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Abstract. In this paper, an approach that deals with the dynamic response of linear elastic 

truss structures with cracked members is presented. Crack depths are modeled as uncertain-

but-bounded variables. The objective of the study is the evaluation of the time-varying upper 

and lower bounds of the response of a truss structure with multiple cracks with uncertain in-

terval depths subjected to a deterministic excitation. The proposed procedure is validated 

through numerical tests on truss-like structures. The accuracy is evidenced by the excellent 

agreement between the response bounds calculated by the present approach compared with 

the exact bounds derived via a combinatorial procedure. 
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INTRODUCTION 

The present paper deals with the dynamic response of linear elastic structures with cracked 

members [1]. For a realistic prediction of the mechanical response of such structures, the una-

voidable uncertainty affecting the cracked members has to be taken into account. To this aim, 

the crack depths are modeled as uncertain-but-bounded variables [2]. The objective of the 

study is the evaluation of the time-varying upper and lower bounds of the response of a truss 

structure with multiple cracks with uncertain interval depths subjected to a deterministic exci-

tation. The analysis is performed by adopting a finite element approach where the crack in a 

member is modeled by introducing an additional local compliance that produces a disconti-

nuity of the displacement in correspondence of the cracked section [3,4]. The compliance of 

the cracked member is determined by simply adding the compliance of the intact element to 

the overall compliance due to the crack. In order to provide the bounds of the response, an 

approach originating from [5-9] is followed. It requires the derivation of the bounds of the in-

terval eigenvalues evaluated as solution of two suitable deterministic eigenvalue problems. 

The proposed procedure is validated through numerical tests on truss-like structures. The ac-

curacy is evidenced by the excellent agreement between the response bounds calculated by 

the present approach compared with the exact bounds derived via a combinatorial procedure 

(vertex method) [10]. The application of the method can be straightforwardly extended to 

frame-like structures with uncertain damage. 

FORMULATION OF THE PROBLEM 

1.1 Damaged member with uncertain-but-bounded crack depth  

Consider a linear elastic truss structure subjected to a dynamic load. The 1 × 4 displace-

ment vector for the i-th bar element of length Li, mass density , elastic modulus E and cross-

sectional area Ai, which connects node 1 to node 2 is ( ) ( ) ( ) ( ) ( )1 1 2 2ui t u t v t u t v t =    

(see Fig. 1).  

 

 

Figure 1: Bar element. 

We consider that the i-th element of the truss structure is damaged with a crack of depth ai. 

The presence of the crack increases the axial compliance of the i-th bar 

                                                           ( )i i ic c a=                                                                   (1) 

and it is taken into account introducing for the i-th damaged element an additional axial com-

pliance, named crack

ic , to the intact axial compliance, intact

ic . Parameter intact

ic  for an intact, ho-

mogeneous bar with a constant cross-section is given by 

                                                           / ( )intact

i i ic L EA=                                                             (2) 

u1(t) u2(t)

L

 , E, A

x

v1(t) v2(t)
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The additional compliance crack

ic  can be expressed by the following expression:  

                                       ( )
( )2 2

0

2 1
d

crackA

crack IN
i i crack

v K
c a A

E N

−  
=  

 
                                        (3) 

where crackA  is the cracked area, INK is the Mode I stress intensity factor [1], v is the Poisson 

ratio and N is the axial force. The total axial compliance of the i-th cracked element results 

equal to 

                                               ( ) ( )intact crack

i i i i ic a c c a= +                                                       (4) 

If the depth of the crack ai is modeled as an uncertain-but-bounded variable [ , ]i i ia a a =  in 

terms of its lower and upper bounds , it can be expressed following the interval analysis sym-

bolism [2] as  

                                            ( ) ( )0, 0,1 1 I

i i i i i ia a a e  = + = +                                            (5) 

with 0,ia  the mean crack depth (midpoint), i  representing the symmetric dimensionless 

fluctuation of the crack depth and  1,1I

ie = − the unitary interval. The superscript I stands for 

the interval value. Substituting 1I

ie = − in Eq. (5), the lower bound ia  of the crack depth is 

obtained, while substituting 1I

ie = in Eq. (5), the upper bound depth ia  is derived. In presence 

of r cracked bars, the midpoint vector 0a  of order 1r  collects  the midpoints 0,ia  while the 

vector  ,I =α α α α  collects the fluctuations of the uncertain crack depths around their mean 

values. Following a standard assembling procedure, the stiffness matrix of the truss structure 

with uncertain damage can be derived as: 

                                                  1

0 0( , ) ( , )K a α G C a α G
I T I−=                                               (6) 

where G  and T
G  are the compatibility and equilibrium matrices, respectively, and 0( , )I

C a α  

is the uncertain compliance matrix. Superscript T denotes the transpose of the matrix. 

1.2 Governing equation for a truss structure with cracked members  

Based on the previous considerations and assumptions, the governing equation of motion 

of a quiescent cracked truss structure with r damaged members under an external excitation 

( )tf  takes the following form: 

                   0 0 0 0 0( , ) ( , ) ( , ) ( , ) ( , ) ( )I I I I It t t t +  +  =M u a α D a α u a α K a α u a α f                 (7) 

where M is the mass matrix of the structure, 0( , )I
D a α is the damping matrix which is in turn 

affected by the presence of uncertainty in the cracked elements and 0( , )I
K a α  is the stiffness 

matrix of the structure as defined in Eq. (6). The interval vector 0( , )I tu a α  collects the nodal 

displacements, while symbol dot over a variable denotes differentiation with respect to time t. 

In this paper, a proportional damping matrix (Rayleigh model) is considered and expressed as 

a linear combination of the mass and stiffness matrices as: 

                                          0 0 1 0( , ) ( , )I Id d= +D a α M K a α                                                   (8) 
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where 0 1 and d d are the Rayleigh damping constants to evaluate.  

RESPONSE BOUNDS 

The solution of the dynamical problem involving interval parameters as expressed in Eq. 

(7) requires the evaluation of the interval vector collecting the dynamical response set at each 

instant i.e.  

      
 0 0 0( , ) ( , ), ( , )I t t t =u a α u a u a                      (9) 

In presence of uncertain-but-bounded parameters, the evaluation of the natural frequencies 

and associated mode shapes requires the solution of an interval eigenvalue problem expressed 

by:  

                  0 0 0 0( , ) ( , ) ( , ) ( , );     ( 1,2, , )I I I I

j j j j n= =K a α a α a α M a α                (10) 

In Eq. (10), 
2

0 0( , ) ( , )I I

j j =a α a α  represents the j-th interval eigenvalue and 0( , )a α
I

j  is 

the associated interval eigenvector, which affected by the uncertainties, turns out to be bound-

ed by interval vectors, namely 0 0( ) ( , )I

j ja a α  . Among of all possible eigenvalues satisfy-

ing Eq. (10), the matrix 0( , )I
K a α  assumes all possible values inside the interval defined by 

                     0 0 0 0 0 0 0( , ) ),  ) ( , )  ( ) ( ) ( )K a α K(a K(a K a α a a a
I

ij ij ijk k k = =                 (11) 

The aim is the evaluation of the narrowest interval enclosing all possible eigenvalues satis-

fying Eq. (10), i.e. [5-9]: 

                               0 0 0( , ) ( ), ( )a α a aj j j   =          (12) 

where 0( )j a  and 0( )j a  with ( 1, 2, , )j n= , represent the LB and UB of the j-th interval ei-

genvalue. 

The problem can be handled  by solving two deterministic eigenvalue problems reported in 

the following: 

( )

( )

(LB) (LB) (LB) (LB)

0 0 0 0 0 0

(UB) (UB) (UB) (UB)

0 0 0 0 0 0

, ( ) ( ) ( ) ; ( ) ( )

, ( ) ( ) ( ); ( ) ( ) ,  ( 1,2, ).

j j j j k jk

j j j j k jk j n

= 

=  =

K a α a a M a a M a

K a α a a M a a M a









    =

    =
 (13a,b) 

where jk  is the Kronecker delta, 
(LB)

0( )j a  and 
(UB)

0( )j a  are the eigenvectors associated to 

the eigenproblem in which =α α  and =α α , respectively. The eigenvectors of both 

eigenproblems are real vectors, while the eigenvalues are real and positive quantities. Notice 

that the two stiffness matrices ( )0 ,K a α  and ( )0 ,K a α  as well as the mass matrix M  are real, 

symmetric and positive definite matrices.  

As it can be noted from Eq. (13a,b), the considered narrowest interval for each eigenvalue 

corresponds to the so-called trivial endpoint combinations for the interval parameters: lower 

bounds and upper bounds of the eigenvalues are provided by selecting simultaneously all the 

uncertain-but-bounded parameters to their lower bounds =α α  and upper bounds =α α , re-

spectively.  

To solve the double equations of motion (7), two coordinate transformations are introduced 

as follows: 
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(LB)

0

(UB)

0

( , ) ( ) ( , )

( , ) ( ) ( , )  

t t

t t

=

=

u α Φ a q α

u α Φ a q α
                        (14) 

where the interval vector of modal displacement ( , )I tq α and the matrices (LB)

0( )Φ a  and 

(U B)

0( )Φ a  whose j − th column is 
(LB)

0( )j a  and 
(UB)

0( )j a , respectively, are introduced. By 

applying these coordinate transformations, the equations of motion can be projected in the 

modal space: 

                     

2 (LB)

0 0 0

2 (UB)

0 0 0

( , ) ( ) ( , ) ( ) ( , ) ( ) ( ) 

( , ) ( ) ( , ) ( ) ( , ) ( ) ( ) 

q α Ξ a q α Ω a q α Φ a f

q α Ξ a q α Ω a q α Φ a f

T

T

t t t t

t t t t

+ + =

+ + =
   (15) 

where 2

0( )Ω a  and 2

0( )Ω a are diagonal matrices whose j − th element is 0( )j a  and 0( )j a , 

respectively, and 0( )Ξ a  and 0( )Ξ a  are the generalized diagonal damping matrices, which ac-

cording to the Rayleigh model, can be written as: 

                                                                    

2

0 0 1 0

2

0 0 1 0

( ) ( )

( ) ( )

m

m

d d

d d

= +

= +

Ξ a I Ω a

Ξ a I Ω a
                                                       (16) 

obtaining a set of decoupled differential equations. 

Solution of Eq. (15) in terms of vectors ( , )tq α  and ( , )tq α  allows to provide the corre-

sponding nodal responses by the coordinate transformation, Eq. (14). 

Lower and upper bounds of the k-th component of the interval dynamic response ( , )I tu α  

can be calculated by the following relationships: 

             ( ) min ( , ), ( , ) ;    ( ) max ( , ), ( , )k k k k k ku t u t u t u t u t u t= =α α α α      (17) 

where the symbols  min  and  max  denote minimum (inferior) and maximum (superior) 

values, respectively. 

NUMERICAL APPLICATION 

In this section, the performance of the present procedure is illustrated through a numerical 

test. For comparison, the results of reference combinatorial method [10] are also included. 

The analysis is conducted on a steel 25-bar truss structure, as represented in Fig. 2, subjected 

to a UnitStep function applied at the node 9 in the x –direction, namely ( ),9 0( )xf t F U t=  with 

0 15 KNF = . All the bars are assumed to have cross-sectional area 20.01 miA A= = (prismatic 

section with b = h = 0.1 m) with 1,  2, , 25i =  and lengths iL  deducible from Fig.2 where 

5.1 mL = . Young’s modulus and Poisson’s ratio are E 8 22.1 10  kN m=  and 0.3= , re-

spectively. Furthermore, each node possess a lumped mass 500 kgM = . All the vertical bars 

are supposed to be damaged (r=10) with crack depths modeled as interval parameters 

( )0, 1 ,I I

i i i ia a e= +  ( 1,2,...,10)i =  with midpoint value 0, 0 0.4  ia a h i= =   and deviation am-

plitudes 0.3i  =  = . 
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Figure 2: Truss structure: geometry and load condition. 

Without loss of generality, the Rayleigh damping constants 0d  and 1d  were evaluated relating 

to the damaged mean configuration using as reference the mean stiffness matrix defined as 

0( , )
α 0

K a α
=

, see Eq. (6). As a consequence, in Eq. (8) the values 
1

0 4.09071d s−=  and 

1 0.000347d s=  are derived in such a way that the modal damping ratio for the first and sec-

ond modes of the nominal structure is 0 0.05 = . 

 

Figure 3: Time-varying lower and upper bounds of the 9-th node displacement in x-direction of the damaged 

truss structure with r=10 uncertain-but-bounded parameters:  

proposed method (continuous lines) and exact solution (dotted lines). 
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Figure 3 shows the time-varying bounds of the 9-th node displacement in x-direction, ob-

tained by applying the procedure explained in Section 3. The bounds provided by the pro-

posed method (continuous lines) are compared with the results obtained by the combinatorial 

vertex method (dotted lines), which requires the evaluation of 102r= = 1024 problems and con-

sidered as the reference solution. It is worth to note the excellent agreement between the re-

sults of the two procedures.  

CONCLUSIONS 

In the present study a numerical approach that dealt with the linear dynamic analysis of 

truss structures with multiple cracked members was presented. The depth of the crack was 

modeled as an uncertain variable but bounded in a specific interval. The time-varying upper 

and lower bounds of the response were calculated for a 25-bar truss structure. Results ob-

tained with the proposed procedure were validated by comparison with the response bounds 

derived via a combinatorial procedure, considered as the exact solution. The excellent agree-

ment between the two approaches revealed the accuracy of the proposed approach in dealing 

with these type of problems. 
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