
28 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Grassi Antonella,   Bruzzo Ugo (2020). ON THE HODGE CONJECTURE FOR HYPERSURFACES IN TORIC
VARIETIES. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 28(8), 1773-1786
[10.4310/CAG.2020.v28.n8.a1].

Published Version:

ON THE HODGE CONJECTURE FOR HYPERSURFACES IN TORIC VARIETIES

Published:
DOI: http://doi.org/10.4310/CAG.2020.v28.n8.a1

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/788442 since: 2022-02-20

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.4310/CAG.2020.v28.n8.a1
https://hdl.handle.net/11585/788442


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Bruzzo, U., & Grassi, A. (2021). On the hodge conjecture for hypersurfaces in toric 
varieties. Communications in Analysis and Geometry, 28(8), 1773-1786. doi: 

The final published version is available online at: 
https://doi.org/10.4310/CAG.2020.V28.N8.A1 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
https://doi.org/10.4310/CAG.2020.V28.N8.A1


ON THE HODGE CONJECTURE FOR

HYPERSURFACES IN TORIC VARIETIES

UGO BRUZZO1 AND ANTONELLA GRASSI2

1 SISSA (Scuola Internazionale Superiore di Studi Avanzati),

Via Bonomea 265, 34136 Trieste, Italia

IGAP (Institute for Geometry and Physics), Trieste

INFN (Istituto Nazionale di Fisica Nucleare), Sezione di Trieste

Arnold-Regge Center for Algebra, Geometry

and Theoretical Physics, Torino, Italia

2 Department of Mathematics, University of Pennsylvania,

209 S 33rd St., Philadelphia, PA 19104, USA
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1. Introduction

The classical Noether-Lefschetz theorem states that if X is a very general surface in

the linear system |OP3(n)|, with n ≥ 4, then the Picard number of X is 1. One of the

proofs uses infinitesimal variation of Hodge structure, see for example [6]. A higher

dimensional generalization of the infinitesimal variation of Hodge structure argument

implies that, under certain hypotheses, a very general, very ample hypersurface X in a

smooth projective variety Y of dimension d satisfies the Hodge conjecture if Y does. In

particular, the cohomology ofX in degree (p−1, d−p), with 1 ≤ p ≤ d−1 is the restriction

of the cohomology of Y in the same degree (equivalently, the primitive cohomology

PHp−1,d−p(X) vanishes) if certain conditions are satisfied. A sufficient condition is that

the natural morphism

TXML ⊗ PHp,d−1−p(X)→ PHp−1,d−p(X) (1)

is surjective, where ML is the moduli space of hypersurfaces in Y in a very ample linear

system |L|, and one also needs some suitable vanishings.

In some cases, as in the classical situation Y = Pd, the map (1) can be expressed as a

multiplication morphism between the Jacobian rings of X. We find that the surjectivity

of the multiplication between Jacobian rings can in addition give explicit criteria on the

class |L| such that a very general hypersurface X ∈ |L| satisfies the Hodge conjecture.1

In this paper we focus on application to simplicial toric varieties PΣ and very general

hypersurfaces X in a very ample linear system |L|. X and PΣ are rational homology

manifolds and we can state the Hodge conjecture as in the smooth case. To our knowledge

this is a novelty.

In [4] we showed that the higher dimensional generalization of the “Noether-Lefschetz

Theorem” discussed previously holds when PΣ is a simplicial projective toric variety, even

with singularities. We also proved that the map (1) can be expressed as a multiplication

morphism between Jacobian rings of PΣ, as in the classical case Y = Pd.
The Hodge conjecture holds for X if the dimension of PΣ is even (Proposition 3.1).

In Theorem 3.2 we give an effective condition on the class |L| to satisfy the surjectivity

hypothesis of the morphism (1) if dim(PΣ) = 2d+ 1. Hence the Hodge conjecture holds

for a very general hypersurface in the linear system |L|, that is any class in Hp,p(X,Q)

is represented by a linear combination of algebraic cycles.

In [3] we observed that (1) is surjective if the multiplication morphism

Sα ⊗ Sβ → Sα+β

1In fact, Huang, Lian Yau and Yu [11] applied our argument of the surjectivity of the Jacobian rings

to subsequently prove the Hodge conjecture for very general hypersurfaces in generalized flag varieties

G/P .
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between graded components of the Cox ring S is surjective whenever α and β are an

ample and nef class in the class group of Y . We call “Oda varieties” the varieties which

satisfy this condition. Oda in fact, in a Oberwolfach meeting in 1988 posed a related

question about the Minkowski sums of polytopes [15]. Projective spaces are the easiest

examples of Oda’s varieties. We give other examples in Section 4 and related them to

the Castenuovo-Mumford regularity.

In Theorem 5.1 prove an “effective” Hodge result:

Theorem 1.1. Let PΣ be an Oda variety of odd dimension d = 2p + 1, and let L be a

very ample divisor in PΣ such that pL + KPΣ
is nef. Then the Hodge conjecture with

rational coefficients holds for the very general hypersurface in the linear system |L|.

This gives an explicit criterion, effectively depending on the degree of the hypersur-

face, for very general hypersurfaces to satisfy the Hodge conjecture. We give examples

in Corollary 5.2. We also formulate a partial converse of this results and pose some

questions, including generalizations to rational homology manifolds

Acknowledgments. U.B. thanks the Department of Mathematics of the University of

Pennsylvania for providing support and hospitality while this work was completed.

2. Hypersurfaces in toric simplicial varieties

We recall some basic facts about hypersurfaces in projective simplicial toric varieties

and their cohomology. We mainly follow [2] and [4], also in the notation. All schemes

are over the complex numbers.

2.1. Preliminaries and notation. Let N be a free abelian group of rank d. A rational

simplicial complete d-dimensional fan Σ in NR = N⊗ZR defines a complete toric variety

PΣ of dimension d with only Abelian quotient singularities. In particular PΣ is an

orbifold; PΣ is also called simplicial. We assume here that PΣ is also projective.

Let {ρ} be the rays of the fan Σ and {xρ} the homogeneous coordinates associated

with them. Let S = C[xρ] be the Cox ring of PΣ, that is the algebra over C generated

by the homogeneous coordinates xρ .

Each ray ρ and each coordinate xρ determine a torus invariant Weil divisor Dρ. A

monomial
∏
x
aρ
ρ determines a Weil divisor D =

∑
ρ aρDρ.

S is graded by the class group Cl(PΣ) of PΣ. Denoting by β = [D] the class of D in

Cl(PΣ), one has S = ⊕β∈Cl(PΣ)Sβ.

The Cox ring generalizes the coordinate ring of Pd, in which case S is the polynomial

ring in d+ 1 variables over C.
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2.2. Hypersurfaces and their cohomology. Let L be a nef divisor. Then OPΣ
(L)

is generated by its global sections [13, Th. 1.6] and a general hypersurface X ∈ |L| is

quasi-smooth, that is, its only singularities are those inherited from PΣ [14, Lemma 6.6,

6.7]. In particular, if PΣ is simplicial X is also an orbifold.

We recall some facts from [2] and Section 3 of [4]. For the reader’s convenience the

Appendix provides the relevant material taken from [4].

Let L be a very ample Cartier divisor and X a general hypersurface X ∈ |L|. The

homotopy hyperplane Lefschetz theorem implies that X is also simply connected if

dim(PΣ) ≥ 3 [10, Thm. 1.2 Part II]. The hard Lefschetz theorem holds also for pro-

jective orbifolds [17, 20]).

The complex cohomology of an orbifold has a pure Hodge structure in each dimension

[18, 19]: Hd−1(PΣ,C) and Hd−1(X,C) have then pure Hodge structures.

Let i : X → PΣ be the natural inclusion and i∗ : H•(PΣ,C)→ H•(X,C) the associated

morphism in cohomology; i∗ : Hd−1(PΣ,C) → Hd−1(X,C) is injective by Lefschetz’s

theorem. The morphism i∗ is compatible with the Hodge structures.

Definition 2.1. [2, Def. 10.9] The primitive cohomology group PHd−1(X) is the quotient

Hd−1(X,C)/ i∗(Hd−1(PΣ,C)).

PHd−1(X) inherits a pure Hodge structure, and one can write

PHd−1(X) =
d−1⊕
p=0

PHp,d−1−p(X).

Let Z be the open subscheme of |L| parametrizing the quasi-smooth hypersurfaces

in |L| and let Mβ be the coarse moduli space for the quasi-smooth hypersurfaces in PΣ

with divisor class β.

There is a “Noether-Lefschetz theorem” for odd dimensional simplicial toric varieties

as in [6, Theorem 7.5.1]:

Theorem 2.2. Let PΣ be a simplicial toric variety of dimension d = 2p+ 1 ≥ 3. If the

morphism

γp : TXMβ ⊗ PHp+1,d−p−2(X)→ PHp,d−p−1(X) (2)

is surjective, then for z away from a countable union of subschemes of Z of positive

codimension one has

Hp,p(Xz,Q) = im[i∗ : Hp,p(PΣ,Q)→ H2p(Xz.Q)].

Recall that one has Hp,p(X,Q) = Hp,p(X,C) ∩H2p(X,Q) for any variety X.
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2.3. Hypersurfaces in PΣ and their Jacobian Rings. Let L be an ample, hence

very ample, Cartier divisor, of class [L] = β on a simplicial toric variety PΣ of dimension

d = 2p + 1. Let f be a section of the line bundle OPΣ
(L) and X be the hypersurface

defined by f ; it turns out that f ∈ Sβ.

Definition 2.3. Let J(f) ⊂ S be the ideal in the Cox ring generated by the derivatives

of f . The Jacobian ring R(f) is defined as R(f) = S/J(f); it is naturally graded by the

class group Cl(PΣ).

Theorem 2.4. [2, Proposition 13.7; Theorem 10.13] Let PΣ be a simplicial toric variety

of dimension d = 2p + 1 and L be an ample, Cartier divisor, of class [L] = β Let

β0 = −[KPΣ
] and β = [L]. Then:

(i) TXMβ ' R(f)β.

(ii) PHp+1,d−p−2(X) ' R(f)pβ−β0.

Corollary 2.5. [4, Proposition 3.4] The morphism γp in equation (2) coincides with the

multiplication in the ring R(f):

R(f)β ⊗R(f)pβ−β0 → R(f)(p+1)β−β0
(3)

3. Hodge Conjecture on Toric varieties

Simplicial toric varieties are orbifold, and in particular rational homology manifolds;

we can state the Hodge conjecture as in the smooth case.

Hodge conjecture for rational homology manifolds. A connected normal complex

threefold Y is a rational homology manifold if for every point p ∈ Y , H6(Y, Y \p; Q) ' Q
and Hi(Y, Y \ p; Q) = 0 for i ≤ 5. For these manifolds intersection cohomology and the

ordinary (simplicial) cohomology coincide [9, 10]; in particular if Y is compact, Poincaré

duality and the Hodge decomposition hold.

Proposition 3.1. Let Y be an even dimensional projective variety of dimension d which

is a rational homology manifold and for which the Hodge conjecture holds. Let L be a

very ample class line bundle on Y . Then the Hodge conjecture holds for a general variety

X which is a rational homology manifold in the linear system |L|.

Proof. The hard Lefschetz theorem holds for intersection cohomology. For rational ho-

mology manifolds the Intersection cohomology equals the DeRham cohomology and the

decomposition is preserved. Poincaré duality holds for rational homology manifold. Then

by the Lefschetz theorem, the Hodge conjecture holds true for for p < (d− 1)/2, and by

Poincaré duality, also for p > (d− 1)/2. �
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The interesting case is then for odd dimensional varieties d = 2p + 1 and for the

intermediate cohomology p = (d− 1)/2.

Theorem 3.2. Let PΣ be a simplicial toric variety of dimension d = 2p+1 ≥ 3. Assume

that morphism

R(f)β ⊗R(f)pβ−β0 → R(f)(p+1)β−β0

in equation (3) is surjective.

Then the Hodge conjecture holds for a very general hypersurface in the linear system

|L|, that is any class in Hp,p(X,Q) is represented by a linear combination of algebraic

cycles.

Proof. We note that the Hodge conjecture holds for PΣ simplicial, possibly singular,

toric varieties, that is, any class in Hp,p(PΣ,Q) is represented by a linear combination

of algebraic classes. In fact PΣ has a cellular decomposition and it satisfies the Hodge

conjecture: every cohomology class in Hp,p(PΣ,Q) is a linear combination of algebraic

cycles [8, Example 19.1.11]. Since (3) is surjective, (2) is also surjective and Theorem

2.2 implies that any class in Hp,p(X,Q) is also represented by a linear combination of

algebraic cycles. �

Remark 3.3. Huang, Lian, Yau and Yu [11] applied our argument about the surjectiv-

ity of the Jacobian rings to subsequently prove the Hodge conjecture for very general

hypersurfaces in flag varieties G/P . 4

We conclude this section with some questions:

Question 1: Can the analysis of the multiplications maps between the Jacobian rings

be applied to other singular varieties, in particular to some odd dimensional rational

homology manifolds?

Question 2: How can one determine when the morphism in equation (2) is surjective?

Or equivalently:

Question 3: How can one determine when the morphism in equation (3) is surjective?

Note that the morphism of equation (3)

R(f)β ⊗R(f)pβ−β0 → R(f)(p+1)β−β0

is surjective whenever the morphism

Sβ ⊗ Spβ−β0 → S(p+1)β−β0

is surjective.
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4. Oda varieties

Definition 4.1. A toric variety PΣ is an Oda variety if the multiplication morphism

Sα1 ⊗ Sα2 → Sα1+α2 is surjective whenever the classes α1 and α2 in Pic(PΣ) are ample

and nef, respectively.

The question of the surjectivity of this map was posed by Oda in [15] under more

general conditions. This property can be stated in terms of the Minkowski sum of

polytopes, as the integral points of a polytope associated with a line bundle correspond

to sections of the line bundle. Definition 4.1 says that the sum Pα1 +Pα2 of the polytopes

associated with the line bundles OPΣ
(α1) and OPΣ

(α2) is equal to their Minkowski sum,

that is Pα1+α2 , the polytope associated with the line bundle OPΣ
(α1 + α2).

The Oda conjecture is open, even for smooth varieties. Projective spaces are Oda

varieties.

Some results by Ikeda can be rephrased as follows.

Theorem 4.2. [12, Corollary 4.2]

(i) A smooth toric variety with Picard number 2 is an Oda variety.

(ii) The total space of a toric projective bundle over an Oda variety is also an Oda

variety.

In [3] we prove:

Proposition 4.3. Let PΣ be a projective toric variety. If Pic(PΣ) = Z and its ample

generator η is Castelnuovo-Mumford 0-regular, then PΣ is an Oda variety.

5. Oda and Effective Hodge

We then have an effective Hodge result for very general hypersurfaces in toric simplicial

Oda varieties:

Theorem 5.1. Let PΣ be an Oda variety of dimension d = 2p + 1 ≥ 3 and X ∈ |L|, a

very general element, with L very ample of class [L] = β, such that pβ−β0 is nef. Then

the Hodge conjecture holds for the very general hypersurface in the linear system |L|.

Corollary 5.2. (i) (Smooth varieties) If PΣ is smooth Fano or quasi-Fano, with

Picard number 2, then the Hodge conjecture holds for X very general in any very

ample class β, PΣ, by Ikeda’s Theorem 4.2.

(ii) (Singular varieties) In particular, if PΣ = P[1, 1, 2, 2, · · · , 2] then the Hodge

conjecture holds for X very general in any very ample class β = kη, k ≥ 3,

where η is the very ample generator of the Picard group.
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6. Hodge and Oda

When p = 1, and d = 3, Theorem 3.2 gives a Noether-Lefschetz theorem on the

Neron-Severi group of X.

In the appendix we prove:

Proposition 6.1. Let p = 1, and d = 3, and rk (Cl(X)⊗Q) = rk (Cl(PΣ)⊗Q). Then

the morphism (3)

R(f)β ⊗R(f)β−β0 → R(f)2β−β0

is surjective.

Proof. See Proposition A.7 in the Appendix. �

Proposition 6.1 combined with a result of Ravindra and Srinivas gives:

Corollary 6.2. Let p = 1, d = 3. Assume that KPΣ
+ L of class β − β0 is generated by

its global section. Then the morphism

R(f)β ⊗R(f)β−β0 → R(f)2β−β0

is surjective, for a very general f ∈ Sβ

Proof. [16, Thm. 1] and [5, Prop. 1.3]. �

Remark 6.3. The results above bring to the following:

Question 4: (Noether-Lefschetz and Oda): Let d = 3. If the Noether-Lefschetz theorem

holds, that is, if the morphism

R(f)β ⊗R(f)β−β0 → R(f)2β−β0

is surjective, then for a very general f ∈ Sβ, is the morphism

Sβ ⊗ Sβ−β0 → S2β−β0

surjective?

Question 5: (Hodge and Oda): Let d = 2p+ 1. If the Hodge conjecture holds, for very

general X ⊂ PΣ, that is, if the morphism

R(f)β ⊗R(f)pβ−β0 → R(f)(p+1)β−β0

is surjective, for a very general f ∈ Sβ, is the morphism

Sβ ⊗ Spβ−β0 → S(p+1)β−β0

also surjective?

4



On the Hodge conjecture for hypersurfaces in toric varieties 9

Appendix

Let L be an ample, hence a very ample Cartier divisor, and X ∈ |L| a quasi-smooth

general surface. The definition of the primitive cohomology of PH•(X) of X was recalled

in Section 2.1. Let us also recall that PH•(X) of X has a pure Hodge structure. The

primitive cohomology classes PHd−1(X) can be represented by differential forms of top

degree on PΣ with poles along X; for every p with 0 ≤ p ≤ d − 1 there is a naturally

defined residue map [2]

rp : H0(PΣ,Ω
d
PΣ

((d− p+ 1)X))→ PHp,d−p−1(X) . (4)

Let Z be the open subscheme of |L| parametrizing the quasi-smooth hypersurfaces in

|L|, and let π : X → Z be the tautological family on Z ; we denote by Xz the fiber of

X at z ∈ Z . Let H d−1 be the local system on Z whose fiber at z is the cohomology

Hd−1(Xz,C), i.e., H d−1 = Rd−1π∗C. It defines a flat connection ∇ in the vector bundle

E d−1 = H d−1 ⊗C OZ , the Gauss-Manin connection of E d−1. Since the hypersurfaces

Xz are quasi-smooth, the Hodge structure of the fibres Hd−1(Xz,C) of E d−1 varies

analytically with z [18]. The corresponding filtration defines holomorphic subbundles

F pE d−1, and the graded object of the filtration defines holomophic bundles GrpF (E d−1).

The bundles E p,d−p−1 given by the Hodge decomposition are not holomorphic subbundles

of E d−1, but are diffeomorphic to GrpF (E d−1), and as such they have a holomorphic

structure. The quotient bundles PE p,d−p−1 of E p,d−p−1 correspond to the primitive

cohomologies of the hypersurfaces Xz. Let πp : E d−1 → PE p,d−p+1 be the natural

projection.

We denote by γ̃p the cup product

γ̃p : H0(PΣ,OPΣ
(X))⊗H0(PΣ,Ω

d
PΣ

((d− p)X))→ H0(PΣ,Ω
d
PΣ

((d− p+ 1)X)) .

If z0 is the point in Z corresponding to X, the space H0(PΣ,OPΣ
(X))/C(f), where C(f)

is the 1-dimensional subspace of H0(PΣ,OPΣ
(X)) generated by f , can be identified with

Tz0Z .

The morphism γ̃p induces in cohomology the Gauss-Manin connection:

Lemma A.4. Let σ0 be a primitive class in PHp,d−p−1(X), let v ∈ Tz0Z , and let σ

be a section of E p,d−p−1 along a curve in Z whose tangent vector at z0 is v, such that

σ(z0) = σ0.

Then

πp−1(∇v(σ)) = rp−1(γ̃p(ṽ ⊗ σ̃)) (5)

where rp, rp−1 are the residue morphisms defined in equation (4), σ̃ is an element

in H0(PΣ,Ω
d
PΣ

((d − p + 1)X)) such that rp(σ̃) = σ0, and ṽ is a pre-image of v in

H0(PΣ,OPΣ
(X)).
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In particular the following diagram commutes:

H0(PΣ,OPΣ
(X))⊗H0(PΣ,Ω

d
PΣ

((d− p)X))
γ̃p //

φ⊗rp
��

H0(PΣ,Ω
d
PΣ

((d− p+ 1)X))

rp−1

��
Tz0Z ⊗ PHp,d−1−p(X)

γp // PHp−1,d−p(X)

(6)

where γp is the morphism that maps v ⊗ α to ∇vα, and φ is the projection

φ : H0(PΣ,OPΣ
(X))→ Tz0Z .

Lemma A.5. If α and η are sections of E p,d−p−1 and E d−p,p−1 respectively, then for

every tangent vector v ∈ Tz0Z ,

∇vα ∪ η = −α ∪∇vη . (7)

Let Autβ(PΣ) be the subgroup of Aut(PΣ) which preserves the grading β. The coarse

moduli space Mβ for the general quasi-smooth hypersurfaces in PΣ with divisor class β

may be constructed as a quotient

U/Ãutβ(PΣ) , (8)

[2, 1], where U is an open subset of H0(PΣ,OPΣ
(X)), and Ãutβ(PΣ) is the unique non-

trivial extension

1→ D(Σ)→ Ãutβ(PΣ)→ Autβ(PΣ)→ 1 .

By differentiating, we have a surjective map

κβ : H0(PΣ,OPΣ
(X))→ TXMβ ,

which is an analogue of the Kodaira-Spencer map.

The local system H d−1 and its various sub-systems do not descend to the moduli

space Mβ, because the group Autβ(PΣ) is not connected. Nevertheless, this group has

a connected subgroup Aut0
β(PΣ) of finite order, and, perhaps after suitably shrinking U ,

the quotient M0
β

def
= U/Aut0

β(PΣ) is a finite étale covering of Mβ [7, 1]. Since we are

only interested in the tangent space TXMβ, we can replace Mβ with M0
β.

Proposition A.6. There is a morphism

γp : TXMβ ⊗ PHp,d−1−p(X)→ PHp−1,d−p(X) (9)

such that the diagram

H0(PΣ,OPΣ
(X))⊗H0(PΣ,Ω

d
PΣ

((d− p)X))
∪ //

κβ⊗rp
��

H0(PΣ,Ω
d
PΣ

((d− p+ 1)X))

rp−1

��
TXMβ ⊗ PHp,d−1−p(X)

γp // PHp−1,d−p(X)

commutes.
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Denote by Hd−1
T (X) ⊂ Hd−1(X) the subspace of the cohomology classes that are

annihilated by the action of the Gauss-Manin connection. Coefficients may be taken in

C or Q. Note that Hd−1
T (X) has a Hodge structure.

The result below is an “infinitesimal Noether-Lefschetz theorem,” such as Theorem

7.5.1 in [6].

Proposition A.7. For a given p with 1 ≤ p ≤ d− 1, the morphism

γp : TXMβ ⊗ PHp,d−1−p(X)→ PHp−1,d−p(X) (10)

is surjective if and only if Hp,d−1−p
T (X) = i∗(Hp,d−1−p(PΣ)).

Proof. The “only if” part was proved in [4]. To prove the “if” part, assume γp is not

surjective, and decompose PHp−1,d−p(X) as

PHp−1,d−p(X) = Im γp ⊕ (Im γp)
⊥.

Le {ηi} be a basis of PHp,d−1−p(X), and {tj} a basis of TXMβ. Fix values for i and j

and let τ = γp(tj ⊗ ηi). If α ∈ (Im γp)
⊥, then

0 = 〈α, τ〉 = 〈α, γp(tj ⊗ ηi)〉 = 〈∇tjα, ηi〉 for all i

so that ∇tjα = 0 for all j, i.e., α is a nonzero element in Hp−1,d−p
T (X), which implies

that Hp,d−1−p
T (X) is properly contained in i∗(Hp,d−1−p(PΣ)). �

Lemma A.8. Let d = 2p+1 ≥ 3, and assume that the hypotheses of the previous Lemma

hold for p = m. Then for z away from a countable union of subschemes of Z of positive

codimension one has

Hp,p(Xz,Q) = im[i∗ : Hp,p(PΣ,Q)→ H2p(Xz.Q)].

Proof. Let Z̄ be the universal cover of Z . On it the (pullback of the) local system

H d−1 is trivial. Given a class α ∈ Hp,p(X) we can extend it to a global section of H d−1

by parallel transport using the Gauss-Manin connection. Define the subset Z̄α of Z̄

as the common zero locus of the sections πm(α) of Em,d−1−m for p 6= m (i.e., the locus

where α is of type (p, p)).

If Z̄α = Z̄ we are done because α is in Hd−1
T (X) hence it is in the image of i∗ by the

previous Lemma. If Z̄α 6= Z̄ , we note that Z̄α is a subscheme of Z̄ .

We subtract from Z the union of the projections of the subschemes Z̄α where Z̄α 6=
Z̄ . The set of these varieties is countable because we are considering rational classes. �
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