Angewandte Chemie

Supporting Information

Perylene π-Bridges Equally Delocalize Anions and Cations: Proportioned Quinoidal and Aromatic Content
Paula Mayorga Burrezo+, Wangdong Zeng+, Michael Moos, Marco Holzapfel, Sofia Canola, Fabrizia Negri,* Concepciò Rovira, Jaume Veciana, Hoa Phan, Jishan Wu,* Christoph Lambert, and Juan Casado*

anie_201905657_sm_miscellaneous_information.pdf

Content

1. Synthesis and characterization of $\mathbf{1}$.. S 2
2. Electrochemistry ..S10
3. Spectroelectrochemistry ...S13
4. Theoretical calculations ...S14
5. Mathematical treatment of the IV-CT band of the MV compoundsS20
6. Longer members of bis(diarylamines) and bis(diamine) series.........................S22
7. EPR simulations ... S 29

1. Synthesis and characterization of 1

Scheme S1. Synthesis of the bis(amino)rylenes by C-N coupling reaction.
Per-2Br, QR-2Br and HR-2Br were prepared according to our previously reported paper (Zeng, W.; Hong, Y.; Medina Rivero, S.; Kim, J.; Zafra, J. L.; Phan, H.; Gopalakrishna, T. Y.; Herng, T. S.; Ding, J.; Casado, J.; Kim, D.; Wu, J. Stable Nitrogen-centered Bis(imino)rylene Diradicaloids. Chem. Eur. J. 2018, 24, 4944-4951).

Compound 1: A two-necked round bottom flask was charged with Per-2Br ($200 \mathrm{mg}, 0.207 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(15.18$ $\mathrm{mg}, 16.6 \mu \mathrm{~mol}, 0.08$ equiv), Sphos ($21 \mathrm{mg}, 0.052 \mathrm{mmol}, 0.25$ equiv), bis(4 -methoxyphenyl)amine ($190 \mathrm{mg}, 0.81 \mathrm{mmol}$, 4 equiv) and $\mathrm{NaO}^{t} \mathrm{Bu}$ ($96.7 \mathrm{mg}, 1.10 \mathrm{mmol}$, 5 equiv). The mixture was degassed and stirred at $110^{\circ} \mathrm{C}$ for 12 h under argon. The solution was cooled down to room temperature and the organic layer was washed by water, dried over anhydrous MgSO_{4}. The solvent was removed under vacuum and the residue was purified by column chromatography (silica gel, hexane/DCM $=4 / 1$) to afford the desired product 1 as a red solid ($248 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 500 MHz): $\delta \mathrm{ppm} 8.06$ (d, $J=7.38 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.46 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.38 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}$, $J=8.20 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~m}, 8 \mathrm{H}), 6.91(\mathrm{~d}, J=8.22 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~m}, 8 \mathrm{H}), 3.77(\mathrm{~s}, 12 \mathrm{H}), 2.38(\mathrm{br}, 2 \mathrm{H}), 1.57-1.53(\mathrm{~m}$, $8 \mathrm{H}), 1.27-1.10(\mathrm{~m}, 42 \mathrm{H}), 0.86-0.81(\mathrm{~m}, 12 \mathrm{H})$; HR-MS (APCI): $m / z=1263.7906$, calcd. for $\mathrm{C}_{89} \mathrm{H}_{103} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+1): m / z=$ 1263.7912 , error $=0.50 \mathrm{ppm}$.

QR-DPN: A two-necked round bottom flask was charged with QR-2Br (184 mg, 0.104 mmol$), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(7.59 \mathrm{mg}$, $8.3 \mu \mathrm{~mol}, 0.08$ equiv), Sphos ($10.5 \mathrm{mg}, 0.026 \mathrm{mmol}, 0.25$ equiv), bis($4-\mathrm{methoxyphenyl)amine} \mathrm{(} 95 \mathrm{mg}, 0.40 \mathrm{mmol}, 4$ equiv) and $\mathrm{NaO}^{\prime} \mathrm{Bu}\left(48.3 \mathrm{mg}, 0.55 \mathrm{mmol}, 5\right.$ equiv). The mixture was degassed and stirred at $110^{\circ} \mathrm{C}$ for 12 h under argon. The solution was then slowly cooled down to room temperature and the organic layer was washed by water, dried over anhydrous MgSO_{4}. The solvent was removed under vacuum and the residue was purified by column chromatography (silica gel, hexane/DCM $=4 / 1$) to afford the desired product QR-DPN as a blue solid ($180 \mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta \mathrm{ppm} 8.83$ (br, 2H), 8.36 (br, 2H), 8.26 (d, J=8.10 Hz, 2H), 8.14 (br, 2H), 7.59 (br, 2H), $7.38(\mathrm{~d}, ~ J=8.20 \mathrm{~Hz}, 12 \mathrm{H}), 7.00(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 8 \mathrm{H}), 6.99(\mathrm{~m}, 8 \mathrm{H}), 6.75(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 8 \mathrm{H}), 3.72(\mathrm{~s}, 12 \mathrm{H}), 2.47(\mathrm{br}$, $4 \mathrm{H}), 1.60(\mathrm{br}, 8 \mathrm{H}), 1.51(\mathrm{br}, 8 \mathrm{H}), 1.30-1.20(\mathrm{br}, 72 \mathrm{H}), 8.82-0.80(\mathrm{br}, 24 \mathrm{H})$; HR-MS (APCI): $\mathrm{m} / \mathrm{z}=2068.3558$, calcd. for $\mathrm{C}_{150} \mathrm{H}_{175} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+1): m / z=2068.3546$, error $=-0.50 \mathrm{ppm}$.

HR-DPN: A two-necked round bottom flask was charged with HR-2Br ($100 \mathrm{mg}, 0.039 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.8 \mathrm{mg}, 3.1$ $\mu \mathrm{mol}, 0.08$ equiv), Sphos ($4 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.25$ equiv), bis(4-methoxyphenyl)amine ($36 \mathrm{mg}, 0.155 \mathrm{mmol}, 4$ equiv) and $\mathrm{NaO}^{\dagger} \mathrm{Bu}$ ($18.8 \mathrm{mg}, 0.194 \mathrm{mmol}, 5$ equiv). The mixture was degassed and stirred at $110^{\circ} \mathrm{C}$ for 12 h under argon.

The solution was then slowly cooled down to room temperature and the organic layer was washed by water, dried over anhydrous MgSO_{4}. The solvent was removed under vacuum and the residue was purified by column chromatography (silica gel, hexane/DCM = 2/1) to afford the desired product HR-DPN as a green solid ($91 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl3, 500 MHz$)$: 9.11 (br, 2H), 9.64 (br, 2H), 8.53 (br, 2H), 8.49 (br, 2H), $8.40(\mathrm{br}, 2 \mathrm{H}), 8.38(\mathrm{br}, 2 \mathrm{H}), 8.35$ (br, 2H), 8.29 (br, 2H), 8.12 (br, 2H), 7.84 (br, 2H), 7.69-7.59 (m, 8H), 7.49-7.35 (m, 12H), 7.07-6.94 (m, 12H), 6.84$7.86(\mathrm{~m}, 8 \mathrm{H}), 6.53(\mathrm{br}, 2 \mathrm{H}), 2.43(\mathrm{~m}, 6 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 24 \mathrm{H}), 1.36-1.08(\mathrm{~m}, 108 \mathrm{H}), 0.91-0.79(\mathrm{~m}, 36 \mathrm{H})$; HR-MS (APCI): $m / z=2871.9051$, calcd. for $\mathrm{C}_{211} \mathrm{H}_{246} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}): m / z=2871.9102$, error $=1.80 \mathrm{ppm}$.

Appendix: NMR spectra and HR mass spectra of all new compounds

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of compound QR-DPN (500 MHz , d_{8}-THF, rt).

Figure S3. COSY- ${ }^{1} \mathrm{H}$ NMR spectrum of compound QR-DPN in d_{8}-THF.

Figure S4. VT ${ }^{1} \mathrm{H}$ NMR spectra of compound HR-DPN in d_{8}-THF (500 MHz , aromatic range). The spectrum was broadened at room temperature due to thermal population from singlet ground state to the paramagnetic triple biradical, as this compound is an open-shell singlet diradicaloid (see: W. Zeng, H. Phan, T. S. Herng, T. Y. Gopalakrishna, N. Aratani, Z. Zeng, H. Yamada, J. Ding, J. Wu, Rylene Ribbons with Unusual Diradical Character, Chem 2017, 2, 81-92).

Figure S5. COSY- ${ }^{1} \mathrm{H}$ NMR spectrum of compound HR-DNP in d_{8}-THF at 213 K .

Mass Spectrum SmartFormula Report

Figure S6. HR mass spectrum (HPCI-HR) of the compound 1.

Mass Spectrum SmartFormula Report

Figure S7. HR mass spectrum (HPCI-HR) of the compound QR-DPN.

Mass Spectrum SmartFormula Report

Figure S8. HR mass spectrum (HPCI-HR) of the compound HR-DPN.

2. Electrochemistry

Figure S9. Cyclic voltammetry $1\left(6.24 \times 10^{-4} \mathrm{M}, 0.03 \mathrm{M}\right.$ TBA-PF6/o-DCB) recorded at different scan rates, in order to verify the electrochemical reversibility of the studied processes.

Figure S10. Differential pulse voltammetry (DPV) of 1 at a scan rate of $2 \mathrm{mV} \mathrm{s}^{-1}$, together with the signal fitting to a Voigt model and the resulting areas.

Table S1. Fitting parameters of the DPV measurements of 1, according to a Voigt model.

Model	Voigt	
Equation	$y=$ nlf_voigt($x, y 0, x c, A, w G, w L)$;	
Plot	Peak1(1_DPV)	Peak2(1_DPV)
y0	$3,91 \mathrm{E}-9 \pm 3,19 \mathrm{E}-10$	3,90786E-9 $\pm 3,19 \mathrm{E}-10$
xc	-0,09 $\pm 2,67 \mathrm{E}-4$	0,10 $\pm 2,95 \mathrm{E}-4$
A	1,69E-8 $\pm 3,0184 \mathrm{E}-10$	$1,62 \mathrm{E}-8 \pm 1,07 \mathrm{E}-10$
wG	0,11589 $\pm 0,00263$	0,11272 $\pm 8,1919 \mathrm{E}-4$
wL	6,7623E-4 $\pm 0,00443$	7,6479E-15 $\pm 3,99366 \mathrm{E}-4$
Reduced Chi-Sqr	1,02251E-17	
R-Square (COD)	0,99574	
Adj. R-Square	0,99565	

Potential vs. Fc ${ }^{+} / \mathrm{Fc}(\mathrm{V})$
Figure S11. Cyclic voltammetry $2(6.0 \mathrm{E}-4 \mathrm{M}, 0.03 \mathrm{M}$ TBA-PF $6 / \mathrm{o}-\mathrm{DCB})$ recorded at different scan rates, in order to verify the electrochemical reversibility of the studied processes.

Figure S12. Differential pulse voltammetry (DPV) of 2 at a scan rate of $2 \mathrm{mV} \mathrm{s}^{-1}$, together with the signal fitting to a Voigt model and the resulting areas.

Table S2. Fitting parameters of DPV measurements of 2, according to a Voigt model.

Model	Voigt	
Equation	$y=$ nlf_voigt $(x, y 0, x c, A, w G, w L) ;$	
Plot	Peak1(2_DPV)	Peak2(2_DPV)
y0	$9,13 \mathrm{E}-10 \pm 2,04 \mathrm{E}-10$	$9,13 \mathrm{E}-10 \pm 2,04 \mathrm{E}-10$
$\mathbf{x c}$	$\mathbf{- 1 , 6 2 \pm 1 , 5 6 \mathrm { E } - 4}$	$\mathbf{- 1 , 4 6} \pm \mathbf{1 , 2 0 E}-\mathbf{2}$
A	$2,29 \mathrm{E}-8 \pm 1,80 \mathrm{E}-10$	$2,24 \mathrm{E}-8 \pm 1,72 \mathrm{E}-10$
wG	$0,0791 \pm 0,00153$	$0,109 \pm 0,00105$
wL	$0,05907 \pm 0,00192$	$0,01049 \pm 0,00173$
Reduced Chi-Sqr	$2,27541 \mathrm{E}-18$	
R-Square (COD)	0,99945	
Adj. R-Square	0,99944	

3. Spectroelectrochemistry

Figure S13. UV-Vis-NIR absorption spectra of 1 electrochemically oxidized ($10^{-4} \mathrm{M}, 0.02 \mathrm{M} \mathrm{TBA}-\mathrm{PF} 6 / \mathrm{o}-$ DCB), separated by species. Neutral: black solid line; Radical cation: red solid line; Dication: blue solid line.

Figure S14. UV-Vis-NIR absorption spectra of $2\left(10^{-4} \mathrm{M}, 0.02 \mathrm{M}\right.$ TBA-PF $6 / \mathrm{o}-\mathrm{DCB}$) electrochemically reduced, separated by species. Neutral: black solid line; Radical anion: green solid line; Dianion: purple solid line.

4. Theoretical calculations

Geometries of Per-DPN (compound 1) and Per-2N (compound 2) were optimized for the neutral, radical anion (cation) and dianion (dication) forms using density functional theory. The 6-31G** basis set was employed and the B3LYP, BLYP35 and CAM-B3LYP functionals were selected. The former was used to investigate the electronic communication between the redox centers and the bridge and to evaluate intramolecular reorganization energies since it has been used previously for a wide variety of conjugated systems. Reorganization energies were computed for the redox centers, with the adiabatic potential method.[1-3] To this end the geometries of the donor (acceptor) redox centers were optimized in both neutral and charged states.

Equilibrium structures were determined at CAM-B3LYP/6-31G** and BLYP35/6-31G** level, including solvent (o-dichlorobenzene) described with the SCRF model in the framework of the PCM approach.[4-6] The CAM-B3LYP and BLYP35 functionals were selected since they have been shown to provide a realistic and balanced description of the localization / delocalization of charges in Robin-Day class II and III conjugated systems[7] and especially the latter has been tested on a wide variety of mixed-valence systems. [8]
In this regard we note that for the radical species we could not find asymmetric geometries with charge localized on a single redox center. Similarly, for the closed shell diradical systems, a broken symmetry solution was not found. These results show that the ground state potential energy surface of the radical species displays a single minimum in agreement with a Robin-Day class III system.

The equilibrium structures of neutral and charged species were then employed for TDDFT calculations of vertical excitation energies with the inclusion of solvent effects described with the linear response theory.[910] The CAM-B3LYP and BLYP35 functionals were selected to simulate the absorption spectra of neutral and charged species. For comparison with experimental absorption spectra and for the evaluation of electronic couplings between redox centers, the TD-CAM-B3LYP results were scaled by 0.3 eV to account for the known overestimate of the method.[7] The computed electronic couplings between redox centers are compared with the results from different functionals.

Electronic communication with the bridge and intra-molecular reorganization energies

To estimate electronic communication between the redox centers and the bridge, a fragment orbital approach was adopted. The fragments were frozen at the optimized geometry of the full molecule and dangling bonds were saturated with hydrogen atoms. The molecular orbitals of the fragments were determined and used, together with the results on the full molecule, to construct an orbital interaction diagram shown in Figure 3 for 1 and for 2.

Figure 3 shows that for 2 the interaction between the HOMO of perylene and the antisymmetric combination of the orbitals of redox centers (LUMO) is large and results in a higher energy empty LUMO orbital of 2 bearing a strong parentage with the HOMO of perylene. The quinoidal structure of 2 then follows because of the emptied perylene HOMO contribution which is of aromatic character. The remarkable reorganization of orbital energies upon interaction is a manifestation of the strong electron communication between the redox centers and the bridge also for 2 and points to a Robin-Day class III system where the charge is delocalized over the entire molecule, as demonstrated by geometry optimization.

The intramolecular reorganization energy associated with the charge transfer between the two redox centers was evaluated as

$$
\lambda_{(i)}=\left[E^{n}\left(\text { geo }_{c}\right)-E^{n}\left(\text { geo }_{n}\right)\right]_{i}+\left[E^{c}\left(\text { geo }_{n}\right)-E^{c}\left(g e o_{c}\right)\right]_{i}=\lambda_{(i)}^{n}+\lambda_{(i)}^{c}
$$

where $E^{n / c}\left(\mathrm{geo}_{c / n}\right)$ is the energy of the neutral/charged redox center at the geometry of the charged/neutral species.

The reorganization energy estimated for the amine redox center (redox center for compound $\mathbf{1}$) agrees with previously reported values [11]

Table S3 B3LYP/6-31G** computed reorganization energies $\left(\mathrm{cm}^{-1}\right)$ for the DBD (1) and ABA (2) systems

Compound 1				
	λ^{n}		$\lambda^{c}=\lambda^{\text {cation }}$	$\lambda_{(a, b)}$
Redox unit 1	1246	Redox unit 2	1250	2496
Compound 2				
	λ^{n}		$\lambda^{c}=\lambda^{\text {anion }}$	$\lambda_{(a, b)}$
Redox unit 1	839	Redox unit 2	782	1621

Equilibrium structures

The most relevant computed CC and CN bond lengths for the neutral and charged species, optimized at CAM-B3LYP/6-31G** including solvent effects described by the PCM method, are collected in Figures S15S17.

Figure S15. Comparison between CAM-B3LYP/6-31G** + PCM computed bond-lengths of Per-DPN (compound 1) neutral and Per-2N (compound 2) dianion.

Figure S16. Comparison between CAM-B3LYP/6-31G** + PCM computed bond-lengths of Per-DPN (compound 1) dication and Per-2N (compound 2) neutral.

Figure S17. Comparison between CAM-B3LYP/6-31G** + PCM computed bond-lengths of Per-DPN (compound 1) cation and Per-2N (compound 2) anion demonstrating the similarity between the geometries.

The computed equilibrium structures of charged systems indicate full delocalization of the charge (radical) on both redox centers through the bridge, with a potential energy surface displaying therefore a single minimum, thereby demonstrating that the two investigated systems belong to Robin-Day class III.
Additionally, the data in Figure S15 show that the bond lengths of the "Per" unit in Per-DPN (compound 1) neutral and Per-2N (compound 2) dianion are almost identical and typical of a Perylene derivative. This indicates a full recovery of aromaticity of $\mathbf{1}$ in its dianionic form.
The data in Figure S16 show that the bond lengths of the "Per" unit in Per-DPN (compound 1) dication and Per-2N (compound 2) neutral are almost identical and typical of a quinoidal Perylene derivative.
Finally, the data in Figure S17 show that the bond lengths of the "Per" unit in Per-DPN (compound 1) radical cation and Per-2N (compound 2) radical anion are almost identical and intermediate between those of the Per-DPN (compound 1) and Per-2N (compound 2) neutral species, in full agreement with Scheme 2.
In addition, the flow of electrons from the perylene HOMO to the acceptor's orbitals, ultimately determines the quinoidal structure of the former in the neutral state.

Electronic absorption spectra of 1 and 2

Figure S18. TD-CAM-B3LYP/6-31G** (top) and TD-BLYP35/6-31G* (bottom) predicted absorption spectra of the neutral, cationic and dicationic species of $\mathbf{1}$, including o-dichlorobenzene solvent described with PCM. TD-CAM-B3LYP/6-31G** excitation energies were red-shifted by 0.3 eV in agreement with previous studies [7]. To facilitate comparison with experiment, all computed vertical excitations were broadened with a Lorentzian linewidth of 0.2 eV .

Figure S19. TD-CAM-B3LYP/6-31G** (top) and TD-BLYP35/6-31G** (bottom) predicted absorption spectra of the neutral, cationic and dicationic species of $\mathbf{2}$, including o-dichlorobenzene solvent described with PCM. TD-CAM-B3LYP/6-31G** excitation energies were red-shifted by 0.3 eV in agreement with previous studies [7]. To facilitate comparison with experiment, computed vertical excitations were broadened with a Lorentzian linewidth of 0.2 eV .

The simulated absorption spectra agree with the observed counterparts (see Figures S18 and S19) for all the species investigatd (neutral, charged, douply charged) and allow the identification of the IV-CT band in the spectra of the radicals of $\mathbf{1}$ and $\mathbf{2}$ as shown in Table S4.

The lowest energy excited state for both radical ions of $\mathbf{1}$ and $\mathbf{2}$ corresponds to excitation into the IV-CT band. Therefore we extracted the electronic coupling between redox centers from the computed vertical excitation as $2 V_{A B}=E\left(D_{0} \rightarrow D_{1}\right)$. For comparison we include the estimate from different functionals (see Table S5).

Table S4. TD-UDFT/6-31G** computed excitation energies (E), oscillator strength (f) and wavefunction (wf) for the radical ions of $\mathbf{1}$ and $\mathbf{2}$

1				
	$\begin{aligned} & \hline \text { TD-UBLYP35 } \quad+ \\ & \text { PCM } \end{aligned}$	TD-UCAM-B3LYP + PCM	TD-UB3LYP vacuo	
	$\mathrm{E} / \mathrm{eV}(\mathrm{f})^{\text {a }}$	$\mathrm{E} / \mathrm{eV}(\mathrm{f})^{\mathrm{a}}$	$\mathrm{E} / \mathrm{eV}(\mathrm{f})^{\mathrm{a}}$	$\mathrm{w}^{\text {f }}$
$\mathrm{D}_{0} \rightarrow \mathrm{D}_{1}$	1.07 (0.57)	1.23 (0.64)	0.94 (0.34)	$\mathrm{H}-1 \rightarrow \mathrm{H}$
$D_{0} \rightarrow D_{2}$	1.61 (0.04)	1.90 (0.05)	1.40 (0.02)	$\mathrm{H}-2 \rightarrow \mathrm{H}$
$D_{0} \rightarrow D_{3}$	1.61 (0.49)	1.72 (0.48)	1.59 (0.50)	$\mathrm{H} \rightarrow \mathrm{L}$
2				
	$\mathrm{E} / \mathrm{eV}(\mathrm{f})$	E / eV (f)	E / eV (f)	wf
$D_{0} \rightarrow D_{1}$	1.41 (0.02)	1.54 (0.02)	1.25 (0.01)	$\mathrm{L} \rightarrow \mathrm{L}+1$
$D_{0} \rightarrow D_{2}$	1.83 (0.84)	1.86 (0.84)	1.90 (0.61)	$\mathrm{H} \rightarrow \mathrm{L}$

${ }^{\text {a }}$ unscaled excitation energies ${ }^{\text {b }}$ orbital labels refer to the occupation in the neutral molecule
Table S5. Computed electronic couplings between the redox centers of $\mathbf{1}$ and $\mathbf{2}$.

$\mathbf{1}$			
	$E\left(D_{0} \rightarrow D_{1}\right) / \mathrm{eV}$	$\mathrm{W} f^{\mathrm{a}}$	$\mathrm{V}_{\mathrm{AB}} / \mathrm{cm}^{-1}$
TD-UBLYP35 + PCM	1.07	$\mathrm{H}-1 \rightarrow \mathrm{H}$	4315
TD-UCAM-B3LYP + PCM	1.23	$\mathrm{H}-1 \rightarrow \mathrm{H}$	4960
TD-UB3LYP	0.94	$\mathrm{H}-1 \rightarrow \mathrm{H}$	3790
$\mathbf{2}$	$E\left(D_{0} \rightarrow D_{1}\right) / \mathrm{eV}$	$\mathrm{W} \mathrm{f}^{\mathrm{a}}$	$\mathrm{V}_{\mathrm{AB}} / \mathrm{cm}^{-1}$
TD-UBLYP35 + PCM			
TD-UCAM-B3LYP + PCM	1.41	$\mathrm{~L} \rightarrow \mathrm{~L}+1$	5686
TD-UB3LYP	1.25	$\mathrm{~L} \rightarrow \mathrm{~L}+1$	6210
	$\mathrm{~L} \rightarrow \mathrm{~L}+1$	5040	

${ }^{\text {athe }}$ orbital labels refer to the occupation in the neutral molecule

References for the computational section

1 J.-L. Bredas, D. Beljonne, V. Coropceanu, J. Cornil, "Charge-Transfer and Energy-Transfer Processes in pi-Conjugated Oligomers and Polymers: A Molecular Picture", Chem. Rev. 2004, 104, 4971-5003.

2 V. Coropceanu, J. Cornil, D. A. da Silva, Y. Olivier, R. Silbey, J.-L. Bredas, "Charge Transport in Organic Semiconductors", Chem. Rev. 2007, 107, 926-952.
3 H. Oberhofer, K. Reuter, J. Blumberger, "Charge Transport in Molecular Materials: An Assessment of Computational Methods", Chem. Rev. 2017, 117, 10319-10357.

4 M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 1996, 255, 327-335.
5 B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 106, 5151-5158
6 J. Tomasi, R. Cammi, B. Mennucci, C. Cappelli, S. Corni, Phys. Chem. Chem. Phys. 2002, 4, 56975712
7 W. Jiang, C. Xiao, L. Hao, Z. Wang, H. Ceymann, C. Lambert, S. Di Motta, F. Negri, "Localization/Delocalization of Charges in Bay-Linked Perylene Bisimides", Chem. Eur. J. 2012, 18, 6764-6775

8 M. Parthey, M. Kaupp, "Quantum-chemical insights into mixed-valence systems: within and beyond the Robin-Day scheme", Chem. Soc. Rev. 2014, 43, 5067-5088.

9 M. Cossi and V. Barone, Time-dependent density functional theory for molecules in liquid solutions, J. Chem. Phys. 2001, 115, 4708-4717.

10 R. Cammi and B. Mennucci, Linear response theory for the polarizable continuum model, J. Chem. Phys. 1999, 110, 9877-9886.

11 A. V. Szeghalmi, M. Erdmann, V. Engel, M. Schmitt, S. Amthor, V. Kriegisch, G. Nöll, R. Stahl, C. Lambert, D. Leusser, D. Stalke, M. Zabel, J. Popp, J. Am. Chem. Soc. 2004, 126, 7834-7845.

5. Mathematical Treatment of the IV-CT band of the MV compounds

Figure S20. Selected section containing the lowest energy absorption bands of the reduced spectrum of $\mathbf{1}^{\boldsymbol{+}}$ and fitting of IV-CT according to a GaussAmp function.

Table S6. Fitting parameters of the IV-CT band of the radical cation (RC) of 1, according to a GaussAmp function. Every peak has been highlighted matching the scheme colour of Figure S20.

Model	GaussAmp	
Equation	$y=y 0+\mathrm{A}^{*} \exp \left(-0.5^{*}((\mathrm{x}-\mathrm{xc}) / \mathrm{w})^{\wedge} 2\right)$	
Plot	Peak1(1 RC)	Peak2(1 RC)
$y 0$	$0,007 \pm 1,77067 \mathrm{E}-4$	$0,007 \pm 1,77067 \mathrm{E}-4$
xc	$6648,25028 \pm 10,73062$	$8015 \pm 31,47594$
w	$811,49105 \pm 3,87657$	$974,32308 \pm 13,05107$
A	$0,21782 \pm 0,00503$	$0,14231 \pm 0,00306$
Reduced Chi-Sqr	$3,50095 \mathrm{E}-6$	
R-Square (COD)	0,99964	
Adj. R-Square	0,99964	

Figure S21. Selected section containing the lowest energy absorption bands of the reduced spectrum of 2*and fitting of IV-CT according to a GaussAmp function.

Table S7. Fitting parameters of the IV-CT band of the radical anion (RA) of 2, according to a GaussAmp function. Every peak has been highlighted matching the scheme colour of Figure S21.

Model	GaussAmp		
Equation	$\mathrm{y}=\mathrm{y} 0+\mathrm{A}^{*} \exp \left(-0.5^{*}((\mathrm{x}-\mathrm{xc}) / \mathrm{w})^{\wedge} 2\right)$		
Plot	Peak1(2_RA)	Peak2(2_RA)	Peak3(2_RA)
y0	0,03536 $\pm 1,87911 \mathrm{E}-4$	0,03536 $\pm 1,87911 \mathrm{E}-4$	0,03536 $\pm 1,87911 \mathrm{E}-4$
xc	8000,17295 $\pm 1,72856$	9155,94174 $\pm 3,33199$	10160,62502 $\pm 128,48501$
w	$452,13222 \pm 0,82437$	558,98133 $\pm 6,65914$	216,43858 $\pm 52,55561$
A	0,62255 $\pm 0,00215$	0,28237 $\pm 4,827 \mathrm{E}-4$	0,06228 $\pm 0,02515$
Reduced Chi-Sqr	5,27385E-6		
R-Square (COD)	0,9999		
Adj. R-Square	0,99989		

6. Longer members of the bis(diarylamine) and bis(diimine) series

Figure S22. Cyclic voltammetry of QR-DPN (left) and HR-DPN (right) ($10^{-4} \mathrm{M}, 0.03 \mathrm{M}$ TBA-PF6/o-DCB) recorded at different scan rates, in order to verify the electrochemical reversibility of the studied processes.

Table S7. Electrochemical data (V vs. $\mathrm{Fc}^{+} / \mathrm{Fc}$) for the oxidation processes of of QR-DPN and HR-DPN measured by OSWV in $10^{-4} \mathrm{M}, 0.03 \mathrm{M}$ TBA-PF6/o-DCB

o-DCB (0.03 M)	$\mathbf{E}_{1 / 2}{ }^{\text {ox1 }}(\mathbf{V})$	$\mathbf{E}_{1 / 2}{ }^{\text {ox2 }}(\mathrm{V})$	$\mathbf{E}_{1 / 2}{ }^{\text {ox3 }}(\mathrm{V})$	$\mathbf{E}_{1 / 2}{ }^{\text {o4 }}(\mathrm{V})$	$\mathbf{E}_{1 / 2}{ }^{\text {ox5 }}(\mathrm{V})$
QR-DPN	-0.33	-0.24	0.67	0.95	1,07
HR-DPN	$-0,46$	-0.37	0.43	0.67	$1,02\left({ }^{*}\right)$

Figure S23. Cyclic voltammetry of QR-2N (left) and HR-2N (right) ($10^{-4} \mathrm{M}, 0.03 \mathrm{M} \mathrm{TBA-PF}$ /o-DCB) recorded at different scan rates, in order to verify the electrochemical reversibility of the studied processes.

Table S8. Electrochemical data (V vs. $\mathrm{Fc}^{+} / \mathrm{Fc}$) for the reduction processes of of QR-2N and HR-2N measured by OSWV in $10^{-4} \mathrm{M}, 0.03 \mathrm{M}$ TBA-PF6/o-DCB

o-DCB (0.03 M)	QR-2N	HR-2N
$\mathrm{E}_{1 / 2}{ }^{\text {red1 }}(\mathrm{V})$	$-1.48\left(2 \mathrm{e}^{-}\right)$	$-1,48\left(2 \mathrm{e}^{-}\right)$

Figure S24. UV-Vis-NIR absorption spectra of QR-DPN electrochemically oxidized ($10^{-4} \mathrm{M}, 0.02 \mathrm{M}$ TBA$\left.\mathrm{PF}_{6} / \mathrm{o}-\mathrm{DCB}\right)$. Neutral: black solid line; Radical cation: red solid line; Dication: blue solid line.

Figure S25. Reduced absorption spectra of QR-DPN+ ${ }^{+}$with its respective calculated results from TD-DFT// UBLYP35/SVP, including o-DCB solvent described with PCM.

Figure S26. Calculated topologies (UBLYP35/SVP, CPCM, Solvent=o-DCB) of the orbitals of QR-DPN*+ related to the major contributions of the main bands of the reduced absorption spectrum. $(A)=(\alpha)$ and (B) $=(\beta)$.

Figure S27. UV-Vis-NIR absorption spectra of HR-DPN electrochemically oxidized ($10^{-4} \mathrm{M}, 0.02 \mathrm{M}$ TBA$\mathrm{PF}_{6} / \mathrm{o}-\mathrm{DCB}$). Neutral: black solid line; Radical cation: red solid line; Dication: blue solid line.

Figure S28. Reduced absorption spectra of HR-DPN ${ }^{++}$with its respective calculated results from TD-DFT// UBLYP35/SVP, including o-DCB solvent described with PCM.
Excited State $1: 2.125-2$ Sym $\quad 0.5638 \mathrm{eV} 2199.20 \mathrm{~nm} \quad \mathrm{f}=1.0352 \quad<\mathrm{S} * * 2>=0.879$
344A -> 349A 0.11548
$345 \mathrm{~A} \rightarrow 348 \mathrm{~A} \quad-0.13019$
$346 \mathrm{~A}->349 \mathrm{~A} \quad-0.19058$
347A -> 348A 0.96125
$346 \mathrm{~B} \rightarrow 347 \mathrm{~B} \quad-0.12548$
$347 \mathrm{~A}<-348 \mathrm{~A} \quad 0.17642$

Excited State 2: 2.266-?Sym 0.9355 eV 1325.30 nm f=2.1415 <S**2>=1.034
Excited State 2: 2.266-?Sym 0.9355 eV 1325.30 nm f=2.1415 <S**2>=1.034
343B -> 348B -0.10757
343B -> 348B -0.10757
344B -> 347B -0.15425
344B -> 347B -0.15425
345B -> 348B 0.22543
345B -> 348B 0.22543

Figure S29. Calculated topologies (UBLYP35/SVP, CPCM, Solvent=o-DCB) of the orbitals of HR-DPN*+ related to the major contributions of the main bands of the reduced absorption spectrum. $(A)=(\alpha)$ and (B) $=(\beta)$.

Figure S30. UV-Vis-NIR absorption spectra of QR-2N electrochemically reduced ($10^{-4} \mathrm{M}, 0.02 \mathrm{M}$ TBA-PF $6 / \mathrm{o}-$ DCB). Neutral: black solid line; Dianion: purple solid line.

Figure S31. Reduced absorption spectra of pure QR-2N*- obtained from Specfit software, together with its respective calculated results from TD-DFT// UBLYP35/SVP, including o-DCB solvent described with PCM.

Excited State	$1:$	$2.010-2 S y m$
$247 \mathrm{~A} \rightarrow 250 \mathrm{~A}$	-0.12849	
$248 \mathrm{~A} \rightarrow 249 \mathrm{~A}$	0.92447	
$247 \mathrm{~B} \rightarrow 248 \mathrm{~B}$	0.37106	

Excited State 2: 2.290-?Sym 1.1075 eV 1119.48 nm f=1.6366 <S**2>=1.061
Excited State 2: 2.290-?Sym 1.1075 eV 1119.48 nm f=1.6366 <S**2>=1.061
246A -> 249A -0.15759
246A -> 249A -0.15759
248A -> 249A -0.32296
248A -> 249A -0.32296
246B -> 249B 0.25863
246B -> 249B 0.25863
247B -> 248B 0.87151
247B -> 248B 0.87151

Figure S32 Calculated topologies (UBLYP35/SVP, CPCM, Solvent=o-DCB) of the orbitals of QR-2Nrelated to the major contributions of the main bands of the reduced absorption spectrum. $(A)=(\alpha)$ and (B) $=(\beta)$.

Figure S33. UV-Vis-NIR absorption spectra of HR-2N electrochemically reduced ($10^{-4} \mathrm{M}, 0.02 \mathrm{M} \mathrm{TBA}-\mathrm{PF}_{6} / \mathrm{o}-$ DCB). Neutral: black solid line; Dianion: purple solid line.

Figure S34. Reduced absorption spectra of pure HR-2N*- obtained from Specfit software, together with its respective calculated results from TD-DFT// UBLYP35/SVP, including o-DCB solvent described with PCM.

Excited State	$1:$	$2.058-$ SSym	0.5939 eV 2087.80 nm	$\mathrm{f}=0.7168 \quad<S^{* * 2>=0.809}$
$322 \mathrm{~A} \rightarrow 325 \mathrm{~A}$	0.17975			
$323 \mathrm{~A} \rightarrow 324 \mathrm{~A}$	0.96189			
$322 \mathrm{~B} \rightarrow 323 \mathrm{~B}$	0.22697			
$323 \mathrm{~A} \rightarrow-324 \mathrm{~A}$	0.11818			

α-LUMO (324A)

$321 \mathrm{~A} \rightarrow 324 \mathrm{~A} \quad-0.17323$
$323 \mathrm{~A} \rightarrow 324 \mathrm{~A} \quad-0.17437$
$320 \mathrm{~B} \rightarrow 325 \mathrm{~B} \quad 0.13701$
$321 \mathrm{~B} \rightarrow 324 \mathrm{~B} \quad-0.29818$
$322 \mathrm{~B}-323 \mathrm{~B} \quad 0.89960$
$322 \mathrm{~B}<-323 \mathrm{~B} \quad 0.12742$

Figure S35. Calculated topologies (UBLYP35/SVP, CPCM, Solvent=o-DCB) of the orbitals of HR-2Nrelated to the major contributions of the main bands of the reduced absorption spectrum. $(A)=(\alpha)$ and (B) $=(\beta)$.

7 EPR simulations

Figure S36. Isotropic hyperfine coupling constants (hcc) used for the ESR simulation for 2-.

Figure S37. Isotropic hyperfine coupling constants (hcc) used for the ESR simulation for $\mathbf{1}^{+}$.

