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Abstract. We explore the memory properties of catchments
for predicting the likelihood of floods based on observa-
tions of average flows in pre-flood seasons. Our approach
assumes that flood formation is driven by the superimpo-
sition of short- and long-term perturbations. The former is
given by the short-term meteorological forcing leading to in-
filtration and/or saturation excess, while the latter is origi-
nated by higher-than-usual storage in the catchment. To ex-
ploit the above sensitivity to long-term perturbations, a meta-
Gaussian model and a data assimilation approach are im-
plemented for updating the flood frequency distribution a
season in advance. Accordingly, the peak flow in the flood
season is predicted in probabilistic terms by exploiting its
dependence on the average flow in the antecedent seasons.
We focus on the Po River at Pontelagoscuro and the Danube
River at Bratislava. We found that the shape of the flood fre-
quency distribution is noticeably impacted by higher-than-
usual flows occurring up to several months earlier. The pro-
posed technique may allow one to reduce the uncertainty as-
sociated with the estimation of flood frequency.

1 Introduction

The physical, chemical and ecological states of processes
leading to the formation and quality of river flow are charac-
terized by persistence at several different timescales (Kout-
soyiannis, 2014). In fact, anomalous conditions for such pro-
cesses, such as those generated by extreme meteorologi-
cal events, may produce a long-lasting impact on the river
flow, depending on climatic and catchment behaviors (Lo and

Famiglietti, 2010). For instance, flood generation is impacted
by the initial soil moisture condition of the catchment, which
may in turn be impacted by groundwater levels that are re-
lated to global catchment storage (Massari et al., 2014). Per-
sistence can be exploited to improve river flow forecasting at
seasonal to interannual timescales. Furthermore, persistence
provides useful indications to better understand the function-
ing of a catchment and the dynamics of the water cycle.

Indeed, the study of persistence has been one of the most
classical research endeavors in hydrology since the early
works by Rippl (1883) and Hazen (1914) on the estimation
of the optimal storage for reservoirs. Hurst (1951) investi-
gated the Nile River flows while working at the design of the
Aswan Dam and postulated that geophysical records may be
affected by a complex form of persistence that may last for
a long time (O’Connell et al., 2016). Later on, Thomas and
Fiering (1962) and Yevjevich (1963) introduced autoregres-
sive models for annual and seasonal streamflow simulation,
thereby stimulating the development of subsequent models
of increasing complexity for simulating hydrological persis-
tence.

Recently, attention has been focused on long-term persis-
tence (LTP), which is associated with the Hurst–Kolmogorov
behavior (Koutsoyiannis, 2011). LTP manifests itself through
a power-law decay of the autocorrelation function of the pro-
cess, which implies that the summation of the autocorrela-
tion coefficients diverges to infinity (Montanari et al., 1997).
LTP implies the possible presence of long-term cycles (Be-
ran, 1994), which in turn means that perturbations of hy-
drological processes may last for a long time, thereby pro-
viding a possible explanation for the occurrence of clusters
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of extreme hydrological events, such as floods and droughts
(Montanari, 2012). LTP also has implications in the study of
climate change, as it is connected with an enhanced natural
variability of climatic processes (Koutsoyiannis and Monta-
nari, 2007).

While LTP has been long studied, limited attempts have
been made to exploit LTP in data assimilation procedures for
improving streamflow forecasting. The motivation probably
is that LTP is recognized to exert a noticeable impact on the
river flow volume over long timescales, while its effect on
the magnitude of single events is less noticeable. Neverthe-
less, the presence of LTP and seasonal correlation necessar-
ily affects flood frequency, to an extent that has been poorly
explored.

The present contribution aims to enhance our understand-
ing of the persistence properties of river flows to improve
seasonal river flow forecasting. By taking inspiration from
the idea that the probability of extreme floods may be in-
creased by long-term stress, like higher-than-usual rainfall
lasting for several months, the research question that we ad-
dress here can be stated as follows: can higher-than-usual
river discharges in the previous season be associated with a
higher probability of floods in the subsequent high-flow sea-
son? The quantification of the effect of antecedent flows for
different time lags on the occurrence of floods would help
to assess how long a river remembers its past (Aguilar et al.,
2016). From a technical point of view, we aim to propose
a technique for updating a season in advance of the flood
frequency distribution estimated for a given river, through
a data assimilation approach, by exploiting the information
provided by river flows in the pre-flood seasons.

It is interesting to highlight that the state of a catchment,
and in particular its storage, is affected by previous precip-
itation. Therefore, it would be reasonable to exploit the in-
formation provided by previous rainfall rather than previous
flows for the sake of updating the flood frequency distribu-
tion. However, areal rainfall estimation for catchments with
large extension and complex orography is affected by large
uncertainty (Moulin et al., 2009). Therefore, we utilize here
flows during pre-flood seasons as a proxy for catchment stor-
age instead of rainfall. While the above assumption may be
reasonable, one should consider that it may not hold when
the river flows are impacted by massive regulation.

2 Study sites and data sources

We focus our attention on two large basins, namely, the Po
River basin at Pontelagoscuro (Italy) and the Danube River
basin at Bratislava (Slovakia). The Po River is the longest
river entirely flowing in the Italian Peninsula (Fig. 1) with a
catchment area of about 71 000 km2 at the delta. The aver-
age annual precipitation in the catchment is 78 km3 in vol-
ume, of which 60 % reaches the closure river cross section at
Pontelagoscuro. The hydrological behavior of the Po River is

Figure 1. Study sites. Danube River basin at Bratislava and Po River
basin at Pontelagoscuro.

described in detail in recent studies (Zanchettin et al., 2008;
Montanari, 2012; Zampieri et al., 2015). The discharge pat-
tern at Pontelagoscuro presents a mean annual flow of about
1470 m3 s−1 and shows a typical pluvial regime, and thus a
strong seasonality with two flood seasons in spring and au-
tumn (Fig. 2). An intense exploitation of water resources for
irrigation, hydro-power production, and civil and industrial
use is found in the catchment. Even though water resources
management is currently sustainable on average, critical sit-
uations are experienced during drought periods (Montanari,
2012).

The upper Danube basin drains from the northern side of
the Alps and the southern area of the central European High-
lands into Bratislava in a 131 331 km2 catchment area where
the mean annual flow is about 2053 m3 s−1. The hydrological
behavior of the upper Danube basin can be found in detail in
the literature (Nester et al., 2011; Blöschl et al., 2013). The
average annual precipitation in the catchment is 123 km3 and
the discharge pattern shows a typical alpine regime and thus
a strong seasonality, with one flood season in the summer
(Fig. 2).

Daily discharge and monthly precipitation and tempera-
ture data for the Po and Danube river basins were analyzed
in this study. The observation periods as well as descriptive
statistics of the different time series are shown in Table 1.
Discharge time series at Pontelagoscuro for the Po River
and Bratislava for the Danube River were provided, respec-
tively, by the Regional Agency for Environmental Protec-
tion (ARPA) – Emilia Romagna, Hydro-meteorological Of-
fice and by the Global Runoff Data Center (GRDC, 2011).
The series are not affected by missing values. They corre-
spond to a time span of 90 and 107 years for the Po and
Danube, respectively.
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Figure 2. Daily mean value µQ (m3 s−1) and daily standard deviation σQ (m3 s−1) of the daily flows in the observation periods: 1920–2009
in the Po at Pontelagoscuro, 1901–2007 in the Danube at Bratislava.

Table 1. Data description of observed time series. Descriptive statistics are given for non-deseasonalized data.

Po Danube

Observation period 1920–2009 1901–2007

Daily discharge

Gauge location Pontelagoscuro Bratislava
Catchment area (km2) 71 000 131 331
Mean (m3 s−1) 1470 2053
Standard deviation (m3 s−1) 1007 973
Fluvial regime Pluvial regime. Two peak periods Alpine regime. One peak in the summer

Monthly precipitation

Number of weather stations 18 16
Mean (mm month−1) 72 73
Standard deviation (mm month−1) 17 37

Monthly temperature

Number of weather stations 12 11
Mean (◦C) 12.9 7.9
Standard deviation (◦C) 7.5 7.2

The Po River is regulated by the presence of several
dams as reservoirs for hydroelectricity production, which are
mainly located in the Alpine region. Also, the outflow from
lakes Como, Garda, Iseo, Idro and Maggiore is regulated
(Zanchettin et al., 2008). These regulations do not notice-
ably impact the trend and the low-frequency variability of
the peak flows, while they may affect the low flows at daily
and sub-daily timescales (Zampieri et al., 2015). The upper
part of the Danube has been ideal for building hydropower
plants and up to 59 dams are found along the river’s first
1000 km. As stated in the Danube River Basin Management
Plan, stretches in the very upper part of the river may present
noticeably altered flows. (Maps 7a, b, c in DRBM, 2009).
The effect of regulation on peak flows in Slovakia is deemed

to be negligible, while low and average flows may be notice-
ably impacted.

Precipitation and temperature time series were calculated
based on weather data sets obtained from the HISTALP
project (Auer et al., 2007). Only weather stations where suf-
ficiently long data sets are available were used (Table 1). The
study period was conditioned by the availability of discharge
data even though both meteorological variables were avail-
able for a longer historical period. For each study site, catch-
ment area average precipitation and temperature time series
were constructed using Thiessen polygons.
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3 Methodology

In order to address the research question outlined in Sect. 1,
namely, to verify the opportunity of updating the flood fre-
quency distribution a season in advance by exploiting the
information provided by the river flow in a given pre-flood
season, we perform an analysis of the memory properties of
the hydrological cycle in the considered catchments. We first
focus on meteorological variables, namely, temperature and
mean areal rainfall, to check whether a memory pattern is de-
tectable in the weather. Rainfall and temperature are consid-
ered as they are the main drivers of river flow, with tempera-
ture being particularly influential on the lower values. Then,
we turn to the direct analysis of river flows.

We first estimate the Hurst exponent (H ) for the consid-
ered time series, to verify whether the hypothesis of the pres-
ence of LTP is supported by data evidence. Then, we turn to
the analysis of the statistical dependence between the peak
flow in the flood season and the average flow during the
previous season, to empirically check whether updating the
flood frequency distribution produces useful results. Results
from the latter analysis are assessed in view of the LTP esti-
mation.

3.1 Estimation of long-term persistence

Assessment of long-term persistence for hydrological data
has been presented by several contributions (see, for instance,
Szolgayova et al., 2014, and Zampieri et al., 2015, for anal-
yses carried out for the river flows of the Danube and Po
rivers, respectively). Time series with long-term memory or
persistence exhibit a power-law decay of the autocorrelation
function (Beran, 1994), that is,

ρ(k)∼ ck · k
2H−2k→∞, (1)

where ρ(k) is the autocorrelation function of the process at
lag k, ck is a constant and H ∈ [0 1] is the Hurst exponent
or the intensity of the LTP (Montanari et al., 1997). For a
stationary process, H is constrained in the range [0.5, 1). A
value equal to 0.5 means the absence of LTP; the higher the
H , the higher the intensity of LTP.

In this work, H was estimated by using different heuris-
tic methods. In detail, we applied the rescaled range (R/S)
analysis, the aggregated variance method (climacogram;
see Dimitriadis and Koutsyiannis, 2015), and the differ-
enced variance method. An extended description of numer-
ous methodologies to assess the persistence properties of
time series to provide support to the possible presence of
the Hurst–Kolmogorov behavior can be found in Taqqu et
al. (1995), Montanari et al. (1996, 1997, 2000) and Kout-
soyiannis (2003).

A strong seasonal component in the different hydrologi-
cal variables in both study time series has been reported by
the literature (e.g., Montanari, 2012; Szolgayova et al., 2014;
Zampieri et al., 2015). It is well known that a strong sea-

sonality often implies the presence of periodic deterministic
components in the data that can introduce a bias in LTP es-
timation (Montanari et al., 1997, 2000). Also, the presence
of slowly decaying or increasing trends may induce a bias as
well. Thus, prior to long-term memory assessments, all time
series were detrended and deseasonalized. For each time se-
ries, 366-term (for daily data) and 13-term (monthly data)
moving averages for a trend approximation were applied, fol-
lowed by a stable seasonal filter for removal of the seasonal
cycle (Brockwell et al., 2002).

3.2 Analysis of the peak flow dependence on average
flows during pre-flood seasons

In order to analyze the stochastic connection between the av-
erage river flows in the antecedent seasons and the average
and peak flows in the flood season, a bivariate probability dis-
tribution function was fitted. In what follows, random vari-
ables are identified with a superscript asterisk to distinguish
them from their realizations. The yearly variables analyzed
in this study were the following.

– The monthly mean flow in the given pre-flood season
(independent or explanatory variable), Q∗m.

– The peak flow in the flood season or annual maximum
daily flow (dependent variable), Q∗p.

– The mean daily flow in the flood season (dependent
variable), Q∗mf.

A meta-Gaussian model (Kelly and Krzysztofowicz, 1997;
Montanari and Brath, 2004) is used to model the joint prob-
ability distribution between the selected explanatory and de-
pendent variables. The method involves the following steps.

First, the time series Qm(t), Qp(t) and Qmf(t) with sam-
ple size n, where n is the number of years in the observation
period, are extracted from the observed data sets. Then, the
normal quantile transform (NQT) is applied in order to make
their marginal probability distributions Gaussian, thereby ob-
taining the normalized observations NQm(t), NQp(t) and
NQmf(t).

The NQT is a non-parametric transformation that can be
applied to normalize any arbitrarily distributed random vari-
able. There are numerous applications of the NQT in hy-
drological studies, to generate flow samples from specified
marginal distributions (Moran, 1970; Hosking and Wallis,
1988), to perform Bayesian updating of prior distributions
(Kelly and Krzysztofowicz, 1994), and to model bivariate
distributions with arbitrary marginal distributions (Krzyszto-
fowicz et al., 1994; Aguilar et al., 2016). The NQT is adopted
within the Bayesian Forecasting System for river flows
(Krzysztofowicz and Kelly, 2000; Krzysztofowicz and Herr,
2001; Krzysztofowicz and Maranzano 2004a, b; Maranzano
and Krzysztofowicz, 2004). It was also applied for assess-
ing the uncertainty of rainfall–runoff simulations (Monta-
nari and Brath, 2004; Montanari and Grossi, 2008; Bogner et
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al., 2012), to deseasonalize hydrological time series (Monta-
nari, 2005). Being free of any distributional assumption, the
NQT allows one to avoid the selection of a suitable paramet-
ric model for the distribution of the considered hydrological
variable.

The NQT involves the following steps when we take Q∗m
as an example: (1) sorting the sample of Qm(t) from the
smallest to the largest observation, Qm1 , . . .,Qmn ; (2) esti-
mating the cumulative frequency FQmi

by using the Weibull
plotting position (Stedinger et al., 1993); (3) for each FQmi

the standard normal quantile NQmi
is computed as NQmi

=

G−1(FQmi
), with G denoting the standard normal distribu-

tion andG−1 its inverse, and associated with the correspond-
ing Qmi

. Thus, a discrete mapping of Qmi
to its transformed

counterpart NQmi
is obtained (Krzysztofowicz, 1997). In or-

der to apply the inverse of the NQT for any NQmi
, linear

interpolation is applied to connect the points of the discrete
mapping previously obtained. Bogner et al. (2012) propose
different parametric and non-parametric approaches for the
extrapolation of extreme values. In this study, the region be-
yond the maximum and the minimum available NQmi

values
is covered by linear extrapolation.

Finally, the meta-Gaussian model (Kelly and Krzyszto-
fowicz, 1997; Montanari and Brath, 2004) is fitted between
the random explanatory variable and each random dependent
variable in their canonical form in the Gaussian domain. In
what follows, we specify the equations for the peak flow as
the dependent variable. We assume (1) stationarity and er-
godicity of both NQ∗m and NQ∗p; and (2) that the cross depen-
dence between both NQ∗m and NQ∗p can be represented by the
normal linear equation:

NQp(t)= ρ(NQ∗mNQ∗p) ·NQm(t)+Nε(t), (2)

where ρ(NQ∗m, NQ∗p) is the Pearson cross-correlation coeffi-
cient between NQ∗m and NQ∗p, and Nε is an outcome of the
stochastic process N2∗, which is independent, homoscedas-
tic, stochastically independent of NQ∗m and normally dis-
tributed with zero mean and variance 1−ρ2(NQ∗m, NQ∗p). The
parameters of the bivariate probability distribution function
are the mean (µ(NQ∗m)= 0 and µ(NQ∗p)= 0), the standard
deviation (σ(NQ∗m)= 1 and σ(NQ∗p)= 1) of the normalized
series, and the Pearson cross-correlation coefficient between
both normalized series, ρ(NQ∗m, NQ∗p). In the presence of de-
pendence between NQ∗m and NQ∗p, the correlation coefficient
will be significantly different from 0. The bivariate Gaussian
distribution implies that, for an arbitrary (observed) NQm(t),
the probability distribution function of NQ∗p is Gaussian, with
parameters (Eqs. 3 and 4)

µ(NQ∗p)= ρ(NQ∗mNQ∗p) ·NQm(t), (3)

σ(NQ∗p)=
(

1− ρ2
(

NQ∗m,NQ∗p
))0.5

. (4)

Then, by taking the inverse of the NQT one can infer the
updated probability distribution ofQ∗p conditioned to the ob-
served outcome Qm(t).

In order to verify the validity of the linear model (Eq. 2),
an evaluation based on the behavior of the residuals is ap-
plied. Following the graphical approach proposed by Cook
and Weisberg (1994), the residual plot of Nε(t) vs. ρ(NQ∗m,
NQ∗p)·NQm(t) should not show any systematic trend under
the target model. Curve trends or fan shape trends indicate
non-linear cross dependence and variability of the variance
of N2∗, respectively (Montanari and Brath, 2004).

The same methodology was applied for the other depen-
dent variable considered in this study, Q∗mf. Therefore, once
the parameters of each distribution are computed, the prob-
ability distribution function of both the peak flow and the
mean flow in the flood season can be updated after observing
the mean flow in the considered pre-flood season.

The proposed methodology involves uncertainty in the es-
timated flood frequency distributions which is mainly given
by two sources: the first is uncertainty in the NQT, namely,
uncertainty in the estimation of the marginal probability dis-
tribution of independent and dependent variables in the re-
gression. The second source of uncertainty is related to the
estimation of the cross-correlation coefficient between de-
pendent and independent variables in the Gaussian domain.
The NQT is a non-parametric transformation and therefore
its uncertainty cannot be determined quantitatively (Maran-
zano and Krzytofowicz, 2004; Montanari and Brath, 2004).
To reduce uncertainty, it is advisable that NQT is estimated
by using long records encompassing a wide range of mete-
orological and hydrological conditions. Uncertainty in the
cross-correlation coefficient can be quantified for a given
confidence level and again depends on the length of the
records. A quantitative estimation of uncertainty for the
cross-correlation coefficient was carried out in both study
sites. Uncertainty bounds at the 95 % confidence level are
computed by first computing Fisher’s transformation,

z
(
NQm,NQp

)
= (5)

0.5 · ln
((

1+ ρ
(
NQm,NQp

))
·
(
1− ρ

(
NQm,NQp

))−1
)
,

where the random variable z∗ is approximately normally dis-
tributed with a standard deviation of

σ(z∗)=
(
(n− 3)−1

)0.5
. (6)

Therefore, confidence bands for z
(
NQm,NQp

)
can be com-

puted at a given confidence level which can be converted to
the confidence bands for ρ(NQ∗mNQ∗p) by taking Fisher’s in-
verse transformation. If a negative (positive) value for the
lower (upper) confidence limit is obtained for a positive (neg-
ative) estimated value of ρ

(
NQ∗m,NQ∗p

)
, then we reset the

lower (upper) limit to 0. Finally, the limiting flood frequency
distributions can be obtained for the lower and upper values
of ρ(NQ∗mNQ∗p).

In order to infer the actual impact of the dependence be-
tween peak flows and mean flow in the flood season with the
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mean flow in the pre-flood seasons, the unconditioned flood
frequency distribution and the updated distributions inferred
for several higher-than-average values of mean flow (e.g., 70,
80 and 95 % quantiles) in a given pre-flood season were com-
pared. We assume that peak flows can be adequately modeled
through the Extreme Value Type 1 (EV1) distribution and we
present a comparison between the unconditioned peak flows
frequency distribution and the updated peak flows frequency
distributions.

Finally, a leave-one-out validation analysis was carried out
to emulate a real-world application. We removed from the
analysis the data observed in the year with the wettest pre-
flood season (1977 in the Po and 1944 in the Danube) and
then we estimated the probability distribution for the peak
flow in the flood season for that year. Uncertainty was esti-
mated for this application.

Identification of the flood season

According to previous studies in the literature, directional
statistics (Mardia, 1972) represents an effective method for
identifying the timing of hydrological extreme events (e.g.,
Castellarin et al., 2001; Cunderlik and Burn, 2002; Baratti et
al., 2012). Following Bayliss and Jones (1993), the date of
occurrence of an event i (e.g., maximum annual daily flow)
can be transformed into a directional statistic by converting
the Julian date of occurrence, Jdi, into an angular measure,
θi , through Eq. (7):

θi = Jdi ·
(

2π · 365−1
)
. (7)

Each date of occurrence can then be written in polar coor-
dinates by means of a vector with a unit magnitude and the
direction specified by Eq. (7). Therefore, the xp and yp coor-
dinates of the mean of the sample of n dates of occurrence
can be computed with Eq. (8):

xp = n
−1
·

n∑
i=1

cos(θi) yp = n
−1
·

n∑
i=1

sin(θi). (8)

The direction, θ , and magnitude, r , of the mean in polar co-
ordinates can then be obtained by Eqs. (9) and (10), respec-
tively. Equation (9) gives a measure of the mean timing of the
event for the sample of dates, and can be converted back to
a mean Julian date, MD, through Eq. (7). Equation (10) indi-
cates the regularity or seasonality of the phenomenon. Values
of r close to 1 imply a strong regularity in the dates of occur-
rence of the event considered. In contrast, values of r close
to 0 indicate a great dispersion and, thus, a great inter-annual
variability in the dates of occurrence of the event throughout

Table 2. Estimated H values on deseasonalized data series apply-
ing the R/S statistic (R/S), aggregated variance method (AV), and
differenced variance method (DV).

R/S AV DV

Po (Pontelagoscuro)

Daily Q 0.81 0.74 0.94
Monthly Q 0.76 0.62 0.80
Monthly P 0.61 0.59 0.60
Monthly T 0.64 0.80 0.90

Danube (Bratislava)

Daily Q 0.80 0.71 0.86
Monthly Q 0.75 0.54 0.79
Monthly P 0.56 0.36 0.56
Monthly T 0.61 0.76 0.70

the year.

θ = arctan
(
yp · x

−1
p

)
(9)

r =
(
x2
+ y2

)0.5
(10)

Finally, the limits of the occurrence of the phenomenon can
quantitatively be identified by adding and subtracting to θ ,
the standard deviation in radians, σ , given by Eq. (11):

σ = (−2 · ln(r))0.5. (11)

We applied directional statistics to the following variables in
order to identify the flood season in each study site: (1) an-
nual maximum series of daily flows (AMD); (2) high-flow
events defined from frequency analysis as those events when
the daily discharge exceeds the 95th percentile, Q95, for
longer than 15 days. Results are shown in a circle plot where
each date of occurrence of the variables analyzed in the data
set is visible along the perimeter. The month of occurrence of
each of the variables can be easily identified. Also, the prox-
imity to the center of the circle of the global value indicates
the regularity of the phenomenon, with the highest regularity
found in the perimeter of the circle.

4 Results and discussion

4.1 Long-term persistence estimation

The application of the heuristic methods for LTP estimation
to deseasonalized and detrended time series is displayed in
Table 2.H values above 0.5 were obtained for the mean daily
river flows in both rivers and, thus, all three heuristic methods
detect the presence of noticeable LTP. The intensity of LTP
seems to be more or less the same for monthly flow data.
Similarly, H values in monthly temperature data of 0.64 and
0.61 in the Po and Danube, respectively, suggest the presence
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Figure 3. Seasonality space representation of the annual maximum daily flows (AMD) and high-flow events. Dots around the global value
indicate the dispersion.

Table 3. Pearson’s cross-correlation coefficient and its 95 % confidence interval between both, NQp and NQmf, and NQm for varying
antecedent monthly flow. Flood season in the Po: October–November. Flood season in the Danube: May–July.

Po Danube

Month ρ∗(NQ∗m, NQ∗p) ρ∗(NQ∗m, NQ∗mf) Month ρ∗(NQ∗m, NQ∗p) ρ∗(NQ∗m, NQ∗mf)

September 0.24 (0.04, 0.43) 0.39 (0.20, 0.55) April 0.20 (0.01, 0.38) 0.50 (0.34, 0.63)
August 0.18 (0, 0.37) 0.27 (0.07, 0.45) March 0.06 (0, 0.25) 0.26 (0.07, 0.43)
July 0.06 (0, 0.26) 0.13 (0, 0.33) February 0.16 (0, 0.34) 0.32 (0.14, 0.48)
June 0.02 (0, 0.23) −0.02 (−0.23, 0) January 0.07 (0, 0.26) 0.25 (0.06, 0.42)
May −0.06 (−0.26, 0) −0.05 (−0.25, 0) December −0.002 (−0.19, 0) 0.17 (0, 0.35)
April −0.13 (−0.33, 0) −0.07 (−0.27, 0) November 0.05 (0, 0.24) 0.09 (0, 0.27)
March −0.18 (−0.37, 0) −0.12 (−0.32, 0) October 0.13 (0, 0.31) 0.10 (0, 0.28)
February −0.04 (−0.25, 0) −0.05 (−0.25, 0) September −0.07 (−0.26, 0) −0.08 (−0.27, 0)
January −0.07 (−0.27, 0) −0.07 (−0.27, 0) August −0.21 (−0.38, −0.02) 0.09 (0, 0.27)

of LTP in both records. In contrast, the estimated H values
in the monthly rainfall data sets are not sensibly higher than
0.5.

In general, these results agree with previous outcomes of
long-term persistence studies for the daily discharge of the
Po at Pontelagoscuro (Montanari, 2012) as well as with pre-
vious studies on the daily river flows in an upstream tributary
of the Po (H = 0.71–0.81) and on the monthly rainfall regis-
tered at certain weather stations within the watershed (Mon-
tanari et al., 1996, 1997). Also, H values of the same order
of magnitude were found by Szolgayova et al. (2014) for
the rainfall (H = 0.43–0.50) and temperature (H = 0.65–
0.72) monthly time series in the upper Danube watershed at
Bratislava.

4.2 Meta-Gaussian model for updating the flood
frequency distribution

4.2.1 Flood season identification

Figure 3 shows the results of the directional statistics ap-
plied to the extreme events in both rivers. In the Po River,
we can see a very low regularity (r ≈ 0.1) and high disper-
sion (4 months) in the annual maximum daily flows (AMD
in Fig. 3) due to their possible occurrence in any of the two
high-flow seasons, spring and autumn, as depicted in Fig. 2.
The seasonality increases to r values close to 0.8 for high-
flow events that mostly take place in autumn as already re-
ported in previous studies (Zanchettin et al., 2008; Monta-
nari, 2012).

In the Danube, we find a considerable regularity in high-
flow events (r ≈ 0.8) but a certain decrease in the annual
maximum flows (with r values of 0.4). Nevertheless, the 2-
month dispersion in the date of occurrence is lower than in
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Figure 4. Residual plot of the linear regression of NQm on NQp and NQmf in the Po River (a) and upper Danube (b).

the Po River and corresponds to the length of the high-flow
season reported in Fig. 2. In view of these results we set
October–November and May–July as the main flood seasons
in the Po and Danube, respectively.

As the pre-flood season, we consider a 1-month period,
which is long enough in order to reduce the effect of river
regulation. We first set the month preceding the flood season
(i.e., September and April for the Po and Danube, respec-
tively) as the pre-flood season. Then, we repeat the analysis
by making reference to the previous months, with the ex-
pectation that the statistical dependence will decrease as the
pre-flood season is moved back into the past.

4.2.2 Estimation of the meta-Gaussian model

Table 3 shows the cross-correlation coefficients
ρ(NQ∗m,NQ∗p) and ρ(NQ∗m,NQ∗mf), along with their confi-
dence bands, between the normalized dependent variables
(NQ∗p and NQ∗mf in both study sites) and the explanatory
variable (NQ∗m) at each study site. In detail, we assumed

that Q∗m is given by the monthly mean flow in each of
the 9 months preceding the flood season (from September
to January in the Po River and from April to August in
the antecedent year in the upper Danube). Table 3 shows
that the correlation coefficient decreases as the considered
pre-flood season moves backwards, as we expected. Besides,
we always found noticeably higher coefficients with the
mean flow in the flood season (ρ∗(NQ∗m, NQ∗mf)) than with
the annual maximum daily flows (ρ∗(NQ∗m, NQ∗p)) in both
rivers. For example, a cross-correlation coefficient of 0.24
was obtained between NQ∗p and NQ∗m in the Po when the
pre-flood season considered is September, compared to 0.39
between NQ∗mf and the same explanatory variable, NQ∗m.
Moreover, a continuous decreasing cross-correlation coeffi-
cient is found as we move further from the flood season and
negative correlation in the Po River appears from May (for
the NQp) to June (for the NQmf) backwards. These negative
correlations put in evidence that low flows in the winter
season may be related to higher flows in the summer season
and therefore higher peak flows in the autumn season. The
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Figure 5. Probability distribution functions of the normalized dependent variables (NQp and NQmf) conditioned to the occurrence of the
70th, 80th and 95th percentiles of the normalized variables in the pre-flood season in the Po River.

latter outcome could be explained by a higher storage during
the winter months in the form of increased snowpack, which
may be related to the frequency and memory properties of
temperature and precipitation data.

The only anomalous correlation is found when consider-
ing the Q∗m in March as the explanatory variable for both
dependent variables in the Danube. This month corresponds
to both the peak in the snowmelt annual cycle in the catch-
ment (Zampieri et al., 2015) and the steepest rising slope in
the hydrograph (Fig. 2). Therefore, the use of monthly mean

flows might not be representative given the high variability
in the daily flows along this month and the complexity of
the processes that are affecting the streamflow (complex con-
tribution from subsurface flow or from the runoff generated
from snowmelt/precipitation).

An evaluation was carried out for the meta-Gaussian
model by using residual plots (Montanari and Brath, 2004).
Figure 4 shows the residuals for a time span of 4 months
backwards from the flood season at each study site. The
residuals look homoscedastic, thereby confirming that the
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Figure 6. Probability distribution functions of the normalized dependent variables (NQp and NQmf) conditioned to the occurrence of the
70th, 80th and 95th percentiles of the normalized variables in the pre-flood season in the upper Danube.

model assumptions about the residuals’ behavior are justi-
fied.

4.2.3 Flood frequency distribution updating

In order to decipher the technical benefit that can be gained
by updating the flood frequency distribution through the pro-
posed data assimilation procedure, we assumed that above-
average river flows are observed in the month preceding the
flood season and then applied the meta-Gaussian model to
estimate the updated probability distribution. In detail, we

assume that, on average, monthly flow corresponding to the
70, 80 and 95 % quantiles is observed in September for the
Po River and April for the Danube River.

Figures 5 and 6 show the unconditioned and updated prob-
ability density functions (pdfs) of the normalized peak flow
(i.e., the peak flow transformed to the canonical Gaussian
distribution). As one would expect, the results show that the
higher the cross-correlation value, the lower the variability
in the distribution of the normalized dependent variable and
the higher the mean value. For example, in the Po River for
the occurrence of the 95th quantile value in the normalized
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Figure 7. Peak flows in the flood season (October–November in the Po, May–July in the upper Danube) vs. the return period modeled
through the EV1 distribution function. Quantiles refer to mean flows higher than usual in the previous month.

Figure 8. Leave-one-out cross validation. Unconditioned EV1 probability distribution of peak flows for the year with the wettest pre-flood
season (1977 in the Po, 1944 in the upper Danube) along with conditioned distributions with related 95 % confidence bands.

mean flow in September, the pdf is centered around a mean
value of 0.4 and presents a standard deviation of 0.97 (Fig. 5).
In contrast, if one attempts to estimate the probability dis-
tribution of NQ∗p conditioned to the occurrence of the 95th
quantile of the normalized mean flow in July, no noticeable
change is found in the estimate with respect to the uncondi-
tioned distribution. In fact, the resulting pdf for NQ∗p is cen-
tered around a mean value of 0.09 with a standard deviation
of 0.998. The same behavior is found in the probability dis-
tribution of the other dependent variable in its normalized
form, NQ∗mf, where the higher correlation coefficients (Ta-
ble 3) determine an even greater displacement with respect
to the unconditioned distribution. In fact, the pdf of NQ∗mf
conditioned to the occurrence of the 95th quantile value in
the normalized mean flow in September is centered around a
mean value of 0.64 and presents a standard deviation of 0.92
(Fig. 5).

In the upper Danube a similar scheme is found with the
mean of the probability distribution of NQ∗p and NQ∗mf con-

ditioned to the occurrence of the 95th quantile of the normal-
ized mean flow in April, displaced to 0.32 and 0.82, respec-
tively (Fig. 6 and Table 3).

Figure 7 shows the comparison between the unconditioned
flood frequency distribution and the updated distributions in
the untransformed domain when the flow in the previous
month (September for the Po River, April for the Danube
River) is higher than usual (70, 80 and 95 % quantile). For
example, in the Po River, the unconditioned flood for a re-
turn period of 200 years, whose results equal 12 507 m3 s1,
increases up to 13 790 m3 s−1 (about 10 % increase) when
the mean flow in September corresponds to its 95 % quantile.
Similarly, in the upper Danube the unconditioned peak flow
for a return period of 200 years, 10 075 m3 s−1, increases up
to 10 861 m3 s−1 (about 8 % increase) when the mean flow in
April corresponds to its 95 % quantile. The differences show
that the average flow during the pre-flood seasons may in-
deed provide useful indications to update the flood frequency
distribution.
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After removing from the analysis the observations of the
years 1977 for the Po River and 1944 for the Danube River,
which are the previous flood season wettest years on record,
an emulation of a 1-month-ahead real-time prediction of the
probability distribution of the flood flows in the next flood
season was developed, along with uncertainty estimation as
described in Sect. 3.2. Figure 8 shows, for both the Po and
Danube rivers, the unconditioned flood frequency distribu-
tion along with the updated one; 95 % confidence bands for
the latter are also shown. It can be seen that the proposed pro-
cedure allows one to obtain an effective update in real-world
applications.

5 Conclusions

The analysis of the observed mean daily flow values suggests
the existence of LTP in both study sites with H values above
0.71. Such persistence is exploited to improve streamflow
forecasting in the flood season in terms of the mean monthly
flow of the pre-flood seasons. To this end, we automatically
detect the flood season through directional statistics and we
fit a bivariate Gaussian distribution function to model the
above dependence; 10 and 8 % increases in the 200-year re-
turn period peak flows are found in the Po and Danube, re-
spectively, when the average flows during the previous month
correspond to its 95 % quantile. The above results show that
the meta-Gaussian model applied to the streamflow records
can be used for updating a season in advance the flood fre-
quency distribution estimated for a given river, through a data
assimilation approach by using the mean monthly flow of the
pre-flood seasons.

The methodology herein proposed can be applied to any
other study site once the parameters of the meta-Gaussian
model confirm the presence of the above stochastic depen-
dence. Like in any time series analysis method, records that
encompass a wide range of meteorological and hydrological
conditions should be used to minimize uncertainty, which is
in this case related to the estimation of the correlation coeffi-
cient and standardization of the regression variables. Finally,
other explanatory variables (e.g., rainfall, snowmelt) can be
incorporated to profit from additional stochastic dependence
among peak flows and the state of the catchment and external
forcings.

The findings presented in this paper highlight the fact that
river memory has an impact on flood formation and should
then be properly considered for real-time management of
flood risk mitigation and resilience of societal settings to
floods. The procedure herein described can provide useful
information in those cases where the memory of the catch-
ment is supposed to persist for a long time. These conditions
may occur when the precipitation–runoff transformation is
characterized by a slow development. Memory is frequently
found to be related to the storage capacity of the catchment
and the complexity of the river network. Therefore, they may

be indicators of potentially useful results from the proposed
approach.
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