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1. Synthesis and characterization of 1

n=0, Per-2Br; n=1, QR-2Br; n=2, HR-2Br CsHyq
H Ar'= —§@—<
/@/N\Q\ Pd,(dba)s, Sphos, NaO'Bu CgH17
toluene, reflux for 12 h
MeO OMe 2 _g@,OMe

n=0, 1; n=1, QR-DPN; n=2, HR-DPN

Scheme S1. Synthesis of the bis(amino)rylenes by C-N coupling reaction.

Per-2Br, QR-2Br and HR-2Br were prepared according to our previously reported paper (Zeng, W.; Hong, Y.; Medina
Rivero, S.; Kim, J.; Zafra, J. L.; Phan, H.; Gopalakrishna, T. Y.; Herng, T. S.; Ding, J.; Casado, J.; Kim, D.; Wu, J.
Stable Nitrogen-centered Bis(imino)rylene Diradicaloids. Chem. Eur. J. 2018, 24, 4944-4951).

Compound 1: A two-necked round bottom flask was charged with Per-2Br (200 mg, 0.207 mmol), Pdz(dba)z (15.18
mg, 16.6 pmol, 0.08 equiv), Sphos (21 mg, 0.052 mmol, 0.25 equiv), bis(4-methoxyphenyl)amine (190 mg, 0.81 mmol,
4 equiv) and NaO'Bu (96.7 mg, 1.10 mmol, 5 equiv). The mixture was degassed and stirred at 110 °C for 12h under
argon. The solution was cooled down to room temperature and the organic layer was washed by water, dried over
anhydrous MgSOQa4. The solvent was removed under vacuum and the residue was purified by column chromatography
(silica gel, hexane/DCM = 4/1) to afford the desired product 1 as a red solid (248 mg, 90% yield). *H NMR (CDCls,
500 MHz): & ppm 8.06 (d, J = 7.38 Hz, 2H), 7.66 (d, J = 8.46 Hz, 2H), 7.43 (s, 2H), 7.35 (t, J = 7.38 Hz, 2H), 7.15 (d,
J = 8.20 Hz, 2H), 7.00 (m, 8H), 6.91 (d, J = 8.22 Hz, 2H), 6.75 (m, 8H), 3.77 (s, 12H), 2.38 (br, 2H), 1.57-1.53 (m,
8H), 1.27-1.10 (m, 42H), 0.86-0.81 (m, 12H); HR-MS (APCI): m/z = 1263.7906, calcd. for CssH103N204 (M+1): m/z =
1263.7912, error = 0.50 ppm.

QR-DPN: A two-necked round bottom flask was charged with QR-2Br (184 mg, 0.104 mmol), Pdz(dba)s (7.59 mg,
8.3 ymol, 0.08 equiv), Sphos (10.5 mg, 0.026 mmol, 0.25 equiv), bis(4-methoxyphenyl)amine (95 mg, 0.40 mmol, 4
equiv) and NaO'Bu (48.3 mg, 0.55 mmol, 5 equiv). The mixture was degassed and stirred at 110 °C for 12h under
argon. The solution was then slowly cooled down to room temperature and the organic layer was washed by water,
dried over anhydrous MgSOa4. The solvent was removed under vacuum and the residue was purified by column
chromatography (silica gel, hexane/DCM = 4/1) to afford the desired product QR-DPN as a blue solid (180 mg, 84%).
1H NMR (CDCls, 500 MHz): & ppm 8.83 (br, 2H), 8.36 (br, 2H), 8.26 (d, J = 8.10 Hz, 2H), 8.14 (br, 2H), 7.59 (br, 2H),
7.38 (d, J = 8.20 Hz, 12H), 7.00 (d, J = 8.30 Hz, 8H), 6.99 (m, 8H), 6.75 (d, J = 8.80 Hz, 8H), 3.72 (s, 12H), 2.47 (br,
4H), 1.60 (br, 8H), 1.51 (br, 8H), 1.30-1.20 (br, 72H), 8.82-0.80 (br, 24H); HR-MS (APCI): m/z = 2068.3558, calcd.
for C1s0H175N204 (M+1): m/z = 2068.3546, error = -0.50 ppm.

HR-DPN: A two-necked round bottom flask was charged with HR-2Br (100 mg, 0.039 mmol), Pd2(dba)s (2.8 mg, 3.1
umol, 0.08 equiv), Sphos (4 mg, 0.01 mmol, 0.25 equiv), bis(4-methoxyphenyl)amine (36 mg, 0.155 mmol, 4 equiv)
and NaO'Bu (18.8 mg, 0.194 mmol, 5 equiv). The mixture was degassed and stirred at 110 °C for 12h under argon.
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The solution was then slowly cooled down to room temperature and the organic layer was washed by water, dried
over anhydrous MgSOa. The solvent was removed under vacuum and the residue was purified by column
chromatography (silica gel, hexane/DCM = 2/1) to afford the desired product HR-DPN as a green solid (91 mg, 82%).
1H NMR (CDCls, 500 MHz): 9.11 (br, 2H), 9.64 (br, 2H), 8.53 (br, 2H), 8.49 (br, 2H), 8.40 (br, 2H), 8.38 (br, 2H), 8.35
(br, 2H), 8.29 (br, 2H), 8.12 (br, 2H), 7.84 (br, 2H), 7.69-7.59 (m, 8H), 7.49-7.35 (m, 12H), 7.07-6.94 (m, 12H), 6.84-
7.86 (m, 8H), 6.53 (br, 2H), 2.43 (m, 6H), 1.68-1.60 (m, 24H), 1.36-1.08 (m, 108H), 0.91-0.79 (m, 36H); HR-MS
(APCI): m/z = 2871.9051, calcd. for C211H246N204 (M): m/z = 2871.9102, error =1.80 ppm.
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Appendix: NMR spectra and HR mass spectra of all new compounds
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Figure S1. *H NMR spectrum of compound 1 (300 MHz, CDCls, rt).
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Figure S2. *H NMR spectrum of compound QR-DPN (500 MHz, ds-THF, rt).
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Figure S3. COSY-'H NMR spectrum of compound QR-DPN in ds-THF.
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Figure S4. VT 'H NMR spectra of compound HR-DPN in ds-THF (500 MHz, aromatic range). The spectrum was
broadened at room temperature due to thermal population from singlet ground state to the paramagnetic triple
biradical, as this compound is an open-shell singlet diradicaloid (see: W. Zeng, H. Phan, T. S. Herng, T. Y.
Gopalakrishna, N. Aratani, Z. Zeng, H. Yamada, J. Ding, J. Wu, Rylene Ribbons with Unusual Diradical Character,
Chem 2017, 2, 81-92).

S5



8.8

1 9.0
@
9.2
@

9.4

9.4 9.2 9.0 8.8 8.6 8.4 8.2 ppm
k1-k3 -

— T S ppm

0

6.6

6.8

72

7.4

76

7.8

8.0
8.0 78 7.6 74 7.2 7.0 6.8 6.6 ppm

Figure S5. COSY-'H NMR spectrum of compound HR-DNP in dg-THF at 213 K.
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Mass Spectrum SmartFormula Report
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Figure S6. HR mass spectrum (HPCI-HR) of the compound 1.
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Figure S7. HR mass spectrum (HPCI-HR) of the compound QR-DPN.
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Figure S8. HR mass spectrum (HPCI-HR) of the compound HR-DPN.
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2. Electrochemistry

—— 10 mV/s
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Figure S9. Cyclic voltammetry 1 (6.24x10* M, 0.03 M TBA-PFs/0-DCB) recorded at different scan rates, in order to
verify the electrochemical reversibility of the studied processes.
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Figure S10. Differential pulse voltammetry (DPV) of 1 at a scan rate of 2 mV s, together with the signal fitting to a
Voigt model and the resulting areas.
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Table S1. Fitting parameters of the DPV measurements of 1, according to a Voigt model.

Model Voigt

Equation y = nlf voigt(x,y0,xc,A,wG,wL);

Plot Peakl(1 DPV) Peak2(1_DPV)

y0 3,91E-9 + 3,19E-10 3,90786E-9 + 3,19E-10
XC -0,09 + 2,67E-4 0,10 £ 2,95E-4

A 1,69E-8 + 3,0184E-10 1,62E-8 + 1,07E-10
wG 0,11589 + 0,00263 0,11272 + 8,1919E-4
wL 6,7623E-4 + 0,00443 7,6479E-15 + 3,99366E-4
Reduced Chi-Sqar 1,02251E-17

R-Square (COD) 0,99574

Adj. R-Square 0,99565

—— 10 mV/s
—— 100 mV/s
— 250 mV/s

-15 -1,0 -0,5

Potential vs. Fc*/Fc (V)

-2,0

Figure S11. Cyclic voltammetry 2 (6.0E-4 M, 0.03 M TBA-PFs/0-DCB) recorded at different scan rates, in order to
verify the electrochemical reversibility of the studied processes.
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Figure S12. Differential pulse voltammetry (DPV) of 2 at a scan rate of 2 mV s, together with the signal fitting to a
Voigt model and the resulting areas.
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Table S2. Fitting parameters of DPV measurements of 2, according to a Voigt model.

Model Voigt

Equation y = nlf voigt(x,y0,xc,A,wG,wL);

Plot Peakl1l(2_DPV) Peak2(2_DPV)

y0 9,13E-10 + 2,04E-10 9,13E-10 + 2,04E-10
XC -1,62 + 1,56E-4 -1,46 + 1,20E-4

A 2,29E-8 + 1,80E-10 2,24E-8 + 1,72E-10
wG 0,0791 + 0,00153 0,109 + 0,00105
wL 0,05907 + 0,00192 0,01049 + 0,00173
Reduced Chi-Sqar 2,27541E-18

R-Square (COD) 0,99945

Adj. R-Square 0,99944
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3. Spectroelectrochemistry
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Figure S13. UV-Vis-NIR absorption spectra of 1 electrochemically oxidized (10 M, 0.02 M TBA-PFe/0-
DCB), separated by species. Neutral: black solid line; Radical cation: red solid line; Dication: blue solid line.
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Figure S14. UV-Vis-NIR absorption spectra of 2 (10% M, 0.02 M TBA-PFs/0-DCB) electrochemically
reduced, separated by species. Neutral: black solid line; Radical anion: green solid line; Dianion: purple solid

line.
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4. Theoretical calculations

Geometries of Per-DPN (compound 1) and Per-2N (compound 2) were optimized for the neutral, radical
anion (cation) and dianion (dication) forms using density functional theory. The 6-31G** basis set was
employed and the B3LYP, BLYP35 and CAM-B3LYP functionals were selected. The former was used to
investigate the electronic communication between the redox centers and the bridge and to evaluate
intramolecular reorganization energies since it has been used previously for a wide variety of conjugated
systems. Reorganization energies were computed for the redox centers, with the adiabatic potential
method.[1-3] To this end the geometries of the donor (acceptor) redox centers were optimized in both neutral
and charged states.

Equilibrium structures were determined at CAM-B3LYP/6-31G** and BLYP35/6-31G** |evel, including
solvent (o-dichlorobenzene) described with the SCRF model in the framework of the PCM approach.[4-6]
The CAM-B3LYP and BLYP35 functionals were selected since they have been shown to provide a realistic
and balanced description of the localization / delocalization of charges in Robin-Day class Il and llI
conjugated systems[7] and especially the latter has been tested on a wide variety of mixed-valence systems.
(8l

In this regard we note that for the radical species we could not find asymmetric geometries with charge
localized on a single redox center. Similarly, for the closed shell diradical systems, a broken symmetry
solution was not found. These results show that the ground state potential energy surface of the radical
species displays a single minimum in agreement with a Robin-Day class Ill system.

The equilibrium structures of neutral and charged species were then employed for TDDFT calculations of
vertical excitation energies with the inclusion of solvent effects described with the linear response theory.[9-
10] The CAM-B3LYP and BLYP35 functionals were selected to simulate the absorption spectra of neutral
and charged species. For comparison with experimental absorption spectra and for the evaluation of
electronic couplings between redox centers, the TD-CAM-B3LYP results were scaled by 0.3 eV to account
for the known overestimate of the method.[7] The computed electronic couplings between redox centers
are compared with the results from different functionals.

Electronic communication with the bridge and intra-molecular reorganization energies

To estimate electronic communication between the redox centers and the bridge, a fragment orbital
approach was adopted. The fragments were frozen at the optimized geometry of the full molecule and
dangling bonds were saturated with hydrogen atoms. The molecular orbitals of the fragments were
determined and used, together with the results on the full molecule, to construct an orbital interaction
diagram shown in Figure 3 for 1 and for 2.

Figure 3 shows that for 2 the interaction between the HOMO of perylene and the antisymmetric combination
of the orbitals of redox centers (LUMO) is large and results in a higher energy empty LUMO orbital of 2
bearing a strong parentage with the HOMO of perylene. The quinoidal structure of 2 then follows because
of the emptied perylene HOMO contribution which is of aromatic character. The remarkable reorganization
of orbital energies upon interaction is a manifestation of the strong electron communication between the
redox centers and the bridge also for 2 and points to a Robin-Day class Ill system where the charge is
delocalized over the entire molecule, as demonstrated by geometry optimization.

The intramolecular reorganization energy associated with the charge transfer between the two redox centers
was evaluated as

Awy = [E™(geor) — E™(geoy)]; + [E€(geon) — E€(geol)]; = Ay + Ay

where E”/C(geoc/n) is the energy of the neutral/charged redox center at the geometry of the charged/neutral
species.

The reorganization energy estimated for the amine redox center (redox center for compound 1) agrees with
previously reported values [11]
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Table S3 B3LYP/6-31G** computed reorganization energies (cm) for the DBD (1) and ABA (2) systems

Compound 1

An )'c — Acation l(a b)
Redox unit 1 1246 Redox unit 2 1250 2496
Compound 2

An )'c — Aunitm l(a,b)
Redox unit 1 839 Redox unit 2 782 1621

Equilibrium structures

The most relevant computed CC and CN bond lengths for the neutral and charged species, optimized at
CAM-B3LYP/6-31G** including solvent effects described by the PCM method, are collected in Figures S15-

S17.
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Figure S15. Comparison between CAM-B3LYP/6-31G** + PCM computed bond-lengths of Per-DPN
(compound 1) neutral and Per-2N (compound 2) dianion.
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Figure S16. Comparison between CAM-B3LYP/6-31G** + PCM computed bond-lengths of Per-DPN
(compound 1) dication and Per-2N (compound 2) neutral.
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Figure S17. Comparison between CAM-B3LYP/6-31G** + PCM computed bond-lengths of Per-DPN
(compound 1) cation and Per-2N (compound 2) anion demonstrating the similarity between the geometries.

The computed equilibrium structures of charged systems indicate full delocalization of the charge (radical)
on both redox centers through the bridge, with a potential energy surface displaying therefore a single
minimum, thereby demonstrating that the two investigated systems belong to Robin-Day class lIl.
Additionally, the data in Figure S15 show that the bond lengths of the “Per” unit in Per-DPN (compound 1)
neutral and Per-2N (compound 2) dianion are almost identical and typical of a Perylene derivative. This
indicates a full recovery of aromaticity of 1 in its dianionic form.

The data in Figure S16 show that the bond lengths of the “Per” unit in Per-DPN (compound 1) dication and
Per-2N (compound 2) neutral are almost identical and typical of a quinoidal Perylene derivative.

Finally, the data in Figure S17 show that the bond lengths of the “Per” unit in Per-DPN (compound 1) radical
cation and Per-2N (compound 2) radical anion are almost identical and intermediate between those of the
Per-DPN (compound 1) and Per-2N (compound 2) neutral species, in full agreement with Scheme 2.

In addition, the flow of electrons from the perylene HOMO to the acceptor’s orbitals, ultimately
determines the quinoidal structure of the former in the neutral state.
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Electronic absorption spectra of 1 and 2
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Figure S18. TD-CAM-B3LYP/6-31G** (top) and TD-BLYP35/6-31G** (bottom) predicted absorption spectra
of the neutral, cationic and dicationic species of 1, including o-dichlorobenzene solvent described with PCM.
TD-CAM-B3LYP/6-31G** excitation energies were red-shifted by 0.3 eV in agreement with previous studies
[7]. To facilitate comparison with experiment, all computed vertical excitations were broadened with a
Lorentzian linewidth of 0.2 eV.
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Figure S19. TD-CAM-B3LYP/6-31G** (top) and TD-BLYP35/6-31G** (bottom) predicted absorption spectra
of the neutral, cationic and dicationic species of 2, including o-dichlorobenzene solvent described with PCM.
TD-CAM-B3LYP/6-31G** excitation energies were red-shifted by 0.3 eV in agreement with previous studies
[7]. To facilitate comparison with experiment, computed vertical excitations were broadened with a
Lorentzian linewidth of 0.2 eV.

The simulated absorption spectra agree with the observed counterparts (see Figures S18 and S19) for all
the species investigatd (neutral, charged, douply charged) and allow the identification of the IV-CT band in
the spectra of the radicals of 1 and 2 as shown in Table S4.

The lowest energy excited state for both radical ions of 1 and 2 corresponds to excitation into the IV-CT
band. Therefore we extracted the electronic coupling between redox centers from the computed vertical
excitation as 2V, = E(Dy = D,). For comparison we include the estimate from different functionals (see
Table S5).
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Table S4. TD-UDFT/6-31G** computed excitation energies (E), oscillator strength (f) and wavefunction (wf)
for the radical ions of 1 and 2

1
TD-UBLYP35 + | TD-UCAM-B3LYP | TD-UB3LYP
PCM + PCM vacuo
E/eV ()2 E/eV (f)2 E/eV (f)2 wiP
Dy, - D4 1.07 (0.57) 1.23 (0.64) 0.94 (0.34) H-1—-H
D, - D, 1.61 (0.04) 1.90 (0.05) 1.40 (0.02) H-2—H
Dy, - D; 1.61 (0.49) 1.72 (0.48) 1.59 (0.50) H—-L
2
E/eV (f) E/eV (f) E/eV (f) wf
Dy - Dy 1.41 (0.02) 1.54 (0.02) 1.25 (0.01) L>L+1
Dy, - D, 1.83 (0.84) 1.86 (0.84) 1.90 (0.61) H-L

aunscaled excitation energies Porbital labels refer to the occupation in the neutral molecule

Table S5. Computed electronic couplings between the redox centers of 1 and 2.

1

E(Dy » Dy)/eV Wi Vas/lcm™
TD-UBLYP35
+PCM 1.07 H-1—-H 4315
TD-UCAM-B3LYP
+PCM 1.23 H-1—H 4960
TD-UB3LYP 0.94 H-1->H 3790
2

E(Dy » Dy)/eV Wi Vas/lcm
TD-UBLYP35
+PCM 1.41 LoL+1 5686
TD-UCAM-B3LYP
+PCM 1.54 L—>L+1 6210
TD-UB3LYP 1.25 LoL+1 5040

athe orbital labels refer to the occupation in the neutral molecule
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5. Mathematical Treatment of the IV-CT band of the MV
compounds
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Figure S20. Selected section containing the lowest energy absorption bands of the reduced spectrum of 1*+
and fitting of IV-CT according to a GaussAmp function.

Table S6. Fitting parameters of the IV-CT band of the radical cation (RC) of 1, according to a GaussAmp
function. Every peak has been highlighted matching the scheme colour of Figure S20.

Model GaussAmp

Equation y=y0+A*exp(-0.5*((x-xc)/w)"2)

Plot Peak1(1_RC) Peak2(1_RC)

yo 0,007 +1,77067E-4 0,007 £ 1,77067E-4
XC 6648,25028 + 10,73062 8015 + 31,47594

w 811,49105 + 3,87657 974,32308 + 13,05107
A 0,21782 + 0,00503 0,14231 + 0,00306
Reduced Chi-Sqar 3,50095E-6

R-Square (COD) 0,99964

Adj. R-Square 0,99964
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Figure S21. Selected section containing the lowest energy absorption bands of the reduced spectrum of 2*-
and fitting of IV-CT according to a GaussAmp function.

Table S7. Fitting parameters of the IV-CT band of the radical anion (RA) of 2, according to a GaussAmp
function. Every peak has been highlighted matching the scheme colour of Figure S21.

Model GaussAmp

Equation y=y0+A*exp(-0.5*((x-xc)/w)"2)

Plot Peakl(2 RA) Peak2(2 RA) Peak3(2_RA)

y0 0,03536 + 1,87911E-4 0,03536 + 1,87911E-4 0,03536 + 1,87911E-4

XC 8000,17295 + 1,72856 | 9155,94174 + 3,33199 10160,62502 + 128,48501
w 452,13222 + 0,82437 558,98133 + 6,65914 216,43858 + 52,55561

A 0,62255 + 0,00215 0,28237 + 4,827E-4 0,06228 + 0,02515
Reduced Chi-Sqgr 5,27385E-6

R-Square (COD) 0,9999

Adj. R-Square 0,99989
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6. Longer members of the bis(diarylamine) and bis(diimine) series
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Figure S22. Cyclic voltammetry of QR-DPN (left) and HR-DPN (right) (10* M, 0.03 M TBA-PFe/0-DCB)
recorded at different scan rates, in order to verify the electrochemical reversibility of the studied processes.

Table S7. Electrochemical data (V vs. Fc*/Fc) for the oxidation processes of of QR-DPN and HR-DPN
measured by OSWV in 104 M, 0.03 M TBA-PFs/0-DCB

0-DCB (0.03 M) E2 ©X1 (V) E2 ©%2 (V) E12 O3 (V) E12 4 (V) E2 5 (V)
QR-DPN -0.33 -0.24 0.67 0.95 1,07
HR-DPN -0,46 -0.37 0.43 0.67 1,02 (*)

/ ——10mVis
—— 100 mV/s

—— 10 mV/s
—— 100 mV/s
250 mV/s 250 mV/s
——500mvis —— 500 mV/s
500 mv/s 1000 mV/s
T T T T T T T T
-1,6 -1,2 -0,8 -0,4 -2,0 -1,5 -1,0 -0,5
Potential vs. Fc+/Fc (V) Potential vs. Fc+/Fc (V)

Figure S23. Cyclic voltammetry of QR-2N (left) and HR-2N (right) (10 M, 0.03 M TBA-PFs/0-DCB) recorded
at different scan rates, in order to verify the electrochemical reversibility of the studied processes.

Table S8. Electrochemical data (V vs. Fc*/Fc) for the reduction processes of of QR-2N and HR-2N measured
by OSWV in 10 M, 0.03 M TBA-PFs/0-DCB

0-DCB (0.03 M) QR-2N HR-2N

Evz 91 (V) -1.48 (2¢7) -1,48 (2€7)
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Figure S24. UV-Vis-NIR absorption spectra of QR-DPN electrochemically oxidized (10 M, 0.02 M TBA-
PFe/0-DCB). Neutral: black solid line; Radical cation: red solid line; Dication: blue solid line.
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Figure S25. Reduced absorption spectra of QR-DPN™ with its respective calculated results from TD-DFT//
UBLYP35/SVP, including 0-DCB solvent described with PCM.



Excited State 1: Z.045-7?5ym 0.54%0 eV 1460.32 nm £=0_.1855 =<3**Z»=0_73¢%

ZT70R —-» ZT32 -0.13153
ZT1R -» ZT4R 0.1185%5

0.85380
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ZTZR <— ZT3R 0.12338

a-LUMO (273A)

Excited State Z2: Z.215-75ym 1.0253 eV 120%.1% nm £=1_87&2 «<5%*Z>=0_3577

270R - ZT73L 0.115855
Z7ZR - ZT73R -0.33204
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Figure S26. Calculated topologies (UBLYP35/SVP, CPCM, Solvent=0-DCB) of the orbitals of QR-DPN**
related to the major contributions of the main bands of the reduced absorption spectrum. (A) = (o) and (B)
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Figure S27. UV-Vis-NIR absorption spectra of HR-DPN electrochemically oxidized (104 M, 0.02 M TBA-
PFe/0-DCB). Neutral: black solid line; Radical cation: red solid line; Dication: blue solid line.

S24



-25
0,06 - 4
1. L 2.0
o )
- - n
> [ Q.
S - =
1 L15
) N . 5 8
® 004 R S
c ' \
© S “a
2 : 1,0 ®
o " -
3 ! Y Q
0,02 4 : =
< K X
> ., L05 =
L i . .
1\:[ |"~‘ . AN AT S
0,00 — . . . . . . . —L 0,0
4000 6000 8000 10000 12000

Wavenumber (cm™)

Figure S28. Reduced absorption spectra of HR-DPN™* with its respective calculated results from TD-DFT//
UBLYP35/SVP, including 0-DCB solvent described with PCM.

Excited State 1: Z.125-?5ym 0.5638 &V 2153_.20 nm f£=1_.0352 «5**Z>=0_875

344k -> 3435L 0.11548
3452 —> 3482 -0.1301%5
348k —-> 343% -0.15058
348B -> 3247E -0.12548
347RA <— 3482 0.17842

a-HOMO (47A) g a-1 LIMO (R48A)

Excited State 2: Z2_Z266-7?5ym 0_9355 eV 1325_30 nm f=2_1415 <5*%*Z3=1_034
343 -> 348B =0.107587
344B -> 247E -0.1542Z5
245B -> 3I4EB 0.22543
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R-1 UMO (347R) ,-\2<

Figure S29. Calculated topologies (UBLYP35/SVP, CPCM, Solvent=0-DCB) of the orbitals of HR-DPN**
related to the major contributions of the main bands of the reduced absorption spectrum. (A) = (o) and (B)
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Figure S30. UV-Vis-NIR absorption spectra of QR-2N electrochemically reduced (104 M, 0.02 M TBA-PF¢/0-
DCB). Neutral: black solid line; Dianion: purple solid line.
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Figure S31. Reduced absorption spectra of pure QR-2N*" obtained from Specfit software, together with its
respective calculated results from TD-DFT// UBLYP35/SVP, including 0-DCB solvent described with PCM.
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Excited State 1: Z.010-?3ym 0.811le eV 1527.70 nm £=0.1711 <3**Z>=0_7&0
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Figure S32 Calculated topologies (UBLYP35/SVP, CPCM, Solvent=0-DCB) of the orbitals of QR-2N"~
related to the major contributions of the main bands of the reduced absorption spectrum. (A) = (o) and (B)
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Figure S33. UV-Vis-NIR absorption spectra of HR-2N electrochemically reduced (104 M, 0.02 M TBA-PFs/0-
DCB). Neutral: black solid line; Dianion: purple solid line.
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Figure S34. Reduced absorption spectra of pure HR-2N"- obtained from Specfit software, together with its
respective calculated results from TD-DFT// UBLYP35/SVP, including 0-DCB solvent described with PCM.
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Figure S35. Calculated topologies (UBLYP35/SVP, CPCM, Solvent=0-DCB) of the orbitals of HR-2N*~
related to the major contributions of the main bands of the reduced absorption spectrum. (A) = (o) and (B)
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7 EPR simulations
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Figure S36. Isotropic hyperfine coupling constants (hcc) used for the ESR simulation for 2.
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Figure S37. Isotropic hyperfine coupling constants (hcc) used for the ESR simulation for 1.
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