.

Lemma 3.2. Let AN1,N2
be the free energy of HMρ. There is f(λ+, β) continuous and bounded for which

lim sup
N1,N2

E[AN1,N2 ] ≤ f(λ+, β) . (3.1)

Proof. Let a > λ+ and set for brevity λ∗ := maxi∈[N1] λi. We write

1

N1 +N2
E[logZN1,N2

] =
∑
k≥0

E

[
1

N1 +N2
logZN1,N2

| (k + 1)a ≥ λ∗ > ka

]
P ((k + 1)a ≥ λ∗ > ka) .

Inside the conditional expectation we can bound HN (z) ≤ a‖z‖2 . Therefore

E

[
1

N1 +N2
logZN1,N2

| (k + 1)a ≥ λ∗ > ka

]
≤ 1

N1 +N2
log

ˆ
γN1,θ(dx) exp

(
‖x‖2(βa(k + 1))−Nr

(
‖x‖√
N

))
≤ 1

N1 +N2
max
R≥0

(
R2(βa(k + 1))−N1r

(
R√
N1

))
= max

R≥0

(
R2(βa(k + 1))− r (R)

)
.

On the other hand by assumption

P ((k + 1)a ≥ λ∗ > ka) ≤ 2e−ca
2k2N1 , c > 0 . (3.2)

In conclusion
E[AN1,N2 ] ≤

∑
k≥0

e−ca
2k2N1 max

R≥0

(
R2(βa(k + 1))− r (R)

)
=: f(a, β) , (3.3)

a continuous bounded function. In particular the estimate holds also for a→ λ+. �

The analogue statement for RBMρ2 :

Lemma 3.3. Let AN1,N2
be the free energy of RBMρ2 . There is f(λ+, β) continuous and bounded for

which
lim sup

N1,N2

E[AN1,N2
] ≤ f(λ+, β) . (3.4)

Proof. Same proof as before, noting

β(1− α)
∑
i

σixiyi −
√
N1N2r

(
‖x‖√
N1

,
‖y‖√
N2

)
≤ β(1− α)a‖x‖‖y‖ −

√
N1N2r

(
‖x‖√
N1

)
≤ max

R1,R2

(β(1− α)aR1R2 − r(R1, R2))

for any a > σ+. �

The above results immediately allow us to achieve the following useful lemma.

Lemma 3.4. Let R, δ > 0, N ∈ N. It holds for some C, c > 0ˆ
{‖x‖2≥R2N1+δ

1 }
ρN1

(dx)e−βHN1,N2
(x) ≤ Ce−cN

1+δ
1 , (3.5)

ˆ
{‖x‖2≥R2N1+δ

1 }
γN1,θ(dx)σR,N2(dy)e−βHN1,N2

(x,y) ≤ Ce−cN
1+δ
1 , (3.6)

ˆ
{‖x‖2≥R2N1+δ

1 }∪{‖y‖2≥R2N1+δ
2 }

ρ2
N1,N2

(dxdy)e−βHN1,N2
(x,y) ≤ Ce−cN

1+δ
1 . (3.7)

Proof. We prove only (3.5), as (3.6), (3.7) are similar. Let us writeˆ
{‖x‖2≥R2N1+δ

1 }
ρ(dx)e−βHN1,N2

(x) ≤ e−
R2N

1+δ
1

2θ

ˆ
{‖x‖2≥R2N1+δ

1 }
γN1,2θ(dx)e

−βHN1,N2
(x)−N1r

(
‖x‖√
N1

)

≤ e−
R2N

1+δ
1

2θ ZN1,N2
(2θ) = exp

(
(N1 +N2)AN1,N2

(2θ)− R2N1+δ
1

2θ

)
.

Here we have emphasised the dependence on θ of partition function and free energy. Then (3.5) follows
from Lemma 3.3. �
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Now we are ready to prove the Legendre equivalences of Theorem 1.1. We shall prove only (1.14),
(1.16), (1.18); the dual relations (1.15), (1.17), (1.19) then follow directly, as one can easily verify the
inverse Legendre transformation to be also well defined and involutive.

We start by i), where we deal with a single Gaussian prior. Let ε > 0, δ > 0. From now on we
will systematically omit the dependence on δ of the objects we will operate with. Let further r < Nδ

1/ε,
R0 := 0, Rr+1 := Nδ

1 , {Ri}i=1,...,r ⊂ [0, Nδ
1 ) with |Ri+1−Ri| < 2ε, and decompose RN1 :=

⋃r
i=0 S

[i]
N1,ε
∪T ,

where
S

[i]
N1,ε

:= {z ∈ RN1 Ri
√
N1 ≤ ‖z‖2 ≤ Ri+1

√
N1} , T := {z ∈ RN1 ‖z‖2 ≥ N1

δ+ 1
2 } .

Comparing with (1.8) one easily sees that the S[i]
ε,N1

are spherical shells. We denote by σ[i]
N1,ε

the uniform
distributions on these shells. Then we have

ZρN1,N1
=

r∑
i=0

ZρN1,N2
[i] + Z̃ρN1,N2

, (3.8)

where
ZρN1,N2

[i] :=

ˆ
S

[i]
N1,ε

ρN1
(dx)e−βHN1,N2

(x) , Z̃ρN1,N2
:=

ˆ
T

ρN1
(dx)e−βHN1,N2

(x) .

The tail term Z̃ρN1,N2
gives a negligible contribution thanks to Lemma 3.4 and we will ignore it all the

time. Thus by (3.8) we get

max
i∈[r]

ZρN1,N2
[i] ≤ ZρN1,N2,β

≤ Nδ

ε
max
i∈[r]

ZρN1,N2
[i] .

Therefore setting

AN1,N2
[i] :=

(
1

N1 +N2
logZρN1,N2

[i]

)
(3.9)

we have
max
i∈[r]

(AN1,N2
[i]) ≤ 1

N1 +N2
logZρN1,N2

≤ max
i∈[r]

(AN1,N2
[i]) +

δ logN1 − log ε

N1 +N2
. (3.10)

So the free energy of HMρ is given by the limit of maxi∈[r] (AN1,N2
[i]), provided it exists.

We notice now that by continuity for any x ∈ S[i]
ε,N1

‖x‖2

2θ
+N1r

(
‖x‖√
N1

)
=
R̃2
iN1

2θ
+N1r

(
R̃i

)
+O (ε) (3.11)

where R̃i ∈ [Ri, Ri+1]. Therefore

ZρN1,N2,β
[i] = e−

R̃2
i N1
2θ −N1r(R̃i)−O(ε)

|S[i]
N1,ε
|

√
2πθ

N1

ˆ
σ

[i]
N1,ε

(dx)e−βHN1,N2
(x) (3.12)

and

AN1,N2 [i] =
N1

N1 +N2

(
1

N1
log

(
|S[i]
ε,N1
|

√
2πθ

N1

)
− R̃2

i

2θ
− r

(
R̃i

))
+ ÂεN1,N2

(
R̃i

)
+

O (ε)

N1 +N2

=: ÃN1,N2,ε

(
R̃i

)
+

O (ε)

N1 +N2
.

Thus we see that the existence of the thermodynamic limit is ensured by Lemma 2.3 and we have

lim
N1,N2

max
i∈[r]

(AN1,N2 [i]) = sup
R>0

lim
N1,N2

(
ÃN1,N2,ε(R)

)
=: sup

R>0
Ãε(R) .

By the uniform concavity of Ãε(R) we have

lim
ε→0

sup
R>0

Ãε(R) = sup
R>0

lim
ε→0

Ãε(R) = −α
2

log θ + α sup
R>0

(
logR+

1

2
+ α−1Aσ(R, β)− r(R)− R2

2θ

)
and the proof of (1.14) is concluded.

Note that in this argument the regularising function r plays essentially no role. So it can be set to zero
and repeat verbatim all the previous steps for the RBMσ,γ . This way we obtain (1.16).
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Finally we turn to RBMρ2 . Here we have to slice up both Gaussian priors and the previous construction
easily extends. We just sketch the argument, stressing only the points in which it differs from above. Let
ε > 0, δ > 0, r < N δ

1/ε, r′ < N δ
2/ε, R0, R

′
0 := 0, Rr+1 := Nδ

1 , R′r′+1 := Nδ
2 , {Ri}i=1,...,r ⊂ [0, Nδ

1 ) with
|Ri+1−Ri| < 2ε, {R′i}i=1,...,r′ ⊂ [0, Nδ

2 ) with |R′i+1−R′i| < 2ε. Decompose RN1×RN2 :=
⋃
i∈[r],j∈[r′] S

[i]
N1,ε
×

S′
[j]
N2,ε
∪ T , where

S
[i]
N1,ε

:= {z ∈ RN1 Ri
√
N1 ≤ ‖z‖2 ≤ Ri+1

√
N1} ,

S′
[i]
N2,ε

:= {z ∈ RN2 R′i
√
N2 ≤ ‖z‖2 ≤ R′i+1

√
N2} ,

T := {z ∈ RN1 ‖z‖2 ≥ N1
δ+ 1

2 } ∪ {z ∈ RN2 ‖z‖2 ≥ N2
δ+ 1

2 } .
Again T can be neglected due to Lemma 3.4. We have to evaluate

Zρ
2

N1,N2
[i, j] :=

ˆ
S

[i]
N1,ε
×S′[j]N2,ε

ρ2
N1N2

(dxdy)e−βHN1,N2
(x,y) ,

=
|S[i]
N1,ε
× S′[j]N2,ε

|
√

2πθ
N1+N2

e−
R̃2
i N1+R′2jN2

2θ −
√
N1N2r(R̃i,R̃′j)+O(ε)

ˆ
S

[i]
N1,ε
×S′[j]N1,ε

σ
[i]
N1,ε

(dx)σ
[i]
N1,ε

(dy)e−βHN1,N2
(x,y) ,

where the R̃i and R̃′i are introduced as before (see (3.11)). Therefore

AN1,N2,β [i, j] :=
1

N1 +N2
logZρ

2

N1,N2,β
[i, j]

=
1

N1 +N2
log

(
|S[i]
N1,ε
× S′[j]N2,ε

|
√

2πθ
N1+N2

)
+

O (ε)

N1 +N2
−
R̃2
i +R′

2
j

2θ

−
√
N1N2

N1 +N2
r
(
R̃i, R̃′j

)
+ ÂN1,N2,ε(R̃i, R̃j) ,

where ÂN1,N2,ε(R̃i, R̃
′
j) is the free energy of the RBM whose priors are the spherical shell measures of

centres R̃i, R̃′j . The argument to pass to the thermodynamic limit is then the same, so (1.18) is obtained.
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