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1 Introduction

The Standard Model (SM) cannot explain the observed baryon asymmetry of the Universe

(BAU) in spite of qualitatively satisfying the Sakharov conditions.1 Similarly, physics be-

yond the SM is often invoked to explain the existence of the non-zero neutrino masses [2].

Leptogenesis is a mechanism by which some lepton-number-violating theories, which may

also explain the origin of neutrino masses, produce a lepton asymmetry which is subse-

quently converted into a baryon asymmetry through the non-perturbative (B+L)-violating

but (B − L)-conserving sphaleron processes of the SM [3, 4]. A minimal implementation

of leptogenesis occurs in the type I seesaw framework in which a number of heavy Majo-

rana neutrinos are added to the SM [5–8]. The decay of these heavy Majorana neutrinos

in leptons and Higgs bosons is both lepton-number- and CP -violating and occurs out of

thermal equilibrium, thereby satisfying the Sakharov conditions and potentially producing

the observed baryon asymmetry [9] (see also, e.g., [10–13] and articles quoted therein). CP

violation is fundamental to the creation of the matter-antimatter asymmetry. In thermal

leptogenesis, the decays of the heavy Majorana neutrinos are CP -asymmetric and this

results from both CP -violating low-scale measurable phases and high-scale immeasurable

ones. In the original conception of leptogenesis, the flavour-dependent interactions due to

charged lepton Yukawa couplings between the leptons and the early Universe plasma were

disregarded. If leptogenesis occurs at high scales, where the temperature T � 1012 GeV,

then this approximation is ordinarily justified and a basis may be chosen in which essen-

tially only one flavour of lepton ever appears in the theoretical description. Consequently,

it was expected that the low-energy CP -violating phases contained in the neutrino mixing

matrix play no physical role in the production of the lepton and therefore baryon asym-

metry [11, 12].

Under certain ad hoc assumptions the high-scale CP -violating phases can be related

to the CP -violating phases in the Pontecorvo-Maki Nakagawa-Sakata (PMNS) matrix (see,

e.g., [14]) which then participate in the production of the lepton asymmetry — a possibility

that was investigated in [15–19]. If leptogenesis occurs at temperatures somewhat below

1012 GeV
(
109 GeV

)
, the Yukawa interactions of the tau charged lepton (of the muon)

come into thermal equilibrium, causing decoherence between this and the remaining flavour

components of the charged lepton state [20–24] such that two (three) lepton flavour states

must be separately considered and the CP -violating phases of the PMNS matrix have

physical significance. Historically, the possibility that the CP violation in leptogenesis may

be strictly due to Dirac and/or Majorana phases of the PMNS matrix was first apparent

in this regime [25–32] (for a review see, e.g., [33]).

There have been other works which have investigated the impact of low energy phases

on the BAU. Indeed, CP conservation at the high-scale and CP violation at the low-scale in

the context of leptogenesis can be theoretically motivated by minimal flavour violation [34,

35], flavour symmetries [36–38] or a generalised CP symmetry [39–41]. Beyond the type I

1We recall that these conditions require C-/CP violation, baryon number violation and a departure from

thermal equilibrium in the production of the asymmetry [1].
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seesaw mechanism, there have been other studies which connect the Dirac phase, δ, with

the BAU using an extended Higgs sector [42].

The primary aims of this work are twofold:

• We revisit the possibility of producing the observed BAU where the only source of

CP violation comes from the phases of the PMNS matrix and calculate the lepton

asymmetry generated across seven orders of magnitude (106 < T (GeV) < 1013) using

our modern numerical machinery which properly incorporates radiative corrections

to the light neutrino masses.

• We clarify a misunderstanding regarding the high-scale regime: as discussed above,

it was initially thought that at very high scales, T ∼ 1012 GeV, the low-energy CP

phases could not produce the observed BAU. This came from the observation that

in the one-flavoured regime, and barring any relation between the high-scale and

low-energy CP -violating phases, the CP asymmetry is vanishing
(
ε(1) = 0

)
for CP

violation solely coming from low energy phases. This led to the conclusion that in

this case no lepton asymmetry could be generated. However, the individual flavour

contributions to the CP asymmetries are not zero and, even in this scenario, where

flavour effects are very weak, the washouts of lepton asymmetries are flavour depen-

dent. We show that these flavour effects may be sufficient to produce the observed

baryon asymmetry. We discuss this analytically and demonstrate the viability of

leptogenesis in this scenario numerically. We demonstrate with Dirac-phase leptoge-

nesis fine-tuned cancellations in the radiative expansion of the light neutrino masses

are required, however with Majorana-phase leptogenesis this is not the case. This

implies the CP violation present in the low energy phases can, in principle, generate

the observed matter antimatter asymmetry between 106 . T (GeV) . 1013.

The remainder of this work is structured as follows: in section 2 we present the relevant

theoretical framework beginning with section 2.1 where we briefly review neutrino masses,

mixing and radiative corrections to the light neutrino mass matrix in the type I seesaw. In

section 2.2 we present the C and CP properties of the light and heavy Majorana neutrinos

of the type I seesaw. This will be crucial in understanding the textures of the neutrino

Yukawa matrices which contain CP -violating low energy phases and CP -conserving high

energy phases. Subsequently, in section 2.3 we discuss the allowed structures of the Yukawa

matrix when there is a high-scale CP symmetry. The kinetic equations and effects of flavour

are discussed in section 2.4. In section 3 we revisit the link between leptonic CP violation at

low energies and successful leptogenesis in the two-flavour regime (or more precisely when

109 ≤ T (GeV) ≤ 1012). We bring a more sophisticated set of numerical tools to more

convincingly answer the question than in earlier work on the subject [25]. In section 4 we

demonstrate that successful leptogenesis with only low energy CP violation is possible at

much lower scales than previously considered
(
T ∼ 106 GeV

)
, if one allows for fine-tuning

in the light neutrino masses. In section 5 we establish that even if leptogenesis occurs at

very high scales (T � 1012 GeV), then it is still possible for successful leptogenesis to result

from purely low energy CP violation. We find that no fine-tuning is necessary if Majorana

– 3 –
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θ13 θ12 θ23 δ ∆m2
21 ∆m2

31 ∆m2
32

(◦) (◦) (◦) (◦) (10−5eV2) (10−3eV2) (10−3eV2)

8.52+0.15
−0.15 33.63+0.78

−0.75 48.7+1.4
−6.9 228+51

−33 7.40+0.21
−0.20 2.515+0.035

−0.035 −2.483+0.034
−0.035

Table 1. Best fit and 1σ ranges from a global fit to neutrino data [44].

phases play a role in the CP violation. However, purely Dirac-phase CP violation is

sufficient only in scenarios with a certain degree of fine-tuning. This latter case is in stark

contrast with the conclusions of the current literature.

2 Framework

2.1 Neutrino masses and mixing

Neutrino oscillation experiments have provided compelling evidence that neutrinos have

small but non-zero masses and mix (for a review see, e.g., [14]). The mass and flavour states

of neutrinos are misaligned, with this misalignment described by the PMNS matrix U :

ναL =

3∑
i=1

UαiνiL, (2.1)

where α ∈ {e, µ, τ} is the flavour of the given neutrino flavour field, ναL, and νiL is the

left-handed component of the ith massive neutrino. Throughout this work we employ the

conventional PDG parametrisation [14]:

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


1 0 0

0 ei
α21
2 0

0 0 ei
α31
2

 , (2.2)

where cij ≡ cos θij , sij ≡ sin θij , δ is the Dirac phase and α21, α31 are the Majorana

phases [43] with best-fit values of θ12, θ23, θ13 and δ given in table 1. Neutrino oscil-

lation experiments also allow to measure with precision the two independent neutrino

mass squared differences ∆m2
12 and ∆m2

31 (∆m2
32) which are given in table 1. In order

to accommodate them, the three neutrino masses m1, m2 m3 can be arranged into two

possible orderings, normal ordering (NO) for m1 < m2 < m3 and inverted ordering (IO)

m3 < m1 < m2. The ordering is not yet known although data show some mild preference

for normal ordering [44].

A simple means of explaining the smallness of neutrino masses is the type I seesaw

framework [5–8] in which heavy Majorana neutrinos are added to the SM particle spectrum.

We shall work within a realisation of this framework which incorporates three heavy Majo-

rana neutrinos, Ni (i ∈ {1, 2, 3}), such that after electroweak symmetry breaking, when the

Higgs has developed a vacuum expectation value (vev) v ≈ 174 GeV, the neutrino mass

terms of the Lagrangian are given by

Lm = −1

2

(
ν̄L, N̄

c
L

)( 0 vY

vY T M

)(
νcR
NR

)
+ h.c., (2.3)
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where νTL ≡ (νTeL, ν
T
µL, ν

T
τL) (NT

R ≡
(
NT

1R, N
T
2R, N

T
3R

)
) are the light flavour (heavy mass

eigenstates) neutrino fields and Y is the neutrino Yukawa matrix which couples the

heavy Majorana neutrinos N1,2,3 to the leptonic and Higgs doublets. In eq. (2.3)

(νcR)T = ((νceR)T , (νcµR)T , (νcτR)T )), (N c
L)T =

(
(N c

1L)T , (N c
2L)T , (N c

3L)T
)
, with νclR =

C(ν̄lL)T , l ∈ {e, µ, τ}, and N c
jL = C(N̄jR)T for j ∈ {1, 2, 3}. Finally, C denotes charge

conjugation matrix.

The mass terms in eq. (2.3) are written in the basis where the charged lepton Yukawa

couplings are flavour diagonal, which we use throughout the present study. We shall also

work, without loss of generality, in a basis in which M is diagonal and positive.

To first order in the seesaw expansion, the tree-level light neutrino mass matrix is

given by

mtree
ν = v2YM−1Y T , (2.4)

where we employ the sign conventions of [25]. In the generic type I seesaw, there is no

symmetry protecting the tree-level neutrino masses from radiative corrections. Moreover,

the one-loop radiative corrections may be comparable to the tree-level mass. For this

reason, when exploring the parameter space of type I seesaw models, it is relevant to

compute the additional contribution to the light masses arising from the one-loop self-

energy2 [45–47] (see also, e.g., [48]):

m1-loop
ν = −Y M

32π2

 log
(
M2

m2
H

)
M2

m2
H
− 1

+ 3
log
(
M2

m2
Z

)
M2

m2
Z
− 1

Y T , (2.5)

where mZ and mH are the Z and Higgs boson masses respectively. With these included,

the light neutrino mass matrix is given by

mν = mtree
ν +m1-loop

ν

= v2Y f (M)Y T ,

= mDf (M)mT
D,

(2.6)

where mD ≡ vY and

f(M) ≡M−1 − M

32π2v2

 log
(
M2

m2
H

)
M2

m2
H
− 1

+ 3
log
(
M2

m2
Z

)
M2

m2
Z
− 1

 . (2.7)

From the structure of eq. (2.5), we observe that the tree and one-loop level contri-

butions to the light neutrino masses are both quadratic in the Yukawa couplings. The

only suppression of the one-loop derives from the O
(
10−2

)
loop-factor. Furthermore, from

eq. (2.7) it follows that the one-loop contribution generically tends to reduce the tree-level

mass. This suggests that there exists the possibility of a cancellation between the tree and

2In this expression terms of order mtree
ν

Y 2

32π2 have been neglected. This is equivalent to neglecting the

tree-level mass when computing the one-loop contribution. Thus, the physically irrelevant divergent pieces

and renormalisation-scale dependent pieces are not present in the expression we give.

– 5 –



J
H
E
P
0
3
(
2
0
1
9
)
0
3
4

one-loop contributions. In this work we do not preclude the possibility that these can-

cellations may be present. The higher-order corrections to the light neutrino masses are

generally suppressed by additional loop factors and couplings and generally do not experi-

ence fine-tuned cancellations, instead they contribute in the usual way to the perturbative

expansion. We define a fine-tuning measure, F , to quantify the level of cancellation:

F ≡ m1-loop
ν

mtree
ν +m1-loop

ν

. (2.8)

The one-loop correct light neutrino mass matrix of eq. (2.6), mν , may be transformed

into a positive diagonal form (denoted by a caret) using the Takagi factorisation

m̂ν = U †mνU
∗, (2.9)

such that m̂ν = diag(m1,m2,m3), with mi the mass corresponding to νi. By analogy with

the method of Casas and Ibarra [49], we parametrise the Yukawa matrix to include the

relevant radiative corrections as [50]

Y =
1

v
U
√
m̂νR

T
√
f(M)−1, (2.10)

where R is a 3 × 3 complex orthogonal matrix. Explicitly, we choose to work with the

parametrisation:3

R =

1 0 0

0 c1 s1

0 −s1 c1


 c2 0 s2

0 1 0

−s2 0 c2


 c3 s3 0

−s3 c3 0

0 0 1

 , (2.11)

where ci = coswi, si = sinwi and the complex angles are given by wi = xi + iyi
(i ∈ {1, 2, 3}).

2.2 C and CP properties of Majorana neutrinos

As we focus on the possibility that low-scale CP phases are responsible for the BAU, the

C and CP properties of neutrinos will be crucial in understanding the structure of the

R-matrix which results in the CP conservation of the high-scale phases. In the type I

seesaw, the light (νi) and the heavy (Ni) neutrino mass states are both Majorana in nature

and thus satisfy the following conditions:

CνTi = νi,

CN
T
i = Ni,

(2.12)

where C denotes the charge conjugation matrix.

Following [26], we express the CP -conjugated neutrino fields in terms of the CP op-

erator UCP as
UCPNi (x)U †CP = iρNi Ni

(
x′
)
,

UCPνi (x)U †CP = iρνi νi
(
x′
)
,

(2.13)

3A phase factor ξ = ±1 could have been included in the definition of R to allow for both the cases

det(R) = ±1 however we have chosen to extend the range of the Majorana phases such that the choice of

signs of det(R) have effectively already been incorporated.

– 6 –



J
H
E
P
0
3
(
2
0
1
9
)
0
3
4

where x′ is the parity-transformed coordinate and iρNi = ±i and iρνi = ±i are the CP

parities of the respective Majorana fields. The conditions for CP invariance impose the

following restrictions on the elements of the matrix of neutrino Yukawa couplings (setting

the unphysical phases in the CP transformations of the lepton and Higgs doublets to unity)

is given by,

Y ∗αi = Yαiρ
N
i , (2.14)

and on the elements of the PMNS matrix [51]:

U∗αj = Uαjρ
ν
j , j ∈ {1, 2, 3}, α ∈ {e, µ, τ} . (2.15)

From the parametrisation of the Yukawa matrix of eq. (2.10), this imposes the following

conditions on the elements of the R-matrix [26]:

R∗ij = Rijρ
N
i ρ

ν
j , i, j ∈ {1, 2, 3} . (2.16)

The leptogenesis scenarios considered in this work have CP violation provided only by

the phases of the PMNS matrix. This corresponds to imposing the condition of eq. (2.16)

onto the R-matrix but not the condition eq. (2.15) on U . In these scenarios the values of the

Dirac and Majorana phases of the PMNS matrix determine the success of leptogenesis. One

should bear in mind, however, that there are certain intuitively unexpected possibilities

for CP violation in (non-resonant) leptogenesis even when the PMNS- and R-matrices are

CP -conserving, i.e., conditions (eq. (2.15)) and (eq. (2.16)) are individually fulfilled and

the elements Ulj and Rjk are real or purely imaginary [26].4

CP violation due to the Dirac phase δ can only be practically investigated in neutrino

oscillation experiments. There has been a slight statistical preference from the existing data

for maximally CP -violating δ ∼ 270◦. This hint has been obtained from the combination

of results from long-baseline experiments such as T2K [52] and NOνA [53] with reactor

experiments like Daya-Bay [54], RENO [55] and Double-Chooz [56]. In principle, the

difference in oscillation probabilities [57–59],

Aα,βCP ≡ P (να → νβ)− P (να → νβ) (α 6= β), (2.17)

is a measure of CP violation in neutrino oscillations in vacuum and can be measured

experimentally. For vacuum oscillations in the three-neutrino case we have [60]

Ae,µCP = 4JCPF
vac
osc , (2.18)

F vac
osc ≡ sin

(
∆m2

21

2E
L

)
+ sin

(
∆m2

32

2E
L

)
+ sin

(
∆m2

13

2E
L

)
, (2.19)

JCP ≡ =
[
Ue1Uµ2U

∗
e2U

∗
µ1

]
. (2.20)

4This unusual possibility is realised when ρNi and ρνj are fixed by conditions (eq. (2.14)) and (eq. (2.15)),

but the product of the so fixed values of ρNi and ρνj differs from the value of ρNi ρ
ν
j in (eq. (2.16)) [26].

Under these conditions the low energy PMNS matrix U and the high-scale R-matrix are individually CP -

conserving, but the interplay between the two in leptogenesis is CP -violating.

– 7 –
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JCP is the analogue of the Jarlskog invariant for the lepton sector, which gives a

parametrisation-independent measure of CP violation in neutrino oscillations, L is the

distance travelled by the neutrinos, E the neutrino energy and ∆m2
ij ≡ m2

i −m2
j . In the

case of CP -invariance we have δ = 0, π and therefore JCP = 0. By measuring, for ex-

ample, Ae,µCP, one can determine JCP which has the following expression in the standard

parametrisation of the PMNS matrix:

JCP =
1

4
sin 2θ12 sin 2θ23 cos2 θ13 sin θ13 sin δ . (2.21)

The best-fit value and 1σ uncertainty of JCP reported in [44] are

Jmax
CP = 0.0329± 0.0007 (±1σ). (2.22)

In the longer term, the next generation of neutrino oscillation experiments such as

DUNE [61] and T2HK [62], will be able to measure the Dirac CP -violating phase δ

with greater precision and determine whether CP -symmetry is indeed violated in the

lepton sector.

Information on CP -violating Majorana phases can, in principle, be obtained in neutri-

noless double beta decay experiments [63–65] (see, however, also [66]). These experiments

are the most sensitive probes of the possible Majorana nature of massive neutrinos. They

can also provide information on the neutrino mass ordering [67] (see also [65]). The rate

of neutrinoless double beta decay is given by (see, e.g., [68])

Γ0νββ

log 2
=
G01

m2
e

|A|2, (2.23)

where G01 is a kinematic factor and A denotes the amplitude which has the following form

A ∝
3∑
i=1

miU
2
eiM0νββ(mi) +

3∑
i=1

MiV
2
eiM0νββ(Mi). (2.24)

The amplitude is dependent on the nuclear matrix elementsM0νββ for whichM0νββ(mi) ≈
M0νββ(0) �M0νββ(Mi) if Mi � 103 MeV (see, e.g., [68, 69]), which shall always be the

case in this work. The mixing elements Vei for the heavy states are O (mD/M) and thus the

second term of eq. (2.24) is O(m2
D/M)M0νββ(Mi) ∼ O(mi)M0νββ(Mi). As Uei ∼ O(1),

the second term is negligible in comparison with the first and we find [70] (see e.g., [51]):

A ∝ 〈mν〉 ≡ m1U
2
e1 +m2|Ue2|2eiα21 +m3|Ue3|2ei(α31−2δ), (2.25)

where 〈mν〉 is the neutrinoless double beta decay effective Majorana mass in the case

of 3-neutrino mixing. In the case of CP -invariance we have α21 = kπ, α31 = qπ,

k, q = 0, 1, 2, . . . [71–73].5 The most stringent upper bound on |〈mν〉| was reported by the

KamLAND-Zen collaboration [74] searching for neutrinoless double beta decay of 136Xe:

|〈mν〉| < (0.061 – 0.165) eV, (2.26)

5Thus, in order for a value of α21(31) to be CP -violating both sin
α21(31)

2
and cos

α21(31)

2
at this value

should be different from zero.

– 8 –
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where the uncertainty in the knowledge of the nuclear matrix element of 136Xe decay have

been accounted for. In terms of the half-lives for neutrinoless double beta decay the best

lower limits are: for germanium-76, tellurium-130, and xenon-136: T 0ν
1/2 > 8.0 × 1025 yr

(reported by the GERDA-II collaboration), T 0ν
1/2 > 1.5 × 1025 yr (from the combined re-

sults of the Cuoricino, CUORE-0, and CUORE experiments), and T 0ν
1/2 > 1.07 × 1026 yr

(from the KamLAND-Zen collaboration), with all limits given at the 90% CL. Most

importantly, a large number of experiments of a new generation aim at sensitivities to

|〈mν〉| ∼ (0.01 ÷ 0.05) eV (see, e.g., [69, 75]): CUORE (130Te), SNO+ (130Te), GERDA

(76Ge), MAJORANA (76Ge), LEGEND (76Ge), SuperNEMO (82Se, 150Nd), KamLAND-

Zen (136Xe), EXO and nEXO (136Xe), PANDAX-III (136Xe), NEXT (136Xe), AMoRE

(100Mo), MOON (100Mo), CANDLES (48Ca), XMASS (136Xe), DCBA (82Se, 150Nd), ZI-

COS (96Zr), etc. The GERDA-II and KamLAND-Zen experiments have already provided

the best lower limits on the double beta decay half-lives of 76Ge and 136Xe. The ex-

periments listed above aim to probe the ranges of predictions of |〈mν〉| corresponding to

neutrino mass spectra of quasi-degenerate type and with inverted ordering (see, e.g., [14]).

The primary focus of this work is to answer the question: at what scales can low-energy

CP -violating phases produce the observed BAU? We shall show that the scale of successful

leptogenesis in the case of interest may indeed vary across many orders of magnitude from

106 − 1013 GeV. The observation of low-scale leptonic Dirac CP violation, in combination

with the positive determination of the Majorana nature of the massive neutrinos, would

make more plausible, but will not be a proof of, the existence of high-scale thermal leptoge-

nesis. These remarkable discoveries would indicate, in particular, that thermal leptogenesis

could produce the BAU with the requisite CP violation provided by the Dirac CP -violating

phase in the neutrino mixing matrix.

2.3 CP -conserving R-matrix and the structure of the light neutrino mass

matrix

If the orthogonal matrix R is allowed to have large elements, then the scale of leptogenesis

may be lowered to M1 ∼ 106 GeV [76–78]. In such scenarios, care must be taken with the

radiative corrections to the light neutrino masses which may grow large (and non-negligible)

with the elements of the R-matrix. One can either impose a near-lepton-number-symmetry

to prevent this (see [77]), or more generically, incorporate the one-loop contribution to the

light neutrino masses (in the manner we have discussed) and remain agnostic about fine-

tuned cancellations between the tree-level and one-loop contributions. We proceed with

this approach following the attitude taken in [78], in which the figure M1 ∼ 106 GeV was

first demonstrated.

R ≈

 R11 R12 R13

±iR22 R22 R23

−R22 ±iR22 ±iR23

 , (2.27)

|R22| � |R1i|, |R23| for i ∈ {1, 2, 3}. The cancellation of large tree-level and large one-loop

light neutrino mass matrices occurs as a result of relations between the magnitudes and

phases of the R-matrix elements which lead to the following structure for the Dirac mass
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matrix:

mD

√
f =

(
∆, u, ±iu

)
, (2.28)

with ∆ = U
(√
m1R11,

√
m2R12,

√
m3R13

)T
and u = U

(
±i√m1R22,

√
m2R22,

√
m3R23

)T
,

such that |∆i| � |uj |, i, j ∈ {1, 2, 3}. We may rewrite the tree and one-loop masses in

terms of this relatively simple matrix mD
√
f , such that

mtree =
(
mD

√
f
)
M−1f−1

(
mD

√
f
)T

, (2.29)

where the commutativity of the diagonal matrices M and f has been exploited and

m1-loop =
(
mD

√
f
) (
f −M−1

)
f−1

(
mD

√
f
)T

. (2.30)

This ensures that the sum of the tree-level and one-loop masses is

mν = mD

√
f
(
mD

√
f
)T

= ∆∆T .
(2.31)

Due to the relative smallness of the elements of ∆, the matrix mν may be considerably

smaller than mtree. Immediately, we have

mtree = −m1-loop +O(∆2), (2.32)

which is an explicit expression of the fine-tuned cancellation.

As the R-matrix structure of eq. (2.27) is required for successful leptogenesis at inter-

mediate scales, we are tasked with the problem of finding the R-matrices which assume

this form and obey the CP -invariance conditions of eq. (2.16). We intend to translate the

conditions in eq. (2.27) and eq. (2.16) into constraints on xi and yi. However, we know

a priori from the work of [78] that one must have y2 ∼ 0◦ and y1 & 180◦, y3 & 180◦ to

produce the relative magnitudes of the elements of R in eq. (2.27), crucial to the successful

production of the observed baryon asymmetry.

We begin with the elements

R22 = cosw1 cosw3 − sinw1 sinw2 sinw3, (2.33)

and

R31 = − cosw1 cosw3 sinw2 + sinw1 sinw3, (2.34)

which result from the expansion of the R-matrix parametrised as in eq. (2.11). The condi-

tion of eq. (2.27) that R22 ≈ −R31 implies that sinw2 ≈ 1, which in turn imposes sin x2 ≈ 1

and y2 ≈ 0◦. In order to simplify future expressions, we promote the condition on y2 to

the exact equality y2 = 0◦. With conditions on x2 and y2 determined, we now examine

R13 = cosx2 (cosx1 cosh y1 − i sinx1 sinh y1) . (2.35)
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According to the condition eq. (2.16), R13 (like all the elements of R) must be purely real

or imaginary and thus we should choose one of, cos x1 = 0 or sinx1 = 0. We exclude the

possibility of y1 = 0 for the reason given above. Likewise, consider

R11 = cosx2 (cosx3 cosh y3 − i sinx3 sinh y3) , (2.36)

and select cos x3 = 0 or sinx3 = 0 by the same reasoning.

In summary, we have the following set of constraints

cosx2 ≈ 0 and y2 = 0,

| cosx1| = 0 or 1,

| cosx3| = 0 or 1,

(2.37)

which lead to an R-matrix of purely real and imaginary components and are therefore

good candidates for CP -invariant R-matrices. We shall make use of these conditions in

considerations where enhancement of the R-matrix is necessary for successful leptogenesis.

2.4 The effects of flavour and scale in leptogenesis

In addition to explaining the smallness of neutrino masses, the type I seesaw provides a

framework under which the matter-antimatter asymmetry of the Universe is explicable.

The heavy Majorana neutrinos Ni may undergo out-of-equilibrium, C-/CP - and lepton-

number-violating decays in the early Universe. The resulting leptonic matter-antimatter

asymmetry is then partially converted into a baryonic asymmetry by SM sphaleron pro-

cesses which violate B + L but conserve B − L. The baryon asymmetry, which quantifies

the excess of matter over antimatter in the Universe, is defined by

ηB ≡
nB − nB

nγ
, (2.38)

where nB, nB and nγ are the number densities of baryons, antibaryons and photons re-

spectively. This quantity has been measured using two independent methods. There is

the measurement of the baryon-to-photon ratio from Big-Bang nucleosynthesis (BBN), a

process which occurs when the temperature of the Universe drops below T . 1 MeV [79]:

ηBBBN = (5.80− 6.60)× 10−10.

In complement, there is the determination of ηB from Cosmic Microwave Background radi-

ation (CMB) data [80] for which the relevant cosmological period is that of recombination,

for which T . 1 eV:

ηBCMB = (6.02− 6.18)× 10−10.

Throughout our numerical study we apply the latter, more precisely measured value.

In the simplest scenario, thermal leptogenesis describes the time evolution of a lepton

asymmetry as a result of the CP -violating decays of the heavy Majorana neutrinos. In

these processes, the lepton and anti-lepton states are

|i〉 ≡
∑
α

Ciα|α〉, |i〉 ≡
∑
α

Ciα|α〉, (2.39)
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where, at tree-level, the projection coefficients are expressed as

Ciα = Ciα =
Yαi√

(Y †Y )ii
, (2.40)

for i ∈ {1, 2, 3} and α ∈ {e, µ, τ}. The simplest scenario for leptogenesis is the single flavour

regime, in which, the leptons resulting from the decay of each heavy Majorana neutrino Ni

are always found in the coherent superposition of flavours described by the corresponding

|i〉. This condition is valid if flavour-dependent interactions mediated by the SM charged

lepton Yukawa couplings are negligible. This is usually a sufficiently good approximation

for temperatures T � 1012 GeV, when the charged lepton Yukawa interactions proceed at a

slower rate than the expansion of the Universe. However, in this work, we shall demonstrate

that such an approximation fails in certain regions of the model parameter space.

The single flavoured Boltzmann equations for thermal leptogenesis provide a semi-

classical description of the time evolution of the heavy neutrino densities, nNi (i ∈ {1, 2, 3}),
and the lepton asymmetry, nB−L.6 Introducing the parameter z ≡M1/T , which increases

monotonically with time, these kinetic equations are written

dnNi
dz

=−Di(nNi − n
eq
Ni

),

dnB−L
dz

=
3∑
i=1

(
ε(i)Di(nNi − n

eq
Ni

)−WinB−L

)
.

(2.41)

In general, the decay parameter Di, describing the decay of Ni is defined in terms of

the heavy neutrino decay rate Γi ≡ Γi
(
Ni → φ†li

)
(with φ and li the Higgs and lepton

doublets), the CP -conjugate rate, Γi, and Hubble rate, H [11]:

Di ≡
Γi + Γi
Hz

. (2.42)

Likewise, the washout factor is defined in terms of the heavy neutrino inverse decay rate

ΓID
i and the CP -conjugate inverse decay rates Γ

ID
i

Wi ≡
1

2

ΓID
i + Γ

ID
i

Hz
. (2.43)

Finally, the CP -asymmetry parameter ε(i) is defined as7

ε(i) ≡ −Γi − Γi

Γi + Γi
= − 3

16π (Y †Y )ii

∑
j 6=i
=
[(
Y †Y

)2

ij

]
ξ (xj/xi)√
xj/xi

, (2.44)

with

xi ≡M2
i /M

2
1 , ξ (x) ≡ 2

3
x

[
(1 + x) log

(
1 + x

x

)
− 2− x

1− x

]
. (2.45)

6All number densities are normalised to a volume containing a single heavy Majorana neutrino in ultra-

relativistic thermal equilibrium.
7Note that the Yukawas enter only in the combination Y †Y and hence, from the eq. (2.10), there is no

dependence on the PMNS matrix, U . Thus, in the one-flavour case, there can be no contribution to the

CP -asymmetry from the Dirac and Majorana phases.
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Figure 1. The one-loop contribution to the thermal-width for left-handed leptonic doublet of

flavour α (lα) through the right-handed singlet of the same flavour (eα).

As discussed, the light neutrino masses may have an accidental cancellation in the tree-

level mass that makes it comparable to the one-loop mass. However, there is no reason to

expect an accidental cancellation like this to occur in the CP -asymmetry. This is because

the cancellation in the light neutrino masses was due to the presence of terms of the

form YM−1Y T while in the CP -asymmetries, the Yukawa matrix is multiplied by their

conjugates in combinations of Y †Y and therefore a similar cancellation cannot occur. As

such, the higher-order corrections to the CP -asymmetry should not be any more significant

in our case than they usually are.

Eq. (2.41) describes the time evolution of lepton number density asymmetry, nB−L,

from an initial value (usually it is assumed that there is a vanishing initial abundance) to

a final value, nB−L (zfinal). The final leptonic asymmetry is then partially converted into

a baryonic asymmetry through sphaleron processes. This is expressed quantitatively by

the relation ηB ≈ a/f × nB−L ≈ 10−2nB−L [11], where a = 28/79 describes the partial

conversion of the B − L asymmetry into a baryon asymmetry by sphaleron processes, and

f ≡ nrec
γ /n∗γ = 2387/86 accounts for the dilution of the asymmetry due the change of

photon densities (nγ) between leptogenesis (nγ = n∗γ) and recombination (nγ = nrec
γ ).

If the era of leptogenesis is lowered below T ∼ 1012 GeV, the interactions of the tau

charged lepton, mediated by its SM Yukawa coupling, come into thermal equilibrium. The

effect is that the τ -component of each |i〉 experiences relatively rapid interactions with

the early Universe plasma. The left-handed τ component is rapidly converted to a right-

handed τ via scattering with the Higgs. Similarly, the reverse process repopulates the τ

asymmetry density at the same rate. This rate is determined by the imaginary part of

the thermal self-energy of τ , =(Λτ ), which by the optical theorem determines the mean

free path of the τ state (see figure 1). When this process is sufficiently rapid, the coherent

superposition of flavours is destroyed and the τ component can no longer contribute at the

level of amplitudes to the decay and inverse decay processes with e and µ (which form a

single coherent flavour state which we shall refer to as τ⊥ such that 〈τ |τ⊥〉 = 0). Instead

τ undergoes decay and inverse decay as a separate decoherent state. Correspondingly, the

kinetic equations must separately describe the time evolution of nττ and nτ⊥τ⊥ and the

total baryon asymmetry is simply the sum: nB−L = nττ +nτ⊥τ⊥ . This is the two-flavoured
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regime and the Boltzmann equations are given by

dnNi
dz

= −Di(nNi − n
eq
Ni

),

dnττ
dz

=
∑
i

(
ε(i)ττDi(nNi − n

eq
Ni

)− piτWinττ

)
,

dnτ⊥τ⊥

dz
=
∑
i

(
ε
(i)

τ⊥τ⊥
Di(nNi − n

eq
Ni

)− piτ⊥Winτ⊥τ⊥
)
,

(2.46)

where piα ≡ |Ciα|2, piα ≡ |Ciα|2 are the projection probabilities expected from the deco-

herence - the classical measurement of τ by the early Universe plasma. Furthermore, the

CP -asymmetries are

ε(i)αα = −piαΓi − piαΓi

Γi + Γi
, (2.47)

for α = τ⊥, τ . Analogously, there exists the possibility that the out-of-equilibrium decays

of the heavy Majorana neutrinos occur at temperatures where the SM muon Yukawa in-

teractions has thermalised T ∼ 109 GeV and the three-flavoured Boltzmann equations are

the relevant kinetic equations. This possibility was explored in [76] and it was shown that

thermal leptogenesis can be lowered to T ∼ 108 GeV.

It has been shown [22, 23, 81, 82, 86] that the density matrix equations produce

a more physically accurate description of leptogenesis where the density matrix may be

expressed as

n ≡
∑
α,β

nαβ |α〉〈β|, (2.48)

where |α〉 are states of definite lepton flavour, defining the flavour basis. Using this de-

scription, the diagonal elements, nαα, are the differences of the normalised densities of α

and α particles such that nB−L = Trn. The off-diagonals describe the degree of coherence

between the flavour states. The advantage of a density matrix description is that decoher-

ence effects are easily incorporated and as such, the dynamical process by which different

flavour states decohere is readily incorporated into the equations. This allows for a single

set of equations with solutions which transition between flavour-regimes as appropriate.

Furthermore, the equations should remain accurate even in the regions of transition where

the interactions leading to decoherence are not infinitely fast.

Explicitly, the density matrix equations of leptogenesis are [22, 23, 81, 82, 86]

dnNi
dz

=−Di(nNi − n
eq
Ni

)

dnαβ
dz

=
∑
i

(
ε
(i)
αβDi(nNi − n

eq
Ni

)− 1

2
Wi

{
P 0(i), n

}
αβ

)

− =(Λτ )

Hz


1 0 0

0 0 0

0 0 0

 ,


1 0 0

0 0 0

0 0 0

 , n



αβ

− =(Λµ)

Hz


0 0 0

0 1 0

0 0 0

 ,


0 0 0

0 1 0

0 0 0

 , n



αβ

,

(2.49)
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where the projection matrices are

P
0(i)
αβ ≡ CiαC∗iβ , (2.50)

which generalise the notion of the projection probability and appear in the double commuta-

tor structure. The double-commutator structures in eq. (2.49) give rise to an exponentially

damping term proportional to =(Λα)/Hz for the equations describing the off-diagonal ele-

ments of n. In the flavour basis, if these terms are dominant, the density matrix is driven

towards a diagonal form. The CP -asymmetry parameters are [21, 22, 81, 83–87]

ε
(i)
αβ =

3

32π (Y †Y )ii

∑
j 6=i

{
i[YαiY

∗
βj(Y

†Y )ji − Y ∗βiYαj(Y †Y )ij ]f1

(
xj
xi

)

+ i[YαiY
∗
βj(Y

†Y )ij − Y ∗βiYαj(Y †Y )ji]f2

(
xj
xi

)}
,

(2.51)

where

f1

(
xj
xi

)
≡
ξ
(
xj
xi

)
√

xj
xi

, f2

(
xj
xi

)
≡ 2

3
(
xj
xi
− 1
) . (2.52)

The diagonal components of the ε(i) matrix simplify to the following form

ε(i)αα =
3

16π (Y †Y )ii

∑
j 6=i

{
=
[
Yαi
∗Yαj(Y

†Y )ij

]
f1

(
xj
xi

)
+ =

[
Yαi
∗Yαj(Y

†Y )ji

]
f2

(
xj
xi

)}
.

(2.53)

3 Leptogenesis in the regime 109 < M1(GeV) < 1012

In this section, we explore the possibility that successful leptogenesis derives solely from the

CP -violating PMNS phases and the mass scale is between 109 ≤M1 (GeV) ≤ 1012, which

generally corresponds to the two-flavour regime. Historically, the link between low-energy

CP violation and the baryon asymmetry was first established in this regime and thus our

main purpose in this section is to revisit the scenario with more robust numerical methods

than have previously been applied. We shall perform a comprehensive exploration of the

parameter space for a model with three heavy Majorana neutrinos in both the normal

ordered and inverted ordered scenarios. We shall then investigate a subset of scenarios in

which only the Dirac or only the Majorana phases are varied.

3.1 Results of parameter exploration

In this particular explorations of the parameter space, we fix M1 and vary M2 and M3 such

that M3 > 3M2 > 9M1, ensuring that resonant regimes are avoided [13, 76, 87, 89–91]. We

choose to set M1 = 1010 GeV, this being typical of the mass window under consideration.

We fix, x1 = 90◦ and x3 = 180◦ and y2 = 0◦ such that there is a complete leptonic

CP -symmetry when δ = 0◦, α21 = 180◦ and α31 = 0◦.8 With the specified parameters

8This choice of parameters for the low-energy phases is made such that the CP -symmetry holds for the

Yukawa matrix when the R-matrix is taken in to account. It would not suffice to choose, eg., δ = α21 =

α31 = 0◦.
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Figure 2. The two-dimensional projections for leptogenesis with M1 = 1010 GeV and CP violation

provided only by the phases of the PMNS matrix. The NO case is coloured blue/green and the

IO one is orange/red. The contours correspond to 68% and 95% confidence levels. This plot was

created using SuperPlot [88].

fixed or constrained as stated, we explore the parameter space using a flat prior and log-

likelihood function evaluated at a point p = (δ, α21, α31,m1,3,M2,M3) (varying m1 or m3

for normal or inverted ordering respectively) by

logL = −1

2

(
η2
B(p)− η2

BCMB

∆η2
BCMB

)
, (3.1)

to define regions of 1σ and 2σ agreement with the observed value of the asymmetry. In addi-

tion we impose a bound on the sum of neutrino masses of 1 eV which is consistent with the

tritium beta-decay experiments [92–94] but more conservative than recent constraints from

Planck [80]. In the numerical work of this section we allow only for the two lightest heavy

Majorana neutrinos to decay (an excellent approximation) and we neglect lepton number-

changing scattering processes, spectator effects [20, 95], thermal corrections [96, 97] and the

inclusion of quantum statistical factors [98–101] which typically introduces an O (10%) er-

ror [27, 102–104]. To solve the density matrix equations we use the Python interface [105]

to the LSODA algorithm [106] that is available in Scientific Python [107]. Due to

the high-dimensionality of the parameter space we found the use of Multinest [108–110]

(more explicitly, pyMultiNest [111], a wrapper around Multinest written in Python)

particularly useful. In figure 8 we display the two-dimensional posterior probability plots

for the CP -violating PMNS phases in the normal ordered and inverted ordered cases.
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δ α21 α31 M1 M2 M3 x1 x2 x3 y2

(◦) (◦) (◦) (GeV) (GeV) (GeV) (◦) (◦) (◦) (◦)

228 447 570 2.82× 1010 1.00× 1013 3.16× 1013 90 18 180 0

Table 2. A benchmark point for leptogenesis with M1 = 2.82 × 1010 GeV, with normal ordering.

Here, we have m1 = 0.02 eV and y1 = y3 = −33◦, corresponding to F = 0.27. This point produces

ηB = 6.1× 10−10.

The results of this parameter search are shown in the form of two-dimensional projec-

tions in figure 2. For points in these regions of parameter space for which ηB = ηBCMB
,

the fine-tuning is F ≈ 0.23 which corresponds only to a very slight enhancement of the

R-matrix. The values of lightest neutrino mass for NO (IO) neutrino mass spectrum

corresponding to this case are m1(3) = 0.0215 eV. For the best-fit values of the fitted pa-

rameters in the NO (IO) case we find: δ = 133.76◦ (139.8◦), α21 = 315.5◦ (165.3◦), α31 =

551.0◦ (565.5◦), M2 = 4.90 (4.97)× 1011 GeV, M3 = 2.19× 1012 GeV, x2 = 113.4◦ (13.9◦).

For the case of an NO light neutrino mass spectrum, we find that the observed baryon

asymmetry may be obtained to within 1σ (2σ) with δ between [95, 265]◦ ([52, 282]◦). For

IO, the 1σ (2σ) range is [60, 338]◦ ([8, 360]◦). Both of these scenarios comfortably incorpo-

rate the measured bounds on δ (table 1). In what follows, we provide some explanation of

these results and plots by introducing an analytical approximation which we use to study

the scenarios where only the Dirac or only the Majorana phases provide CP violation.

3.2 Dependence of ηB on the Dirac and Majorana phases

In the scenario 109 < M1(GeV) < 1012, it is appropriate to apply the two-flavour Boltz-

mann equations (eq. (2.46)). These equations have the following analytical solution [112]

nB−L ≈
π2

6zdK1
neq
N1

(z0)

(
ε(1)
ττ

1

P
0(1)
ττ

+ ε
(1)

τ⊥τ⊥
1

P
0(1)

τ⊥τ⊥

)
, (3.2)

where it is assumed that the dominant contribution to the final asymmetry is from the

lightest of the heavy Majorana neutrinos and that leptogenesis occurs in the strong washout

regime. We denote the z for which the washout becomes less than one as zd, W (zd) < 1,

K1 ≡ Γ1/H(M1) is the decay parameter for N1, and the z for which leptogenesis is initiated

as z0. As we are interested in those scenarios in which CP violation derives only from

the phases of the PMNS matrix, we have the supplementary condition Tr ε(1) = 0 (or

ε
(1)
ττ = −ε(1)

τ⊥τ⊥
) which we may use to simplify the solution to

nB−L =
π2

6zdK1
neq
N1

(z0)ε(1)
ττ ∆F, (3.3)

with

∆F ≡ 1

P
0(1)
ττ

− 1

P
0(1)

τ⊥τ⊥

=
1

P
0(1)
ττ

− 1

1− P 0(1)
ττ

. (3.4)
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Figure 3. The baryon asymmetry with M1 = 5.13 × 1010 GeV and CP violation provided solely

by δ. The Majorana phases are fixed at α21 = 180◦ and α31 = 0◦. The red band indicates the

1σ observed values for ηBCMB with the best-fit value indicated by the horizontal black dotted line.

Left: the final baryon asymmetry as a function of δ with exact CP -invariance when δ = 0◦ and

180◦ (vertical black dotted line). Right: a parametric plot of ηB against JCP as δ is varied. See the

text for further details.
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Figure 4. The baryon asymmetry with M1 = 3.05×1010 GeV and CP violation provided solely by

α21 (corresponding to δ = α31 = 0◦). The red band indicates the 1σ observed values for ηB with the

best-fit value indicated by the horizontal black dotted lines. Here we show the baryon asymmetry

against α21 with exact CP -invariance at α21 = 180◦ and 540◦ (vertical black dotted lines).
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Figure 5. The baryon asymmetry with M1 = 5.13 × 1010 GeV and CP violation provided solely

by α31 (corresponding to δ = 0◦, α21 = 180◦). The red band indicates the 1σ observed values for

ηB with the best-fit value indicated by the horizontal black dotted lines. Here we show the baryon

asymmetry as a function of α31, exact CP -invariance exists for α31 = 0◦ and 360◦ (vertical black

dotted lines).

At the benchmark point for normal ordering defined in table 2, which we will use in

the further analyses in the present section, we have:

Yτ1 = 1.37× 10−3 − 1.67× 10−4eiδ,

Yτ1 = 6.64× 10−4 − 8.74× 10−4ei
α21+π

2 ,

Yτ1 = 4.71× 10−4 + 1.07× 10−3e
iα31
2 ,

(3.5)

for CP violation from δ, α21 and α31 respectively. For the case in which δ provides the

CP violation in eq. (3.5), this phase gives a subdominant contribution to |Yτ1|. As can be

shown, P
0(1)
ττ is similarly weakly dependent on the phases. Thus, the phase dependence of

the solutions of eq. (3.3) does not come predominantly from the flavour factor ∆F but from

the CP -asymmetry ε
(1)
ττ . However, in the case of α21 providing the CP violation, the two

terms of eq. (3.5) are similar in magnitude and we may get a strong enhancement in ∆F .

The final case where α31 provides the CP violation is intermediate and should experience

a slight phase-dependent enhancement from ∆F .

3.2.1 Dirac phase CP violation

In this subsection, we consider deviations from the benchmark point of table 2 where we

allow δ to vary but fix α21 = 180◦ and α31 = 0◦. Given the pattern of R-matrix angles,

this ensures that any CP violation comes solely from δ. In this case, the ττ -component of

the CP -asymmetry is given by

ε(1)
ττ = (0.515− 3.94c13) s13 × 10−8 sin δ = −0.501× 10−8 sin δ. (3.6)

– 19 –



J
H
E
P
0
3
(
2
0
1
9
)
0
3
4

Thus, given the approximate phase-independence of ∆F , we obtain a sinusoidal dependence

of ηB on δ, with ηB = 0 when δ = 0◦ or 180◦. Keeping all other parameters fixed,

we find that for M1 = 2.82 × 1010 GeV no value of δ can produce the observed baryon

asymmetry of the Universe, the maximum value of ηB as a function of δ is 4.07 × 10−11.

We might scale the heavy Majorana neutrino masses by a constant value, as when the

two-flavour approximation of eq. (3.3) is valid, the factor ε
(1)
ττ scales in proportion with this

constant and thus so does ηB. In doing so, we find that the final asymmetry rises until

M1 = 7.08×1011 GeV, where ηB takes maximum value 4.01×10−10. After this, the simple

scaling fails as one begins to enter the transition to what is usually the single-flavour regime.

Performing a detailed numerical parameter exploration we find that purely Dirac phase

CP violation leads to successful leptogenesis for M1 = 5.13 × 1010 GeV, M2 = 2.19 ×
1012 GeV and M3 = 1.01 × 1013 GeV. This is illustrated in figure 3 in which the plotted

ηB comes from solving the full density matrix equations. In this case, we have:

Yτ1 = 1.11× 10−2 − 2.40× 10−4eiδ. (3.7)

Given the different order of magnitude of the two terms in the expression for Yτ1, the

baryon asymmetry should exhibit dependence on δ only from ε
(1)
ττ and not from ∆F . Our

theoretical expectations are borne out by the approximate sinusoidal dependence of ηB on

δ seen in figure 3.

3.2.2 CP violation from the Majorana phase α21

Here, we set δ = α31 = 0◦ but allow CP violation from α21. Setting all other parameters

to their benchmark values we find

ε(1)
ττ = 3.14× 10−7 cos

α21

2
. (3.8)

It follows from this expression for ε
(1)
ττ that at the CP -conserving values for α21 = 0◦, 360◦

we have ε
(1)
ττ 6= 0 (see also figure 4). This corresponds to the case of CP -conserving

R-matrix, CP -conserving PMNS matrix, but CP -violating interplay between the R and

PMNS matrix elements in leptogenesis [25]. In a similar way to the previous subsection, we

find that no value of α21 can achieve successful leptogenesis using this combination of phases

and the benchmark values from table 2. Thus, we find it necessary to scale all of the heavy

Majorana neutrino masses by a common factor such that M1 = 3.05×1010 GeV, may allow

for successful leptogenesis. With this scaling we obtain the results plotted in figure 4. The

deviation from pure (co)sinusoidal behaviour is explained by the α21-dependence of ∆F .

For α21 < 360◦, ∆F varies relatively slowly exhibiting a global minimum at α21 = 180◦,

resulting in a slightly modified sinusoidal dependence through this point in ηB. A strong

peak exists for ∆F around α21 = 540◦, which results in the peak of ηB occurring before

720◦, as would be expected from the dependence of ε
(1)
ττ . The small sign-changing fluctuation

around the zero at α21 = 540◦ is a feature that does not appear in the solution of two-

flavour Boltzmann equations and thus cannot be explained in terms of the analytic solution

eq. (3.3). However, the extra zeros of ηB that are seen in figure 4 are due only to accidental

cancellations and do not correspond to cases of CP -symmetry (unlike those at α21 = 180◦

and α21 = 540◦).
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Figure 6. The two-dimensional projections for leptogenesis with M1 = 1011 GeV, M2 = 1012 GeV

and N3 decoupled, with CP violation provided only by the phases of the PMNS matrix. Here it is

assumed that the light neutrino mass spectrum has normal ordering. Contours correspond to 68%

and 95% confidence levels. This plot was created using SuperPlot [88].

3.2.3 CP violation from the Majorana phase α31

We set δ = 0◦ and α21 = 180◦ such that CP violation is provided by α31. Using the

benchmark values for the other parameters from table 2 we find:

ε(1)
ττ = 2.11× 10−7 sin

α31

2
. (3.9)

Again we find that without scaling the heavy Majorana neutrino masses, no value of α31

corresponds to successful leptogenesis. At M1 = 5.13 × 1010 GeV we obtain the first

point for which the observed baryon asymmetry is created and this is plotted in figure 5.

We see that analytical expectation of a sinusoidal dependence of the baryon asymmetry

(ηB ∝ ε
(1)
ττ ∝ sin(α31/2)) from eq. (3.9) is present. ∆F exhibits a broad peak around

α31 = 360◦ which results in the slight shift to the centre of the otherwise sinusoidal peaks.

3.3 The case of N3 decoupled

In this section, we review the case that the heaviest Majorana neutrino, N3, physically

decouples. We restrict ourselves to normal ordered light neutrino masses. The resultant

scenario with two relevant heavy Majorana neutrinos is the simplest (minimal) type I

framework compatible with all neutrino data. In this scenario only two of the light neu-

trinos have non-zero masses since m1 = 0. For normal ordering, the R-matrix may be

parametrised as [113–115]

R =

0 cos θ sin θ

0 − sin θ cos θ

1 0 0

 . (3.10)

The resulting neutrino Yukawa matrix thus has Yα3 = 0, consistent with the premise that

N3 has decoupled. We choose to take θ in eq. (3.10) to be real in order to have the condition

of eq. (2.16) satisfied. We assume further that at least one of the three phases in the PMNS

matrix has a CP -violating value.

As with the previous sections, we have performed an exhaustive exploration of the

parameter space where again we are primarily concerned with the situation in which CP
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δ α21 α31 M1 M2 θ

(◦) (◦) (◦) (GeV) (GeV) (◦)

228 516 100 1011 1012 25.05

Table 3. A benchmark point for leptogenesis with M1 = 1011 GeV and N3 decoupled with a normal

ordered light mass spectrum.

violation is provided only by the PMNS phases. We choose to fix M1 = 1011 GeV and

M2 = 1012 GeV such that the parameter space to explore is described by p = (δ, α21, α31, θ).

In figure 6, we present the two-dimensional posterior projection for the case of normal order-

ing. Here, it is seen that with M1 = 1011 GeV, for normal ordering, successful leptogenesis

may produce a baryon asymmetry with 1σ (2σ) agreement with the observed value for

δ ∈ [95, 315]◦, (δ ∈ [25, 360]◦).

In table 3, we provide a benchmark point for normal ordered leptogenesis, with purely

low-energy CP violation and N3 decoupled. At this point, the observed BAU is produced

with a corresponding fine-tuning of F = 0.23. In figure 7, we illustrate a similar scenario,

in which the CP violation is provided only by δ (α21 = 180◦, α31 = 0◦), and where the

observed baryon asymmetry is produced near δ = 270◦. We conclude that, even for the

minimal type I seesaw scenario with two heavy Majorana neutrinos exhibiting hierarchical

mass spectrum, it is possible to generate the observed value of the baryon asymmetry

with the requisite CP violation provided exclusively by the Dirac phase δ, and/or by the

Majorana phase α21 or α31.

Furthermore, we note that, in performing a similar investigation for the inverted or-

dering scenario, we find no point in the parameter space which corresponds to successful

leptogenesis with N3 decoupled in this mass window9 with real R-matrix. If, however, e.g.,

R11R12 = ±i|R11R12| (R13 = 0 in the case of interest), we can have successful leptogenesis

with the CP violation provided by the Dirac and/or Majorana phases in PMNS matrix also

for the IO spectrum. These conclusions are in agreement with the results of [25] wherein

one may find a detailed discussion of the cases considered in the present subsection.

Finally, in [25] the following necessary condition for successful leptogenesis in the case

of NO spectrum with the requisite CP violation provided exclusively by the Dirac phase δ

was obtained:

| sin θ13 sin δ| & 0.09 . (3.11)

We recall that this condition was derived by using values of the the CP -conserving R-

matrix elements maximising the lepton asymmetry and assuming that the transition from

two-flavour to one-flavour regime starts at T ∼= 5×1011 GeV, i.e., that at M1 . 5×1011 GeV

the two-flavour regime is fully effective.

9For IO light neutrino mass spectrum the decoupling of N3 implies R13 = 0. In this case m3 = 0 as well.
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Figure 7. The baryon asymmetry from leptogenesis with M1 = 1011 GeV and N3 decoupled,

where CP violation is provided only by the Dirac phase δ. The red bands indicate the values in

1σ agreement with the observed value ηBCMB . Left: a plot of ηB against δ, showing successful

leptogenesis near the maximal CP -violating value δ = 270◦. Right: the corresponding parametric

plot of ηB with JCP as δ is varied. See the text for further details.

4 Leptogenesis in the regime M1 < 109 GeV

Successful thermal leptogenesis at intermediate scales may be accomplished through the

combination of flavour effects and fine-tuned Yukawa matrices with F & O(10) [78, 116].

In section 2.3, we first review these fine-tuned scenarios and then proceed to determine

the subset among them in which the R-matrix is CP -conserving while the PMNS matrix

contains CP -violating phases. In section 4.1 we present and analyse the results of a com-

prehensive search of the model parameter space for regions with successful leptogenesis

compatible with these subsets where we have numerically solved the density matrix equa-

tions, for two-decaying heavy Majorana neutrinos, exactly. Following this, we consider in

detail the scenarios in which CP violation is due solely to the Dirac phase in section 4.2.1,

or due only to the Majorana phases in section 4.2.2 and section 4.2.3. In appendix B, we

display results for M1 = 109 GeV, where O(10) fine-tuning is also required.

We present an analytic approximation of the baryon asymmetry to find that the de-

tailed dependence of the baryon asymmetry on the low energy phases may be roughly

explained by the features of Yτ1 and Yµ1. We reiterate that we apply these approximation

simply to illustrate the qualitative behaviour of the solutions but we numerically solve the

density matrix to produce all plots in this paper.

4.1 Results of parameter exploration

The options of eq. (2.37) are satisfied by sixteen distinct R-matrices which may be divided

into four classes according to the corresponding parity vectors ρν , ρN (see appendix A for

definitions and further details). All such matrices are identical except for the placement of

factors ±1 or ±i. The phenomenological implications of each will be qualitatively similar
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Figure 8. The two-dimensional projections for intermediate scale leptogenesis with M1 = 3.16 ×
106 GeV for x1 = 0, y2 = 0, x3 = 180◦, y1 = y2 = 180◦, with CP violation provided only by the

phases of the PMNS matrix. The normal ordered case is coloured blue/green and inverted ordering

orange/red and contours correspond to 68% and 95% confidence levels. This plot was created using

SuperPlot [88].

except for the precise positions in parameter space that certain features occur. As we are

primarily concerned with demonstrating the viability of leptogenesis with the O(100) fine-

tuned Yukawa matrices (of the type in eq. (2.28)) then we shall focus our numerical efforts

on just one possible R-matrix of the set of sixteen. Namely, we choose a scenario corre-

sponding to cos x1 = 0, cosx3 = −1 such that ρν = ±(+1,−1,+1)T , ρN = ±(+1,+1,−1)T .

For the numerical analysis, we follow the same procedure outlined in section 3.1 with

one additional constraint. At values of F & 1000, higher-order corrections to the light

neutrino mass become important. For this reason we fix y1 = y3 = 180◦ and thereby avoid

these problematic regions of the model parameter space.

In the parameter searches of this section, we consider two cases, in one we fix M1 ∼
106 GeV (figure 8) and in the other we fix M1 ∼ 108 GeV (figure 9). We note that M2 =

3.5M1 and M3 = 3.5M2 and m1 = 0.21 eV.10 This allows for a comparison of the effects

of two different degrees of fine-tuning, with the former corresponding usually to F ∼
500. This is close to the maximum fine-tuning (and correspondingly, the smallest non-

resonant leptogenesis scale) for which second-order radiative corrections to the mass can

be ignored [78].

10In appendix B, we demonstrate that one may lower m1 as far as 0.05 eV and still have successful

leptogenesis in a albeit rather constrained parameter space.
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Figure 9. The two-dimensional projections for intermediate scale leptogenesis with M1 = 1.29 ×
108 GeV for x1 = 0, y2 = 0, x3 = 180◦, y1 = y2 = 180◦, with CP violation provided only by the

phases of the PMNS matrix. The normal ordered case is coloured blue/green and inverted ordering

orange/red and contours correspond to 68% and 95% confidence levels. This plot was created using

SuperPlot [88].

For the scenario in which M1 = 3.16 × 106 GeV, as anticipated, there is a large fine-

tuning of F = 745. In the normal ordered case, we find that the observed baryon asymmetry

may be obtained to within 1σ (2σ) with δ between [84, 360]◦ ([0, 360]◦). For inverted

ordering, the 1σ (2σ) range is [134, 350]◦ ([0, 360]◦). With M1 = 1.29 × 108 GeV, the

fine-tuning is considerably less, at F = 12. In the normal ordered case, we find that the

observed baryon asymmetry may be obtained to within 1σ (2σ) with δ between [16, 263]◦

([0, 360]◦). For inverted ordering, the 1σ (2σ) range is [0, 305]◦ ([0, 360]◦). As in the previous

section, we may explain these plots in detail by introducing an analytical approximation

and the considering the simpler scenarios in which only the Dirac or only the Majorana

phases provide CP violation. For brevity, we choose to perform this analysis only for

M1 ∼ 108 GeV in the normal ordered scenario.

4.2 Dependence of ηB on Dirac and Majorana phases

In this section, we use the benchmark point given in table 4, in order to analytically study

leptogenesis from low-energy CP violation in the case that the lightest heavy Majorana

neutrino has mass M1 < 109 GeV, such that a relatively high degree of fine-tuning in

the light neutrino masses is required. We choose this benchmark point as it allows us to

– 25 –



J
H
E
P
0
3
(
2
0
1
9
)
0
3
4

δ α21 α31 M1 M2 M3 x1 x2 x3 y2

(◦) (◦) (◦) (GeV) (GeV) (GeV) (◦) (◦) (◦) (◦)

228 189 327.6 7.00× 108 1.55× 1010 3.80× 1010 90 110 180 0

Table 4. A benchmark point for intermediate scale leptogenesis with quasi-degenerate (QD) spec-

trum of the light neutrino masses. In addition to the parameters listed we have m1 = 0.215 eV and

y1 = y3 = −140◦ and corresponding fine-tuning F ≈ 30.
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Figure 10. Intermediate scale leptogenesis (M1 = 7.00 × 108 GeV), with CP violation provided

solely by δ, with α21 = 180◦ and α31 = 0◦. The red band indicates the 1σ observed values for

ηBCMB
with the best-fit value indicated by the horizontal black dotted line. Left: the final baryon

asymmetry as a function of δ with exact CP -invariance when δ = 0◦ and 180◦ (vertical black

dotted line). Right: a parametric plot of ηB against JCP as δ is varied at intermediate scales

(M1 = 7.00× 108 GeV). See the text for further details.

accurately neglect the contributions from decays of the other heavy Majorana neutrinos

and thus simplify the analysis.

With M1 < 109 GeV, leptogenesis occurs in the three-flavour regime for which the

three-flavoured Boltzmann equations are a good approximation to the density matrix equa-

tions and have approximate analytical solution [112]:

nB−L =
π2

6zdK1
neq
N1

(z0)

(
ε
(1)
ττ

P
0(1)
ττ

+
ε
(1)
µµ

P
0(1)
µµ

+
ε
(1)
ee

P
0(1)
ee

)
, (4.1)

where we take into account the decays of only the lightest heavy Majorana neutrino. As

we are most interested in the scenarios in which CP violation is due to PMNS phases only,

i.e. Tr ε(1) = 0, then we can re-express eq. (4.1) as

nB−L =
π2

6zdK1
neq
N1

(z0)
(
ε(1)
ττ ∆Fτe + ε(1)

µµ∆Fµe

)
, (4.2)

where the asymmetry depends on the low-energy phases via ε
(1)
ττ and ε

(1)
µµ and from the
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difference of the inverse flavour projections:

∆Fτe ≡
1

P
0(1)
ττ

− 1

P
0(1)
ee

, ∆Fµe ≡
1

P
0(1)
µµ

− 1

P
0(1)
ee

. (4.3)

However, for the case of table 4, the two and three-flavour regime Boltzmann equations,

to a high degree of accuracy give the same value of ηB. Given the comparative simplicity

of the two-flavour solution eq. (3.3), we choose to use this for the practical purpose of

simplifying the analysis.

For the benchmark parameter values listed in table 4, we may find analytical ap-

proximations for the CP -asymmetries ε
(1)
αα. Under the relatively good approximation, that

m1 = m2,11 the asymmetry is given by

ε(1)
αα =

3

16π (Y †Y )11

M2
1

v4
m1
√
m1m3(ey3 sin 2x2)|R21|2

×
(

2

3

(
M1

M2
+
M1

M3

)
=
[
e−ix3 (Uα1 + iUα2)U∗α3

]
− 5

9

M2
1

M2
2

=
[
e−2i(x1+x3)e−ix3(Uα1 + iUα2)U∗α3

])
.

(4.4)

Selecting x1 = (2k1 + 1)π/2 and x3 = k3π for k1, k3 ∈ Z, such that cos x1 = 0 and

| cosx3| = 1 and cosx3 = (−1)k3 is satisfied, we find the CP -asymmetry ε
(1)
αα to be

ε(1)
αα =

3

16π (Y †Y )11

M2
1

v4
m

3
2
1m

1
2
3 (ey3 sin 2x2)(−1)k3 |R21|2

×
(

2

3

(
M1

M2
+
M1

M3

)
+

5

9

M2
1

M2
2

)
= [(Uα1 + iUα2)U∗α3] ,

(4.5)

where, at our benchmark point, the coefficient of = [U∗α3 (Uα1 + iUα2)] has magnitude ap-

proximately equal to 3.7 × 10−6. This form is particularly useful in order to isolate the

dependence of the CP -asymmetry on the PMNS phases in the factor = [U∗α3 (Uα1 + iUα2)].

4.2.1 Dirac phase CP violation

We consider the possibility that the Majorana phases are CP -conserving: α21 = 180◦,

α31 = 0◦ (given the R-matrix under consideration). The sole source of CP violation is

δ and there is exact CP -invariance if δ = 0◦, 180◦. The corresponding ηB is plotted in

figure 10 alongside a parametric plot of ηB against JCP with parameter δ.12

From the CP -asymmetry, one expects to find ηB proportional to

= [U∗τ3 (Uτ1 + iUτ2)] = s13c13c
2
23(s12 − c12) sin δ ≈ −0.0178 sin δ, (4.6)

and thus sinusoidal in δ. However, the phase-dependent efficiency (flavour-factor) ∆F

exhibits a sharp maximum around the region δ = 0◦ or δ = 360◦. This modifies the

11The approximation m1 = m2 is sufficiently precise as long as m2
1 � 0.5∆m2

21
∼= 3.7× 10−5 eV2.

12All plots involving ηB in this work have been obtain by solving the full density matrix equations,

allowing for the lightest pair of heavy Majorana neutrinos to decay and possibly (if indicated) include

scattering effects.
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Figure 11. Intermediate scale leptogenesis (M1 = 7.00 × 108 GeV) with CP violation provided

solely by α21 and with δ = α31 = 0. The red band indicates the 1σ observed values for ηB with the

best-fit value indicated by the horizontal black dotted lines. Left: the baryon asymmetry against

α21 with exact CP -invariance at α21 = 180◦ and 540◦ (vertical black dotted lines). Right: a

parametric plot of ηB against the effective neutrino mass |〈mν〉| as α21 is varied with the vertical

dashed black line denoting the upper value of the KamLAND-Zen bound 0.165 eV [74]. Successful

leptogenesis is achieved for |〈mν〉| = 0.0877 eV. See the text for further details.

sinusoidal dependence from the CP -asymmetries such that the extrema of ηB are shifted

towards the extreme values of δ, as in seen in figure 10. The small fluctuations around

δ = 0◦, δ = 360◦ are not captured by the Boltzmann equations (neither two-flavoured nor

three-flavoured) and are only present when solving the full density matrix equations which

take account of the finite size of the lepton thermal widths. The result is the addition

of some accidental zeros in the variation ηB which do not correspond to CP -conserving

values of δ.

4.2.2 CP violation from the Majorana phase α21

Alternatively, consider the case of CP violation from α21, where δ = 0◦, α31 = 0◦ and all

other parameters are set to their benchmark values of table 4. The variation of ηB with

α21 in this scenario is plotted on the left of figure 11. On the right of the same figure,

we parametrically plot ηB against |〈mν〉| with parameter α21. The baryon asymmetry

ηB vanishes at the CP -conserving values of α21 = 180◦ and 540◦. However, as is seen

in figure 11, ηB 6= 0 at the CP -conserving values of α21 = 0◦, 360◦ and 720◦ since at

these values the interplay between the CP -conserving R and PMNS matrices leads to CP

violation in leptogenesis [25].

The efficiency function ∆F , when plotted as a function of α21, exhibits a very strong

narrow peak at α21 = 180◦ and a much less pronounced peak at α21 = 540◦. As a

consequence, the corresponding ηB is modified from the simple cosine curve expected from

– 28 –



J
H
E
P
0
3
(
2
0
1
9
)
0
3
4

0 100 200 300 400 500 600 700
α31 [◦]

−6

−4

−2

0

2

4

6
η B
×

10
10

0.076 0.078 0.080 0.082 0.084 0.086
|〈mν〉| (eV)

−6

−4

−2

0

2

4

6

η B
×

10
10

Figure 12. Leptogenesis at intermediate scales (M1 = 7.00 × 108 GeV) when CP violation is

provided solely by α31 with δ = 0◦, α21 = 180◦. The red band indicates the 1σ observed values

for ηB with the best-fit value indicated by the horizontal black dotted lines. Left: the baryon

asymmetry as a function of α31. Exact CP -invariance exists for α31 = 180◦ and 360◦ (vertical

black dotted lines). Right: a parametric plot of ηB against the effective neutrino mass |〈mν〉| as

α31 is varied with successful leptogenesis at |〈mν〉| = 0.0856 eV. See the text for further details.

the dependence of ε
(1)
ττ and ε

(1)
µµ on α21, which arises in the factors:

= [U∗τ3 (Uτ1 + iUτ2)] = −c13c23(c12s23 + s12c23s13) cos
α21

2
≈ −0.444 cos

α21

2
, (4.7)

Thus, there is a sharp transition around α21 = 180◦. We can conclude then that the

strong peak in ∆F is what has allowed the observed baryon asymmetry of the Universe to

be reproduced. This peak originates in an accidental cancellation of terms in the function

P
0(1)
ττ . There is no a priori reason to expect such a cancellation and it should be understood

as a feature of the fine-tuned solutions that are being here studied. Thus, we see that the

flavour-effects introduce a pair of accidental zeros of ηB, one in the range [180, 540]◦ and

the other in [0, 180]◦.

4.2.3 CP violation from the Majorana phase α31

Finally, consider the case of CP violation from α31 where δ = 0◦, α21 = 180◦ and for which

the baryon asymmetry is plotted in the left plot of figure 12 and on the right we show

the parametric dependence of the effective neutrino mass |〈mν〉| with α31 against that of

ηB. The baryon asymmetry ηB vanishes at the CP -conserving values of α31 = 0◦, 360◦

and 720◦.

The efficiency function ∆F in this case is qualitatively similar to that for the case of δ:

CP violation only strongly peaks at α31 close to 0◦ and to 720◦. Thus, we do not observe,

in the left plot of figure 12, the simple dependence, ηB ∝ sin (α31/2) as may be expected
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from the expression for εττ ,

= [U∗τ3 (Uτ1+iUτ2)] = c13c23((c12−s12)s23+(c12+s12)s13c23) sin
α31

2
≈ −0.662 sin

α31

2
.

(4.8)

Rather, we find an enhanced positive peak near α31 = 0◦ and an enhanced negative peak

near α31 = 720◦.

4.2.4 Summary of fine-tuned solutions with high energy CP -symmetry

The fine-tuned solutions we have discussed in this section share the property that they

enhance ηB through the production of a peak in the efficiency factor ∆F . In each projec-

tion coefficient,

P 0(1)
αα =

|Yα1|2
(Y †Y )11

, (4.9)

the PMNS matrix cancels from the denominator such that all phase-dependence comes

from that of |Yα1|2 in the numerator. In this subsection, we may safely use the usual

Casas-Ibarra parametrisation (obtained by the replacement of f with
√
M−1 in eq. (2.10)),

to obtain

Yα1 =
√
M1 (
√
m1R11Uα1 +

√
m2R12Uα2 +

√
m3R13Uα3) . (4.10)

The absolute value |Yα1| is extremised when each term in the parentheses in eq. (4.10) has

a common complex phase or when terms may differ in complex phase by π. This occurs

at CP -conserving values of the PMNS phases and so the enhancement expected in the

functions ∆F is likely to occur at CP -conserving phases also. As an example, around

the benchmark point of table 4, we find that with only α21 contributing to CP violation

(δ = α31 = 0◦),

Yτ1 =
(

2.16 + 2.23ei
α21+π

2

)
× 10−3. (4.11)

The absolute value of this function has extrema when α21 = 180◦ or α21 = 540◦ - the CP -

conserving values. Moreover, the cancellation that occurs at α21 = 180◦ is strong because

of the similarity in magnitude of the two terms in eq. (4.11). As a result of this there are

strong peaks in ∆F which enhance ηB.

This is a way in which the solutions are found to be fine-tuned as there is no reason

to expect these two terms to be so similar in size. At these same points, the asymmetries

ε
(1)
αα are vanishing as CP is a symmetry in the leptonic sector. Thus ηB, being proportional

to the product of ε
(1)
ττ and ∆F , is strongly enhanced on either side of the CP -invariant

points (for instance, around α21 = 180◦ in the left plot of figure 11). Thus the fine-tuned

solutions tend to achieve large ηB of one-sign on one side of a CP -invariant point and

large ηB of the opposite sign on the other side. Similarly, this effect persists when all

phases may contribute together to CP violation (figure 8 and figure 9). Thus, successful

leptogenesis tends to occur near α21 ∼ 180◦, α31 ∼ 0◦, 720◦ when leptogenesis is achieved

with fine-tuned light neutrino masses, as it is at intermediate scales (M1 . 109 GeV). Note

that although we made these arguments based on the two-flavoured Boltzmann equations,

very similar conclusions are reached based on considerations of ∆Fτe and ∆Fµe for the
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solutions of the three-flavoured Boltzmann equations. For this reason, one expects similar

behaviour to hold even for lower values M1 such as in figure 8.

Furthermore, one may usually argue that Dirac-phase leptogenesis suffers a suppression

not present in Majorana phase leptogenesis due to the factors of s13 that appear in the CP -

asymmetries as shown in eq. (4.6). However, for Dirac-phase leptogenesis ηB ∝ sin δ∆F (δ),

where the maximum absolute value of ∆F (δ) is ∼ 408, whereas for α21 leptogenesis, ηB ∝
cos α21

2 ∆F (α21) with maximum absolute value ∼ 77. Thus, what is more relevant when

leptogenesis occurs intermediate scales, is the degree of enhancement from ∆F that occurs

due to fine-tuning.

Finally, as we observe in figure 9, the contours for α21, α31 show a strong dependence

on α31 − α21. A rough explanation of this is given by the dependence of ε
(1)
ττ on the

Majorana phases. With δ fixed at its benchmark value, but α21 and α31 free to vary, this

CP-asymmetry is given by

ε(1)
ττ ≈

(
1.46 cos

(α31 − α21)

2
+ 0.869 sin

α31

2

)
× 10−7, (4.12)

which exhibits a slightly dominant, (α31−α21)-dependent contribution. This contribution

is maximised when α31 = α21.

5 Leptogenesis in the regime M1 > 1012 GeV

In previous studies in which a connection between low-energy CP violation (CP -conserving

R) and leptogenesis was established [26], the scale of leptogenesis was limited to M1 ≤
5×1011 GeV. This allowed for the use of the two-flavour Boltzmann equations as shown in

eq. (2.46) where the CP -asymmetries ε
(1)
ττ and ε

(1)

τ⊥τ⊥
appear separately. The expectation

had been that for M1 � 1012 GeV, the single-flavour Boltzmann equation eq. (2.41) would

be appropriate. In this equation, the CP -asymmetries appear only in the factor Tr ε(1) = 0

and hence no baryon asymmetry may be produced. In section 5.1 we argue that even at

high scales M1 � 1012 GeV, if R is CP -conserving, then flavour effects are significant and

that the density matrix equations do not reduce to the single flavour Boltzmann equations.

Hence we conclude that viable leptogenesis may result from low energy CP violation.

Finally, in section 5.2 we proceed to numerically analyse this possibility in detail.

5.1 Flavour effects with M1 � 1012 GeV and high energy CP -symmetry

In appendix C, we demonstrate that the complete formal solution of the density matrix

equations (eq. (2.49)), with one decaying heavy Majorana neutrino is

nB−L(zf ) =

∫ zf

z0

e−
∫ zf
z′ W1(z′′)dz′′

(
Tr ε(1)D1(z′)(nN1

(z′)− neq
N1

(z′)) +W1(z′)λ(z′)
)
dz′,

(5.1)

with

λ(z) ≡ 2

∫ z

z0

dz′<
[
C1τ⊥C

∗
1τ

=(Λτ )

Hz′
nττ⊥(z′)

]
. (5.2)
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Figure 13. The two-dimensional projections for high-scale leptogenesis with M1 = 1013 GeV with

CP violation provided only by the phases of the PMNS matrix. The NO case is coloured blue/green

and the IO one is orange/red. The contours correspond to 68% and 95% confidence levels. This

plot was created using SuperPlot [88].

In a typical leptogenesis scenario, if M1 � 1012 GeV, flavour effects are negligible and one

obtains the well-known result:

nB−L(zf ) =

∫ zf

z0

e−
∫ zf
z′ W1(z′′)dz′′ Tr ε(1)D1(z′)(nN1

(z′)− neq
N1

(z′))dz′, (5.3)

which may be found by solving the single flavour Boltzmann equation. However, with a

CP -conserving R-matrix, such that CP violation is provided solely by the PMNS phases,

one has Tr ε(1) = 0 and so the λ term in eq. (5.1) becomes the dominant one:

nB−L(zf ) =

∫ zf

z0

e−
∫ zf
z′ W1(z′′)dz′′W1(z′)λ(z′)dz′. (5.4)

If this is the case, then the baryon asymmetry is produced purely through flavour-effects

from =(Λτ )/Hz.

The physical effect of Tr ε(1) = 0 is that opposite asymmetries are produced in the τ

and τ⊥ flavours due to the decay of N1: ε
(1)
ττ = −ε(1)

τ⊥τ⊥
. However, with flavour effects,

the lepton asymmetries ε
(1)
ττ and ε

(1)

τ⊥τ⊥
produced in the decay experience differing washouts

such that nττ 6= −nτ⊥τ⊥ and nB = nττ + nτ⊥τ⊥ 6= 0. It is an asymmetry produced by this

method that is described in eq. (5.4). The obvious question at this point is whether this can

ever be large enough to produce the observed baryon asymmetry when M1 � 1012 GeV.
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δ α21 α31 M1 M2 M3 x1 x2 x3

(◦) (◦) (◦) (GeV) (GeV) (GeV) (◦) (◦) (◦)

228 200 175 1013 1.2× 1015 1016 −96.55 −105.2 141.4

Table 5. The benchmark values for high-scale leptogenesis with normal ordering. Here we have

m1 = 0.0159 eV and y1 = y2 = y3 = 0◦.

The density matrix equations may be conveniently expressed in terms of the vectors

n ≡ (nτ⊥τ⊥ , nττ⊥ , nτ⊥τ , nττ )T , (5.5)

ε(1) ≡ (ε
(1)

τ⊥τ⊥
, ε

(1)

ττ⊥
, ε

(1)

τ⊥τ
, ε(1)
ττ )T , (5.6)

as
dn

dz
= ε(1)D1

(
nN1
− neq

N1

)
− 1

2
W1n−

= (Λτ )

Hz
In, (5.7)

where

W1 ≡W1


2|C1τ⊥ |2 C∗1τC1τ⊥ C1τC

∗
1τ⊥

0

C1τC
∗
1τ⊥

0 1 C1τC
∗
1τ⊥

C∗1τC1τ⊥ 0 1 C∗1τC1τ⊥

0 C∗1τC1τ⊥ C1τC
∗
1τ⊥

2|C1τ⊥ |2

 and I ≡


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 . (5.8)

In terms of these quantities, the formal solution, with flavour effects neglected is:

n (zf ) =

∫ zf

z0

e
∫ zf
z′

1
2
W1(z′′)dz′′ε(1)D(z′)(nN1(z′)− neq

N1
(z′))dz′. (5.9)

Although flavour effects in high-scale leptogenesis may be negligible, this solution may not

be accurately applied for finding ηB in the case that Tr ε(1) = 0. This is because there is a

strong cancellation of components of the density matrix when computing ηB = nτ⊥τ⊥+nττ ,

such that the errors made in neglecting flavour effects are dominant. For this reason, we

make use of it only for finding the approximate behaviour of individual components of the

density matrix and avoid applying it to situations where this cancellation occurs.

If the heavy Majorana neutrino masses Mi are scaled by a common factor x, such that

Mi → xMi, then: ε(1) scales in proportion with x, D1 and W1 do not scale with x and

= (Λτ ) /Hz varies inversely with x. Consequently, according to eq. (5.9), nαβ(z) scales

in proportion to x, (with increasing precision for larger x since we can better neglect the

thermal widths). In λ the scaling of =(Λτ )/Hz cancels that of nττ⊥ and so λ does not scale

with x if M1 � 1012 GeV. Thus, at sufficiently large values of M1, ηB, given by eq. (5.4),

asymptotically approaches a non-zero constant. This is shown in figure 14 (d) over a range

of M1 values in which the ratios M1/M2 and M2/M3 are fixed. The curve increases ever

more slowly for larger M1 as the approximation leading to eq. (5.9) becomes ever more

precise. This may be interpreted as the transition region between the two flavour regime and

the single flavour having grown infinitely large.13 In each of the plots of figure 14, we see a

13If, contrary to our scenario of interest, R is CP -violating (Tr ε(1) 6= 0), then the first term in parantheses

of eq. (5.1) eventually dominates the second for sufficiently large x and the single flavour regime is entered.
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dip in the density matrix solution curve near 1012 GeV. This feature is due to the difference

in sign of the two-flavour solutions, for which ηB ∝ ε(1)
ττ /P

0(1)
ττ +ε

(1)

τ⊥τ⊥
/P

0(1)

τ⊥τ⊥
= 3.99×10−4,

compared to that of the single flavour solutions, where ηB ∝ ε
(1)
ττ + ε

(1)

τ⊥τ⊥
= −7.5 × 10−6

(where these numbers are valid for plot (a) of figure 14 corresponding to CP -violating R-

matrix). The dip appears as a result of plotting the absolute value of ηB on a logarithmic

scale when ηB passes through zero during the transition between these regimes.

In appendix D, we discuss the robustness of the plateau that forms for large heavy Ma-

jorana neutrino masses when the effects of scattering and when a more realistic treatment

of the right-handed taus are incorporated. In the next section we explore the parameter

space of the three heavy Majorana neutrino type I seesaw with regard to the solutions of

eq. (D.1) with CP -conserving R-matrix and M1 � 1012 GeV.

5.2 Results of parameter exploration

At values of M1 � 1012 GeV, fine-tuning through large elements of the R-matrix is not

required for successful leptogenesis (if Majorana phases are allowed to play a role, other-

wise large fine-tuning is required if only Dirac phases take effect). Thus, in this section

we analyse the parameter space corresponding to real, and therefore CP -conserving, R-

matrices (yi = 0◦), using the same numerical technique as described in section 4.1. In

order to perform this analysis we fix M1 = 1013 GeV and again require M3 > 3M2 > 9M1

in order to avoid the resonant regime. With a much higher value of M1, one would need a

correspondingly a higher temperature of inflation. For this reason, we choose to illustrate

the possibility of successful thermal leptogenesis at just one order of magnitude beyond the

two-flavour to single-flavour transition temperature of 1012 GeV. In figure 13, we display

the two-dimensional projection plots for both normal ordering and inverted ordering.

In the NO case, we find that the observed baryon asymmetry may be obtained to

within 1σ (2σ) with δ between [240, 331]◦ ([0, 360]◦). In the IO one, the 1σ (2σ) range is

[50, 304]◦ ([20, 352]◦). In what follows, we analyse these results by considering separately

the cases of purely Dirac or purely Majorana CP violation. For brevity we consider only

the case of NO spectrum.

5.3 Dependence of ηB on the Dirac and Majorana phases

As the final value of the baryon asymmetry becomes approximately constant for M1 �
1012 GeV (see figure 14) with a CP -conserving R-matrix, then one can can use the value

of ηB that is predicted by the two-flavour Boltzmann equations (2FBE) at the start of the

transition M1 ∼ 1012 GeV as a proxy for the full solution of the density matrix equations

(DME). That is,

ηDME
B

(
M1 � 1012 GeV

)
≈ η2FBE

B

(
M1 ∼ 1012 GeV

)
, (5.10)

provided that the ratios M2/M1 and M3/M1 are fixed. This has the advantage that we

may again make use of the result in eq. (3.3)

nB−L ≈ n2FBE
B

(
M1 ∼ 1012 GeV

)
=

π2

6zdK1
neq
N1

(z0)ε(1)
ττ ∆F, (5.11)

in order to gain an analytical understanding of the numerical solutions.
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Figure 14. The magnitude of the baryon asymmetry as a function of the heavy Majorana neutrino

masses (assuming the modified Casas-Ibarra parametrisation) at a specific point in parameter space.

The dotted orange line corresponds to solutions of the single-flavour Boltzmann equations, the

dashed green line to those of the two-flavour Boltzmann equation, the red dot-dashed line to those

of the three-flavour Boltzmann equations and the solid blue line to solutions of the density matrix

equations. The horizontal black dotted line is the observed value of ηBCMB
and the vertical dotted

lines to the values of the muon and tau thermal widths. We vary y3 such that in (a) y3 = 30◦, in (b)

y3 = 5◦, in (c) y3 = 0.3◦ and in (d) y3 = 0◦. As y3 is the only complex parameter of the R-matrix

for this parameter point, then plot (d) corresponds to the case of purely low-energy CP violation.

As the CP violation becomes solely low energy (going from (a) to (d)), then the transition of the

density matrix equations to the single-flavour regime becomes longer. This culminates in an infinite

transition width in plot (d) — a plateau in the baryon asymmetry for high-scale leptogenesis. The

dip in all of the blue lines occurs as a consequence of the change in sign of the produced asymmetry.
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Figure 15. Leptogenesis at high scales (M1 = 3.16× 1013 GeV) with CP violation provided solely

by δ, with α21 = 0◦ and α31 = 0◦. The red band indicates the 1σ observed values for ηB with

the best-fit value indicated by the horizontal black dotted lines. Left: the baryon asymmetry as a

function of δ with exact CP -invariance exists for δ = 0◦ and 180◦ (vertical black dotted lines). In

order to make the maximum value touch on the observed baryon asymmetry, an amount of fine-

tuning F = 105 is needed. Right: the corresponding variation of ηB against JCP parametrically

plotted with δ. See the text for further details.
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Figure 16. Leptogenesis at high scales (M1 = 3.16×1013 GeV) when CP violation is provided solely

by α21, with δ = 0◦, α31 = 0◦. The red bands indicate the 1σ observed values for ηB with the best-

fit value indicated by the horizontal black dotted lines. Left: the baryon asymmetry as a function

of α21 with exact CP -invariance at α21 = 0◦ and 360◦ (vertical black dotted lines). Right: the

variation of ηB against |〈mν〉| parametrically plotted as a function of α21. Successful leptogenesis

occurs for α21 ≈ 449◦ and α21 ≈ 653◦ for which |〈mν〉| = 0.0171 eV and |〈mν〉| = 0.0166 eV

respectively. See text for further details.
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As in the analysis of section 4.1, we investigate the cases where CP violation comes

from precisely one of δ, α21 or α31. Unlike the fine-tuned scenario previously considered,

P
0(1)
ττ and consequently ∆F are approximately constant with the PMNS phases as would

be expected from our discussion of the fine-tuned solutions in section 4.2.4. Hence the

phase-dependence of the ηB can be understood by reference to ε
(1)
ττ alone. This may also

be understood by reference to the Yukawa couplings when CP violation comes only from

δ, α21 or α31 respectively:

Yτ1 = −0.0476− 0.000364eiδ,

Yτ1 = −0.0541 + 0.00614ei
α21
2 ,

Yτ1 = 0.00972− 0.0576ei
α31
2 .

(5.12)

The difference in scale of the two terms means that the cancellation is never strong for any

value of the phase and so the peaks in ∆F are not large. In this high scale case, ∆F is

approximately constant and thus the plots of ηB exhibit a nearly pure sinusoidal variation

given by the CP -asymmetries below.

5.3.1 Dirac phase CP violation

In this case, with a real R, we have α21 = α31 = 0◦ such that δ is the sole provider of all

CP violation. The asymmetry is given by

ε(1)
ττ = −1.25× 10−6 sin δ, (5.13)

in this scenario. Thus we obtain a sinusoidal dependence with ηB = 0 when δ = 0◦ or 180◦.

Fixing all other parameters at their benchmark value with y1 = y2 = y3 = 0, no value

of δ can produce the observed baryon asymmetry of the Universe. Unlike in the case of

intermediate scale leptogenesis, a small scaling of the heavy Majorana neutrino masses will

not much increase the value of ηB because of the plateau of figure 14. At the best-fit point

of table 5, with α21 = α31 = 0◦, allowing CP violation only from δ, the largest ηB achieved

is a factor ∼ 9 smaller than the observed value. This is large enough that even enormously

larger scales of the heavy masses cannot make δ-only leptogenesis a viable option.

An alternative for producing the observed baryon asymmetry of the Universe with CP

violation only from δ is to work with an R-matrix containing both zero and purely imaginary

components which are CP -conserving and may potentially be large in magnitude. If for

example, we choose xi = 0◦ such that all wi are either purely imaginary or zero, and take

y2 = 0◦ also, then by setting α21 = 180◦ and α31 = 0◦, all CP violation will be due to δ.

Varying y1 and y2 together in this setup, we find that y1 = y2 = 169◦ is the smallest value

for which the observed baryon asymmetry of the Universe is produced. With all other

parameters equal to the values in table 5, this corresponds to F = 105. Hence a noticeable

degree of fine-tuning is required even at high scales to make δ the sole contributor to CP

violation with viable leptogenesis. In figure 15, we plot the variation of ηB with pure δ CP

violation for this fine-tuned scenario in the left plot, and on the right we parametrically

plot ηB against JCP as a function of δ.
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5.3.2 CP violation from the Majorana phase α21

Similarly, when δ = α31 = 0◦, the CP -asymmetry is

ε(1)
ττ = 1.98× 10−5 sin

α21

2
. (5.14)

It follows from the preceding expression for ε
(1)
ττ that at the CP -conserving values of α21 =

180◦, 540◦ we have ε
(1)
ττ 6= 0. This corresponds to the case of CP -conserving R-matrix

(yi = 0), CP -conserving PMNS matrix, but CP -violating interplay between the R and

PMNS matrix elements in leptogenesis [25].

The corresponding ηB, plotted in the left plot of figure 16 is thus a factor of O(10)

higher and of opposite sign than in the previous case without fine-tuning. Thus, we obtain

the observed baryon asymmetry of the Universe (or higher) for values of α21 between about

450◦ and 650◦. In the right plot of figure 16 is ηB for the same scenario parametrically

plotted against the effective neutrino mass with parameter α21.

5.3.3 CP violation from the Majorana phase α31

Finally, we turn to the scenario in which CP violation is provided entirely by α31, plotted

on the left in of figure 17 for which

ε(1)
ττ = −3.22× 10−5 sin

α31

2
. (5.15)

Similarly to the case discussed in the preceding subsection, we see that ε
(1)
ττ 6= 0 at the

CP -conserving values of α31 = 180◦, 540◦. This again corresponds to the case of CP

violation in leptogenesis due to the interplay of the CP -conserving R-matrix (yi = 0) and

CP -conserving PMNS matrix [25].

Compared with the previous scenario, there is a sign flip and an enhancement by a

factor ∼ 1.6 of the resulting baryon asymmetry of the Universe. Thus, the observed BAU

is achieved and exceeded for smaller values of α31, between about 50◦ and 300◦. On the

right of figure 17, we display a parametric plot for the same scenario with ηB against the

effective neutrino Majorana mass with the parameter α31.

6 Conclusions

In this paper we have investigated the connection between leptogenesis and low energy

leptonic CP violation over a large range of scales
(
106 < M1 (GeV) < 1013

)
. We summarise

our main findings below:

• Firstly, we revisited the question of the possibility of successful thermal leptogenesis

at scales 109 < M1 (GeV) < 1012. At such scales, tau-Yukawa interactions are in

equilibrium, such that there are sufficiently frequent interactions between the leptons

and the early Universe plasma causing decoherence between the tau flavour from the

other flavour components. We show that successful leptogenesis is indeed possible

in this range of scales in the case that the PMNS phases provide all of the CP

violation in the model. By performing parameter explorations at M1 = 109 GeV and
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Figure 17. High-scale leptogenesis (M1 = 3.16 × 1013 GeV) with CP violation is provided solely

by α31, with δ = 0◦, α21 = 0◦. The red bands indicate the 1σ observed values for ηB with

the best-fit value indicated by the horizontal black dotted lines. Left: the baryon asymmetry

as a function of α31, with exact CP -invariance when α31 = 0◦ and 360◦ (vertical black dotted

lines). Right: the parametric plot of ηB against the effective neutrino Majorana mass |〈mν〉| as

α31 is varied. At the values α31 = 17◦, 43◦, ηB takes on its observed values corresponding to

|〈mν〉| = 0.0131 eV, 0.0149 eV respectively. See the text for further details.

M1 = 1010 GeV, we found that some degree of fine-tuning, F ∼ 10, is required for

these particular mass scales (with the degree of fine-tuning diminishing as one goes

to higher values of M1).

• By demanding pure Dirac phase or pure Majorana phase CP violation, we found that

each phase alone can produce the correct CP -asymmetry, with the cases of Majorana

phases requiring, in general, a somewhat lower value of M1 than those required for

the Dirac phase.

• If leptogenesis takes place at scales M1 � 109 GeV, then all three of the leptonic

flavour components involved in leptogenesis will decohere. For masses in this range

(M1 ∼ 106 GeV and M1 ∼ 108 GeV), we determined the regions of parameter space in

which low energy leptonic CP violation, provided by either the Dirac or the Majorana

phases individually, leads to successful intermediate scale leptogenesis. At these scales

a large amount of fine-tuning (F ∼ O (100)) is required between the tree-level and

one-loop neutrino masses. We restricted ourselves to fine-tuning such that F < 1000

and in doing so have found an approximate lower bound of M1 ≈ 3 × 106 GeV

(consistent with the conclusions of [78]).

• We studied the possibility of pure Dirac phase CP violation and showed that for

F < 1000, M1 & 8 × 106 GeV in order to produce the observed baryon asymmetry.

Similarly for the purely Majorana phase CP violation and again F < 1000, for α21, we

obtain a bound M1 ≈ 4.5×106 GeV whereas for α31 we obtained M1 ≈ 3×106 GeV.
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Observables depending on the Dirac and Majorana phases, for example JCP or 〈mν〉,
may be well within experimental bounds in the same parts of parameter space in

which leptogenesis is successful. The Dirac phase δ is only very weakly constrained,

with the tightest constraint being δ ∈ [16, 263]◦, for 1σ agreement with the observed

BAU, which comes from assuming normal ordering and M1 = 1.29× 108 GeV.

• If leptogenesis takes place at high scales, with M1 � 1012 GeV, interactions be-

tween the leptons and the early Universe plasma only very weakly decohere the tau

flavour from the other flavour components. Normally, this leads to the conclusion

that the single flavour Boltzmann equations are an appropriate description of the

process. However, we have demonstrated that, if CP violation arises only in the

low energy leptonic sector, the effects of decoherence cannot be neglected. There-

fore, one should not ignore the phenomenology of high-scale leptogenesis with purely

low-energy CP violation.

• We explored the parameter space at M1 ∼ 1013 GeV, finding regions in which ther-

mal leptogenesis is a viable explanation of the BAU. We found that the strongest

constraint on δ is for normal ordering, for which we require δ ∈ [240, 331]◦ to pro-

duce a baryon asymmetry within 1σ of the observed value. With only Dirac phase

CP violation, we have concluded that it is not possible produce the observed baryon

asymmetry of the Universe unless one introduces significant fine-tuning (F ∼ 100) in

the light neutrino masses. We argued that there is no scale of the heavy Majorana

neutrino masses beyond M1 � 1012 GeV for which Dirac phase leptogenesis may be

made to work without this fine-tuning. However, with pure Majorana phase violation,

we found that successful leptogenesis is possible with essentially no fine-tuning.

The results of this article underscore the significance of understanding leptonic CP

violation through experimental searches for Dirac and/or Majorana leptonic CP violation.

We have departed from previous literature by concluding that low energy leptonic CP -

violating phases may always be relevant to the production of the baryon asymmetry in the

leptogenesis scenario. It has commonly been thought that their relevance was limited to

the window of masses 109 . M1 (GeV) . 1012. However, we have shown this window to

be significantly wider: Dirac and Majorana phases may be crucial to leptogenesis even at

scales as low as M1 ∼ 106 GeV, or as high as M1 � 1012 GeV.
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A Classes of CP -Conserving R-matrix

With the parameters x2, y1 and y3 left arbitrary, there are 16 possible R-matrices which lead

to the fine-tuned light neutrino masses required for successful leptogenesis (eq. (2.27)). For

any of these matrices, the absolute values of the elements |Rij | are equal, with the elements

themselves differing only by factors ±1 or ±i. When there is an exact CP -symmetry, then

each R-matrix satisfies the condition in eq. (2.16). This allows for a scheme of classification

according the phases ρν , ρN they correspond to. In this section we present a single example

of a matrix for each class:14 ρν = ±(−1,+1,+1)T , ρN = ±(+1,+1,−1)T and x1 = 90◦

and x3 = 90◦:

R ≈

 − i
2e
y3 cosx2

1
2e
y3 cosx2 sinx2

i
4e
y1+y3 (sinx2 + 1) −1

4e
y1+y3 (sinx2 + 1) 1

2e
y1 cosx2

1
4e
y1+y3 (sinx2 + 1) i

4e
y1+y3 (sinx2 + 1) − i

2e
y1 cosx2

 ,

in which the second form results from the neglect of terms involving factors e−y1 and e−y3 .

ρν = ±(+1,−1,+1)T , ρN = ±(+1,−1,+1)T and x1 = 0◦ and x3 = 0◦:

R ≈

 1
2e
y3 cosx2

i
2e
y3 cosx2 sinx2

− i
4e
y1+y3 (sinx2 + 1) 1

4e
y1+y3 (sinx2 + 1) i

2e
y1 cosx2

−1
4e
y1+y3 (sinx2 + 1) − i

4e
y1+y3 (sinx2 + 1) 1

2e
y1 cosx2

 ,

ρν = ±(+1,−1,+1)T , ρN = ±(+1,+1,−1)T and x1 = 90◦ and x3 = 0◦:

R ≈

 1
2e
y3 cosx2

i
2e
y3 cosx2 sinx2

−1
4e
y1+y3 (sinx2 + 1) − i

4e
y1+y3 (sinx2 + 1) 1

2e
y1 cosx2

i
4e
y1+y3 (sinx2 + 1) −1

4e
y1+y3 (sinx2 + 1) − i

2e
y1 cosx2

 ,

ρν = ±(−1,+1,+1)T , ρN = ±(+1,−1,+1)T and x1 = 90◦ and x3 = 0◦:

R ≈

 − i
2e
y3 cosx2

1
2e
y3 cosx2 sinx2

−1
4e
y1+y3 (sinx2 + 1) − i

4e
y1+y3 (sinx2 + 1) i

2e
y1 cosx2

i
4e
y1+y3 (sinx2 + 1) −1

4e
y1+y3 (sinx2 + 1) 1

2e
y1 cosx2

 .

14Here we neglect terms involving factors e−y1 or e−y3 such that, as given, these matrices are not strictly

orthogonal.
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Figure 18. The two-dimensional projections for intermediate scale leptogenesis with M1 = 3.16×
106 GeV and m1 = 0.05 eV with CP violation provided only by the phases of the PMNS matrix.

Solid lines correspond to 68% confidence level and dashed to 95% confidence level in agreement

with the observed value ηBCMB
. This plot was created using SuperPlot [88].

B Further results

In figure 18 we demonstrate the possibility of fine-tuned leptogenesis in the case of normal

ordering with M1 = 3.16 × 106 GeV and m1 = 0.05 eV. This is a variant of the case

considered in the main body for which the light neutrino masses are significantly reduced

below all present cosmological or current generation direct bounds. We note that lowering

the light neutrino masses in this way severely constrains the viable parameter space over

that in figure 8 such that δ ≈ 296◦, α21 ≈ 143◦ and α31 ≈ 14◦. Typical fine-tuning in the

viable regions is F ≈ 450.

In the cases of m1 = 0 and m1 = 10−3 eV with M1 = 108 GeV, M2 = 3M1 and

M3 = 3M2 we did not find a region in the relevant parameter space in which one could

have successful leptogenesis.

In figure 19 we present results for M1 = 109 GeV. We find that a fine-tuning of the

light neutrino masses F ≈ 14 at the best-fit points. In the normal ordered case, we find

that the observed baryon asymmetry may be obtained to within 1σ (2σ) with δ between

[0, 360]◦ ([0, 360]◦). While for inverted ordering, the 1σ (2σ) range is [25, 360]◦ ([0, 360]◦).

This is significantly higher than the case for which M1 = 1010 GeV where the fine-tuning is

considerably less at F ≈ 0.23. In the normal ordered case, we find that the observed baryon

asymmetry may be obtained to within 1σ (2σ) with δ between [95, 265]◦ ([52, 282]◦). For

inverted ordering, the 1σ (2σ) range is [60, 338]◦ ([8, 360]◦).

C Single flavour boltzmann equations from density matrix equations

In this appendix we find the conditions under which the density matrix equations

(eq. (2.49)) approximate to the single flavour Boltzmann equations. We begin by analysing

the criteria under which the single flavour Boltzmann equation

dnB−L
dz

= Tr ε(1)D1(nN1
− neq

N )−W1nB−L, (C.1)
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Figure 19. The two-dimensional projections for leptogenesis with M1 = 1.00× 109 GeV with CP

violation provided only by the phases of the PMNS matrix. The normal ordered case is coloured

blue/green and inverted ordering orange/red and contours correspond to 68% and 95% confidence

levels. This plot was created using SuperPlot [88].

emerges as an approximation from the density matrix equations, which, written in the (τ⊥,

τ)-basis are

dnN1

dz
= −D1

(
nN1
− neq

N1

)
dnτ⊥τ⊥

dz
= ε

(1)

τ⊥τ⊥
D1

(
nN1
− neq

N1

)
− 1

2
W1

(
2|C1τ⊥ |2nτ⊥τ⊥ + C∗1τC1τ⊥nττ⊥ + C1τC

∗
1τ⊥nτ⊥τ

)
dnττ
dz

= ε(1)
ττ D1

(
nN1
− neq

N1

)
− 1

2
W1

(
2|C1τ |2nττ + C∗1τC1τ⊥nττ⊥ + C1τC

∗
1τ⊥nτ⊥τ

)
dnτ⊥τ
dz

= ε
(1)

τ⊥τ
D1

(
nN1
− neq

N1

)
− 1

2
W1 (nτ⊥τ + C∗1τC1τ⊥ (nτ⊥τ⊥ + nττ ))− Im (Λτ )

Hz
nτ⊥τ .

(C.2)

As nB−L = nττ + nτ⊥τ⊥ , we find an equation for the evolution of nB−L by adding the

second and third equations together, obtaining

dnB−L
dz

= D1

(
nN1
− neq

N1

)
Tr ε(1) −W1

(
|C1τ |2nττ + |C1τ⊥ |2nτ⊥τ⊥ + 2<[C1τ⊥C

∗
1τnττ⊥ ]

)
.

(C.3)

If this were to reproduce the single flavour limit, then we should find that the coefficient

of W1:

|C1τ |2nττ + |C1τ⊥ |2nτ⊥τ⊥ + 2<[C1τ⊥C
∗
1τnττ⊥ ], (C.4)
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is equal to nB−L in the limit that Im(Λτ )/Hz is small. Recalling that |C1τ⊥ |2 + |C1τ |2 = 1,

then one should expect, that in the limit of small thermal widths,

2< [C1τ⊥C
∗
1τnττ⊥ ] = |C1τ⊥ |2nττ + |C1τ |2nτ⊥τ⊥ . (C.5)

In order to demonstrate this equality, first we show that the z-derivative of

2<[C1τ⊥C
∗
1τnττ⊥ ] equals the z-derivative of |C1τ⊥ |2nττ + |C1τ |2nτ⊥τ⊥ meaning that the

quantities themselves may differ only by a constant. Then we note that, since at z = z0

the quantities are equal, then they must be equal for all z.

By multiplication of the relevant equations in eq. (C.2), we obtain the z-evolution of

|C1τ⊥ |2nττ + |C1τ |2nτ⊥τ⊥ :

|C1τ⊥ |2
dnττ
dz

+ |C1τ |2
dnτ⊥τ⊥

dz
= (|C1τ⊥ |2ε(1)

ττ + |C1τ |2ε(1)

τ⊥τ⊥
)D1(nN1

− neq
N1

)

−W1(<[C1τ⊥C
∗
1τnττ⊥ ] + |C1τ⊥ |2|C1τ |2(nττ + nτ⊥τ⊥)).

(C.6)

By similar means we obtain the z-evolution of <[C1τ⊥C
∗
1τnττ⊥ ]:

<
[
C1τ⊥C

∗
1τ

dnττ⊥

dz

]
=<

[
C1τ⊥C

∗
1τ ε

(1)

ττ⊥

]
D1(nN1

− neq
N1

)

− 1

2
W1(< [C1τ⊥C

∗
1τnττ⊥ ] + |C1τ⊥ |2|C1τ |2(nττ + nτ⊥τ⊥))

−< [C1τ⊥C
∗
1τnττ⊥ ]

=(Λτ )

Hz
.

(C.7)

Neglecting =(Λτ )/Hz, as we expect this to be small in the single-flavour regime, then we

need only show that

2<
[
C1τ⊥C

∗
1τ ε

(1)

ττ⊥

]
= |C1τ⊥ |2ε(1)

ττ + |C1τ |2ε(1)

τ⊥τ⊥
, (C.8)

and then it is demonstrated that the coefficient of W1 in eq. (C.3) is approximately equal

to nB−L and thus the single flavour equations are recovered.

The relation of eq. (C.8) can be put into a more suggestive form if we use |C1τ⊥ |2 =

1− |C1τ |2 to re-express it thus

2<[C1τ⊥C
∗
1τ ε

(1)

ττ⊥
] + |C1τ⊥ |2ε(1)

1τ⊥
+ |C1τ |2ε(1)

1τ = ε(1)
ττ + ε

(1)

τ⊥τ⊥
. (C.9)

The right-hand side of this equation is merely the trace of the CP -asymmetry tensor

Tr ε(1) in the (τ⊥, τ)-basis. Thus, we suspect that the left-hand side is merely the trace

expressed in an unfamiliar basis. This can be confirmed to be the case by construction of

the unitary matrix

S =

(
C1τ −C∗1τ⊥
C1τ⊥ C∗1τ

)
, (C.10)

then, by explicit calculation it can be seen that the left-hand side is the result of summing

the diagonals (evaluating the trace in a particular basis) of

S†ε(1)S. (C.11)
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Thus, we may conclude that, if we set =(Λτ ) = 0, we are left with

2<
[
C1τ⊥C

∗
1τ

dnττ⊥

dz

]
= |C1τ⊥ |2

dnττ
dz

+ |C1τ |2
dnτ⊥τ⊥

dz
, (C.12)

and so
d

dz
(|C1τ |2nττ + |C1τ⊥ |2nτ⊥τ⊥ + 2<[C1τ⊥C

∗
1τnττ⊥ ]) =

dnB−L
dz

. (C.13)

Since nαβ = 0 at the initial z, then we may conclude that, if =(Λτ ) = 0, then

dnB−L
dz

= Tr ε(1)D(nN1
− neq

N1
)−W1nB−L, (C.14)

which is the single-flavour limit.

If we don’t set =(Λτ ) = 0, then we have

d

dz
(|C1τ |2nττ+|C1τ⊥ |2nτ⊥τ⊥+2<[C1τ⊥C

∗
1τnττ⊥ ]) =

dnB−L
dz

− 2<
[
C1τ⊥C

∗
1τ

=(Λτ )

Hz
nττ⊥

]
,

(C.15)

which suggests that we should write the integro-differential equation

dnB−L
dz

= Tr ε(1)D1(nN1
− neq

N1
)−W1nB−L + 2W1

∫ z

z0

dz′<
[
C1τ⊥C

∗
1τ

=(Λτ )

Hz′
nττ⊥(z′)

]
.

(C.16)

We define

λ(z) ≡ 2

∫ z

z0

dz′<
[
C1τ⊥C

∗
1τ

=(Λτ )

Hz′
nττ⊥(z′)

]
, (C.17)

for brevity, then using the integrating factor method, arrive at a solution

nB−L(zf ) = e−
∫ zf
z0

W1(z)dz

∫ zf

z0

e
∫ z′
z0
W1(z′′)dz′′

×
(

Tr ε(1)D1(z′)(nN1
(z′)− neq

N1
(z′)) +W1(z′)λ(z′)

)
dz′

=

∫ zf

z0

e−
∫ zf
z′ W (z′′)dz′′

(
Tr ε(1)D1(z′)(nN1

(z′)− neq
N1

(z′)) +W1(z′)λ(z′)
)
dz′.

For large M1, the thermal width is very small and so the term in λ is usually neglected in

comparison with the first.

D Robustness of the high-scale plateau

In the transition region, the approximation that left-handed τ leptons are produced and

destroyed at the same rate by flavour effects is somewhat inaccurate. In fact we should

consider a slightly more accurate version of the density matrix equations in which the

asymmetry density of right-handed τ leptons, nτR is computed. Then, the density matrix
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equations are

dnN1

dz
= −D1

(
nN1
− neq

N1

)
dnτ⊥τ⊥

dz
= ε

(1)

τ⊥τ⊥
D1

(
nN1
− neq

N1

)
− 1

2
W1

(
2|C1τ⊥ |2nτ⊥τ⊥ + C∗1τC1τ⊥nττ⊥ + C1τC

∗
1τ⊥nτ⊥τ

)
dnττ
dz

= ε(1)
ττ D1

(
nN1
− neq

N1

)
− 1

2
W1

(
2|C1τ |2nττ + C∗1τC1τ⊥nττ⊥ + C1τC

∗
1τ⊥nτ⊥τ

)
− 2
=(Λτ )

Hz
(nττ − 2nτR)

dnτ⊥τ
dz

= ετ⊥τD1

(
nN1
− neq

N1

)
− 1

2
W1 (nτ⊥τ + C∗1τC1τ⊥ (nτ⊥τ⊥ + nττ ))− Im (Λτ )

Hz
nτ⊥τ

dnτR
dz

= 2
=(Λτ )

Hz
(nττ − 2nτR).

(D.1)

The simpler set we previously considered result from the assumption that =(Λτ )/Hz is

large enough to enforce nττ = 2nτR . Clearly this is inaccurate for the situation under

consideration where M1 � 1012 GeV. We should now append to λ(z) an extra term

such that

λ(z)→ λ′(z) = 2

∫ z

z0

dz′
(
<
[
C1τ⊥C

∗
1τ

=(Λτ )

Hz′
nττ⊥(z′)

]
− 2
=(Λτ )

Hz′
(nττ (z′)− 2nτR(z′))

)
.

(D.2)

Now in this solution, there is a term in nττ=(Λτ )/Hz which scales approximately as xx−1 =

x0 and a term nτR=(Λτ )/Hz in which, it may be shown nτR ∝ x and thus λ′(z) exhibits

a approximate invariance under a scaling x as does λ(z).

It may be added that scattering effects can be incorporated by modifying the de-

cay function D1(z) → D′1(z) = D1(z) + S1(z) and the washout W1(z) → W ′1(z) =

j(z)W1(z) [11]. The new decay function D′1(z) which depends on a scattering part S1(z) is

still multiplied by zero in the Tr ε = 0 case and is thus unimportant. The new washout func-

tion is multiplied by j(z) which depends on M1 through log(M1/mH). Thus, the plateau

demonstrated in figure 14 picks up some unimportant logarithmic dependence on M1 in

addition to the small variation when scattering is neglected. In the numerical calculations

of section 5, the effects of scattering are included.
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