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PRECONDITIONING OF ACTIVE-SET NEWTON METHODS FOR
PDE-CONSTRAINED OPTIMAL CONTROL PROBLEMS∗

MARGHERITA PORCELLI† , VALERIA SIMONCINI† , AND MATTIA TANI†

Abstract. We address the problem of preconditioning a sequence of saddle point linear systems
arising in the solution of PDE-constrained optimal control problems via active-set Newton methods,
with control and (regularized) state constraints. We present two new preconditioners based on a full
block matrix factorization of the Schur complement of the Jacobian matrices, where the active-set
blocks are merged into the constraint blocks. We discuss the robustness of the new preconditioners
with respect to the parameters of the continuous and discrete problems. Numerical experiments on
3D problems are presented, including comparisons with existing approaches based on preconditioned
conjugate gradients in a nonstandard inner product.

Key words. optimal control problems, Newton’s method, active-set, saddle point matrices.

AMS subject classifications. 65F50, 15A09, 65K05.

1. The problem. In this work we consider the family of PDE-constrained op-
timization problems of the form

min
y,u

1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω)

s.t.

 −∆y − β · ∇y = u in Ω
y = ȳ on ∂Ω
a ≤ αuu + αyy ≤ b a.e. in Ω,

(1.1)

where ν ∈ R+ is a regularization parameter, yd is a given function representing the
desired state, and Ω is a domain in Rd with d = 2, 3. The state y and the control u are
linked via an elliptic convection-diffusion equation with convection direction β ∈ Rd.
Dirichlet boundary conditions are assumed. Moreover, we assume the presence of box
constraints of the form a ≤ αuu + αyy ≤ b a.e. in Ω, where we assume a(x) < b(x)
a.e. in Ω and αu, αy nonnegative scalars such that max{αy, αu} > 0. By varying
the parameters αu, αy, we obtain optimal control problems with different inequality
constraints. In particular, we will consider three specific choices which yield well
studied problems. The first is (αu, αy) = (1, 0), that is

a ≤ u ≤ b a.e. in Ω, (1.2)

which is refereed to as the optimal control problem with Control Constraints (CC).
The second one is (αu, αy) = (ε, 1) yielding an optimal control problem with Mixed
Constraints (MC) of the form

a ≤ εu + y ≤ b a.e. in Ω. (1.3)

The third choice is (αu, αy) = (0, 1) yielding optimal control problems with State
Constraints (SC)

a ≤ y ≤ b a.e. in Ω. (1.4)
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Mixed Constraints (1.3) are commonly employed as a form of regularization of the
state-constrained problem, where ε > 0 represents the regularization parameter [20].
Indeed, pure state constrained problems are more complicated than control con-
strained ones, as in general the Lagrange multiplier associated with state constraints
is only a measure, and therefore regularized versions with better regularity properties
are needed to justify the employed solution methods in function space. Examples
of typical employed regularizations are the one applied to the state constraints as in
(1.3) (see, e.g., [5]) and the one that employs the Moreau-Yosida penalty function
[16, 23]. We refer to [20] for a discussion of this point, and for the use of primal-dual
active set strategies to deal with the regularized problem. In the following we shall
see the purely state-constrained problem as the limit case of the mixed-constrained
one. As such, it may provide helpful information as a computational reference for the
mixed-constrained problem when ε is very small.

We follow a discretize-then-optimize approach for the solution of problem (1.1) as
we first transform the original continuous problem into a standard Quadratic Program-
ming (QP) problem by a finite difference or finite element discretization, and then
we numerically solve the first-order conditions of the fully discretized optimization
problem. Issues related to the commutativity between the discretize-then-optimize
and the optimize-then-discretize approach for convection diffusion control equations
have been addressed in [25].

Due to the presence of inequality constraints in the problem formulation, the
optimality system is nonlinear. Moreover, its dimension will be very large as soon as
the desired accuracy requires a fine discretization of the partial differential equation;
the Lagrange multiplier approach also yields a structured (block) nonlinear equation,
thus further expanding the discrete problem size. We therefore apply a Newton-type
approach for the nonlinear equation solution, and we use a Krylov subspace method
to solve the arising sequence of large and sparse saddle point linear systems. It is
well-known that a computationally effective solution of the linear algebra phase is
crucial for the practical implementation of the Newton-Krylov method [7] and it is
widely recognized that preconditioning is a critical ingredient of the iterative solver.

Existing preconditioners for constrained optimal control problems have been tai-
lored for specific elements of the family (1.1) and are generally suitable for problems
where the operator characterizing the PDE is self-adjoint. Moreover, implementations
based on the preconditioned conjugate gradient method in a nonstandard inner prod-
uct have often been preferred, in spite of possible strong limitations [14, 23, 34]. The
works [23, 34] are for CC problems governed by symmetric PDEs, while [14] considers
problems with constraints (1.2)-(1.4) but mostly focuses on β = 0. In particular,
the problematic numerical behavior of the preconditioners proposed in [14] for β 6= 0
motivated this work.

In this paper, we present two new preconditioners aimed at enhancing the so-
lution of the linear algebra phase arising from the discretization of the family of
optimal control problems involving state and/or control constraints of the form (1.1).
We consider an indefinite preconditioner and a symmetric and positive definite block
diagonal preconditioner. Both strategies rely on a general factorized approximation
of the Schur complement, and embed newly formed information of the nonlinear it-
eration, so that they dynamically change as the nonlinear iteration proceeds. The
proposed preconditioners are very versatile, as they allow to handle mixed constraints
as well as the corresponding limit cases, that is control and state constraints. In par-
ticular, we derive optimality and robustness theoretical properties for the spectrum
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of the preconditioned matrices, which hold for a relevant class of problem parameters;
numerical experiments support this optimality also in terms of CPU time. A broad
range of numerical experiments on three test problems is reported, for a large selection
of the four problem parameters (ν, β, ε and the spatial mesh size h), indicating only
a mild sensitivity of the preconditioner with respect to these values, especially when
compared with existing approaches (for the parameters for which these latter strate-
gies are defined). In addition, in most cases the indefinite preconditioner outperforms
by at least 50% the block diagonal preconditioner, for the same Schur complement
approximation.

The outline of the paper is as follows. Sections 2.1 and 2.2 describe the discrete
problem and its formal numerical solution by an active-set Newton method. Section 3
reviews the preconditioning strategies that have been devised to solve (1.1) for some
choices of the selected parameters. In Section 4 a new general approximation to the
Schur complement is introduced and theoretically analyzed, while its impact on the
new global preconditioners is investigated in Section 5. Section 6 is devoted to a wide
range of numerical results. In particular, in Section 6.1 we discuss some algorithmic
details, while in Section 6.2 we report on our numerical experiments on three model
problems. Section 7 summarizes our conclusions.

The following notation will be used throughout the paper. For a given square
matrix A, spec(A) denotes the set of its eigenvalues. The Euclidean norm for vectors
and the induced norm for matrices is used; xT denotes the transpose of the vector x.

2. Description of the problem.

2.1. The discrete optimization problem. Let M represent the lumped mass
matrices in an appropriate finite element space, and L be the discretization of the
differential operator L(y) = −∆y + β · ∇y; in particular, L is a nonsymmetric matrix
of the form L = K+C, where K is the symmetric and positive definite discretization of
the (negative) Laplacian operator and C is the “convection” matrix. In the following
we shall assume that L+LT � 0 1 Moreover, let nh be the dimension of the discretized
space depending on the mesh size h and let y, u, a, b ∈ Rnh be the coefficients of
y,u, a,b in the chosen finite element space basis. Then, the discretization of problem
(1.1) is given by the following QP problem

min
y,u

Q(u, y) =
1

2
(y − yd)TM(y − yd) +

ν

2
uTMu

s.t.

{
Ly = Mu− d
a ≤ αuu+ αyy ≤ b

(2.1)

where d represents the boundary data. The Lagrangian function for problem (2.1) is
given by

L(u, y, p, µ) = Q(u, y) + (Ly−Mu+d)T p+ (αuu+αyy− b)Tµb+ (αuu+αyy−a)Tµa

where p is the Lagrange multiplier associated with the linear equality constraint and
µa, µb are the Lagrange multipliers associated with the lower and upper bound con-

1This requirement is satisfied when, for instance, upwind finite differences over a regular grid, or
upwind-type finite elements are used, with Dirichlet boundary conditions; see, e.g., [11, Chapter 3],
[13].
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straints. The corresponding Karush-Kuhn-Tucker conditions are

∇yL = M(y − yd) + LT p+ αy(µb + µa) = 0
∇uL = νMu−Mp+ αu(µb + µa) = 0
Ly −Mu+ d = 0
µb ≥ 0, αuu+ αyy ≤ b, µTb (αuu+ αyy − b) = 0
µa ≤ 0, a ≤ αuu+ αyy, µTa (a− αuu− αyy) = 0

(2.2)

Setting µ = (µb + µa), the complementarity conditions in (2.2) can be equivalently
stated as the following nonlinear system

C(u, y, µ) = 0

with C the following complementary function

C(u, y, µ) = µ−max{0, µ+ c(αuu+αyy− b)}−min{0, µ+ c(αuu+αyy− a)}, (2.3)

with c > 0. Therefore, the KKT system (2.2) can be reformulated as the following
nonlinear system

F (y, u, p, µ) =


M(y − yd) + LT p+ αyµ
νMu−Mp+ αuµ
Ly −Mu+ d
C(u, y, µ)

 = 0 (2.4)

with F : R4nh → R4nh , y, u, p, µ ∈ Rnh .

2.2. The active-set Newton method. In the following we recall a possible
derivation of an active-set Newton type method for the solution of the KKT nonlinear
system (2.4) following the description made in [15] where nonsmooth analysis was
used.

Let us define the sets of active and inactive indices at the (discrete) optimal
solution (u∗, y∗)

A∗ = Ab∗ ∪ Aa∗ and I∗ = {1, . . . , nh} \ A∗, (2.5)

where Ab∗,Aa∗ are the set

Ab∗ = {i | µ∗i + c(αuu
∗
i + αyy

∗
i − bi) > 0}, Aa∗ = {i | µ∗i + c(αuu

∗
i + αyy

∗
i − ai) < 0}.

The nonlinearity and nonsmoothness of the function F in (2.4) are clearly gathered
in the last block containing the complementarity function C(u, y, µ) defined in (2.3).
Hintermüller et al. showed in [15] that the functions v → min{0, v} and v → max{0, v}
from Rn → Rn are slantly differentiable with slanting functions given by the diagonal
matrices Gmin(v) and Gmax(v) with diagonal elements

Gmin(v)ii =

{
1 if vi < 0
0 else

, Gmax(v)ii =

{
1 if vi > 0
0 else

The choice of Gmin and Gmax suggests to use the following element F ′(y∗, u∗, p∗, µ∗) ∈
R4nh×4nh of the generalized Jacobian ∂F (y∗, u∗, p∗, µ∗) ([6])

F ′(y∗, u∗, p∗, µ∗) =


M 0 LT αyI
0 νM −M αuI
L −M 0 0

cαyΠA∗ cαuΠA∗ 0 ΠI∗

 , (2.6)
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to construct a “semismooth” Newton scheme. Here ΠC denotes a diagonal binary
matrix with nonzero entries in C, and the sets A∗, I∗ are given in (2.5).

Given the kth iterate (yk, uk, pk, µk), let Ak and Ik be the current active and
inactive sets where

Ak = Abk ∪ Aak, Ik = {1, . . . , nh} \ Ak (2.7a)

Abk = {i | (µk)i + c(αu(uk)i + αy(yk)i − bi) > 0} (2.7b)

Aak = {i | (µk)i + c(αu(uk)i + αy(yk)i − ai) < 0} (2.7c)

and let nAk
= card(Ak) be the current number of active constraints. Using the

Jacobian F ′ in (2.6), the semismooth Newton iteration [15] applied to system (2.4) is
the following:

M 0 LT αyI
0 νM −M αuI
L −M 0 0

cαyΠAk
cαuΠAk

0 ΠIk



yk+1

uk+1

pk+1

µk+1

 =


Myd

0
d

c(ΠAb
k
b+ ΠAa

k
a)

 .
Setting (µk+1)Ik = 0 (the multiplier associated with the inactive inequality con-
straints) and eliminating this variable, we obtain the sequence of Newton structured
equations

Jkxk+1 = fk, k = 1, 2, . . . (2.8)

where xk+1 = (yk+1, uk+1, pk+1, (µk+1)Ak
) ∈ R3nh+nAk ,

fk =


Myd

0
d

PAb
k
b+ PAa

k
a

 , Jk =


M 0 LT αyP

T
Ak

0 νM −M αuP
T
Ak

L −M 0 0
αyPAk

αuPAk
0 0

 , (2.9)

where PC is a rectangular matrix consisting of those rows of ΠC which belong to the
indices in C; with this notation, ΠC = PTC PC . We remark that the value of c has no
influence on the solution of the Newton equation (2.8) but affects the updating of the
active sets Ak in (2.7).

The above semismooth Newton scheme was proved to be equivalent to the Primal-
Dual active-set method for solving constrained optimal control problems in [15] and
this equivalence allowed to establish superlinear local and also global convergence
results [15, 20, 18]. In fact, the active-set strategy works as a prediction technique in
the sense that it is proved that if (uk, yk, pk, µk) → (u∗, y∗, p∗, µ∗), then there exists
an index k̄ such that Ak̄ = A∗ and Ik̄ = I∗ [15, Remark 3.4].

Given xk, the next iterate xk+1 is commonly computed by applying an iterative
solver (in our case a preconditioned Krylov subspace method) to the Newton equation
(2.8), and then generating a sequence of (inner) iterations {xjk+1}j≥0. The inner
iteration is started with x0

k+1 = xk and stopped for j∗ > 0 such that

‖Jkxj∗k+1 − fk‖ ≤ ηk‖Jkx
0
k+1 − fk‖ (2.10)

and the next iterate xk+1 is set equal to xj∗k+1. The scalar ηk > 0 controls the accuracy

in the solution of the unpreconditioned linear system. The choice ηk = ηEk with

ηEk = τ1, (2.11)
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k ≥ 1, with a small τ1 (e.g. τ1 = 10−10) allows us to compare various preconditioning
techniques in solving the linear system (2.8), while the nonlinear iteration remains
substantially unaffected by the use of each different inner strategy. This stopping
criterion was used in all our numerical experiments of Sections 6.2.1 and 6.2.2.

Occasionally, for some choice of problem parameters we have experienced slow
convergence of the Newton method in the solution of CC problems. This prompted
us to also consider the adaptive choice ηk = ηIk

ηI0 = τ2, ηIk = min{ηIk−1, τ3‖F (uk, yk, pk, µk)‖2}, (2.12)

k ≥ 1 (e.g. with τ2 = 10−4, τ3 = 10−2), which gives rise to the “inexact” solution of the
Newton system [9, 17, 27]. In particular, (2.12) is intended to give the desirably fast
local convergence near a solution and, at the same time, to minimize the occurrence
of problem oversolving. We remark that the global convergence of the active set
Newton method is no longer guaranteed if inexact steps are computed, but it is
anyway expected for small values of the initial forcing term ηI0 [17]. Numerical tests
with (2.12) are reported in Section 6.2.3.

The key step in the overall process is the efficient iterative solution of the linear
systems (2.8), for which preconditioning is mandatory. The rest of the paper is thus
devoted to the analysis of effective preconditioning strategies.

3. Overview of the current approaches. In this section we review some of
the preconditioning strategies that have been explored in the literature for the solution
of CC, MC and SC problems. In particular we consider the proposals [14, 34] both
based on the use of the Preconditioned Conjugate Gradient method [4, 30] with a
nonstandard inner product for the solution of the saddle point linear systems arising
in the active-set Newton method for solving (2.4). This approach (from now on
named bpcg) was originally used in the context of saddle point linear systems for
mixed approximations of elliptic problems by Bramble and Pasciak in [4], and then
subsequently used in different settings where similar linear systems arise; see, e.g.,
[14, 30] in our context. Herzog and Sachs in [14] consider the solution of CC, MC and
SC problems by partitioning the Jacobian matrix Jk as follows

Jk =


M 0 LT αyP

T
Ak

0 νM −M αuP
T
Ak

L −M 0 0
αyPAk

αuPAk
0 0

 =

[
A BTk
Bk 0

]
, (3.1)

and therefore considering (αy, αu) = (0, 1) in the CC case, (αy, αu) = (1, ε) in the
MC case and (αy, αu) = (1, 0) in the SC case. Following the approach presented in
[30], Herzog and Sachs proposed the preconditioner

Pσ,τk =

[
I 0

BkÂ(σ)−1 I

] [
Â(σ) BTk

0 −Ŝk(σ, τ)

]
, (3.2)

where Â(σ) and Ŝk(σ, τ) approximate the (1, 1) block A and the Schur complement Sk
respectively, and are block diagonal matrices, while the scalars σ and τ are suitably
chosen positive scalars, whose role will be made clear below. A feature of this approach
is that the blocks of Â(σ) and Ŝk(σ, τ) can be chosen as (approximations of) the inner
product matrices of the spaces where the continuous unknowns (y,u) and (p, µ) are
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sought. In particular,

Â(σ) =
1

σ

[
K 0
0 M

]
and Ŝk(σ, τ) =

σ

τ

[
K 0
0 PAk

M−1PTAk

]
,

where K is associated with the scalar product in the discretized state space, and
the scaling parameters σ and τ are associated with the bilinear forms underlying the
considered problems (note that K = L if β = 0).

The role of the scalars σ and τ is crucial since they have to ensure that Â(σ) > A

and BkÂ(σ)−1BTk > Ŝk(σ, τ), so that the preconditioned matrix (Pσ,τk )−1Jk is positive
definite with respect to the inner product defined by

Dσ,τk = Pσ,τk − Jk =

[
Â(σ)−A 0

0 BkÂ(σ)−1BTk − Ŝk(σ, τ)

]
.

Under these conditions, the CG method in this non-Euclidean inner product can be
used.

The spectral analysis provided in [14, Corollary 2.3] for L symmetric (β = 0)
shows that the eigenvalues of (Pσ,τk )−1Jk are bounded independently of h, while they
depend on ν in such a way that the condition number of the preconditioned matrix is
proportional to 1/ν; As a consequence, poor convergence of bpcg for small values of
ν is predicted, and also verified experimentally. Moreover, the authors show that the
(preconditioned) condition number in MC problems scales like ε−2 for small ε, making
the use of the proposed preconditioner prohibitive for values of ε smaller than 10−3.
Regarding the analysis for problems with β = (β1, 0, 0), β1 > 0, a deterioration of the
convergence behavior for large values of β1 was theoretically analyzed for CC problems
and confirmed in the few reported experiments. The difficulties in solving these
problems are illustrated in the plots of Figure 3.1 which are in complete agreement
with [14, Figure 4], and were obtained with the same codes2, though on a different
machine. In particular, we emphasize the strong dependence on β and h of the
preconditioned strategy.

In [34] CC problems with a self-adjoint and positive definite elliptic operator as
constraint is considered. Differently from [14], at each nonlinear iteration a saddle
point system is obtained by eliminating (µk+1)Ak

from the system (2.8) and therefore
solving a system of reduced dimensions with the following coefficient matrix

Jk,red =

M 0 −LT
0 νMAk,Ak

MAk,:

−L M:,Ak
0

 ,
where MCr,Cc is the submatrix of M obtained by taking the rows whose indices belong
to the set Cr and the columns whose indices belong to the set Cc. Here, ‘:’ denotes
the set of all indices 1, . . . , nh. However, the authors of [34] preferred to work with
the full 3× 3 block system,

JF :=

M 0 −LT
0 νM M
−L M 0

 , (3.3)

2We thank Roland Herzog for providing us with all Matlab codes used in [14].
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Fig. 3.1. Unconstrained problem with convection (problem CC-pb1 described in Section 6). Left:
CPU time for a single Newton step vs. the discretized state space dimension, for β = (β1, 0, 0) with
β1 = 10, 100, 1000. Right: bpcg residual convergence history for various grid levels (β1 = 1000).

which they considered to be more practical to handle within the semismooth New-
ton method, than a system whose full dimension depends on the number of indices
in the active sets. To solve these complete systems, the following block triangular
preconditioner PBT and inner product matrix H are introduced in [34]:

PBT =

A0 0 ·
0 A1 0
−L M −S0

 , H =

M −A0 0 0
0 νM −A1 0
0 0 S0

 , (3.4)

where A0 and A1 are appropriate approximations of M and νM , respectively, so that
the matrix H is positive definite; moreover, S0 = LM−1L approximates the following
true Schur complement of JF :

SF = LM−1L+ ν−1M. (3.5)

Note that the preconditioner PBT does not depend on the nonlinear iteration k, and
therefore on the current active set.

As in the previous approach, the preconditioned system
(
PBT

)−1
JF is symmet-

ric and positive definite with respect to the inner product associated with H and a
CG method can be applied. In Section 6 we will report on the performance of the
preconditioners PBT , compared with our new preconditioners.

In our analysis, we found the work [24] particularly inspiring, although a simplified
setting was considered: a positive definite self-adjoint elliptic operator in the equality
constraint, and no bound-constraints. Under these hypotheses, the KKT conditions
give a saddle point system with the coefficient matrix JF in (3.3). In [24] the following
factorized approximation to the Schur complement SF in (3.5) is introduced (the
scaling factor 1

ν is omitted):

ŜF = (
√
νL+M)M−1(

√
νL+M), (3.6)

which appears to possess nice independence properties with respect to the problem
parameters: the eigenvalues of Ŝ−1

F SF lie in the interval
[

1
2 , 1
]

independently of the
values of h and ν [24, Theorem 4]. In the following we shall broadly generalize this
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idea so as to cover our more complete framework. Optimality results will also be
discussed.

The Schur complement approximation (3.6) was also used in [25] in the solution of
convection-diffusion (equality constrained) control problems where the authors gen-

eralized the above mentioned spectral properties of Ŝ−1
F SF to the case where L is

nonsymmetric.

4. A new approximation to the active-set Schur complement. In agree-
ment with other commonly employed preconditioning strategies, the preconditioners
we are going to present in Section 5 strongly rely on the quality of the used approx-
imation to the Schur complement of the coefficient matrix Jk. In this section we
introduce this approximation and analyze its spectral properties. In the following we
shall make great use of the fact that M is a lumped mass matrix, and thus diagonal.
This way, M and ΠAk

can commute and formulas simplify considerably. To simplify
the notation, we shall use the short-hand notation Πk = ΠAk

.
Using the same partitioning as in (3.1), the active-set Schur complement associ-

ated with Jk, and its block factorization are given by

Sk = BkA
−1BTk =

1

ν

[
νLM−1LT +M (αyνLM

−1 − αuI)PTAk

PAk
(αyνM

−1LT − αuI) (α2
yν + α2

u)PAk
M−1PTAk

]
=

1

ν
Rk

[
Sk 0
0 (α2

yν + α2
u)PAk

M−1PTAk

]
RTk ,

with

Rk =

[
I 1

α2
yν+α2

u
(αyνLM

−1 − αuI)ΠkMPTAk

0 I

]
, (4.1)

and

Sk = νLM−1LT +M − 1

α2
yν + α2

u

(αyνLM
−1 − αuI)ΠkMΠk(αyνLM

−1 − αuI)T .

We define the following factorized approximation of Sk:

Ŝk := L1M
−1LT1 , with L1 =

√
νL (I − γ1Πk)

1
2 + (I − γ2Πk)

1
2 M, (4.2)

and

γ1 =
α2
yν

α2
yν + α2

u

, γ2 =
α2
u

α2
yν + α2

u

. (4.3)

Note that γ1 + γ2 = 1, which implies

(I − γ1Πk)
1
2 (I − γ2Πk)

1
2 =
√
γ1γ2 Πk + (I −Πk), (4.4)

a property that will be used in the sequel. Moreover both (diagonal) matrices under
square root have strictly positive diagonal elements for γ1, γ2 6= 1, i.e., for αu 6= 0 and
αy 6= 0, respectively. If γ1 = 1 (or γ2 = 1), then (I−γ1Πk)

1
2 (or (I−γ2Πk)

1
2 ) reduces

to (I −Πk).

Remark 4.1. Our approach uses the fact that M is diagonal, both from a
computational and a theoretical point of view. If the employed discretization is such
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that M is no longer diagonal, then we could define the preconditioner with diag(M)
in place of M . As an alternative, we could keep M in the preconditioner, and solve
systems with PAk

M−1PTAk
as discussed in [14, (3.10)], and possibly also approximate

the action of M−1 by a Chebyshev polynomial [36]. For the sake of simplicity we
refrain from further exploring these possibilities.

We proceed with an analysis of the quality of the proposed Schur complement
preconditioner.

Proposition 4.2. Let Sk and Ŝk be as defined above. Then

Ŝk = Sk +
√
ν(L(I −Πk) + (I −Πk)LT ).

Proof. The result follows from

Sk = νLM−1LT +M − 1

α2
yν + α2

u

(α2
uΠkM + α2

yν
2LΠkM

−1LT − αyαuν(ΠkL
T + LΠk))

= νL(I − γ1Πk)M−1LT + (I − γ2Πk)M +
√
ν(L
√
γ1γ2 Πk +

√
γ1γ2 ΠkL

T ),

and

Ŝk = (
√
νL (I − γ1Πk)

1
2 + (I − γ2Πk)

1
2 M)M−1(

√
νL (I − γ1Πk)

1
2 + (I − γ2Πk)

1
2 M)T

= νL(I − γ1Πk)M−1LT + (I − γ2Πk)M +
√
νL (I − γ1Πk)

1
2 (I − γ2Πk)

1
2 +
√
ν (I − γ1Πk)

1
2 (I − γ2Πk)

1
2 LT

= νL(I − γ1Πk)M−1LT + (I − γ2Πk)M +

+
√
νL (
√
γ1γ2 Πk + (I −Πk)) +

√
ν (
√
γ1γ2 Πk + (I −Πk))LT ,

where (4.4) was used.

Note that the difference between the true and the approximate Schur complement
does not depend on the γ’s. The following special case of Proposition 4.2 occurs when
all indices are active, so that Πk = I.

Corollary 4.3. If Ak = {1, . . . , nh}, then Ŝk = Sk.

The Schur complement approximation specializes when particular choices of αu
and αv are made. In the CC case, that is for (αu, αy) = (1, 0), we obtain

L1 =
√
νL+ (I −Πk)M.

In the case of L symmetric and no bound constraints, that is for Ak = ∅, we obtain
L1 =

√
νL + M , which corresponds to the factor in (3.6), as introduced in [24]. In

the Mixed Constraints case, that is for (αu, αy) = (ε, 1), we obtain

L1 =
√
νL

(
I − 1

1 + γ
Πk

) 1
2

+

(
I − γ

1 + γ
Πk

) 1
2

M,

with γ = ε2/ν. Note that both (diagonal) matrices under square root have strictly
positive diagonal elements for γ > 0. Finally, in the pure State Constraints case, i.e.
for (αu, αy) = (0, 1), we obtain

L1 =
√
νL (I −Πk) +M.
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In the next proposition we derive general estimates for the inclusion interval
for the eigenvalues of the pencil (Sk, Ŝk), whose extremes depend on the spectral
properties of the nonsymmetric matrix L and on M , for general Ak. Special cases
will then be singled out.

Proposition 4.4. Assume that Ŝk is nonsingular. Let

Gk := F (I −Πk) + (I −Πk)FT , (4.5)

where F =
√
νM−

1
2LM−

1
2 , with F nonsingular, and

Hk := F (I − γ1Πk)FT + (I − γ2Πk) +
√
γ1γ2(FΠk + ΠkF

T ), (4.6)

with γ1, γ2 as defined in (4.3). Then

αmin := min
z 6=0

zTGkz

zTHkz
> −1, (4.7)

and the eigenvalues λ of the pencil (Sk, Ŝk) satisfy λ ∈
[

1
2 ,

1
1+αmin

]
.

Proof. For the sake of readability, we omit the subscript k within this proof. The
matrix H in (4.6) satisfies H = M−

1
2 SM− 1

2 . Let

Ĥ = M−
1
2 ŜM−

1
2 . (4.8)

Then by Proposition 4.4 we have that G,H in (4.5) and (4.6) satisfy Ĥ = H + G.

Therefore the problem Sx = λŜx can be written as Hz = λ(H +G)z, with z = M
1
2x,

and for z 6= 0 we can write

λ =
1

1 + zTGz
zTHz

.

For z 6= 0 we have zTGz
zTHz

> −1 if and only if zT (G+H)z > 0. The latter inequality is

satisfied since G+H = M−
1
2 ŜM− 1

2 , and Ŝ is positive definite. This proves the upper
bound for λ.

To prove the lower bound, we first consider the case γ2 6= 1. We define W :=
(I − γ2Π)−

1
2F (I − γ1Π)

1
2 and notice that

(I − γ2Π)−
1
2 Ĥ(I − γ2Π)−

1
2 = (W + I)(W + I)T ,

while

(I − γ2Π)−
1
2H(I − γ2Π)−

1
2

= WWT + I +
√
γ1γ2

(
WΠ(I − γ1Π)−

1
2 (I − γ2Π)−

1
2 + (I − γ2Π)−

1
2 (I − γ1Π)−

1
2 ΠWT

)
= WWT + I + (WΠ + ΠWT ),

where the relation (4.4) was used. For x 6= 0 we can thus write

λ =
xTSx
xT Ŝx

=
yT (WWT + I + (WΠ + ΠWT ))y

yT (W + I)(W + I)T y
,
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where y = (I − γ2Π)
1
2M

1
2x. Therefore, λ ≥ 1

2 if and only if

yT (WWT + I + (WΠ + ΠWT ))y

yT (W + I)(W + I)T y
≥ 1

2

which is equivalent to

1

2
yT (WWT + I +W (2Π− I) + (2Π− I)WT )y ≥ 0.

Noticing that I = (2Π− I)(2Π− I), it holds

WWT + I +W (2Π− I) + (2Π− I)WT = (W + (2Π− I))(W + (2Π− I))T � 0;

Therefore, the last inequality is always verified, proving the lower bound for λ.
Consider now the case γ2 = 1 (which implies γ1 = 0). We define W := F−1(I−Π).

For x 6= 0 we can write

λ =
xTSx
xT Ŝx

=
zT (FFT + (I −Π))z

zT (F + (I −Π))(F + (I −Π))T z
=

yT (WWT + I)y

yT (W + I)(W + I)T y
,

where z = M
1
2x and y = FT z. As above, λ ≥ 1

2 if and only if

yT (WWT + I)y

yT (W + I)(W + I)T y
≥ 1

2

which holds since 2(WWT + I)− (W + I)(W + I)T = (W − I)(W − I)T � 0.

Proposition 4.4 reformulates the eigenvalue problem with the preconditioned
Schur complement in terms of the eigenvalue problem with a different Rayleigh quo-
tient, which seems to be easier to interpret. Numerical experiments confirm the sharp-
ness of the lower extreme (see below); for the upper bound more insightful estimates
can be given under additional hypotheses, and these are explored in the following.

Corollary 4.5. [25, Theorem 4.1] Assume L + LT � 0 and let Ak = ∅. Then

the eigenvalues λ of the pencil (Sk, Ŝk) satisfy λ ∈
[

1
2 , 1
]
.

The result of Corollary 4.5 generalizes the result of [24] to nonsymmetric and
positive semidefinite L, showing the optimality and robustness of the approximation
with respect to the problem parameters.

To be able to analyze another interesting special case, we first need an auxiliary
lemma whose proof is postponed to the appendix.

Lemma 4.6. Let F ∈ Rn×n be such that F + FT � 0. Then
i) ‖(F + I)−1(F − I)‖ ≤ 1;
ii) ‖(F + I)−1(F + FT )(F + I)−T ‖ ≤ 1

2 .

We can now estimate the eigenvalues of (Sk, Ŝk) for a particular choice of γ1, γ2.

Proposition 4.7. Assume L+LT � 0 and let γ1 = γ2 = 1
2 . Then the eigenvalues

λ of the pencil (Sk, Ŝk) satisfy λ ∈
[

1
2 , 3

]
.

Proof. For the sake of readability, we omit the subscript k within this proof. We
only have to prove the upper bound. Let F =

√
νM−

1
2LM−

1
2 , so that F + FT � 0.

Proceeding as in the proof of Proposition 4.4, the eigenproblem Sx = λŜx can be
transformed into

Hy = λ(H +G)y, (4.9)
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with y = M
1
2x, where H and G are given in (4.6) and (4.5), respectively. For

γ1 = γ2 = 1
2 , we have H + G = (F + I)

(
I − 1

2Π
)

(F + I)T , while H = (F −
I)
(
I − 1

2Π
)

(F − I)T + F + FT , which can be readily verified. Therefore, problem
(4.9) can be written as(

(F − I)

(
I − 1

2
Π

)
(F − I)T + F + FT

)
y = λ(F + I)

(
I − 1

2
Π

)
(F + I)T y,

or equivalently, with u = (F + I)T y, as

(F + I)−1

(
(F − I)

(
I − 1

2
Π

)
(F − I)T + F + FT

)
(F + I)−Tu =

λ(I − 1

2
Π)u. (4.10)

We then multiply (4.10) from the left by uT 6= 0,

uT (F + I)−1

(
(F − I)

(
I − 1

2
Π

)
(F − I)T + F + FT

)
(F + I)−Tu =

λuT (I − 1

2
Π)u, (4.11)

and we note that uT
(
I − 1

2Π
)
u ≥ 1

2‖u‖
2. Moreover, using Lemma 4.6

uT (F + I)−1(F − I) (I − 1

2
Π)(F − I)T (F + I)−Tu

≤ ‖
(
I − 1

2
Π

)
‖‖(F − I)T (F + I)−T ‖2‖u‖2 ≤ ‖u‖2,

and uT (F + I)−1(F + FT )(F + I)−Tu ≤ 1
2‖u‖

2. Therefore, using these last bounds
in (4.11) we obtain ‖u‖2 + 1

2‖u‖
2 ≥ λ 1

2‖u‖
2, with ‖u‖ 6= 0, from which the upper

estimate follows.
In the notation of Proposition 4.4, for γ1 = γ2 we bounded αmin by − 2

3 .

Remark 4.8. The case γ1 = γ2 comprises MC problems where αu = ε and
αy = 1, so that the equality ν = ε2 holds. Therefore, for ν = ε2 Proposition 4.7
ensures a clustered spectrum of the preconditioned Schur complement, and this also
strongly influences the spectrum of the overall preconditioned matrix - see Section 5 -
predicting fast convergence of the iterative methods. From an application perspective,
these experiments show that if ν ≈ ε2 in the given model, then a good performance
of the solver is expected.

The good behavior for ν = ε2 discussed in the remark above is confirmed by our
numerical experiments (see Example 6.4), where problems with MC constraints (1.3)
are tested for all combinations of values of ν and ε: the best performance is indeed
obtained for ν = ε2. It is also interesting to observe that our findings are in agreement
with similar experimental observations reported in [2], where the case ν ≈ ε2 ensured
the best performance of a multigrid solver for the MC problem.

Tables 4.1-4.3 display the spectral intervals for Ŝ−1
k Sk for the three considered

model problems (see Table 6.1). In all tables, the minimum and maximum eigenvalues

are reported for the kth iteration for which λmax(Ŝ−1
k Sk) is maximum. The CC case

shows the largest, though still extremely modest, dependence of λmax on the problem
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parameters, and this dependence quickly fades as β1 increases. On the other hand,
λmin remains largely insensitive to parameter variations, with a small benign increase
from the bound 1

2 for ν = 10−2 as β1 grows. In the mixed case and ν = ε2, λmax

remains well below the upper estimate 3, for a variety of mesh parameter values.

ν = 10−2 ν = 10−6

β1 h k |Ik| λmin λmax k |Ik| λmin λmax

0 2−2 1 98 0.51 1.24 3 25 0.55 4.7
2−3 3 895 0.51 1.27 17 24 0.5 13.14

10 2−2 1 73 0.64 1.18 5 57 0.54 5.32
2−3 1 891 0.61 1.24 6 44 0.50 10.72

100 2−2 1* 0 1 1 4 49 0.51 4.82
2−3 1 120 0.95 1.01 6 201 0.5 6.64

1000 2−2 1* 0 1 1 2 49 0.6 1.39
2−3 1* 0 1 1 2 675 0.58 1.63

* Newton terminates in 2 steps.
Table 4.1

Control-Constraints: Extreme eigenvalues of Ŝ−1
k Sk, Newton iteration k, and dimension of the

Inactive set, |Ik|, as the mesh size h, the regularization parameter ν and the convection parameter
β = (β1, 0, 0) vary.

ν = 10−2 ν = 10−6

β1 h ε k |Ik| λmin λmax ε k |Ik| λmin λmax

0 2−2 10−1 1 196 0.53 1.10 10−1 2 165 0.64 1.97
10−2 1 294 0.51 1.51 10−2 1 196 0.75 1.10
10−3 2 303 0.50 1.93 10−3 1 196 0.75 1.01

2−3 10−1 2 2242 0.52 1.16 10−1 3 1212 0.51 2.63
10−2 3 2782 0.51 1.97 10−2 1 1800 0.51 1.29
10−3 3 3030 0.51 3.37 10−3 1 1800 0.51 1.03

10 2−2 10−1 1 315 0.53 1.05 10−1 2 147 0.57 3.28
10−2 0* 343 0.53 0.93 10−2 1 196 0.69 1.37
10−3 0* 343 0.53 0.93 10−3 1 196 0.69 1.03

2−3 10−1 1 2549 0.56 1.18 10−1 3 1406 0.50 5.20
10−2 1 3135 0.53 1.55 10−2 2 1631 0.50 1.71
10−3 1 3303 0.53 2.45 10−3 1 1800 0.50 1.08

100 2−2 10−1 0* 343 0.84 0.98 10−1 2 196 0.51 4.40
10−2 0* 343 0.84 0.98 10−2 2 196 0.51 2.49
10−3 0* 343 0.84 0.98 10−3 1 147 0.51 1.24

2−3 10−1 1 3299 0.84 1.01 10−1 2 1575 0.50 5.9
10−2 1 3367 0.84 1.12 10−2 2 1519 0.50 3.25
10−3 0* 3375 0.84 0.99 10−3 2 1800 0.50 1.42

1000 2−2 10−1 0* 343 0.98 0.99 10−1 1 294 0.51 1.22
10−2 0* 343 0.98 0.99 10−2 1 294 0.51 1.22
10−3 0* 343 0.98 0.99 10−3 1 294 0.52 1.24

2−3 10−1 0* 3375 0.98 0.99 10−1 2 2475 0.52 1.40
10−2 0* 3375 0.98 0.99 10−2 2 2644 0.52 1.34
10−3 0* 3375 0.98 0.99 10−3 2 2925 0.51 1.31

* Newton terminates in 1 step.
Table 4.2

Mixed-Constraints: Extreme eigenvalues of Ŝ−1
k Sk, Newton iteration k, and dimension of the

Inactive set, |Ik|, as the mesh size h, the regularization parameters ν, ε and the convection parameter
β = (β1, 0, 0) vary.

The dependence of λmax on the parameters in the CC and SC cases can be ana-
lyzed by using the following result, whose proof is postponed to the appendix.

Proposition 4.9. Let λ be an eigenvalue of Ŝ−1
k Sk. Then in the CC and SC
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ν = 10−2 ν = 10−6

β1 h k |Ik| λmin λmax k |Ik| λmin λmax

0 2−2 2 303 0.50 2.01 1 196 0.75 1.00
2−3 3 3030 0.51 3.65 1 1800 0.51 1.02

10 2−2 0* 343 0.53 0.93 1 196 0.69 1.02
2−3 1 3319 0.52 2.94 1 1800 0.50 1.06

100 2−2 0* 343 0.84 0.98 1 196 0.50 1.23
2−3 0* 3375 0.84 0.99 2 2250 0.50 1.56

1000 2−2 0* 343 0.98 0.99 0* 343 0.51 0.84
2−3 0* 3375 0.98 0.99 0* 3375 0.51 0.91

* Newton terminates in 1 step.
Table 4.3

State-Constraints: Extreme eigenvalues of Ŝ−1
k Sk, Newton iteration k, and dimension of the

Inactive set, |Ik|, as the mesh size h, the regularization parameter ν and the convection parameter
β = (β1, 0, 0) vary.

case it holds

λ ≤ ζ2 + (1 + ζ)2,

with

i) If (αu, αy) = (1, 0) (CC case), then ζ = ‖M 1
2 (
√
νL+M(I −Π))

−1√
νLM−

1
2 ‖;

Moreover, if L+ LT � 0, then for ν → 0, ζ is bounded by a constant independent of
ν;

ii) If (αu, αy) = (0, 1) (SC case), then ζ = ‖(I +
√
νM−

1
2LM−

1
2 (I −Πk))−1‖; More-

over, ζ → 1 for ν → 0.

The boundedness of ζ as ν → 0 in both the CC and SC cases justifies the good
behavior of the eigenvalues shown in Tables 4.1 and 4.3.

5. New preconditioners for the active-set Newton method. In this sec-
tion we propose two classes of preconditioners, which can be used throughout the
nonlinear iterations, and automatically modified as the system dimensions dynam-
ically change due to the different number of active indices. More precisely, for the
problem partitioned as in (3.1) we consider the following block diagonal preconditioner
PBDFk , and indefinite preconditioner PIPFk :

PBDFk =

[
A 0

0 Ŝk

]
, (5.1)

and

PIPFk =

[
I 0

BkA
−1 I

] [
A 0

0 −Ŝk

] [
I A−1BTk
0 I

]
, (5.2)

where in both cases, the matrix Ŝk is factorized as

Ŝk =
1

ν
Rk

[
Ŝk 0
0 (α2

yν + α2
u)PAk

M−1PTAk

]
RTk ,
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with Ŝk = L1M
−1LT1 , and Rk and L1 given in (4.1) and (4.2), respectively. The

following result can be readily proved from Proposition 4.4.
Proposition 5.1. Assume that Ŝk is nonsingular and let αmin be as defined in

(4.7). Then the eigenvalues λ of the pencil (Jk,PBDFk ) satisfy

λ
(
Jk, PBDFk

)
∈

{
1,

1±
√

5

2

}
∪ I− ∪ I+,

where

I− =

[
1

2

(
1−

√
1 +

4

(1 + αmin)2

)
,

1−
√

2

2

]
, I+ =

[
1 +
√

2

2
,

1

2

(
1 +

√
1 +

4

(1 + αmin)2

)]
.

The eigenvalues λ of the pencil (Jk,PIPFk ) satisfy

λ(Jk,PIPFk ) ∈ {1} ∪
[

1

2
,

1

1 + αmin

]
.

Proof. We observe that the pencil
(
Jk, PBDFk

)
has the same eigenvalues as:

(
PBDFk

)−1/2
Jk
(
PBDFk

)−1/2
=

[
I A−1/2BTk Ŝ

−1/2
k

Ŝ
−1/2
k BkA

−1/2 0

]
.

Using [12, Lemma 2.1], the eigenvalues of the pencil (Jk, PBDFk ) are either 1 or

have the form 1
2

(
1±
√

1 + 4σ2
)
, where σ is a singular value of Ŝ

−1/2
k BkA

−1/2, that is,

σ2 is an eigenvalue of Ŝ−1
k Sk. Considering that spec

(
Ŝ−1
k Sk

)
= {1} ∪ spec

(
Ŝ−1
k Sk

)
,

we have

λ
(
Jk, PBDFk

)
∈

{
1,

1±
√

5

2

}
∪
{

1

2

(
1±

√
1 + 4σ2

)
| σ2 ∈ spec

(
Ŝ−1
k Sk

)}
.

The claim thus follows from Proposition 4.3.
As for the pencil

(
Jk, PIPFk

)
, we have the factorization

(
PIPFk

)−1
Jk =

[
I −A−1Bk
0 I

] [
I 0

0 Ŝ−1
k Sk

] [
I A−1Bk
0 I

]
. (5.3)

Again, the result follows from Proposition 4.4.
Under the stated hypotheses, refined bounds for the eigenvalues of the indefinitely

preconditioned problem can be derived using the bounds for the eigenvalues of Ŝ−1
k Sk

obtained in Corollary 4.5, Proposition 4.7 and Proposition 4.9.

In the case of indefinite preconditioning, the preconditioned matrix
(
PIPFk

)−1
Jk

has real spectrum, however it is no longer symmetric so that in general, a nonsymmet-
ric solver needs to be applied. In our numerical experiments we used gmres [29], for
which it is known that the eigenvalues alone may not be sufficient to predict conver-
gence, but that also eigenvectors play a role. In addition, indefinite preconditioners
are often plagued by the presence of Jordan blocks, whose sensitivity may influence
the use of inexact strategies; see, e.g., [31] for a detailed discussion. Fortunately, since
the (1,1) block of Jk is reproduced exactly in the preconditioner, in our setting the
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spectral structure is considerably simplified, and in particular, Jordan blocks do not
occur. The following proposition determines the complete eigenvector decomposition
of the preconditioned matrix.

Proposition 5.2. Let Ŝ−1
k SkX = XΛ be the eigendecomposition of Ŝ−1

k Sk, with
X = [X1, X2] and Λ = blkdiag(I,Λ2) partitioned so that X1 contains the eigenvectors

corresponding to the unit eigenvalue. Then the preconditioned matrix
(
PIPFk

)−1
Jk

admits the following eigenvalue decomposition

(
PIPFk

)−1
Jk = Q

I I
Λ2

Q−1,

with

Q =

[
I 0 −A−1BkX2

0 X1 X2

]
, Q−1 =

 I A−1BkX2X
T
2 Ŝk

0 XT
1 Ŝk

0 XT
2 Ŝk

 .
Proof. Writing

(
PIPFk

)−1
Jk =

[
I A−1Bk(I − Ŝ−1

k Sk)

0 Ŝ−1
k Sk

]
,

the decomposition can be explicitly verified upon substitution. The nonsingularity of
Q follows from that of X = [X1, X2]. The inverse of Q can be derived by observing

that X can be chosen so that XT ŜkX = I.
The explicit form of Proposition 5.2 allows one to use standard results to bound

the gmres residual norm, by providing bounds for the norm of Q and its inverse Q−1,
and exploiting the fact that the spectrum of the preconditioned matrix is real (see,
e.g., [28, Prop. 6.32]).

6. Numerical experiments. In this section we provide a detailed performance
analysis of the proposed preconditioners PIPFk in (5.2) and PBDFk in (5.1) for the
active-set Newton method and use problems with constraints in (1.2)-(1.4) as proto-
typical problems. In particular, the analysis of the pure State Constraints case (1.4)
will be analyzed as the limit case of the MC constraints (1.3) for ε→ 0.

label Ω a b yd
CC-Pb1 (−1, 1)3 0 2.5 1 for |x1| ≤ 1

2 , −2 otherwise
CC-Pb2 (0, 1)3 1

10 exp(−‖x‖2) 1
2 exp(−64‖x− 1

2‖
2)

MC-Pb1 (−1, 1)3 −∞ 0 1 for |x1| ≤ 1
2 , −2 otherwise

Table 6.1
Problem data for the numerical experiments. Here x = (x1, x2, x3) ∈ Ω.

In all our examples, we use the three-dimensional data for the discretized problem
generated by the codes in [14]. The matrices stem from the discretization by upwind
finite differences on a uniform three-dimensional grid (so that L + LT � 0). Zero
Dirichlet boundary conditions, that is ȳ = 0 in (1.1), were used throughout. We stress
that for large convection and in the presence of boundary layers, other discretizations
may be more suitable; we refer to the recent nice essay by Stynes on the pros and cons
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of different approaches [35]. We also notice that different discretization techniques will
lead to coefficient matrices L with possibly quite different spectral properties.

In Table 6.1 information on the data used in our numerical experiments can be
found, for two test cases with control constraints, and one test case for mixed and
state constraints; here x = (x1, x2, x3) is an element of Ω. The mesh parameter in each
direction was taken as h ∈ {2−2, 2−3, 2−4, 2−5} which corresponds to a dimension for
the state or control vectors nh ∈ {343, 3375, 29791, 250047}. The total linear system
dimension is thus between 3nh and 4nh, depending on the number of indices in the
active set at each Newton iteration.

6.1. Algorithmic considerations. Throughout this section we consider the
implementation of the active-set Newton method with the following solvers and pre-
conditioning strategies:

as-gmres-ipf Active-set Newton method with linear solver gmres
preconditioned with PIPFk ;

as-minres-bdf Active-set Newton method with linear solver minres
preconditioned with PBDFk ;

as-bpcg-bt Variant of active-set Newton method as proposed in [34],
with bpcg preconditioned with PBT defined in (3.4).

The application of the Schur complement approximation Ŝk requires solving with
L1 and its transpose in (4.2). These solves were replaced by the use of an alge-
braic multigrid operator (hsl-mi20, [3]), which needs to be recomputed at each New-
ton iteration. hsl-mi20 is used with all default parameters except for the value
control.st parameter=10−4. Moreover, we set the number of pre/post smoothing
steps equal to 5 for all the experiments with the MC problems, while with CC prob-
lems only for the finest mesh h = 2−5. Although in most cases satisfactory results were
obtained with this software, we did experience some anomalous behavior when strong
convection was used. In these cases, ad-hoc algebraic multigrid strategies should be
adopted. We also recall that both Πk and M are diagonal, therefore L1 is obtained
from the convection-diffusion matrix by scaling, and then modifying its diagonal.

According to [36], we used A0 = 0.9M and A1 = 0.9(ν M) for the parameterized
preconditioners in (3.4) within the bpcg iteration. Systems with L to apply S0 in
(3.4) are approximately solved with the aforementioned hsl-mi20 code.

We set a limit of 80 gmres iterations and 1000 minres and bpcg iterations. If
a solver reaches the maximum number of iterations, the last computed iterate is used
as the next Newton iterate.

As for the nonlinear iteration, in all tests we set the parameter c in the definition
of the active-set strategy (2.7) equal to one, and we use a null starting guess x0 in
the Newton iteration, which by (2.7) implies that A0 = ∅ in all settings. As already
mentioned, we used the stopping criterion (2.10) with ηk = ηEk in (2.11) where we
further included the safeguard τs = 10−10 as follows

‖Jkxj∗k+1 − fk‖ = max{τs, ηEk ‖Jkx0
k+1 − fk‖}, (6.1)

k ≥ 1, with the tight tolerance τ1 = 10−10 in (2.11) [9]. While the residual 2-norm
in (6.1) can be cheaply evaluated for gmres when using right preconditioning, in the
case of minres we explicitly computed the (unpreconditioned) residual vector at each
iteration, and then computed its norm; for minres we thus slightly modified the code
available in [10].
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In the numerical tests in Section 6.2.3 we also experimented with the adaptive
choice ηk = ηIk in (2.12), with τ2 = 10−4, τ3 = 10−2, together with the above safeguard
threshold τs. We experimentally verified that this choice of tolerances preserved the
global convergence of the active set Newton procedure.

Concerning the outer iteration, we followed [14] and we declare convergence when
the nonlinear residual is sufficiently small, i.e.

‖F (uk, yk, pk, µk)‖ ≤ τf , with τf = 10−8.

We verified that this criterion was equivalent to terminating the iteration as soon
as the active sets stay unchanged in two consecutive steps as proved in [1, 20]. On
the contrary, any run performing more than 200 nonlinear iterations is considered a
failure and will be denoted with the symbol ‘-’ in the forthcoming tables.

All numerical experiments were performed on a 4xAMD Opteron 850, 2.4GHz,
16GB of RAM using Matlab R2012a [19].

6.2. Numerical results. The presentation of the numerical results is organized
as follows. Section 6.2.1 is devoted to the comparison of as-gmres-ipf and as-
minres-bdf with as-bpcg-bt (see Section 3 and (3.4)) on symmetric CC problems.
Section 6.2.2 collects the numerical results of the new proposals as-gmres-ipf and
as-minres-bdf on symmetric and nonsymmetric problems for a variety of problem
parameters. Finally, in Section 6.2.3 an inexact active set approach is considered in
the solution of nonsymmetric CC problems.

In some cases, a comparative computational analysis is carried out by using per-
formance profiles for a given set of test problems and a given selection of algorithms
[8]. For a problem P in our testing set and an algorithm A, we let tiP,A denote the
total CPU time employed to solve problem P using algorithm A and tiP be the total
CPU time employed by the fastest algorithm to solve problem P . As stated in [8],
the CPU time performance profile is defined for algorithm A as

πA(τ) =
number of problems s.t. tiP,A ≤ τ tiP

number of problems
, τ ≥ 1,

that is the probability3 for solver A that a performance ratio tiP,A/tiP is within a
factor τ of the best possible ratio. The function πA(τ) is the (cumulative) distribution
function for the performance ratio.

In the upcoming tables of results the following data will be reported: the average
number of linear inner iterations (li), the number of nonlinear outer iterations (nli
in brackets), the average elapsed CPU time of the inner solver (cpu), and the total
elapsed CPU time (tcpu).

Finally, to be able to evaluate the effectiveness of the preconditioned linear solvers,
we take as reference the computational cost of solving the whole system with a sparse
direct solver (“backslash” in Matlab). For the finest mesh, corresponding to h = 2−5,
the compiled direct solver takes 611 seconds to solve a single linear system with Ak = ∅
for some k (ν = 10−2, β = 0). We note that this corresponds to the cost of the
first iteration when the active set Newton algorithm is applied to every problem of
the family (1.1). For comparison purposes, multiplying by the number of nonlinear
iterations, the total cost of the process when the inner system is solved with a sparse
direct method can be derived.

3Or, more precisely, the frequency.
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as-gmres-ipf as-minres-bdf as-bpcg-bt
ν p li (nli) cpu tcpu li (nli) cpu tcpu li (nli) cpu tcpu

10−2 2 9.6(3) 0.1 0.2 20(3) 0.1 0.2 11.3(3) 0.1 0.2
3 9.5(4) 0.8 3.2 19.5(4) 1.1 4.2 10.7(4) 0.7 2.7
4 8.5(4) 1.5 8.5 18.7(4) 2.5 9.9 10.0(4) 6.7 26.8
5 8.0(4) 12.1 48.2 19.2(4) 36.1 144.4 9.5(4) 17.5 69.9

10−4 2 6.5(7) 0.1 0.11 13.8(7) 0.1 0.2 17.5(7) 0.2 1.3
3 11.2(11) 0.7 8.1 23.8(11) 1.3 14.4 21.1(11) 1.3 14.7
4 10.7(17) 1.8 30.1 23.5(17) 3.1 51.6 18.0(17) 4.7 80.1
5 10.3(15) 16.1 241.4 24.3(15) 31.6 474.3 18.2(15) 30.9 463.3

10−6 2 10.3(9) 0.1 0.2 22.7(9) 0.1 0.35 41.1(9) 0.1 0.7
3 16.0(19) 1.1 21.5 34.6(19) 1.9 35.8 99.0(19) 6.1 115.6
4 17.6(54) 2.9 160.7 44.9(54) 5.7 289.8 93.5(54) 13.6 735.6
5 22.0(68) 38.4 2608.4 56.3(89) 63.2 5627.2 102.1(68) 136.7 9293.6

10−8 2 11.1(9) 0.1 0.2 25.4(9) 0.1 0.4 58.6(9) 0.1 1.0
3 18.3(27) 0.7 20.2 40.1(27) 2.1 57.6 133.2(27) 8.3 224.1
4 30.3(74) 7.3 540.5 72.1(66) 9.2 513.4 385.0(66) 60.1 3962.8
5 - - - - - - - - -

Table 6.2
Comparison among as-gmres-ipf, as-minres-bdf and as-bpcg-bt. Test problem CC-Pb1 for a

variety of h = 2−p and ν (L symmetric, i.e., β = 0).

as-gmres-ipf as-minres-bdf as-bpcg-bt
ν p li (nli) cpu tcpu li (nli) cpu tcpu li (nli) cpu tcpu

10−2 2 8.75(4) 0.1 0.2 18(4) 0.1 0.2 10.0(4) 0.03 0.10
3 8.0(5) 0.2 0.8 16.8(5) 0.9 4.7 9.0(5) 0.2 0.99
4 7.4(5) 1.3 6.5 16.2(5) 2.2 11.1 9.2(5) 1.8 8.77
5 7.4(5) 11.3 56.4 16.6(5) 19.4 96.7 8.4(5) 15.2 76.1

10−4 2 11.1(9) 0.1 0.2 23.2(9) 0.1 0.4 28.4(7) 0.1 0.6
3 12.9(13) 0.3 3.8 27.7(13) 1.5 19.8 24.4(13) 0.5 6.4
4 13.0(14) 2.1 29.5 28.7(14) 3.7 52.1 20.0(14) 3.6 50.1
5 11.7(13) 18.5 240.8 27.5(13) 32.0 416.1 20.5(13) 28.2 367.5

10−6 2 12.2(12) 0.1 0.3 26.6(12) 0.1 0.5 52.2(12) 0.1 1.3
3 16.8(22) 0.4 8.8 36.8(22) 2.0 44.6 115.5(22) 2.1 46.7
4 18.2(35) 3.1 106.9 43.5(36) 5.7 204.8 118.5(35) 19.3 675.2
5 20.0(41) 34.6 1416.9 52.5(53) 59.5 3151.9 84.3(40) 109.2 4367.1

10−8 2 10.4(11) 0.1 0.2 23.2(11) 0.1 0.4 64.3(11) 0.1 1.6
3 15.7(19) 0.4 8.2 35.5(19) 1.9 37.1 195.1(19) 3.8 71.2
4 27.6(55) 5.3 289.1 69.0(63) 9.1 572.0 360.5(54) 55.9 3021.7
5 41(156) 90.7 14156.0 - - - 343.3(131) 438.2 57406.9

Table 6.3
Comparison among as-gmres-ipf, as-minres-bdf and as-bpcg-bt. Test with CC-Pb2 for a

variety of h = 2−p and ν (L symmetric, i.e., β = 0).

6.2.1. Comparison with the BPCG approach. In order to make compar-
isons with as-bpcg-bt in the setting used in [34], we restrict our testing set to sym-
metric CC problems CC-Pb1 and CC-Pb2 with β = 0. Numerical results are reported
in Tables 6.2 and 6.3. The number of nonlinear iterations remains quite low for most
choices of the parameters, except for the finest grid and the limit case ν = 10−8. All
methods seem to show some ν-dependence both in the (inner) linear solver, and in
the (outer) nonlinear iteration; however, while in both problems for as-gmres-ipf
and as-minres-bdf such dependence is rather mild, this is significantly more evident
for as-bpcg-bt. Large values of li for as-bpcg-bt in the tables correspond to runs
where the maximum number of inner iterations is reached. This shortcoming makes
as-bpcg-bt not competitive in almost all parameter combinations, with timings that
differ significantly from the other methods, up to at most one order of magnitude.
Finally, we recall that at each iteration as-gmres-ipf and as-minres-bdf solve lin-
ear systems of dimension 3nh + nAk

, whereas as-bpcg-bt solves systems of fixed
dimension 3nh. The numbers in Tables 6.2 and 6.3 show that an appropriate explicit
treatment of the active-set information within the preconditioner is capable of making
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up for the larger problem size, yielding an overall significant gain in CPU time.
Remark 6.1. For the sake of completeness, we also solved the problem with the

block triangular preconditioner suggested in [34], with gmres as a solver instead of
bpcg. Results are reported in Table 6.4 for a selection of parameters and for both
problems. The results do not differ from those showed in the previous tables, indicat-
ing that the chosen linear solver is not responsible for the unsatisfactory performance
of the preconditioned iteration. Because of the use of gmres, memory requirements
are clearly superior to those for bpcg.

as-gmres-bt
CC-Pb1 CC-Pb2

ν p li (nli) cpu tcpu li (nli) cpu tcpu
10−2 2 10.7(4) 0.1 0.4 9.25(4) 0.06 0.3

3 9.8(4) 1.3 5.1 7.8(5) 0.3 1.6
4 8.5(4) 7.9 31.9 7.6(5) 2.4 12.2
5 8.5(4) 19.5 77.9 7.2(5) 17.5 87.7

10−4 2 14.1(7) 0.3 2.2 22.0(9) 0.1 0.8
3 16.5(11) 1.8 20.2 19.9(13) 0.7 8.8
4 14.2(17) 4.2 71.5 16.5(14) 4.2 59.0
5 13.9(15) 30.2 452.5 15.8(13) 33.4 433.6

10−6 2 25.1(9) 0.1 0.9 31.3(12) 0.1 1.7
3 50.6(19) 6.6 125.7 55.6(22) 3.5 77.6
4 46.9(54) 15.0 810.9 55.3(35) 19.8 691.2
5 49.7(68) 141.5 9621.7 41.1(40) 117.5 4700.1

10−8 2 27.9(9) 0.1 1.1 37.2(11) 0.2 2.1
3 56.9(27) 8.6 232.0 75.4(19) 7.6 144.7
4 115.5(74) 56.7 4134.5 164.8(54) 109.9 5932.9
5 - - - 102.1(120) 507.7 60927.8

Table 6.4
Performance results for as-gmres-bt. Test with CC-Pb1 and CC-Pb2 for a variety of h = 2−p

and ν (L symmetric, i.e., β = 0).

6.2.2. Dependence on the problem parameters. We tested the new precon-
ditioners on CC, MC and SC problems by analyzing their dependence on the param-
eters of the discretized problem, i.e. the regularization parameter ν, the convection
coefficient β, the mesh size h and, for the MC case, the regularization parameter ε.

Example 6.2. For the CC problems, we varied h ∈ {2−2, 2−3, 2−4, 10−5}, ν ∈
{10−2, 10−4, 10−6, 10−8}, and we set β = (β1, 0, 0) with β1 ∈ {0, 10, 100, 1000}. We
remark that ν = 10−8 was included for completeness, however it will be considered
as a limit case because it is rather small. Analogously, β1 = 1000 makes the operator
very convection-dominated, providing anomalous behaviors in some exceptional cases;
we did not explore whether for this extreme value of β1 the upwind discretization was
sufficient in these cases to damp the well-known numerical instabilities arising in the
discretization phase. In fact, the value β1 = 1000 was only considered for consistency
with respect to the experiments carried out in [14]. In the same lines, we prefer to
limit our speculations on the dependence with respect to β to the empirical level,
as a deeper analysis would require a thorough discussion of both the discretization
strategy and the employed convection; this is clearly beyond the scope of this paper.

We collect the results obtained with as-gmres-ipf and as-minres-bdf for the
problems CC-Pb1 and CC-Pb2 in Tables 6.5-6.6 and the corresponding total CPU time
performance profile is displayed in Figure 6.1 (left plot) varying all the parameters for
a total of 128 runs. The average number of inner iterations is quite homogeneous with
respect to h and slightly dependent on ν and β. A comparison of Tables 6.5 and 6.6
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ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8

β1 p li(nli) tcpu li(nli) tcpu li(nli) tcpu li(nli) tcpu
0 2 9.6(3) 0.2 6.5(7) 0.1 10.3(9) 0.2 11.1(9) 0.2

3 9.5(4) 3.2 11.2(11) 8.0 16.0(19) 21.5 18.3(27) 20.2
4 8.5(4) 8.5 10.7(17) 30.1 17.6(54) 160.7 30.3(74) 540.5
5 8.0(4) 48.2 10.3(15) 241.4 22.0(68) 2608.4 - -

10 2 9.0(3) 0.1 8.3(10) 0.2 10.4(10) 0.3 11.3(10) 0.3
3 8.5(4) 0.7 10.5(13) 3.0 15.4(18) 6.8 19.8(19) 10.7
4 8.5(4) 6.1 10.8(13) 25.3 18.6(41) 135.9 23.8(109) 509.1
5 8.0(4) 53.6 11.0(15) 277.6 20.9(47) 1810.7* 36.9(164) 13203.7*

102 2 5.0(3) 0.1 7.0(4) 0.1 10.0(6) 0.1 13.7(8) 0.3
3 6.0(3) 0.4 9.6(5) 0.9 12.3(12) 3.5 23.7(19) 12.9
4 5.3(3) 2.9 8.8(6) 8.9 15.1(14) 41.4 34.3(46) 337.9
5 7.3(3) 40.3 10.0(6) 108.2 14.4(19) 690.5* 40.0(81) 8383.7*

103 2 3.0(2) 0.1 4.5(2) 0.1 6.0(4) 0.1 8.8(6) 0.2
3 4.0(2) 0.2 5.0(2) 0.2 5.8(6) 0.8 16.3(18) 7.6
4 4.5(2) 1.7 6.5(2) 2.4 8.1(6) 9.1 18.0(14) 53.2
5 4.5(2) 29.3 5.6(3) 53.5 7.2(7) 156.5 25.0(26) 2517.2*

ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8

β1 p li(nli) tcpu li(nli) tcpu li(nli) tcpu li(nli) tcpu
0 2 8.7(4) 0.2 11.1(9) 0.2 12.1(12) 0.4 10.4(11) 0.3

3 8.0(5) 0.8 12.9(13) 3.8 16.8(22) 8.8 15.7(19) 8.2
4 7.4(5) 6.5 13.0(14) 29.5 18.2(35) 106.9 27.6(55) 289.1
5 7.4(5) 56.4 11.7(13) 240.8 20.0(41) 1416.9 41.0(156) 14156.0

10 2 8.0(4) 0.1 10.6(10) 0.3 13.8(15) 0.5 15.1(15) 0.6
3 8.0(4) 0.7 13.1(12) 3.5 19.3(31) 14.7 24.6(30) 21.5
4 6.4(5) 6.7 13.5(12) 28.7 20.6(46) 167.6 34.1(67) 449.5
5 6.6(5) 59.1 12.3(13) 273.1 21.7(58) 2291.8 41.4(162) 15118.4*

102 2 4.5(2) 0.1 9.8(6) 0.2 12.3(10) 0.3 15.5(12) 0.5
3 4.3(2) 0.3 10.3(6) 1.1 15.7(16) 5.2 27.2(24) 18.5
4 4.6(3) 2.7 9.6(6) 9.7 18.4(20) 61.5 33.2(47) 321.4
5 5.6(3) 69.3 8.5(7) 196.7 17.6(23) 907.8 34.3(82) 7428.8

103 2 3.0(2) 0.1 5.0(3) 0.1 10.1(7) 0.2 13.6(9) 0.3
3 2.5(2) 0.1 5.0(3) 0.3 10.1(7) 1.4 22.3(12) 6.8
4 2.5(2) 0.2 4.5(4) 3.7 9.5(7) 12.1 21.1(15) 58.9
5 3.0(2) 25.9 4.2(4) 66.4 8.2(8) 237.4 19.3(17) 2277.6*

Table 6.5
as-gmres-ipf for a variety of values for h = 2−p, ν and β = (β1, 0, 0). The symbol ‘*’ denotes

runs where an hsl-mi20 warning occurred; in some of these cases, much larger timings were observed.
Top: CC-Pb1. Bottom: CC-Pb2.

shows that the number of nonlinear iterations is quite different between as-gmres-
ipf and as-minres-bdf when h is small and ν ∈ {10−6, 10−8}. For these values
the preconditioner in as-minres-bdf is rather ill-conditioned and its performance
deteriorates. In this case, the Newton steps computed with the two preconditioned
solvers, using the stopping criterion (6.1), might differ so greatly that different conver-
gence histories take place. Unfortunately, this resulted in the as-minres-bdf failure
in 10 instances. We recovered 9 over 10 failures by imposing the stricter tolerances
τs = τ1 = 10−12 in (6.1) (this runs are marked with the symbol ‘†’ in Table 6.6).
A few unexpected large values of li can still be observed in Table 6.6 for β = 100
and h = 2−5, which can be presumably ascribed to an inaccuracy of the multigrid
operator.

The superiority of as-gmres-ipf is also evident in the left plot of Figure 6.1, which
reveals that as-gmres-ipf is much more efficient than as-minres-bdf in terms of
total CPU time and that in the 55% of the runs, the CPU time employed by as-
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p ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8

β1 li(nli) tcpu li(nli) tcpu li(nli) tcpu li(nli) tcpu
0 2 20.0(3) 0.2 13.8(7) 0.2 22.7(9) 0.4 25.4(9) 0.4

3 19.5(4) 4.2 23.8(11) 14.4 34.6(19) 35.8 40.1(27) 57.6
4 18.7(4) 9.9 23.5(17) 51.6 44.9(54) 289.8 72.1(66) 513.4
5 19.2(4) 144.4 24.3(15) 474.3 56.3(89) 5627.2 - -

10 2 18.3(3) 0.1 18.3(10) 0.3 25.3(10) 0.5 29.0(10) 0.5
3 17.7(4) 4.2 24.6(13) 19.0 37.7(18) 39.7 50.6(19) 56.7
4 17.7(4) 10.8 26.5(13) 40.0 53.7(33) 245.7 87.7(42) 500.7
5 19.2(4) 98.4 29.5(15) 550.6 63.1(74) 5572.9 174.1(146)† > 5h*†

102 2 10.5(2) 0.1 14.0(4) 0.1 20.5(6) 0.2 31.5(8) 0.4
3 11.6(3) 1.8 20.2(5) 5.2 27.1(12) 17.4 53.5(19) 54.3
4 11.6(3) 5.3 20.5(6) 17.8 37.0(14) 72.8 93.5(40) 546.5
5 98.3(3) 737.3 28.5(6) 382.7 74.8(19)† 2988.0*† 180.2(80)† > 5h*†

103 2 6.5(2) 0.1 8.5(2) 0.1 11.5(4) 0.1 17.5(6) 0.2
3 7.5(2) 0.9 10.5(2) 1.1 11.8(6) 4.0 29.0(8) 13.5
4 9.5(2) 3.1 13.5(2) 4.3 16.8(6) 15.6 41.1(10) 61.7
5 9.5(2) 79.4 11.6(3) 146.3 19.0(7) 549.3 42.1(16) 3036.1*

p ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8

β1 li(nli) tcpu li(nli) tcpu li(nli) tcpu li(nli) tcpu
0 2 18.0(4) 0.2 23.2(9) 0.4 26.5(12) 0.6 23.1(11) 0.5

3 16.8(5) 4.7 27.7(13) 19.8 36.8(22) 44.6 35.5(19) 37.1
4 16.2(5) 11.1 28.7(14) 52.1 43.5(36) 204.8 69.0(63) 572.0
5 16.6(5) 96.7 27.5(13) 416.1 52.5(53) 3152.0 123(133)† > 5h†

10 2 16.7(4) 0.1 23.0(10) 0.4 32.4(15) 0.9 37.4(15) 1.0
3 16.5(4) 4.0 30.6(12) 21.7 52.2(30) 90.8 70.3(30) 122.1
4 14.2(5) 10.8 32.0(12) 54.6 63.7(47) 409.8 108(79) 1151.1
5 14.8(5) 98.8 33.0(13) 533.3 78.4(100) > 5h 194(159)† > 5h*†

102 2 9.5(3) 0.1 20.6(6) 0.2 27.1(10) 0.4 35.6(12) 0.7
3 9.0(3) 1.5 22.0(6) 7.0 37.3(16) 31.5 66.2(25) 86.9
4 9.6(3) 4.7 22.1(6) 19.1 47.1(20) 138.3 90.9(56) 744.5
5 226(3) 1206.2 112.5(7) 1411.8 109.2(23)† 4762.4† - -

103 2 5.5(2) 0.1 10.3(3) 0.1 21.0(7) 0.3 28.4(9) 0.5
3 5.5(2) 0.6 10.3(3) 1.8 20.4(7) 7.7 49.6(11) 31.3
4 5.5(2) 2.3 10.0(4) 6.6 19.5(7) 21.2 63.8(15)† 699.3†
5 6.5(2) 71.1 8.0(5) 8.3 25.5(8)† 828.3† 67.7(26)† 7897.7†

Table 6.6
as-minres-bdf for a variety of values for h = 2−p, ν and β = (β1, 0, 0). The symbol ‘*’ denotes

runs where an MI20 warning occurred; in some of these cases, much larger timings were observed
(> 5h means that the CPU is larger than 5 hours). Top: CC-Pb1. Bottom: CC-Pb2.

minres-bdf is within a factor 2 of the time employed by as-gmres-ipf.

Finally, for the sake of completeness, we also carried out experiments on CC-pb1

using the agmg algebraic multigrid operator [21, 22] in place of the hsl-mi20 in the
solution of systems with L1. The implementation of agmg requires the use of the
“flexible” variant of the linear system solver since the application of multigrid precon-
ditioner is the result of an iterative process and therefore it changes step by step [28].
Table 6.7 shows the results obtained using Flexible gmres (fgmres) in combination
with hsl-mi20 (first two columns) and agmg (last two columns) in the application of
the PIPFk preconditioner. We only report experiments with ν ∈ {10−6, 10−8}, as for
larger values the performance with the two multigrid preconditioners is very similar.
For ν = 10−6 the overall performance in terms of CPU time is still somewhat com-
parable, whereas it is clearly in favor of agmg in the extreme case ν = 10−8. On the
other hand, the average number of iterations (li) with hsl-mi20 is in general lower,
showing that the latter preconditioner is more effective in terms of approximation
properties, but more expensive to apply.



24 M. Porcelli, V. Simoncini and M. Tani

as-fgmres-ipf with hsl-mi20 as-fgmres-ipf with agmg
ν = 10−6 ν = 10−8 ν = 10−6 ν = 10−8

β1 p li(nli) tcpu li(nli) tcpu li(nli) tcpu li(nli) tcpu
0 2 10.3(9) 0.3 11.1(9) 0.4 17.0(9) 0.3 18.7(9) 0.3

3 16.0(19) 21.3 18.3(27) 36.4 23.7(19) 12.3 28.5(27) 27.4
4 17.6(54) 223.6 28.5(57) 351.6 28.5(54) 157.4 41.7(57) 286.7
5 21.9(68) 2794 38.7(190) 17457.3 44.8(68) 3766.9 53.3(189) 14250

10 2 10.4(10) 0.2 11.3(10) 0.4 19.0(10) 0.2 20.7(10) 0.3
3 15.4(18) 20.9 19.7(19) 31.1 25.0(18) 11.5 31.7(19) 23.1
4 18.6(41) 132.6 26.4(42) 239.4 25.0(41) 79.1 35.4(42) 272.3
5 20.9(47) 1938 37.9(138) 12582* 39.3(47) 1951.3 50.2(147) 10105

102 2 10.0(6) 0.1 13.7(8) 0.5 16.0(6) 0.1 20.3(8) 0.3
3 12.3(12) 10.5 23.7(19) 36.5 20.5(12) 7.5 31.5(19) 24.4
4 15.1(14) 39.8 36.8(34) 321.0 28.7(14) 37.6 39.4(34) 153.3
5 14.4(19) 776* 38.8(82) 9172* 39.2(19) 755.6 50.2(81) 5658

103 2 6.0(4) 0.1 8.8(6) 0.37 8.2(4) 0.1 12.3(6) 0.2
3 5.8(6) 2.1 14.1(8) 9.3 9.8(6) 1.2 18.7(8) 5.1
4 8.1(6) 8.5 20.1(10) 43.2 12.0(6) 5.1 26.3(10) 31.6
5 7.2(7) 150.1 19.6(16) 1660* 13.1(7) 43.9 26.6(16) 600.6

Table 6.7
as-fgmres-ipf (flexible variant) using hsl-mi20 (left) and agmg (right) for a variety of values

of h and β, and small values of ν. The symbol ‘*’ denotes runs where an hsl-mi20 warning occurred;
Test problem CC-Pb1.

Example 6.3. We further investigate the reliability of our proposals considering
problem CC-pb2 with the following nonconstant convection parameter

β(x, y, z) =

 −2x(1− x)(2y − 1)z
(2x− 1)y(1− y)

(2x− 1)(2y − 1)z(1− z)

 ; (6.2)

see example 3D1 in [21]. The performance of as-gmres-ipf and as-minres-bdf
is analogous to that showed in Tables 6.5-6.6 for the constant and unidirectional
β = (β1, 0, 0); a sample of this behavior for as-gmres-ipf is reported in Table 6.8 as
ν and h− 2−p vary.

as-gmres-ipf on CC-Pb2 with convection (6.2)
ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8

p li(nli) tcpu li(nli) tcpu li(nli) tcpu li(nli) tcpu
2 5.0(3) 0.3 9.0(8) 0.4 12.4(19) 0.5 14.5(19) 0.7
3 5.0(3) 2.2 9.4(8) 5.4 15.1(32) 34.2 20.1(41) 66.9
4 4.7(3) 5.9 8.3(9) 14.6 15.4(39) 133.2 26.5(92) 528.8
5 5.0(3) 42.2 7.8(9) 139.9 14.9(36) 1089.0 28.6(137) 9643.7

Table 6.8
as-gmres-ipf on problem CC-Pb2 with convection β given in (6.2).

Example 6.4. For the MC and SC problems, we considered h ∈ {2−2, 2−3, 2−4},
ν ∈ {10−2, 10−4, 10−6, 10−8}, β = (β1, 0, 0) with β1 ∈ {0, 10, 100, 1000}, and ε ∈
{10−1, 10−2, 10−3, 10−4, 10−8, 0}, where the values ε ∈ {10−8, 0} are included to com-
prise the SC problems. We thus obtained a set of 288 runs. The numerical results for
these problems do not significant differ from those of the CC problem, at least for the
larger values of ε in the set. Therefore, to avoid proliferation of tables, we prefer not
to include them, and report instead the overall performance profile in the right plot
of Figure 6.1. For all considered runs, the profile clearly shows that as-gmres-ipf
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is the fastest in the 96% of the runs and that as-minres-bdf is within a factor 2 of
as-gmres-ipf for the majority (93%) of the runs.

β1 = 10 β1 = 100
ε -1 -2 -3 -4 -8 −∞ ε -1 -2 -3 -4 -8 −∞
ν ν

-2 10.3 14.3 35.3 32.5 34.1 34.1 -2 6.0 7.7 8.7 9.0 9.7 9.0
-4 13.5 13.3 16.6 20.2 21.0 21.3 -4 12.3 13.3 16.3 22.3 26.6 26.4
-6 19.5 16.0 14 13.5 13.5 13.5 -6 21.6 19.8 14.7 17.7 16.7 16.7
-8 25.8 18.4 12.0 10.5 10.5 10.5 -8 40.4 34.2 18.0 14.0 13.5 13.5

Table 6.9
Mixed Constraints MC-Pb1: Average number of gmres iterations using as-gmres-ipf with h =

2−4 and varying ν and ε (log10 values of ν, ε).

β1 = 10 β1 = 100
ε -1 -2 -3 -4 -8 −∞ ε -1 -2 -3 -4 -8 −∞
ν ν

-2 22.0 32.1 60.7 86.2 91* 93* -2 14.0 17.3 19.2 20.0 22.6 21.3
-4 27.8 27.0 34.4 42.2 44.1 44.8 -4 27.0 28.0 33.7 44.2 56.0 55.2
-6 45.3 33.2 27.5 27.5 21.5 27.5 -6 49.4 41.4 29.7 36.0 34.7 34.7
-8 65.7 39.8 24.5 21.5 21.5 21.5 -8 93.6 71.9 36.3 28.5 27.5 27.5

* 6 pre/post smoothing steps set in hsl-mi20
Table 6.10

Mixed Constraints MC-Pb1: Average number of minres iterations using as-minres-bdf with
h = 2−4 and varying ν and ε (log10 values of ν, ε).
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Fig. 6.1. Total CPU time performance profile for as-gmres-ipf and as-minres-bdf. Left:
CC-Pb1 and CC-Pb2. Right: MC-Pb1.

The dependence on ε and the mutual influence of ε and ν deserve deeper explo-
ration. In Tables 6.9 and 6.10 we report the average number of inner iterations for
h = 2−4 obtained with as-gmres-ipf and as-minres-bdf, resp., as ν and ε vary.

We observe that for β = 10 the average number of inner iterations becomes large
when ε is small and ν is large (top right corner) whereas for β = 100 the increase in
iteration number is more evident in the opposite setting (bottom left corner). Overall,
the variation of the reported values is quite modest and smallest values are located
on the diagonal of the table (shaded cells), i.e. when ν = ε2. We recall that ν = ε2

corresponds to γ1 = γ2 = 1
2 in the block L1 of the Schur approximation (4.2), so

that Proposition 4.7 holds (see Remark 4.8). We also notice that the variation in the
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number of iterations is significantly less pronounced for the indefinite preconditioner
than for the block diagonal preconditioner. In particular, for a fixed ν, the average
number of iterations for as-gmres-ipf varies very mildly. More significant variations
for fixed ν are visible for as-minres-bdf, see Table 6.10. Moreover, we observe that
the behavior of the proposed preconditioner does not deteriorate for ε → 0 and, in
particular, fully satisfying results are obtained for ε = 0, i.e. in the solution of State
Constrained problems.

We point out that similar digits were observed when using a direct solver (not re-
ported here) in place of hsl-mi20 within the preconditioners. Therefore, the different
performance as the parameters deviate from ν = ε2 is not due to the preconditioner
inexactness, but rather, to the different quality of the (exact) preconditioner itself.
The only exception is given by the two runs marked with the symbol ‘*’ in Table 6.10,
for which a lower average number of minres iterations was observed when using a
direct solver in place of hsl-mi20.

6.2.3. The inexact active-set Newton method for CC problems. Per-
forming the experiments on problems with CC constraints (1.2), we observed differ-
ent trends in the nonlinear iteration progress varying the parameters ν and β, see
e.g. the values of nli in Table 6.5. To clarify this issue, we plot in Figure 6.2 the
convergence history of as-gmres-ipf on CC-Pb1 with mesh size h = 2−4 varying
β1 ∈ {0, 10, 100, 1000} and setting ν = 10−2 in the left plot and ν = 10−6 in the right
plot.
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Fig. 6.2. Convergence history of as-gmres-ipf for the CC-pb1 with h = 2−4. Left: ν = 10−2.
Right: ν = 10−6.

Looking at each plot we note that the number of nonlinear iterations decreases as β
becomes larger; moreover, comparing the two plots, we observe an increase of Newton
steps for a smaller ν. More interestingly, the right plot in Figure 6.2 shows a long
stagnation phase in the nonlinear process before reaching the local area of fast Newton
convergence. In this first phase, away from a solution, choosing an ηk too small (as in
(6.1)) can lead to oversolving the Newton equation (2.8): the corresponding step may
result in little or no progress toward a solution, while involving pointless expense.

We therefore combined the active-set method with the inexact adaptive choice
(2.12). We report in Table 6.11 the results of as-gmres-ipf using the adaptive value
ηk = ηIk in (2.12) on problem CC-Pb1 with h ∈ {2−4, 2−5}, β1 ∈ {0, 10, 100, 1000} and
ν ∈ {10−2, 10−4, 10−6, 10−8}.
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ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8

β1 p li(nli) tcpu li(nli) tcpu li(nli) tcpu li(nli) tcpu
0 4 3.2(5) 3.2 4.5(18) 15.9 7.0(60) 77.1 13.1(131) 281.9

5 4.0(6) 59.1 2.7(16) 102.0 3.5(92) 646.4 - -
10 4 3.5(4) 3.2 3.2(14) 11.1 5.2(60) 65.9 112.7(101) 233.9

5 4.0(5) 39.6 2.9(15) 100.7 3.0(53) 377.7* - -
100 4 3.0(3) 1.8 3.3(6) 4.1 11.6(14) 30.4 10.6(51) 100.5

5 4.3(3) 25.4 3.1(6) 42.1 2.9(27) 332.4* - -
1000 4 2.5(2) 1.1 3.3(3) 2.1 7.5(6) 8.5 20.4(10) 45.1

5 2.5(2) 18.1 3.0(3) 31.6 2.5(7) 67.3 8.1(18) 924.1
Table 6.11

as-gmres-ipf on CC-Pb1 for h = 2−p ∈ {2−4, 2−5} and a variety of values for ν and β. The
symbol ‘*’ denotes runs where an hsl-mi20 warning occurred.

Let us compare values in Table 6.11 with the corresponding values in Table 6.5
(top table) obtained with ηEk . The average number of linear iterations is smaller in
Table 6.11 than in Table 6.5 while the number of nonlinear iterations is larger in
15 over 29 successful runs. Overall, the saving in number of inner iterations of as-
gmres-ipf with ηIk makes it faster than as-gmres-ipf with ηEk in all runs. Two extra
failures occur when ηIk is used in the limit case ν = 10−8.

Summarizing, the inexact strategy is both cheaper and more effective in solving
problem (2.4), especially for ν ∈ {10−4, 10−6} and β1 ≤ 10, that is values for which
the stagnation phase is longer. Note that in particular, a less stringent inner accuracy
allows a fast solution also in the limit case β1 = 1000.

7. Conclusions. We have proposed two classes of preconditioners (a positive
definite one and an indefinite one) for efficiently solving problem (1.1) by means of
an active-set Newton method. Both acceleration strategies rely on a new effective
approximation to the Schur complement of the Jacobian matrix, for which spectral
estimates are provided.

A large set of numerical experiments shows the great potential of these precon-
ditioners for a large range of all problem parameters. As opposed to the current
literature, we cope with the indefiniteness of the problem by appropriately choos-
ing the structured preconditioner, and we include active set information explicitly in
the preconditioning blocks to exploit this information at later stages. Therefore, the
preconditioner adapts dynamically with the modification of the active sets. This pro-
cedure allowed us to devise a general and simple to implement acceleration strategy,
that can be employed either within minres (in the block diagonal form) or within
gmres (in the indefinite factorized form). The latter formulation outperforms min-
res in all test cases, and shows significantly lower sensitivity to the extreme values
of the parameters. In general, memory requirements of gmres remain modest, as
the number of iterations stays quite small throughout the nonlinear process. For the
smallest values of ν, however, the number of gmres iterations may make its mem-
ory requirements undesirably high. In this case, a short-term recurrence such as the
symmetric version of qmr could be considered as an alternative; see, e.g., [26] for
a discussion and related numerical experiments. We also mention that a dimension
reduction could be employed in the original system (2.8). This strategy is discussed
in [32] in the case when no bound constraints are imposed, and it could be naturally
generalized to our setting.

Although some of the preconditioner blocks need to be recomputed at each New-
ton iteration, this cost does not seem to penalize the overall performance of the pre-
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conditioned solver. Numerical comparisons with state-of-the-art methods available in
the literature support these claims.

Finally, we mention that more general regularization terms could be considered
for the cost functionals, for instance, by enforcing sparsity constraints, see, e.g., [33].
We aim to address this important aspect in future research.
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Appendix. In this appendix we collect some of the technical proofs (subscript
k is omitted).

Proof of Lemma 4.6. From F + FT � 0 it also follows that F + I is nonsingular.
i) We consider the eigenvalue problem (F + I)−1(F − I)(F − I)T (F + I)−Tx = θx

with θ ≥ 0, or, equivalently, (F − I)(F − I)T y = θ(F + I)(F + I)T y with y =
(F + I)−Tx. The largest eigenvalue coincides with ‖(F + I)−1(F − I)‖2. We have
(F − I)(F − I)T = FFT + I − F − FT and (F + I)(F + I)T = FFT + I + F + FT .
Substituting and rearranging terms gives

(1− θ)(FFT + I)y = (θ + 1)(F + FT )y.

We multiply from the left by yT . Since FFT + I � 0, F + FT � 0 and θ + 1 > 0, it
must be that 1− θ ≥ 0, that is θ ≤ 1.

ii) We proceed in a similar way. Let us now consider (F + I)−1(F + FT )(F +
I)−Tx = θx, with θ > 0, which is equivalent to (F +FT )y = θ(F + I)(F + I)T y, with
y = (F + I)−Tx. Therefore, (1 − θ)(F + FT )y = θ(FFT + I)y. We premultiply by
yT and rearrange to obtain

1− θ
θ

=
yT (FFT + I)y

yT (F + FT )y
.
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From the relation (F − I)(F − I)T � 0 it follows that
yT (FFT + I)y

yT (F + FT )y
≥ 1. Thus,

1− θ
θ
≥ 1 which implies θ ≤ 1

2
.

Proof of Proposition 4.9. Let F =
√
νM−

1
2LM−

1
2 .

i) For αu = 1 and αy = 0 we have γ1 = 0 and γ2 = 1, so that M−
1
2 SM− 1

2 =
FFT + (I −Π), and

M−
1
2 ŜM−

1
2 = (F + (I −Π))(F + (I −Π))T ,

where we used the fact that (I−Π)
1
2 = (I−Π). From M−

1
2 SM− 1

2x = λM−
1
2 ŜM− 1

2x

we obtain for y = M
1
2x

(F + (I −Π))−1(FFT + (I −Π))(F + (I −Π))−T y = λy. (7.1)

Since F is nonsingular, we have

(F + (I −Π))−1(FFT + (I −Π))(F + (I −Π))−T

= (F + (I −Π))−1F (I + F−1(I −Π)(I −Π)F−T )FT (F + (I −Π))−T

= (I + F−1(I −Π))−1(I + F−1(I −Π)(I −Π)F−T )(I + F−1(I −Π))−T

=: (I + Z)−1(I + ZZT )(I + Z)−T ,

with Z = F−1(I −Π). Therefore, from (7.1) it follows

λ ≤ ‖(I + Z)−1(I + ZZT )(I + Z)−T ‖ ≤ ‖(I + Z)−1‖2 + ‖(I + Z)−1Z‖2

= ‖(I + Z)−1‖2 + ‖I − (I + Z)−1‖2

≤ ‖(I + Z)−1‖2 + (1 + ‖(I + Z)−1‖)2. (7.2)

We then recall that Z = F−1(I −Π) = 1√
ν
M

1
2L−1M

1
2 (I −Π), so that

‖(I + Z)−1‖ = ‖(I +
1√
ν
M

1
2L−1M

1
2 (I −Π))−1‖

= ‖M 1
2

(√
νL+M(I −Π)

)−1√
νLM−

1
2 ‖.

To analyze the behavior for ν → 0, let us suppose that L + LT � 0, and write

Z = 1√
ν
F̃−1(I−Π); without loss of generality also assume that I−Π = blkdiag(I`, 0).

The eigendecomposition of F̃−1(I − Π) is given by4 F̃−1(I − Π) = XΛX−1 where

Λ = diag(λi) and λi ∈ spec((F̃−1)11) ∪ {0}. Here (F̃−1)11 is the top left ` × ` block

of F̃−1. Note that all eigenvalues of (F̃−1)11 have strictly positive real part, thanks
to the condition L+ LT � 0. Therefore

‖(I + Z)−1‖ = ‖X(I +
1√
ν

Λ)−1X−1‖ ≤ cond(X) max

 1

min
λ∈spec((F̃−1)11)

|1 + λ/
√
ν|
, 1

 .

4In the unlikely case of a Jordan decomposition, the proof proceeds with the maximum over
norms of Jordan blocks inverses, which leads to the same final result.
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We thus have

max

 1

min
λ∈spec((F̃−1)11)

|1 + λ/
√
ν|
, 1

→ 1 for ν → 0,

so that ‖(I + Z)−1‖ ≤ η cond(X) with η → 1 for ν → 0.

ii) For αu = 0 and αy = 1 we have γ1 = 1 and γ2 = 0, so that M−
1
2 SM− 1

2 =
F (I −Π)FT + I, and

M−
1
2 ŜM−

1
2 = (F (I −Π) + I)(F (I −Π) + I)T .

As before, setting this time Z = F (I − Π) we obtain the bounds (7.2) for λ with

‖(I + Z)−1‖ = ‖(I +
√
νM−

1
2LM−

1
2 (I − Π))−1‖. Finally, it is apparent from the

above expression that ‖(I + Z)−1‖ → 1 as ν → 0.


