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Abstract: Switched-Mode Power Supplies (SMPSs) are a relevant source of conducted emissions,
in particular in the frequency interval of supraharmonics, between 2 kHz and 150 kHz. When using
sampled data for assessment of compliance, methods other than Fourier analysis should be considered
for better frequency resolution, compact signal energy decomposition and a shorter time support.
This work investigates the application of the Wavelet Packet Transform (WPT) and the Empirical
Mode Decomposition (EMD) to measured recordings of SMPS conducted emissions, featuring steep
impulses and damped oscillations. The comparison shows a general accuracy of the amplitude
estimate within the variability of data themselves, with very good performance of WPT in tracking
on stationary components in the low frequency range at some kHz. WPT performance however may
vary appreciably depending on the selected mother wavelet for which some examples are given.
EMD and its Ensemble EMD implementation show a fairly good accuracy in representing the original
signal with a very limited number of base functions with the capability of exploiting a filtering effect
on the low-frequency components of the signal.

Keywords: electromagnetic compatibility; conducted emissions; Discrete Wavelet Transform;
electromagnetic interference; Empirical Mode Decomposition; harmonics; Switched-Mode Power
Supplies; transients; Wavelet Packet Transform

1. Introduction

The widespread use of Switched-Mode Power Supplies (SMPSs) can be justified with flexibility,
portability and better efficiency, including superior voltage regulation at the dc load. SMPSs feature
various types of power electronic converters topologies, with conducted emissions that need to be
assessed over a wide frequency range [1]. Conducted emissions caused by the switching process,
in fact, originate from switching fundamentals of some tens of kHz and spread in the hundreds kHz
and MHz ranges, well above the “classical” interval of harmonic and interharmonic penetration studies,
limited in general to some kHz for 50–60 Hz systems. In the last ten years, attention has been extended
to frequency intervals below 150 kHz [2–9], in general not currently regulated by electromagnetic
compatibility (EMC) standards, focusing on the so-called “supraharmonics”. Some standards [10–14]
deal with the 2–150 kHz interval, but do not cover explicitly SMPSs and other similar switching
converters, thus taking into account the characteristics of the related signals. The approach of EMC
standards to the quantification of conducted emissions is quite similar above and below 150 kHz:
resolution bandwidth of 9 kHz and frequency sweep by a spectrum analyzer or EMI receiver is the
reference approach. However, the use of time-domain sampling is a valid alternative for the many data
acquisition boards and digital sampling oscilloscopes available, for the possibility of inspecting the
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“real” waveform when cross-checking the final results (especially in case of noncompliance) and the
possibility of changing and tuning the post-processing methods.

The most popular of these methods is the spectrum calculation by Fourier transform (a Discrete
Fourier Transform (DFT) or a Short-Time Fourier Transform (STFT), tracking Fourier spectrum versus
time): it is a well-known technique that can be mastered after some practice, but may in reality lead to
some disappointment, especially in the case of transient signals with a short time support [15], as it
briefly pointed out in Section 2. Alternative methods better suited to handle signals characterized by
transients may be considered: wavelets with the Wavelet Packet Transform (WPT) [16–22] and the
Empirical Mode Decomposition (EMD), in the Ensemble EMD (EEMD) implementation [23–26]
(to avoid the EMD shortcomings, as shown in Section 2). Although they have both been extensively
described in the literature and the former applied often to Power Quality analysis, the considered
problem is peculiar in two aspects:

• The investigated methods must provide accurate results in terms of amplitude of the signal
components that may be compared to existing or future emission limits, in order to assess
compliance and related margins. Several wavelet applications do not discuss the amplitude
accuracy in the presence of both narrowband and broadband components, as well as of significant
variability of the instantaneous frequency.

• They must support the analysis of the signal and of the control measures necessary in the case
of noncompliance, with clear relationship with the internal sources and switching mechanisms,
as well as also being easily interpretable, at least for the most relevant components critical for
compliance to limits.

Modern controllers for switching converters adopt smart modulation techniques to improve
efficiency, reduce voltage stress on components and reduce EMI. They are able to rapidly switch
between different modulation patterns, each optimized for a range of operations and possibly with
different spectral signatures: this opens the door to potential non-stationarity of the signal and the
need to adopt short time windows, unsuitable for a Fourier-based approach.

Traditional EMC techniques based on frequency sweep have fallen behind the technological
development in some sectors, such as power transfer and conversion [27], as well as in the presence of
significant transients as the first source of emissions [28]. They would benefit from time–frequency
analysis methods that are computationally attractive and preserve the accuracy necessary for the
assessment of compliance. The focus is on amplitude accuracy, with the frequency estimate used only
to locate suitable limit values and track component behavior. The definition of a reference case for
comparison is particularly challenging, as discussed in Section 3.

This work describes the setup and measurement methods in Section 2. Then, after a synthetic
description in Section 3 of the WPT and EMD transforms (with a comparison between EMD and
EEMD), results are compared and discussed in Section 4.

2. Measurement Setup and Signal Transformations

2.1. Measurement Setup

The signals considered in this work are the conducted emissions of SMPSs connected to the AC
mains through a Line Impedance Stabilization Network (LISN). The output of the LISN is fed to an 8-bit
DSO with a sampling rate of 10 MSa/s, to keep records to a manageable size for later post-processing.
Frequency domain sweeps can be carried out as well by means of an EMI receiver, to use as reference
in case of need. The scheme of the setup is shown in Figure 1.
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Figure 1. Scheme of the experimental setup: SMPS under test and its dc variable load,
LISN (Line Impedance Stabilization Network), 50 Ω impedance matching, high-pass filter (1 kHz cutoff)
and low-pass filter (2 MHz cutoff), Digital Storage Oscilloscope (DSO) and EMI Receiver.

An anti-aliasing low-pass filter with a cutoff frequency of 2 MHz is used to feed the DSO:
the resistor R2 is 5 kΩ and the capacitance C2 is the internal input capacitance of the DSO, equal to
15 pF with good accuracy. A high-pass filter with a cutoff frequency of 1 kHz is also included for
additional attenuation of the fundamental and the 100 Hz ripple component possibly leaking through
the LISN: the resistor R1 = 1.5 kΩ is large enough to be neglected in parallel to the impedance-matching
50 Ω resistor Rm, giving a neat 100 nF for C1 to get the desired 1 kHz cutoff.

The tested SMPSs are all AC/DC low-voltage switching converters with a 5 V or 12 V nominal
dc output and a power level in the range of some tens of W. This allowed the use of a 16 A LISN
and no major issues of heating and high-voltage hazards; it is not likewise a limiting factor, since it
is expected that smaller converters will show the most rapid switching transients. As a matter of
fact, the observed switching frequency values are in the range of some tens of kHz, in line with the
dynamics of controllers and MOS transistors available about ten years ago.

The switching byproducts responsible for the conducted emissions are superimposed to the mains
sinusoidal voltage, located at its zero crossings. The signal y1 at the DSO input (qualitatively similar to
the signal y0 as provided at the LISN output) is an intermittent waveform, deprived of the 50 Hz mains
voltage component and of its low-order harmonics, also to improve the dynamic range. The zero-mean
high-pass filtered signal is characterized by steep transients and rapid oscillations, as shown in Figure 2.
The instantaneous frequency of oscillations is in the order of 20–30 kHz and is in relation to the internal
switching frequency; the repetition rate is 100 Hz, twice the mains frequency.

Figure 2. Typical time-domain waveform of an SMPS at the high-pass filtered LISN output measured
as DSO input signal y1.
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2.2. Use of the Discrete Fourier Transform (DFT)

The Fourier-based analysis, for simplicity gathered under the abbreviation DFT, is assumed well
known and is not repeated. As seen, the signal is characterized by bursts with oscillations at low and
high frequency of limited duration. The use of DFT applied to this kind of intermittent rapidly varying
signals has the following drawbacks:

• The signal portion to analyze has a short duration, which contrasts to the desirable or required
frequency resolution. The IEC 61000-4-7 standard [29] indicates an observation time of 200 ms that
is clearly inadequate (equivalent to 5 Hz resolution, suitable for low frequency harmonics, but not
for phenomena at higher frequency with fast dynamics, as in the present case). The EN 55065-1 [14]
and in general EMC standards for conducted emissions below 150 kHz require a 200 Hz resolution
bandwidth. A more suitable approach has been proposed in the IEC 61000-4-30 [13], defining a
frequency resolution of 2 kHz, which goes in the direction of tracking signals with fast dynamics,
as in the present case.

• To avoid spectral leakage, the signal should be cut in the zero-valued short intervals between
pulses, implying a resolution frequency of about 100 Hz. Other window intervals will suffer from
spectral leakage, only partly attenuated by the use of tapering windows.

• Using a long window interval has the drawback of averaging the contribution of the contained
signal components, largely reducing the estimated amplitude of the peak located at the center.

• Using a short window interval reduces the frequency resolution and worsens the spectral
representation and the estimate of the amplitude, this time caused by the short-range spectral
leakage (or “picket fence effect”), if no additional post processing is used.

For all the reasons above and as justified in the Introduction, alternative signal transformations
should be investigated for applicability to the present case, providing spectral representations in a
domain (or combination of domains, e.g., time and frequency) that can still be interpreted and used to
evaluate the degree of compliance, as for conducted emissions in the aforesaid 2–150 kHz interval.
Wavelets have been extensively applied for accurate PQ analysis in the harmonic low-frequency
range [1,16,18–21], as effective alternative method for compliance to the IEC 61000-4-30 processing
requirement and for detection of transient PQ phenomena (e.g., voltage sags, overvoltages, etc.) [17],
the latter without the analysis of the accuracy of the parameters estimate. EMD and EEMD find their
application in the analysis of seismic data, vibrations, speech signals and medical data [23–25], but lack
a clear quantification of component amplitude to support comparison with limits and susceptibility
criteria, defined in the frequency domain. Rather their typical application is more oriented to the
detection and identification of signal features and components hidden by noise and signal compression.

2.3. Wavelet Packet Transform (WPT)

Oppositely to the DFT with its stationary sinusoidal kernel, wavelet analysis relies on
short-duration oscillating waveforms that have zero mean and decay rapidly to zero at both ends [16].
Dilation and shifting of kernel waveforms allow adapting it for variable time and frequency resolution.
Since its first inception, wavelets have been proposed in both wavelet function and multistage filter bank
implementations. The filter bank was built using low-pass (LP) and high-pass (HP) complementary
filters (for reference, they can be created as “quadrature mirror filters”) [16,18]. The first implementation
(Discrete Wavelet Transform (DWT)) applied recursively the LP and HP filters of the successive stage
only to the LP output of the previous stage, and so on. The Wavelet Packet Transform (WPT) uses then
a symmetrical structure, applying the decomposition to both LP and HP outputs, as shown in Figure 3,
which allows a linear, rather than logarithmic, apportionment of the frequency axis, and thus a linear
decomposition of the signal spectrum. This is inline with the 2 kHz group representation uniformly
spread over the frequency axis suggested by the EN 61000-4-30 [13]. At each stage, the outputs of the
LP and HP filters are named “approximation” and “detail”, respectively.
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Figure 3. WPT (Wavelet Packet Transform) tree structure, indicating levels, ordinal indices at each level
and terminal nodes. The down arrow “↓n” indicates a down sampling (or decimation) by a factor of n
(in our case, n = 2).

The output of the WPT decomposition is used for a compact spectrum estimate focused on the
determination of three elements: the amplitude of the component, its location on the frequency axis
and its location on the time axis (or duration). The STFT addresses this third point by assigning a
window length and the amount of overlap between successive windows sliding over the signal along
the time axis.

The WPT spectrum estimate is built on the “details” of the terminal nodes, which are in a number
N = 2L, where L is the number of chosen levels. Details are denoted as dp

l (k), where l indicates the
level (l = 0, 1, . . . L, level 0 being the original signal x), p is the position along the row of nodes in
the tree at the same level (p = 0, 1, . . . 2l) and k is a “time” index (the position along the sequence of
data samples). Each detail in fact apportions the original signal of length M over the N nodes at a
given level with data sequences of length M/N; the lower in the tree, the higher the level l and the
number of nodes (Nl = 2l), and the shorter the length of each sequence K = M/2l. Each data sequence
contained by a detail (for ease of understanding, we consider the last and deeper level, i.e., the terminal
nodes) is a sub-band representation of the original signal: the bandwidth, or frequency resolution,
∆ f is derived from the original sampling fs as ∆ f = fs/2L+1, and in general ∆ fl = fs/2l+1. In our case
with a downsampled version of the raw data using fs = 1 MSa/s and L = 9, we obtain ∆ f = 976 Hz,
which matches the selected RBW for the EMI receiver data used for comparison in Section 3.

To the aim of the quantitative assessment of the accuracy of WPT spectrum estimate, the amplitude
of the components of the spectral representation must be derived: the Matlab function wpspectrum( )
gives such time–frequency representation, where time and frequency resolutions ∆t and ∆ f are
determined by the selected number of levels L and the original sampling fs.
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The problem is to understand the unity of measure and the meaning of the spectrum values
(pixels, or tiles) in terms of the original quantities; in other words, WPT spectrum extraction needs to
be “calibrated” in order to be used as an EMI assessment tool.

Given the details as sub-banded data sequences, the calculation of the total rms value gives
straightforwardly a measure of the power contained in each sub-band p (the notation l = L in (1) indicates
that the expression is general for whatever l, but we select in the following l = L, so that the terminal
nodes give the desired frequency resolution).

x̃p,l=L =

√√√√∑
k
(dp

l=L(k))
2

Nl=L
(1)

Of course, rms values from adjacent sub-sequences may be aggregated with a concept of overall
rms in a wider band, made of the composition of each respective ∆ f p

l (the sub-band of order p at the
level l). Being rms values interpreted in a power perspective, such aggregation is performed by rms
summation over the sub-sequences dp

L(k) with p in the selected α set (written as pα).

x̃[pα],L =

√√√√∑
α

∑
k
(dpα

L (k))
2

NL
(2)

To exemplify, to make an approximately 2 kHz representation from the ∆ f = 976 Hz representation,
two adjacent sub-bands must be aggregated, discarding the first one that contains the dc component.
Thus, the p indices would start from 1 and go in pairs: (2,3), (4,5), (6,7), etc. A bandwidth of
approximately 3 kHz is obtained by grouping with a ratio of 3, so (2,3,4), (5,6,7), etc.

2.4. Empirical Mode Decomposition (EMD) and Ensemble Empirical Mode Decomposition (EEMD)

The Empirical Mode Decomposition (EMD) was proposed for attractive characteristics:
the transformation is based on simple operations (and should be relatively light computationally),
its results can be clearly interpreted and it is robust, thus there are no wide or uncontrolled variations
of the results for small changes of the parameters.

The EMD was developed to prepare the data to which the Hilbert Transform (HT) could be
applied; the combination of EMD and HT is the Hilbert-Huang Transform (HHT), which provides a
powerful tool for nonlinear and nonstationary signal processing. The signal is decomposed adaptively
into a finite (often small) number of the so-called Intrinsic Mode Functions (IMFs), not known a priori
(differently than in the Fourier or Wavelet analysis), which represent the oscillation modes embedded
in the data. With the HT, the IMFs yield instantaneous frequencies as functions of time. Each IMF
satisfies the following two conditions:

• In the whole dataset, the number of extrema and the number of zero crossings is either equal or
differ at least by one.

• At any point, the mean value of the envelope defined by local maxima and local minima is zero.

The iterative process of extraction of the IMFs through the EMD method is called the sifting
process. The first IMF contains the highest oscillation frequency in the signal. The difference between
the original signal and the first IMF is called a residue. The residue is then considered as new data to
decompose and the sifting process is applied to it; the same definition thus applies to the difference
between the previous residue and the last IMF at later stages. The sifting process must be repeated
until the extracted signal (the candidate IMF) satisfies the IMF definition or the predefined maximum
number of iterations is exceeded. The number of extrema decreases as the decomposition proceeds,
and the sifting process ends when the residue becomes a monotonic function or a function with only
one extremum from which no further IMF can be extracted [23] (in other words, no oscillations are
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contained in the residue). At the end of the decomposition, we have N IMF functions and one residue,
and the original signal x(t) can be reconstructed as

x(t) =
N∑

i=1

ci(t) + r(t) (3)

where c1 and cN are the highest and lowest frequency IMFs, respectively, and r(t) is the residue.
Besides the harmonic content, IMFs are characterized by different amplitudes. The original signal
may then be fairly approximated by using only a limited set of the IMFs, i.e., those with the largest
amplitudes only.

The major drawback of the EMD method is mode mixing, for which the EEMD method was
introduced [26]. Mode mixing means that different modes of oscillations coexist in the same IMF.
EEMD (Ensemble EMD) consists in adding white noise to the original signal. This procedure is run for
a number of times, thus an ensemble of datasets with different added white noise is generated. The new
obtained data are then decomposed into IMFs with the sifting procedure. Being the added noise
different in each run, the IMFs of the various runs are uncorrelated. Averaging the IMFs eliminates the
added noise and yields then the final result. The truth IMF, cj(t), defined by EEMD is then obtained for
an ensemble number approaching infinity:

c j(t) = lim
N→∞

N∑
k=1

c jk(t) (4)

where
c jk(t) = c j(t) + r jk(t) (5)

is the kth trial of the jth IMF in the noise added signal, being rjk(t) the contribution from the added
white noise of the kth trial to the jth IMF. To minimize the difference between the truth IMF cj(t) and the
IMF cj(t) obtained with N trials, N must be large, as for the well-known statistical rule the difference
between the truth and the result of the ensemble for a finite number of elements of the ensemble
decreases as 1/

√
N.

EEMD represents a major improvement to EMD as it eliminates mode mixing; however, the major
drawback is that the result of EEMD does not strictly satisfy the definition of IMF, as the sum of IMFs
is not necessarily an IMF. A possible solution to this problem is to apply EMD to the IMFs produced
by EEMD.

3. Results

3.1. Introduction and Reference Case

Regarding the accuracy of the estimated amplitude, it is difficult to establish a reference case
for this kind of signals. In other words, what is the real amplitude of the spectrum components of
the signal?

The STFT gives a first indication, although the amplitude is highly variable, as a function of the
frequency resolution, its implicit averaging and the amount of spectral leakage depending on the
characteristics of the adopted tapering window.

It may be objected that an EMI receiver scan returns the reference spectrum, since after all it is the
reference method adopted by EMC standards, against which we check the compliance of emissions.
The “EMC” resolution bandwidth (RBW) values of 200 Hz and 9 kHz used, respectively, below and
above 150 kHz have been considered as a starting point, assessing the variability of the measured
spectrum by changing RBW from 200 Hz to 1 kHz, 2 kHz, 3 kHz and 5 kHz, looking for a compromise
between a neat frequency resolution and an accurate amplitude estimate. The results are reported in
Figure 4 showing a progressive increase of the noise floor (as expected), a substantially stable amplitude
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of the switching peaks at 43.3 kHz and 87 kHz and above, and a variable estimated amplitude for
the low-frequency nonstationary components (with a behavior similar to that of background noise).
The result with 1 kHz RBW is retained for further analysis as a good compromise, also in view of the
necessary time resolution settings in STFT and WPT.

Figure 4. EMI receiver spectra with variable RBW (200 Hz, black; 1 kHz, blue; 2 kHz, light blue; 3 kHz,
magenta; 5 kHz, red) for a SMPS featuring fixed switching frequency (type Black at 90% of rated power).

A slower narrow-RBW scan should be used instead (e.g., with RBW = 10 Hz or 30 Hz): the dynamic
range will be maximized and, using the “max hold” setting at each frequency bin (or step), it is ensured
that the repeatability of the measurement is also maximized. However, such setting is quite far from
those used for measurement of emissions and the necessary scan time is extremely long (about 8 h),
yielding issues of long-term stability of the setup.

3.2. Performance of WPT

3.2.1. Basic Time and Frequency Resolution Performance of WPT

The time resolution of both WPT spectra in Figure 5b,c is superior to that of STFT tracking the
signal with 500 µs and 125 µs steps, respectively; considering the visible signal dynamics and what is
offered by alternative approaches (such as a narrowband DFT or a real-time spectrum analyzer), a time
step in this range is more than adequate. Correspondingly, the frequency resolution also varies by a
factor of 4 in the opposite direction: when using 976 Hz in Figure 5b, the low-frequency portion of the
spectrum is enriched with the details between the second and the sixth bin, which hold alternatively
the maximum of the spectrum around t = 5 ms; this is evident from the asymmetry of the half-cycles
of the oscillatory spike in the center of the waveform of Figure 5a. The comparison of the estimated
amplitudes for the two spectra with different frequency and time resolution indicates that a finer time
resolution gives slightly larger amplitudes (Figure 5c), avoiding the averaging implicit in a larger
time interval. This behavior is common with the DFT and is hardly predictable quantitatively, as it
depends on the characteristics of the signal components (narrowband/broadband and steady/transient).
The average of four adjacent time bins in Figure 5c gives approximately the value of one bin of
Figure 5b (within 1 dB). Nonetheless, the maximum value can differ by up to 3.4 dB, as occurring
in the first frequency bin at 5 ms; this represents then the maximum absolute error between the two
spectral representations.
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Figure 5. WPT spectrum in dBµV/Hz (normalized by frequency resolution). An example of change of
dilation in time and frequency by a factor of 4 with symlet1 wavelet: (a) signal waveform (10 MSa/s);
(b) symlet1 with L = 9 levels and a downsampling of q = 10; and (c) symlet1 with L = 8 levels and q = 5.
SMPS type Black at 25% of rated power.
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The case of two different wavelets is shown in Figure 6, applied to the signal using the same
scaling: the amplitude estimates are quite similar, with the bior1.3 in Figure 6b, showing slightly
smoother amplitude profile than the symlet1. Quantitatively, the average difference for the bins with the
largest amplitude (those in Figure 6 with amplitude above 50 dB) is only 1.3 dB; the peaks, which are
the most relevant for compliance to limits, are reproduced quite reliably with almost identical values
(average difference of less than 0.25 dB). Thus, at least for the considered case, the choice of wavelets
with “similar” characteristics and of suitable order for the observed time support gives repeatable
results, although it represents a source of systematic error and the contribution to the uncertainty of
the estimate of spectrum amplitude is not negligible (0.25 dB on average for the considered case).

Figure 6. (a) Zoom on the frequency axis of Figure 5b for the frequency resolution of 976 Hz, where the
change of the instantaneous frequency between 4 and 6 ms is well visible; and (b) additional spectrum
obtained by replacing symlet1 with bior1.3.

The compactness in time and frequency was evaluated considering two wavelets extensively
used for PQ studies, the db15 (equivalent to the db20) and the sym8. The results shown in Figure 7
(for the SMPS type Black at 90% of the rated power) reveal that sym8 has some spectral leakage at the
occurrence of the two peaks of the signal, at 1 ms and 4.5 ms; db15 instead shows a limited increase of
some scattered components without any visible burst of spectral leakage. Regarding the low frequency
components, db15 also shows a more coherent behavior where the second frequency bin keeps the lead



Electronics 2020, 9, 2088 11 of 21

for 2 ms giving yield then to fourth bin, with a return around 4 ms. Behavior of sym8 instead is more
chaotic with no definite bin prevailing for at least some ms.

Figure 7. Comparison of two different wavelets in relation to localization on the time axis and spread to
adjacent frequency bins; frequency resolution ∆f = 976 Hz, number of levels L = 9: (a) db15; and (b) sym8.
SMPS type Black at 90% of rated power.

As observed for the EEMD in Section 3.3, the best amplitude accuracy is reached for the faster
components (those at about 44 and 88 kHz) that have better localization in both time and frequency:
in this case, agreement for different frequency and time resolutions is within 0.6 dB for the results
shown in Figure 5 (confirmed by some other tests done on different SMPSs). For nonstationary
low-frequency components, the reference measurements themselves for assessment of accuracy are
deemed by variability and uncertainty caused by the very nature of the signals.

3.2.2. Amplitude Accuracy and Spectrum Representation of WPT

The WPT behavior for the SMPS with constant switching frequency (named “Black” SMPS in the
following) is analyzed showing the elements that concur to determine the amplitude accuracy.

As introduced in Section 2.3, the WPT spectra built with wpspectrum( ) is artificially adjusted
so that the local intensity of each tile can be evaluated standalone. The adjustment consists in the
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multiplication by the square root of the number a of tiles in the time direction (a = 20 in the present case)
that is re-absorbed when aggregating in the rms sense all such tiles for each frequency bin to recover its
rms, which for single tone calibration signals corresponds to the rms amplitude of the test signal itself.

The results of a comparison with STFT with 1 kHz frequency resolution and calculated using the
Flat Top window are shown in Figure 8.

Figure 8. Black SMPS tested at 90% of rated power: (a) WPT spectrum obtained with db15, L = 9,
∆f = 976 Hz; and (b) STFT spectrum with ∆f = 1 kHz and time step ∆t = 1 ms.

The two areas encircled by the pink rectangles are those of the 44 kHz and 88 kHz components,
for which the WPT provides a thorough tracking (see Figure 8a), better than that appearing in the STFT
spectrum (Figure 8b). The comparison between WPT spectrum and STFT shown in Figure 8 reveals that:

• WPT frequency resolution is superior, in terms of spectrum details and reduced leakage,
which instead affect the STFT results (see, for instance, the central portion of the spectrum
between 4 ms and 6 ms and the dynamic range of more than 30 dB for the background components
(blue to light blue color)).

• The time resolution is also superior with the ability of tracking more closely signal dynamics.
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• Regarding amplitude accuracy, we must distinguish between: (i) For narrowband switching
components visible at 44 kHz and 88 kHz, there is a general agreement among WPT, STFT and
the EMI receiver scan in frequency domain. We must observe that the receiver scan was made
for a time interval much longer than the one covered by WPT and STFT, so that using max hold
slightly larger values may be expected. (ii) The low frequency components are a byproduct of
the switching pulses and evidently the instantaneous frequency is slightly variable, as result of
non-linearity during oscillations. WPT confirms good tracking of such components and averaged
values over adjacent bins are quite stable with respect to different frequency resolutions ∆f.

Table 1 reports the results of the assessment of the amplitude accuracy for the three most prominent
frequency bins shown in the first column. Reported values are the maxima, in line with the use of Flat
Top for the STFT and max hold for the EMI receiver.

Table 1. Comparison of amplitudes of main spectrum components calculated with WPT and STFT and
measured with EMI receiver (using the 1 kHz RBW results in Figure 4).

Frequency (kHz) EMI Rec. (dBµV) WPT (dBµV) STFT (dBµV)

2–5 93.0 93.75–105.5 (1) 82.73–106.7 (1)

44 70.5 68.07, 71.51 (2) 69.04
88 57.5 60.60 (3) 53.27

(1) Range of maxima in the 2–4 kHz bins over 10 ms for 90% of bins; implicit averaging in this case is extremely
important and WPT has the best resolution and the least averaging. (2) Five bins between 60.64 dBµV and 65.87 dBµV;
with rms summation of adjacent bins carried out to cope with the 1 ms time resolution of the STFT, the results are
71.51 dBµV and 68.07 dBµV centered at 2.5 ms and 6.5 ms. (3) Two bins with 55.27 dBµV and 53.83 dBµV; with rms
summation of adjacent bins carried out to cope with the 1 ms time resolution of the STFT, the result is 60.60 dBµV
centered at 2.5 ms.

3.3. EMD and EEMD Performance

The EMD and EEMD were used in the R interface implementation Rlibeemd [30,31]. The measured
voltage is analyzed first using EMD. As the boundaries of the signal may affect the decomposition of
EMD-based algorithms [32], to avoid boundary problems, particular care was taken in the choice of
an appropriate time record of 10 ms. Figure 9 shows the 12 IMFs extracted from the original signal.
As demonstrated in [33], the EMD performs as a filter-bank sifting out the high-frequency harmonics
first, whereas the low-frequency ones pass through the filter. IMFs 2 and 3 contain the information
needed to represent the significant part of the frequency spectrum, i.e., the three peaks corresponding
to the switching frequency (about 44 kHz) of the SMPS and its second and third harmonics. IMF 2
contains the information related to the second and third harmonics of the fundamental frequency,
whereas IMF 3 contains the information of the switching frequency. Performing a FFT on the sum
of these two IMFs yields the red spectrum in Figure 10, whereas the blue spectrum is the FFT of the
original signal. A Flat Top window is applied to the original signal and IMFs in order to maximize the
amplitude estimate [15].

As shown in Figure 10, the three peaks are predicted with good accuracy, although there is a
difference of about 1 dB with the FFT of the original signal for the peak at the fundamental frequency.
Considering these two IMFs 2 and 3 only has the effect of filtering the low-frequency content of the
measured voltage, which is collected in IMFs 4–13. IMFs 4 and 5 contain the information related to the
100 Hz ripple components (whose period corresponds to 10 ms, as shown in Figure 2). These IMFs are
those with the largest amplitude and represent the low-frequency part of the signal in the frequency
domain. IMFs 2–5 thus contain sufficient information to represent the signal, as shown in Figure 11.
As can be seen, this spectrum slightly differs from the spectrum of the original signal up to 150 kHz.
The fundamental, second and third harmonics are predicted with good accuracy with respect to the
FFT of the original signal. Some information on the fundamental frequency may then be contained
in IMFs 4 and 5 due to mode mixing, as mentioned in Section 2.4. Of course, the upper part of the
frequency range is not predicted accurately, as the lowest order IMF (that containing the information on
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higher frequencies) has not been considered. Nevertheless, the supraharmonics spectrum 2–150 kHz is
well represented with just four IMFs obtained with EMD.

Figure 9. IMFs extracted with the EMD procedure.

Figure 10. Comparison of the FFT spectra obtained from IMFs 2 and 3 extracted with EMD (red) and from
the original signal (blue).

The application of the EEMD yields the same number of IMFs as EMD, 12, as shown in Figure 12.
The information related to the 100 Hz ripple components is contained in IMFs 5–9, being IMFs 6
and 7 those with the largest amplitude. To represent the signal in the frequency domain, only IMFs
2–7 are needed. The high-frequency information of the signal is now distributed over three IMFs
(IMFs 2–4), as shown in Figure 13. The accuracy with which the first two peaks are determined is very
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good; however, although the amplitude of the third harmonic of the fundamental is predicted quite
accurately, the noise floor beyond 100 kHz raises making it less clearly visible than in the case of the
EMD. The filtering effect on the low-frequency components of the spectrum is still evident. By adding
IMFs 5–7 and performing the FFT on the sum of these six IMFs, the red spectrum of Figure 14 is
obtained, which is in fairly good agreement with that of the original signal.

By means of the application of FFT to the relevant modal components obtained with EMD, it is
shown that the frequency extraction ability of the EMD is consistent and strong [34].

The results of comparison with STFT with 1 kHz frequency resolution, a 1 ms time step and
a Flat Top window are shown in Figures 15 and 16. The former figure refers to the application of
STFT to the signal obtained composing IMFs 2 and 3 extracted with EMD; the latter to the application
of STFT to the signal obtained composing IMFs 2–4 extracted with EEMD. The amplitudes are the
maximum values obtained by the successive FFTs that compose the STFT, as it would be with a
spectrum analyzer set to max hold. It can be noticed that the amplitudes of the first peak (at 44 kHz,
with 68.27 dBµV and 69.97 dBµV, respectively) and of the second peak (at 88 kHz, with 57.59 dBµV
and 58.51 dBµV, respectively) are in agreement with those shown in Table 1 for WPT and EMI receiver
data, thus confirming the suitability of the approach in the analysis of EMI.

Figure 11. Comparison of the FFT spectra obtained from IMFs 2–5 extracted with EMD (red) and from
the original signal (blue).
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Figure 12. IMFs extracted with the EEMD procedure.

Figure 13. Comparison of the FFT spectra obtained from IMFs 2–4 extracted with EEMD (red) and from
the original signal (blue).
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Figure 14. Comparison of the FFT spectra obtained from IMFs 2–7 extracted with EEMD (red) and
from the original signal (blue).

Figure 15. STFT spectrum with ∆f = 1 kHz and time step ∆t = 1 ms of the signal resulting from the
composition of IMFs 2 and 3 extracted with EMD.
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Figure 16. STFT spectrum with ∆f = 1 kHz and time step ∆t = 1 ms of the signal resulting from the
composition of IMFs 2 to 4 extracted with EEMD.

4. Conclusions

The problem of the assessment of conducted emissions of Switched Mode Power Supplies
(SMPSs) using time-domain sampled data is considered. Emissions measured with a Digital Sampling
Oscilloscope using a Line Impedance Stabilization Network are characterized by fast switching pulses
and damped oscillations, posing a problem for reconciling amplitude accuracy, suitable frequency
resolution and fast time response to track signal dynamics.

Suitable processing techniques are discussed, contrasted to the most popular approach of using
Discrete Fourier Transform analysis. The DFT drawbacks are pointed out in Section 2, in relation to
the unfavorable time support and frequency resolution, as well as to the known issues of amplitude
accuracy and spectral leakage. Two techniques (Wavelet Packet Transform (WPT) and Empirical
Mode Decomposition (EMD)) based on different principles are then evaluated, with the objective of an
adequate and accurate handling of signal characteristics, as reflected in its spectral components and
their amplitude, for the assessment of SMPS conducted emissions.

WPT and EMD are compared for complexity, ease of implementation and, most of all, usability of
the output and suitability to identify and represent the relevant spectral components. The objective
is that of an accurate amplitude estimate and assessment of hypothetical compliance to limits of
emissions. The output representation of the WPT is more effective, in that the data are represented
as one might expect for not only comparison with limits, but also analysis of short-term disturbance
(e.g., for victim circuits characterized by some transient susceptibility) and in general tracking and
troubleshooting of byproducts along the evolution of the signal.

WPT shows a general consistency and robustness with respect to the change of the number of
levels L and downsampling q (applied to the original 10 MSa/s sample rate). Similarly, the change
of mother wavelet is verified, passing in one case from the symlet (linear phase and asymmetric)
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to the biorthogonal (linear phase and symmetric), using for each the minimum order, and in a second
case using db15 ad sym8, observing a larger spectrum leakage for the latter. The sensitivity analysis
indicates a variability of less than 1 dB when comparing values averaged with the adjacent time and
frequency bins; maximum observed difference for the peak values is 3.6 dB for the broad 2.2 kHz
component that suffers the largest variability.

The application of EMD and EEMD algorithms yields a limited number of IMFs that are sufficient to
represent the original signal fairly accurately (four and six, respectively). Moreover, the representation
can be made even more compact by exploiting the filtering effect of the IMFs on the low-frequency
components of the signal, thus reducing the number of IMFs necessary to represent the most significant
part of the spectrum to two and three, respectively. EMD represents the spectrum for frequencies larger
than 100 kHz better than EEMD, which seems to produce a higher noise floor.

Future work will be focused on the identification of quantitative indices of performance and a
framework to evaluate systematically the performances of the various implementations, especially for
the WPT, where the number of mother wavelets and filter implementations is almost uncountable.
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