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1 Introduction

While there are various lines of evidence for the existence of dark matter (DM) in the
universe [1], the nature of DM remains a major problem at the interface of cosmology and
particle physics. Weakly interacting massive particles (WIMPs) have long been a promising
candidate and the focus of most direct, indirect and collider searches. In an attractive
scenario, called the ‘WIMP miracle’, the DM relic abundance is obtained via thermal freeze-
out in a radiation dominated (RD) universe for the nominal value of the DM annihilation
rate 〈σannv〉 = 3×10−26 cm3 s−1. This scenario, however, has been coming under increasing
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scrutiny by recent experiments, namely the Fermi-LAT results from observations of dwarf
spheroidal galaxies [2] and newly discovered Milky Way satellites [3]. A recent analysis [4]
has specifically ruled out thermal DM with a mass below 20GeV in a model-independent
way (unless there is P-wave annihilation or co-annihilation). Masses up to 100GeV can be
excluded if specific annihilation channels are considered.

The situation is different if the universe is not RD at the time of DM freeze-out [5].
This typically happens in non-standard thermal histories where the universe is not in a RD
phase from inflationary reheating all the way to Big Bang nucleosynthesis (BBN) [6]. An
important example is an epoch of early matter domination (EMD) driven by a component
whose equation of state is the same as matter. This is a generic feature of early universe
models arising from string theory constructions [7–9]. In this context, a string modulus
is displaced from the minimum of its potential during inflation. Due to its long lifetime,
the modulus dominates the energy density and gives rise to a period of EMD in the post-
inflationary history. The modulus eventually decays and a RD universe is established prior
to BBN. Various production mechanisms during EMD can yield the correct DM abundance
for both 〈σannv〉 < 3× 10−26 cm3 s−1 and 〈σannv〉 > 3× 10−26 cm3 s−1 [10].

Furthermore, the DM relic abundance can be completely decoupled from 〈σannv〉 if its
main source is direct production from the decay of the component that drives an EMD
phase [11]. In this scenario, the relic abundance depends on the branching fraction for decay
to DM (hence the ‘branching scenario’ [12]) and the yield from the decay of the matter-like
component. Non-thermal production of supersymmetric DM via the branching scenario has
been studied in explicit string theory constructions where the volume modulus drives an
epoch of EMD just before the onset of BBN [13]. A successful realization along these lines
seems to be challenging for two reasons. First, the branching fraction of the volume modulus
to DM is such that the correct abundance can be obtained for DM ∼ O(10)GeV. Second,
the decay of the volume modulus typically produces dark radiation (DR) in addition to
DM, and avoiding an excess of DR severely constrains the branching scenario [14].

However, in this work we shall show that the branching scenario could instead arise
very generically in 4D string models with superheavy WIMPs. Several scenarios of su-
persymmetry breaking and inflation have already been realized in the context of string
theory. Combining low-energy supersymmetry with successful inflationary model building
is notoriously hard to achieve [15]. The main reason is that the requirement of obtaining
density perturbations of the correct size tends to fix the inflationary scale at relatively high
energies. In turn, masses of the supersymmetric particles are also generically pushed to
large values, typically at an intermediate scale around 1010–1011 GeV. A possible way to
reconcile inflation with low-energy supersymmetry is to sequester the visible sector from
the source of supersymmetry breaking in the bulk of the extra dimensions. Sequestered
models, however, require a very specific brane configuration and Kähler metric for mat-
ter fields [16, 17]. This solution therefore is not very generic. We note that statistical
studies showed that high scale supersymmetry is a generic feature of the string landscape
regardless of inflation [18, 19].

Though the thermal DM scenario is known to overproduce superheavy WIMPs [20],
the DM abundance may be diluted by epochs of EMD driven by string moduli. Hence two
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generic features of string compactifications, high-scale supersymmetry breaking and late
time epochs of modulus domination, can successfully accommodate superheavy WIMPs
with a mass around 1010–1011 GeV. Incidentally, if such a DM candidate is unstable and
has the right coupling to neutrinos, its decay into very energetic neutrinos could provide a
tantalizing explanation of the ultra-high-energy cosmic rays recently observed by IceCube
and ANITA1 [21].

We will illustrate this general picture by presenting an explicit model that involves two
periods of EMD. The first one is driven by inflaton oscillations at the end of which the
inflaton mainly decays to DR in a hidden sector, and produces superheavy DM via its tiny
coupling to the visible sector. A second stage of EMD is driven by the volume modulus,
which is dominantly coupled to the visible sector and is lighter than the DM. As a result,
this second EMD phase only dilutes the abundance of DM and DR produced in inflaton
decay down to observationally acceptable values.

This paper is organized as follows. In section 2 we briefly review the branching scenario
for DM production. In section 3 we discuss a successful framework for production of super-
heavy DM via the branching scenario. In section 4 we introduce an explicit string theory
model for realizing this scenario. In section 5 we identify the allowed parameter space of
this model for a successful inflation and a correct DM abundance, and we present numerical
results for the post-inflationary evolution for a benchmark point. We conclude in section 6,
and discuss generalized scenarios that involve more than one modulus in appendix A.

2 Branching scenario: a brief review

Let us consider a post-inflationary history that includes an EMD era driven by coher-
ent oscillations or non-relativistic quanta of a long-lived scalar field ϕ with mass mϕ and
decay width Γϕ. The continuous decay of ϕ feeds radiation (assuming that decay prod-
ucts thermalize immediately) during the period that it dominates the energy density of
the universe. The decay of ϕ completes when the Hubble expansion rate is H ' Γϕ,
at which time the universe enters a RD phase. The resulting reheat temperature is
TR = (90/π2g∗,R)1/4(ΓϕMP)1/2, where g∗,R is the number of relativistic degrees of free-
dom at T = TR.

The energy densities of ϕ and radiation, denoted by ρϕ and ρR respectively, and
the number density nχ of DM particles χ are found by solving the following system of
Boltzmann equations:

ρ̇R + 4HρR = Γϕρϕ ,
ρ̇ϕ + 3Hρϕ = −Γϕρϕ , (2.1)

ṅχ + 3Hnχ = 〈σannv〉
(
n2
χ,eq − n2

χ

)
+ BrχΓϕnϕ .

1Notice that superheavy DM candidates have been claimed to arise also from the breaking of string
GUT symmetries by Wilson lines [22]. The decay of these heavy states could also produce ultra-high-
energy cosmic rays [23].
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The first term on the right-hand side (r.h.s.) of the last equation accounts for DM anni-
hilation and inverse annihilation from the thermal bath (〈σannv〉 denotes the thermally-
averaged annihilation/inverse annihilation rate). The second term accounts for direct pro-
duction of DM from ϕ decay [24] (where Brχ is the number of DM particles produced
per ϕ decay). Freeze-out/in of DM happens during the EMD epoch if Tf > TR, where
Tf ' mχ/20 in the case of freeze-out and Tf ' mχ/4 for freeze-in [25, 26].

Assuming that freeze-out/in production is subdominant, the main contribution to the
DM relic density comes from direct production at H ' Γϕ, and the number density of DM
particles at this time is given by:

nχ ' Brχnϕ =
3Γ2

ϕM
2
P

mϕ
Brχ . (2.2)

The comoving number density of DM follows this expression, hence the name ‘branching
scenario’ [11, 12], provided that residual annihilation of DM particles to the thermal bath
is inefficient. This will be the case if 〈σannv〉nχ < Γϕ, where nχ is substituted from (2.2).
Otherwise, partial annihilation will somewhat reduce the DM number density leading to
the so-called ‘annihilation scenario’ of DM production [8, 27–29]. The annihilation scenario
can only be successful if 〈σannv〉 > 3 × 10−26 cm3 s−1, which happens to be the case for
weak-scale Wino and Higgsino DM. For small values of 〈σannv〉, as in the case of Bino DM
or for mχ & 100TeV, only the branching scenario can yield the correct DM abundance.

After normalizing nχ in (2.2) by the entropy density s = 2π2g∗,RT
3
R/45 at T = TR, the

DM relic abundance in the branching scenario is found to be:
nχ
s

= 3TR
4mϕ

Brχ . (2.3)

Here 3TR/4mϕ is the yield factor that is related to dilution due to entropy released by ϕ
decay. In order for the branching scenario to work, this must match the observed value:(

nχ
s

)
obs
' 4.2× 10−10

(
1 GeV
mχ

)
. (2.4)

A natural question is if the branching scenario can be successfully realized in explicit
particle physics models of the early universe. This issue has been discussed in the context
of type IIB string compactifications where ϕ is the volume modulus [13]. In this case,
we have TR/mϕ ' (mϕ/MP)1/2. Also, for supersymmetric DM, three-body decays of ϕ
result in a lower bound Brχ & O(10−3). Considering that TR & 3MeV (corresponding to
mϕ & 50TeV) is required for BBN, (2.3) and (2.4) imply that the correct DM abundance
can be obtained for mχ . O(10)GeV. Moreover, avoiding excessive production of DR,
which typically accompanies DM production in string compactifications [30–33], seems to
favor the annihilation scenario [14].

3 Branching scenario and superheavy DM

In this section we lay down a framework for production of superheavy DM via the branching
scenario. To overcome the challenges mentioned in section 2, we invoke two epochs of EMD
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driven by the inflaton and a modulus field respectively, as in generic string models. We also
consider constraints from the cosmic microwave background (CMB) on such a scenario. In
section 4 we shall present an explicit type IIB string model that successfully realizes this
scenario (see also appendix A for another explicit string model which realizes this scenario
with an additional epoch of moduli domination).

3.1 Scenario with an epoch of modulus domination

The scenario we consider involves two periods of EMD driven by the inflaton σ and a
modulus field φ in succession. Both of these fields behave as the field ϕ described in
section 2. The inflaton σ is responsible for inflation at the end of which the Hubble
expansion rate is Hinf . The inflaton mass at the minimum of its potential is mσ and its
couplings to the visible and hidden sectors are cvis/MP and chid/MP respectively where
cvis � chid. We will also assume that there is no stable non-relativistic particle in the
hidden sector, so that the inflaton decay into hidden sector degrees of freedom just produces
DR. Therefore, the inflaton decay rate into DR dominates over the one into visible sector
particles since Γσ→DR ' c2

hidm
3
σ/M

2
P � Γσ→vis ' c2

vism
3
σ/M

2
P. We will also denote the total

inflaton decay width as Γσ = Γσ→vis + Γσ→DR.
The modulus φ has mass mφ < mσ. Its coupling to the visible sector is dvis/MP, while

its coupling to the hidden sector is dhid/MP with dvis � dhid. We will assume again that the
modulus decay into the hidden sector produces just DR. This gives Γφ→vis ' d2

vism
3
φ/M

2
P �

Γφ→DR ' d2
hidm

3
φ/M

2
P. The total modulus decay width is instead Γφ = Γφ→vis + Γφ→DR.

We assume that mφ < mχ so that φ decay to DM is kinematically forbidden. The modulus
acquires a displacement φ0 from the minimum of its potential during inflation.

Below, we summarize the important stages of the post-inflationary history in this
scenario in chronological order:

1. Γσ . H < Hinf : The universe is in an EMD phase driven by inflaton oscillations
about the minimum of its potential. φ also starts oscillating at this stage and ρφ =
(φ0/MP)2ρσ. The inflaton decay completes at H ' Γσ and mainly populates the
hidden sector.

2. HD . H < Γσ: The universe is in a RD phase at this stage. The modulus oscillations
behave like matter, and hence ρφ is redshifted more slowly than ρR. As a result, φ
starts to dominate at HD ' (φ0/MP)4Γσ, which is the onset of a second phase of
EMD.

3. Γφ . H < HD: The universe is in a modulus-driven EMD epoch during this stage.
The modulus decay completes when the Hubble expansion rate is H ' Γφ and reheats
the visible sector. This results in the formation of a RD universe prior to the onset
of BBN.

The inflaton decay to the visible and hidden sectors produces DM and DR respectively.
Given that mχ > mφ, the modulus decay dilutes both abundances and reproduces some
amount of DR in the hidden sector. The number density of DM particles directly produced
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by the inflaton decay at H ' Γφ is:

nχ ' nσ Brχ
(
aσ
aD

)3
(
aD
aφ

)3

, (3.1)

where nσ = 3Γ2
σM

2
P/mσ is the inflaton number density at the end of stage 1, (aσ/aD)3 =

(HD/Γσ)3/2 is the number density redshift during stage 2, and (aD/aφ)3 = (Γφ/HD)2 is
the number density redshift during stage 3.

If DM is the lightest R-parity odd particle in the visible sector, we have:

Brχ '
Γσ→vis

Γσ
Brvis,odd . (3.2)

The first factor on the r.h.s. of this expression is the fraction of σ quanta that decay to
the visible sector. The second factor is the ratio of the number of R-parity odd particles
(which subsequently decay to DM) to the total number of particles in the visible sector
produced per σ decay. In the explicit example that we discuss later, the σ decay into the
visible sector mainly occurs through two-body decays to gauge fields. Two-body decays
to R-parity odd particles are highly suppressed, but they are produced via three-body
decays including one gauge field and two gauginos resulting in Brvis,odd ' 10−3 (which is
essentially a phase space factor) [12].

Therefore, after normalizing nχ by the entropy density s, we find:

nχ
s
' 3

4 × 10−3 1
Y 2
φ

Γσ→vis
Γσ

Γφ
Γφ→vis

TR
mσ

, (3.3)

where:

TR =
(

90
π2g∗,R

Γφ→vis
Γφ

)1/4√
ΓφMP , (3.4)

with g∗,R denoting the number of relativistic degrees of freedom in the visible sector at
T = TR, and Yφ ≡ φ0/MP.

Regarding DR, its energy density at H ' Γφ is:

ρDR ' ρσ
Γσ→DR

Γσ

(
aσ
aD

)4
(
aD
aφ

)4

+ ρφ
Γφ→DR

Γφ
, (3.5)

where ρσ ' 3Γ2
σM

2
P, (aσ/aD)4 = (HD/Γσ)2 is the energy density redshift during stage 2,

(aD/aφ)4 = (Γφ/HD)8/3 is the energy density redshift during stage 3, and ρφ ' 3Γ2
φM

2
P.

Hence, the final fractional energy density of DR is given by:

ρDR
ρR
' 1
Y

8/3
φ

(Γφ
Γσ

)2/3 Γσ→DR
Γσ

Γφ
Γφ→vis

+ Γφ→DR
Γφ→vis

. (3.6)

This ratio must be small enough to satisfy the observational constraints on the DR
abundance.
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3.2 Constraints from CMB

Inflation is the dominant paradigm for generating the almost scale-invariant perturbations.
The number of e-foldings between the time when perturbations of a given wavelength exit
the horizon and the end of inflation depends on the scale of inflation as well as the post-
inflationary thermal history. One or more periods of EMD change the number of e-foldings
from that in a standard thermal history.

In the scenario discussed in section 3.1, the number of e-foldings of inflation between
the time when the pivot scale k∗ = 0.05 Mpc−1 left the horizon and the end of inflation
can be written as [34, 35]:

Ne ' 57 + 1
4 ln r − 1

4Nreh −
1
4Nφ, (3.7)

where r is the tensor-to-scalar ratio and:

Nreh '
2
3 ln

(
Hinf
Γσ

)
,

Nφ '
2
3 ln

(
HD
Γφ

)
' 2

3 ln
(
Y 4
φ

Γσ
Γφ

)
. (3.8)

Here Nreh and Nφ denote the duration of EMD phases from inflationary reheating and
modulus domination (stages 1 and 3 above) respectively. This results in:

Ne ' 57 + 1
4 ln r − 1

6 ln
(
Y 4
φ

Hinf
Γφ

)
. (3.9)

In important universality classes of inflation, the scalar spectral index ns is related to
Ne through a simple relation [36]:

ns = 1− a

Ne
. (3.10)

For example, in the Starobinsky model and Higgs inflation, as well as the specific model of
string inflation that we will discuss later, a = 2. This then leads to:

Ne = 2
1− ns

. (3.11)

This implies that:
Ne &

2
1− ns,min

, (3.12)

where ns,min is the minimum value in the 2σ region allowed by Planck data [37]. For a
given model of inflation where Hinf is known, this in turn sets an upper bound on Y 4

φ Γ−1
φ

through (3.9).
On the other hand, for known inflaton parameters mσ and Γσ, (3.3) and (3.6) result

in a lower bound on Y 4
φ Γ−1

φ in order not to overproduce DM and DR in our scenario.
Therefore, obtaining the correct abundance of DM (while avoiding an excessive pro-

duction of DR) and getting an acceptable value of ns constrain the epoch of modulus
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domination in opposite ways.2 This can be understood intuitively as follows. While di-
luting the abundance of DM and DR produced from inflaton decay to acceptable levels
requires a long enough bout of modulus domination, satisfying the lower bound on ns
limits the duration of that period from above.

4 A string model with an epoch of modulus domination

In this section we shall present an explicit string model which successfully realizes infla-
tion and superheavy neutralino DM via the branching scenario with an epoch of modulus
domination.

4.1 The setup

We consider a type IIB model with 3 Kähler moduli Ti = τi + ici, i = 1, . . . , 3 and a
Calabi-Yau volume of the form:

V = τ
3/2
big − τ

3/2
vis − τ

3/2
inf . (4.1)

The visible sector is realized via a stack of D7-branes wrapped around the 4-cycle whose
volume is controlled by τvis, while inflation is driven by the modulus τinf as in Kähler moduli
inflation [39]. A hidden sector lives instead on a stack of D7-branes wrapped around the
4-cycle whose volume is given by τinf .

The structure of the effective supergravity theory is determined by the Kähler potential
K and the superpotential W . K is given by:

K = −2 ln
(
V + ξ

2g3/2
s

)
, (4.2)

where gs is the string coupling and ξ is an O(1) coefficient which controls α′ corrections [40]
beyond the tree-level expression. W instead reads:

W = W0 +Avis e
−avisTvis +Ainf e

−ainfTinf , (4.3)

where W0 ∼ O(10–100) is the tree-level contribution, while the terms proportional to
Avis and Ainf are non-perturbative effects [41] (all A’s and a’s are expected to be O(1)
constants).

Moduli stabilization produces a typical LVS minimum [42] at exponentially large vol-
ume in string units, V ' τ

3/2
big ∼ e1/gs , while the two blow-up modes are fixed at smaller

values τvis ∼ τinf ∼ 1/gs ∼ O(10), where we take the string coupling in the perturba-
tive regime gs . 0.1. Notice that τvis sets the value of the visible sector gauge coupling
α−1

vis = 4πg−2
vis = τvis ∼ O(10) which turns out to be in the appropriate phenomenological

regime.
Moduli stabilization proceeds as follows: at leading order in a 1/V expansion, non-

perturbative corrections to W combined with α′ corrections to K stabilize V, τvis, cvis, τinf

2The implications of CMB constraints for non-thermal DM in low-scale supersymmetry has been studied
in [38].
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and cinf , leaving 1 flat direction parameterized by the axion cbig. This axion turns out to be
ultra-light since it receives a tiny mass due to additional Tbig-dependent non-perturbative
corrections to W . Thus cbig plays the role of hidden sector dark radiation. This system
admits a non-supersymmetric AdS minimum which can however be uplifted to dS via
several possible mechanisms (anti D3-branes [45], T-branes [46], non-perturbative effects
at singularities [47], non-zero F-terms of the complex structure moduli [48]). Let us finally
mention that, strictly speaking, τvis cannot be fixed by instantons due to the interplay
between chirality and non-perturbative effects [44]. A way-out is to consider 2 intersecting
blow-up cycles τvis,1 and τvis,2, where one is fixed by a non-perturbative contribution to W
as in (4.3) and the other by perturbative corrections to K as in [43]. However this detail
does not affect the phenomenological implications of our model since both τvis,1 and τvis,2
would be heavy spectator fields.

4.2 Moduli mass spectrum

The determination of the moduli mass spectrum and couplings to both visible and hidden
sector fields requires first to go to canonically normalized fields. Following the notation of
section 3, we will denote them as: (i) σ for τinf since this modulus plays the role of the
inflaton; (ii) φ for τbig since this modulus will give rise to an EMD epoch after the end of
inflation; and (iii) aDR for the closed string axion cbig which behaves as dark radiation.
Defining:

ε ≡ W0
V
� 1 and κ ≡ gs

8π � 1 , (4.4)

the mass spectrum of the relevant moduli around the minimum becomes [49, 50] (see [51]
for the correct normalization factor κ):

m2
σ ' κ ε2 (ln ε)2 M2

P

m2
φ '

εm2
σ

g
3/2
s W0 | (ln ε)3 |

� m2
σ for ε� 1

m2
aDR ' κ e

−2V2/3
M2

P ∼ 0 . (4.5)

This setup allows to realize Kähler moduli inflation [39] where the inflaton is σ since
this modulus becomes much lighter than H ' mφ as soon as it is displaced from its
minimum. τvis, cvis, and cinf are heavy spectator fields which do not get displaced during
inflation since their mass is of the same order of the mass of σ around the minimum, and
so it is much larger than H. On the other hand, all the other moduli get displaced from
their minimum during inflation. We shall focus just on φ since the axion aDR remains
almost massless and behaves as a source of extra dark radiation. We shall also denote the
displacement of the canonically normalized light Kähler modulus as φ0 = YφMP. Explicit
computations have shown that Yφ ' 0.01–0.1 [9]. Due to this displacement during inflation,
φ gives rise to a period of modulus domination. Moreover supersymmetry is broken due
to non-zero F-terms of the Kähler moduli which generate a gravitino mass m3/2 together
with gaugino and scalar masses of order [52]:

m3/2 =
√
κ εMP , m0 'M1/2 '

m3/2
| ln ε| . (4.6)
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Taking the neutralino DM mass of the same order as the soft terms, mχ ' m0 'M1/2, we
realize that:

m2
φ '

ε | ln ε|
g

3/2
s W0

m2
χ � m2

χ for ε� 1 , (4.7)

which ensures that DM cannot be reproduced from the decay of the light modulus φ.
Notice that in order to avoid any cosmological moduli problem, the mass of φ has to

be mφ & O(50)TeV. Using (4.5) and setting gs ' 0.1 and 1 . W0 . 100, this gives the
bound 5 × 10−9–10−8 . ε � 1 which, when translated in terms of the overall volume,
becomes 1� V . 108–5× 109. This, in turn, produces a scenario of superheavy DM since
it sets a lower bound on the DM mass of order mχ & 1010–1011 GeV. As we shall see in
the section 5, values of V below 108–5× 109 are also required to generate, during inflation,
the observed value of the amplitude of the density perturbations.

4.3 Hidden sector configuration

Let us comment a bit more on the configuration of the hidden sector D7-stack wrapping
τinf . This has to provide a non-perturbative contribution to the superpotential which
generates the inflationary potential, and be such that the inflaton decay into the hidden
sector produces just relativistic degrees of freedom without additional contributions to the
DM abundance. This dark radiation component is subsequently diluted by the decay of the
lightest modulus. If the hidden sector is a supersymmetric SU(Nc) theory with Nf flavors,
it would confine if Nf < Nc. The corresponding scale of strong dynamics Λ can be shown
to be above the inflaton mass, mσ < Λ [49], and so σ cannot decay into glueballs (gg),
‘gluinoballs’ (g̃g̃), and ‘glueballinos’ (gg̃) since they all develop a mass of order Λ. Hence
we need to discard the pure SYM case. For Nf > 0 with soft supersymmetry breaking
terms, squarks and quarks form scalar and fermionic condensates which all develop a mass
of order m0 ' M1/2 � mσ [53], except for pion-like mesons which are exactly massless in
the absence of a supersymmetric quark mass term inW . Therefore σ could decay into these
heavy condensates but some of them would be stable in the absence of EW interactions.
We conclude that the hidden sector cannot be a simple SU(Nc) theory with Nf flavors.
The best configuration for the hidden sector is instead a copy of the visible sector, i.e.
an MSSM-like hidden sector, with however 3 differences with respect to the visible sector:
(i) the scale of strong dynamics Λ is much higher than in ordinary QCD; (ii) R-parity is
not conserved so that hidden protons are unstable; (iii) the mass of the hidden electrons
is very small so that they are still relativistic, like neutrinos. In this scenario, all hidden
degrees of freedom produced from the inflaton decay eventually decay into hidden massless
gauge bosons or hidden relativistic matter fermions.

A final requirement is the absence of any leakage of energy between hidden and visible
sector degrees of freedom due to kinetic mixing between U(1)s or a possible moduli portal.
The first option can be avoided by construction if the hidden gauge group does not contain
any Abelian U(1) factor.3 On the other hand, a moduli portal between the two sectors
could be created by the volume modulus φ. However, we expect this effect to be negligible

3Even in the presence of a U(1) kinetic mixing, we expect the mixing parameter to be very small due to
the geometric separation between τvis and τhid [54].
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since, as we shall see in section 4.4, this field couples only with Planckian strength to both
sectors, and so any leakage would be proportional to (1/MP)4.

4.4 Moduli couplings and decay rates

Due to the geometric separation in the extra dimensions between τvis (which supports the
visible sector D7 stack) and τinf (which supports a hidden sector D7 stack), the coupling
of the canonically normalized inflaton σ to hidden sector gauge bosons is much stronger
than the one to visible sector gauge fields [49]:

L ⊃ −1
4
chid
MP

σ F hid
µν F

µν
hid −

1
4
cvis
MP

σ F vis
µν F

µν
vis , (4.8)

with:
chid ' g3/4

s

√
V � 1 and cvis ' c−1

hid . (4.9)

Notice that the interactions in (4.8) provide the main contributions to the inflaton decay
rate to both visible and hidden degrees of freedom. In fact, since m0 ' M1/2 � mσ, the
inflaton decay into supersymmetric partners is mass suppressed. The same consideration
applies to the inflaton decay into both visible and hidden sector matter fermions. The
decay rate into Higgses is also mass suppressed except for the case of a Giudice-Masiero
interaction in K which we assume to be absent.4 This implies the following important
relation for the determination of the DM abundance using (3.3):

Γσ→vis
Γσ

= Ng

Nhid
g

1
c4

hid

1(
1 + Ng

Nhid
g

1
c4

hid

) ' Ng

Nhid
g

1
g3
s V2 � 1 , (4.10)

where we included also the number of visible and hidden sector gauge bosons denoted
respectively as Ng and Nhid

g . For an MSSM-like visible sector we have Ng = 12 while Nhid
g

is a model-dependent parameter which can also be larger than Ng.
On the other hand the light modulus φ can decay to:

• Hidden sector gauge bosons:

L ⊃ −1
4
λhid
MP

φF hid
µν F

µν
hid , λhid '

1
| ln ε|

• Dark radiation bulk axions:

L ⊃ λDR
m2
φ

MP
φaDR aDR , λDR '

1√
6

• Visible sector gauge bosons:

L ⊃ −1
4
λvis
MP

φF vis
µν F

µν
vis , λvis '

1
| ln ε|

4Including a Giudice-Masiero coupling between σ and Higgs degrees of freedom would not modify our
results qualitatively.
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• Visible sector Higgs h0 and would-be Goldstone bosons G0 and G± [32]:

L ⊃ c
m2
φ

MP
φ
[
(h0)2 + (G0)2 + (ReG+)2 + (ImG+)2

]
with c = Z/(2

√
6) where Z is an O(1) parameter controlling Giudice-Masiero contri-

butions to the Kähler potential of the form K ⊃ Z
τb

(HuHd + h.c.) [30].

For ε� 1, the decay rate of φ into both hidden and visible gauge bosons is suppressed.
On the other hand, the decay of φ into ultra-light bulk axions could give rise to extra dark
radiation which needs to be in agreement with present observational bounds [55]. This sets
a lower bound on Z of order (neglecting DR from inflaton decay since this is diluted by
the decay of φ) [32]:

∆Neff ' 3 Γφ→DR
Γφ→vis

= 3
Z2 . 0.75 for Z & 2 . (4.11)

Therefore the ratio Γφ/Γφ→vis which appears in (3.3) for the final DM abundance looks like:

Γφ
Γφ→vis

= 1 + 1
Z2 . 1.25 , (4.12)

and the reheating temperature TR in (3.4) can be derived from the following decay width:

Γφ = 1 + Z2

48π
m3
φ

M2
P
. (4.13)

Finally, the remaining quantities which are crucial to derive the fractional energy density
of DR using (3.6) are:

Γσ = Nhid
g

c2
hid

64π

(
1 + Ng

Nhid
g

1
c4

hid

)
m3
σ

M2
P
' Nhid

g

c2
hid

64π
m3
σ

M2
P
, (4.14)

and:
Γσ→DR

Γσ
=
(

1 + Ng

Nhid
g

1
c4

hid

)−1

' 1 . (4.15)

4.5 Consistency of the branching scenario

In this paper we are considering a branching scenario for DM production from inflaton
decay. This is generically the case for superheavy WIMP DM since the corresponding
annihilation rate would be too small to realize the so-called non-thermal annihilation sce-
nario. However the computation of the DM relic density relies on the assumption that
the standard thermal freeze-out mechanism cannot occur. This is true if the visible sector
reheating temperature after the inflaton decay T vis

R,inf is below Tf , where Tf ' mχ/20 in the
case of freeze-out (and Tf ' mχ/4 for freeze-in). We shall now show that this is indeed the
case in our model.

In standard supersymmetric scenarios, the LSP mass is expected to be of order the soft
mass. As we have already seen, the DM mass is therefore slightly below the inflaton mass,
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mχ ' mσ/(ln ε)2 < mσ. Notice that this feature is not a peculiarity of our model but it is
a generic characteristic of string compactifications since, whenever the 4-cycle supporting
the visible sector is stabilized in the geometric regime, the visible sector is always not
sequestered from the source of supersymmetry breaking in the bulk. Thus the soft terms,
and the DMmass, turn out to be of the same order as the gravitino mass, which sets also the
order of magnitude of the mass of generic moduli (up to possible | ln ε| suppression factors).

Therefore we shall consider Tf ' mσ/(20 (ln ε)2). On the other hand, the visible sector
reheating temperature reads:

T vis
R,inf =

(
40NgN

hid
g

π2g∗

)1/4√
cvischid

64π mσ

√
mσ

MP
' mχ

20 (ln ε)2
√
mσ

MP
, (4.16)

where we used chid ' c−1
vis , and Nhid

g ' Ng = 12. Hence we obtain T vis
R,inf < Tf provided

that:
T vis

R,inf
Tf

' (ln ε)2
√
mσ

MP
' κ1/4 | ln ε|5/2

√
ε < 1 . (4.17)

This is indeed the case for ε � 1 and κ � 1, which guarantees the consistency of the
branching scenario. This will be confirmed in section 5.2 which presents a numerical
analysis of the cosmological evolution of our model.

5 Cosmology of the string model

In this section we shall first determine the values of the microscopic parameters which give
the right amplitude of the density perturbations and the correct DM abundance, finding
a DM mass around 1010–1011 GeV. We shall then perform a numerical analysis of the
cosmological evolution of our string model with an epoch of modulus domination.

5.1 Inflationary observables and DM abundance

Let us derive the allowed DM mass range in a single modulus cosmology. We achieve
a rather precise prediction by imposing a combination of observational and geometrical
constraints. We start with the expression for the number of e-foldings between horizon
exit and the end of inflation [9]:

Ne ' 57 + 1
4 ln r − 1

4Nreh −
1
4Nφ + 1

4 ln
(
ρσ,start
ρσ,end

)
. (5.1)

Here r is the tensor-to-scalar ratio, Nreh is the duration of the reheating period due to the
inflaton σ, and Nφ is the duration of the EMD epoch due to the modulus φ. Note that
we have set the equation-of-state parameter w equal to zero during inflationary reheating.
Also ρσ,start is the energy density at horizon exit, while ρσ,end is the energy density at the
end of inflation. Let us rewrite (5.1) in terms of fundamental parameters. The duration of
the reheating period is:

Nreh '
2
3 ln

(
Hσ,end

Γσ

)
, (5.2)

– 13 –



J
H
E
P
0
2
(
2
0
2
1
)
0
2
6

where Hσ,end is the Hubble rate at the end of inflation, which is given by [9]:

Hσ,end '
√

3
2

κ

(2π)3/2W0
ε3/2| ln ε|3/4MP . (5.3)

Combining (5.3) with the inflaton decay rate (4.14) gives:

Nreh '
2
3 ln

√3
2

5122π4

(2π)3/2
V1/2

Nhid
g W 2

0 g
5/2
s |ln ε|9/4

 . (5.4)

The duration of modulus domination is given by:

Nφ '
2
3 ln

(
Y 4
φ

Γσ
Γφ

)
' 2

3 ln
(

3
4

Nhid
g

1 + Z2 Y
4
φ g

15/4
s V5/2 |ln ε|9/2

)
.

Following again [9], the tensor-to-scalar ratio can be expressed as:

r ' 16× 3.7× 106
(

3
2
|ln ε|3/2

(2π)3/2

)
gs

16π
W 2

0
V3 . (5.5)

Noting that the amplitude of the density perturbations can be written as As = 2
3π2r

ρσ,start
M4

P
,

we get:

Ne ' 60.1− 1
6 ln

(
Y 4
φ V15/2

5g1/4
s W 5

0 |ln ε|
9/4

)
, (5.6)

where we have set Z = 2 and used ln
(
1010As

)
= 3.044 [37]. To proceed further, we need

the relation between the inflaton τinf , the volume V, and the number of e-foldings Ne that
matches the observed value of As. This reads [9]:

τinf ' 1.15× 10−11 1
2πg2

s

(
V

W0 |ln ε|3/4Ne

)4

. (5.7)

Given that τinf describes the volume of a local 4-cycle, we have to impose the geometrical
constraint V2/3 ' τb � τinf which guarantees that the effective field theory is under control.
We can implement this constraint as V2/3 ' λ τinf , where λ � 1 is a tunable parameter
that determines the hierarchy between the overall volume V and the volume of the blow-up
mode τinf . This gives us the final expression:

V2/3 ' λ
(

α1/4V
g

1/2
s W0 |ln ε|3/4Ne

)4

, (5.8)

with α = 1.15× 10−11 1
2π and Ne given in (5.6).

Let us briefly summarize the procedure that we shall follow to derive the DM mass
corresponding to the observed DM abundance:

• We extract from (5.8) W0 as a function of V. This step encodes in W0(V) the
information of the amplitude of the density perturbations and the geometrical relation
between V2/3 and τinf . We also set a natural bound on W0 by constraining it to be
in the range O(1–103).
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Figure 1. Points in the (W0,V) plane which reproduce the observed amplitude of the density
perturbations and DM abundance.

• We perform this step for different values of the underlying parameters gs, Yφ, and
λ, choosing the discrete parameter space to be gs ∈ [10−3, 0.1], Yφ ∈ [0.01, 1], and
λ ∈ [10, 104]. We start with 1444 initial combinations.

• We extract the value of V by matching the expressions for the observed and pre-
dicted DM abundances. We perform this step for each of the 1444 initial parameter
combinations.

• We compute the DM mass for those parameter combinations that allow for the correct
DM abundance.

In figure 1 we present all data points in the (W0,V) plane which reproduce the observed
amplitude of the density perturbations, respect our geometrical constraints, and yield the
correct DM abundance. Approximately 72% of our initial parameter space leads to a
consistent solution. Notice that, although each point corresponds to different values of gs,
Yφ, and λ, the resulting DM mass is always in the range 1010–1011 GeV, giving a robust
prediction which is almost independent of the variation of the underlying parameters.

The accumulation around the origin and the jet-like structures in the distribution of
the data points can be understood from figure 2 where we split the points shown in figure 1
into two sets with, respectively, gs = 0.001–0.009 and gs = 0.01–0.1. Moreover black dots
correspond to λ = 104, red to λ = 103, blue to λ = 102, and green to λ = 10. The plot for
smaller values of gs shows clearly that the four jet structures correspond to different values
of λ. This behavior is a direct consequence of (5.8) which implies that λ determines the
slope of the function W0(V). On the other hand, the plot for larger values of gs features
a larger density at smaller values of W0 and V. This behavior is a consequence of the
consistency of the branching scenario. In fact, in order for (4.10) to hold, smaller values of
the volume must lead to an increase in gs. It is worth mentioning also that around 71%
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Figure 2. Selected data points for different values of gs and λ. Around 29% of the data points
are in the lower gs regime, while around 71% are in the upper regime. Black points correspond to
λ = 104, red to λ = 103, blue to λ = 102, and green to λ = 10.

of the data points correspond to gs ∈ [0.01, 0.1], whereas 29% of the acceptable parameter
space correspond to gs ∈ [10−3, 0.01].

In figure 3 we present a similar analysis, this time splitting all data points from figure 1
into two sets, depending on the value of the misalignment Yφ. We observe again the same jet
structure depending on the value of the parameter λ. An important observation here is the
slight rotation of the data-point cone towards the W0 axis if we increase Yφ. This behavior
is mainly driven by the DM abundance constraint formulated in (3.3). The abundance
scales like ∼ Yφ−2V−13/4. Hence, in order to match the right abundance, a smaller volume
must be compensated by a larger misalignment Yφ.

Understanding the behavior of our data set as a function of the underlying parameters
is important in order to understand the distribution of the scalar spectral index ns. For
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Figure 3. Selected data points for different values of Yφ and λ. Around 42% of the data points
are in the lower Yφ regime, while around 58% are in the upper regime. Black points correspond to
λ = 104, red to λ = 103, blue to λ = 102, and green to λ = 10.

each point in figure 1, we calculated the resulting value of ns. All obtained values are
within the 2- and 3σ range [37], as can be seen from figure 4.

In figure 4 each black dot corresponds to a scalar spectral index within the 2σ range,
i.e. 0.9565 < ns < 0.9733, while each red dot has ns in the 3σ range, i.e. 0.9523 < ns <

0.9775, but outside 2σ. By comparing the two distributions, we see that the data points
corresponding to 2σ seem to be accumulating at the origin and their cone is slightly rotated
towards the volume axis. From this observation we conclude that phenomenologically more
acceptable values of ns drive the string coupling gs to larger values and the misalignment
Yφ to smaller ones.

A crucial observation is that the parameter values in our data set naturally respect
the relation between the volume and the underlying model parameters at the minimum of
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Figure 4. Scalar spectral index coloring of the entire data set. Black dots correspond to ns within
the 2σ range, while red dots have ns within 3σ (but outside 2σ).

W0 39.1
V 8.4× 106

Ne 47.4
Nreh 3.7
Nφ 16.4
ns 0.9578
mσ 8.7× 1012GeV
mφ 3.9× 108GeV
m3/2 7.1× 1011GeV
mχ 5.8× 1010GeV
chid 514.7

Table 1. Microscopic parameters W0 and V, the resulting e-folding numbers, ns, mass scales,
and inflaton coupling to hidden degrees of freedom chid at a benchmark point that gives the right
amplitude of the density perturbations and the correct DM abundance. The input parameters are
gs = 0.1, Yφ = 0.01, λ = 103, Nhid

g = 12, and Z = 2.

the scalar potential [42]:

〈V〉 ' 3
√
〈τinf〉|W0|

4ainfAinf
eainf〈τinf〉, 〈τinf〉 '

1
gs

(
ξ

2

)2/3
,

for natural O(1) values of the microscopic parameters ainf , Ainf and ξ.
In section 5.2 we shall perform a more in-depth numerical analysis of the cosmological

evolution, using the benchmark parameters listed in table 1.
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5.2 Numerical analysis of cosmological evolution

We perform a numerical analysis of the cosmological evolution of our scenario by solving
the coupled set of Boltzmann equations for the various cosmological components (see ap-
pendix A for a scenario with two moduli). We begin the numerical evolution at H ' Hinf ,
with both σ and φ oscillating, and other components highly subdominant. The Boltzmann
equations for our single-modulus scenario are as follows:

dρσ
dt

+ 3Hρσ = −Γσ ρσ , (5.9)
dρφ
dt

+ 3Hρφ = −Γφ ρφ , (5.10)
dρDR
dt

+ 4HρDR = Γσ→DRρσ + Γφ→DRρφ , (5.11)
dρR
dt

+ 4HρR = Γσ→visρσ + Γφ→visρφ , (5.12)
dnχ
dt

+ 3Hnχ = BrχΓσ
(
ρσ
mσ

)
+ 〈σannv〉

(
n2
χ,eq − n2

χ

)
, (5.13)

where the Hubble rate H is given by the sum of all energy density components, and the var-
ious decay rates are given in (4.10), (4.13) and (4.14) using the benchmark values of table 1.
〈σannv〉 denotes the thermally averaged rate for χ production from/annihilation to the ther-
mal bath with the average energy per χ particle approximated as 〈Eχ〉 ≈

√
m2
χ + 9T 2

vis [25].
Here, we take 〈σannv〉 ≈ α2

χ/m
2
χ with αχ ∼ 0.1. This happens to be the case, for example,

for Higgsino and Wino DM [56]. However, because thermal production is subdominant in
our scenarios, the exact form of 〈σannv〉, including possible temperature dependence, is not
really important. For typical DM masses in our scenarios, mχ ∼ 1010–1011 GeV, we obtain
values of 〈σannv〉 in the freeze-in regime. Finally, the DM equilibrium number density,
relevant for thermal production, is given by:

nχ,eq = gχ

(2π)3

∫
d3p

eE(p)/Tvis ± 1
. (5.14)

A sample numerical solution of (5.9)–(5.13) is shown in figure 5. As the evolution
proceeds, DM, dark radiation, and ordinary radiation are continually produced by inflaton
decay until H ' Γσ, at which point inflaton decay completes. This begins an era of hidden-
radiation domination which lasts until the light modulus φ overcomes the energy density of
hidden radiation. From here until the time when H ' Γφ, we have a period of EMD driven
by the modulus, which is then followed by the standard period of radiation domination
once the modulus decay completes.

The DM abundance is set by the inflaton decay at H ' Γσ and simply redshifts
through the remaining cosmological history. For typical values of the parameters in our
scenario, the maximum visible sector temperature established during inflationary reheating
is smaller than the DM mass, such that thermal production of DM occurs on the Boltzmann
tail of the equilibrium distribution, rendering the thermal contribution irrelevant.5 Figure 6

5Freeze-in production of DM from the visible sector thermal bath is quite sensitive to the DM mass,
and can dominate over the branching contribution from inflaton decay if the DM mass is lowered below the
range in our scenario.
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Figure 5. Numerical evolution of the system in (5.9)–(5.13). Curves depict the energy densities as
functions of scale factor in our scenario. Numerical values of the underlying parameters correspond
to the benchmark values given in table 1. DM is primarily produced from inflaton decay, with a
negligible thermal contribution, establishing the observed relic abundance.

Figure 6. Evolution of the visible sector temperature as a function of scale factor in the cosmo-
logical history of figure 5.

shows the visible sector temperature as a function of the scale factor for the cosmological
history shown in figure 5, where we have assumed a smooth function for the temperature
dependence of the relativistic degrees of freedom in the visible sector.

One comment is in order at this point. Our calculation of freeze-in production of DM
in (5.13) assumes instantaneous thermalization of inflaton decay products in the visible
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sector. In fact, it holds as long as the visible sector reaches thermal equilibrium at a
temperature T > Tf . However, due to the small number density of inflaton decay products
in the visible sector, thermalization may be significantly delayed (for example, see [57, 58]).
If T < Tf at the time of thermalization, then thermal production of DM will be completely
negligible. Before thermal equilibrium is established, DM production from inflaton decay
products is kinematically possible due to their typical mass hierarchy mσ � mχ [59–62].
However, by conservation of energy, the number density of these particles is much smaller
than what it would be in thermal equilibrium. We have checked that DM production
during thermalization is a few orders of magnitude smaller than that from direct inflaton
decay, for the parameters shown in table 1, even if the visible sector is not thermalized
until H ' Γσ.

6 Conclusions

In this paper we have argued that two generic features of string compactifications, a high
supersymmetry breaking scale (which is favored by both statistical arguments [18, 19] and
by the requirement of a viable inflationary model building [15]) and the presence of light
moduli which drive epochs of EMD [7–9], lead typically to superheavy WIMP DM with
mass around the intermediate scale. This scenario has not received significant attention
so far because DM with a mass in the 1010–1011 GeV range is inevitably overproduced in
a standard thermal history. However, if DM is produced non-thermally from the decay
of the inflaton and it is subsequently diluted by the decay of long-lived string moduli
which are so light that their decay does not reproduce DM, one can obtain the observed
abundance in this so-called branching scenario even for very large DM masses. A high
scale of supersymmetry breaking would account for the non-observation of supersymmetry
and WIMPs at colliders. Such a heavy DM may also provide a natural explanation of the
origin of ultra-high-energy cosmic rays recently observed by IceCube and ANITA, if DM
is unstable and has the right coupling to neutrinos (for example, see [21]). In our model,
this could be achieved by generating R-parity violating couplings via tiny non-perturbative
corrections to the superpotential [64] which could ensure a DM lifetime which is long
enough. We however leave the detailed investigation of this scenario for future work.

We illustrated this general picture by presenting two explicit 4D string models which
lead to superheavy WIMP DM. The first model is described in section 4 and features a sin-
gle epoch of modulus domination, while appendix A gives all the details of a different model
with two epochs of EMD driven by two different light moduli. It turns out that in both
cases the observed DM abundance can be obtained for a mass around 1010–1011 GeV. The
main virtue of both models is the possibility to follow their entire cosmological evolution
from inflation to the final reheating (due to the decay of the lightest modulus) that estab-
lishes a RD universe before the onset of BBN. This can be achieved by focusing on type
IIB LVS string models where the exponentially large volume of the extra dimensions allows
to keep control over the 4D low-energy effective field theory. Hence all moduli masses and
couplings to both visible and hidden sector degrees of freedom can be computed in detail.
Moreover one can build 4D models which can realize inflation, supersymmetry breaking and
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a chiral MSSM-like visible sector on D-branes (see [65–70] for explicit Calabi-Yau models
with all these features).

We followed the entire cosmological evolution in both models using analytical and
numerical tools. This allowed us to combine various constraints coming from both theo-
retical and phenomenological considerations. Interestingly, we derived the ranges of the
microscopic parameters in a regime where geometrical constraints on the underlying extra-
dimensional construction are respected, which yield the observed DM abundance as well
as the correct value of inflationary observables, namely the amplitude of the density per-
turbations and the scalar spectral index.

Future investigations could include more formal aspects as well as more phenomeno-
logical implications of our findings. From the formal point of view, it would be very inter-
esting to investigate how generic superheavy WIMP DM is from the string landscape point
of view, for example comparing this scenario to the case of fuzzy DM [71] which has also
been claimed to be a natural outcome of string models due to the ubiquitous presence of
ultra-light axions [72–76]. On the other hand, from the phenomenological side, it is crucial
to understand how a superheavy DM could be detected in actual observations, for example
establishing in more detail the possible connection of our results with the production of
very energetic cosmic rays from DM decay. We leave all these intriguing possibilities for
future work.

Acknowledgments

We would like to thank V. Guidetti and F. Muia for helpful discussions. The work of R.A.
and J.O. is supported in part by NSF Grant No. PHY-1720174.

A Superheavy DM in a scenario with two moduli

String compactifications are in general characterized by a large number of moduli and by
a leading order no-scale structure that makes some of them (in general more than one)
lighter than expected, i.e. mφ � m3/2 [77]. Hence one might expect to have several epochs
of modulus domination in the post-inflationary history. One could have either multiple eras
of EMD separated by intermediate phases of RD (if there is a hierarchy among the initial
displacements of the moduli), or a single extended EMD epoch (if the initial displacements
of all moduli are of the same order). In what follows we shall investigate the features of
this general scenario by focusing on the illustrative example with two light moduli.

A.1 Branching scenario with two epochs of EMD

Let us present a branching scenario that involves two moduli φ1 and φ2. The two moduli
have masses mφ1 and mφ2 with mφ2 . mφ1 . They mainly decay to the visible sector with
respective couplings c1/MP and c2/MP, leading to decay widths Γφ1→vis ' c2

1m
3
φ1
/M2

P and
Γφ2→vis ' c2

2m
3
φ2
/M2

P (we assume that their decays to hidden sector particles are suppressed
and produce just a small amount of DR). Assuming that mφ1 < mχ, the decay of φ1 and φ2
to DM will be kinematically forbidden. Therefore their decay only dilutes the abundance
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of DM and DR produced from the inflaton decay. The initial displacements of φ1 and φ2
from the minimum of their potential are φ1,0 and φ2,0 respectively. We assume φ1,0 & φ2,0
so that each modulus can dominate the energy density of the universe for a period of time.

The important stages of the post-inflationary history in this scenario (in chronological
order) are as follows:

1. Γσ . H < Hinf : The universe is in an EMD phase driven by inflaton oscillations
about the minimum of its potential. Both moduli also start oscillating at this stage
with respective energy densities ρφ1 = (φ1,0/MP)2ρσ and ρφ2 = (φ2,0/MP)2ρσ. The
inflaton decay completes at H ' Γσ mainly populating the hidden sector.

2. HD,1 . H < Γσ: The universe is in a RD phase at this stage. Moduli oscillations
behave like matter, and hence ρφ1,2 redshifted more slowly than ρR. Since ρφ1 > ρφ2 ,
φ1 starts to dominate at HD,1 ' (φ1,0/MP)4Γσ, which is the onset of a second phase
of EMD.

3. Γφ1 . H < HD,1: The universe is in an EMD epoch that is driven by φ1 during
this stage. Decay of φ1 completes when the Hubble expansion rate is H ' Γφ1 (Γφ1

denotes the total decay rate of φ1) and reheats the visible sector. This leads to the
formation of a RD universe.

4. HD,2 . H < Γφ1 : The universe is in an intermediate RD phase during this stage.
Since ρφ2 is redshifted more slowly than ρR, φ2 starts to dominate when the Hubble
expansion rate is HD,2 ' (φ2,0/φ1,0)4Γφ1 , which is the onset of another epoch of
EMD.

5. Γφ2 . H < HD,2: The universe is in a third phase of EMD that is driven by φ2. The
decay of φ2 completes when the Hubble expansion rate is H ' Γφ2 (Γφ2 is the total
decay rate of φ2), at which time the universe enters the final RD phase prior to the
onset of BBN.

One point to note is that HD,2 ' Γφ1 if φ2,0 ' φ1,0. In this case, φ2 dominates the
energy density of the universe as soon as the decay of φ1 completes. Stage 4 above thus
effectively disappears and there is a direct transition from the first EMD era (stage 3) to
the second one (stage 5), implying a single extended epoch of EMD driven by the two
moduli φ1 and φ2.6

Let us now estimate the relic abundance of DM in this scenario. The number density
of DM particles at H ' Γφ2 is given by:

nχ ' nσ Brχ
(
aσ
aD,1

)3(
aD,1
aφ1

)3(
aφ1

aD,2

)3(
aD,2
aφ2

)3

. (A.1)

This is similar to (3.1) for the case with a single epoch of modulus domination. The last
two terms on the r.h.s., which are new, account for the dilution of the number density in

6This is an example of the two-field EMD scenario studied in [63].
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stages 4 and 5 above respectively. After using the scaling of a with time in stages 4 and 5
above, and normalizing nχ by the entropy density s at H ' Γφ2 , we find:

nχ
s
' 3

4 × 10−3 1
Y 2
φ2

Γσ→vis
Γσ

Γφ2

Γφ2→vis

TR,2
mσ

, (A.2)

where:

TR,2 =
(

90
π2g∗,R,2

Γφ2→vis
Γφ2

)1/4√
Γφ2MP , (A.3)

with g∗,R,2 denoting the number of relativistic degrees of freedom in the visible sector at
T = TR,2, and Yφ2 ≡ φ2,0/MP. The energy density of DR at H ' Γφ2 is given by (assuming
that no DR is produced from φ1 decay):

ρDR ' ρσ
Γσ→DR

Γσ

(
aσ
aD,1

)4(
aD,1
aφ1

)4(
aφ1

aD,2

)4(
aD,2
aφ2

)4

+ ρφ2

Γφ2→DR
Γφ2

. (A.4)

This is similar to (3.5) with two additional terms on the r.h.s. that account for the energy
density redshift in stages 4 and 5 respectively. Thus the fractional energy density of DR is
given by:

ρDR
ρR
' 1
Y

8/3
φ2

(Γφ2

Γσ

)2/3 Γσ→DR
Γσ

Γφ2

Γφ2→vis
+ Γφ2→DR

Γφ2→vis
. (A.5)

Some comments are in order at this point. It is seen from (A.2) and (A.5) that final abun-
dance of DM and DR in the two modulus scenario depends only on the initial amplitude
and decay width of the second modulus φ2. This can be understood as follows. For fixed
Yφ2 , varying Yφ1 ≡ φ1,0/MP (as long as Yφ1 & Yφ2) affects the two epochs of modulus
domination in opposite ways. Increasing (decreasing) Yφ1 makes stage 4 longer (shorter)
and stage 3 shorter (longer) by the same factor. A similar thing happens by decreasing
(increasing) Γφ1 with Γφ2 fixed (as long as Γφ1 & Γφ2). As a result, the combined dilution
factor from two epochs of modulus domination does not depend on the parameters of φ1.

That said, it is helpful to compare the DM and DR abundance with the previous
scenario when there is one epoch of modulus domination. We can rewrite (A.2) in terms
of (3.3) as follows (in the limit where the production of DR from the decay of the lightest
modulus is completely negligible):

nχ
s

∣∣∣∣
2

= nχ
s

∣∣∣∣
1

(
Yφ1

Yφ2

)2 (
TR,2
TR,1

)
. (A.6)

Similarly, (A.5) can be written in terms of (3.6):

ρDR
ρR

∣∣∣∣
2

= ρDR
ρR

∣∣∣∣
1

(
Yφ1

Yφ2

)4/3(Γφ2

Γφ1

)2/3

. (A.7)

It is seen from (A.6) and (A.7) that the maximum dilution in the scenario with two moduli
is achieved for Yφ2 ' Yφ1 and mφ2 � mφ1 .7 As pointed out earlier, in this case there is a
single extended epoch of EMD consisting of stages 3 and 5 that are not separated by an
intermediate RD phase.

7Note that TR,2/TR,1 ∝ (Γφ2/Γφ1 )1/2 ∝ (mφ2/mφ1 )3/2.
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A.2 A string model with two epochs of modulus domination

A.2.1 The setup

We now focus on a type IIB model which can allow for two epochs of modulus domination.
This model shares the same features with the model discussed in section 4 but it also gives
rise to novel phenomenological properties. The Calabi-Yau volume now takes the form:

V = √τvisτbig − τ3/2
np − τ

3/2
inf , (A.8)

where again τinf drives inflation and it is wrapped by a hidden sector D7 stack as in the
model presented in section 4. However now the second blow-up mode, here denoted as τnp,
is just responsible for generating non-perturbative effects needed for moduli stabilization
but it does not support the visible sector stack of D7 branes.8 In fact, in this model the
requirement to avoid dark radiation overproduction from the decay of the lightest modulus
forces the visible D7 stack to be wrapped around the 4-cycle whose volume is controlled
by τvis [33].

In this case the 4D low-energy supergravity theory is determined by the following
Kähler potential:

K = −2 ln
(
V + ξ

2g3/2
s

)
+Kgs , (A.9)

whereKgs denotes string loop corrections [78–80] which have been shown to be V-suppressed
with respect to the leading α′ correction proportional to ξ [40]. The superpotential instead
looks like:

W = W0 +Anp e
−anpTnp +Ainf e

−ainfTinf . (A.10)

As in section 4, at leading order in 1/V � 1, non-perturbative corrections to W com-
bined with α′ corrections to K produce an LVS minimum with 5 stabilized moduli:
V ' √τvisτbig ∼ e1/gs , τnp ∼ τinf ∼ 1/gs ∼ O(10) together with the 2 corresponding axions
cnp and cinf . However at this level of approximation there are still 3 flat directions which
can be parameterized by τvis, cvis, and cbig. The visible sector modulus τvis is fixed at
subleading order by the string loop contribution to the Kähler potential Kgs at [81]:

τvis ' g4/3
s λloop V2/3 , (A.11)

where λloop is a tunable combination of the coefficients of gs corrections to K. Notice that
the requirement of reproducing the observed value of the visible sector gauge coupling,
α−1

vis = 4πg−2
vis = τvis ∼ O(10–100), leads necessarily to an anisotropic shape of the extra

dimensions since the exponentially large Calabi-Yau volume V ' √τvisτbig is now controlled
by 2 cycles but with τbig ∼ e1/gs � τvis ∼ 1/gs. Finally, the two axions cvis and cbig receive
tiny masses due to additional Tvis- and Tbig-dependent non-perturbative corrections to W .
Thus both cvis and cbig are in general ultra-light and play the role of hidden sector dark
radiation.

8τnp instead supports a pure SYM hidden sector which generates gaugino condensation at a scale larger
than the inflaton mass, so that the decay of σ into heavy condensates on τnp is kinematically forbidden.
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A.2.2 Moduli mass spectrum

The mass spectrum of the relevant moduli around the minimum becomes:

m2
σ ' κ ε2 (ln ε)2 M2

P

m2
φ1 '

εm2
σ

g
3/2
s W0 | (ln ε)3 |

� m2
σ for ε� 1

m2
φ2 '

ε1/3 g
5/6
s | ln ε|m2

φ1

W
1/3
0
√
λloop

< m2
φ1 for ε, gs � 1

m2
aDR1

∼ m2
aDR2

∼ 0 , (A.12)

where σ, φ1, φ2, aDR1 , and aDR1 are the canonically normalized fields corresponding re-
spectively to τinf , τbig, τvis, cbig, and cvis.

As in section 4, σ plays the role of the inflaton. This field, when displaced from its
minimum, becomes exponentially lighter than the Hubble constant during inflation which
is set by the mass of φ1: H ' mφ1 . The 3 fields τnp, cinf , and cnp are instead heavy
spectator fields, while φ1 and φ2 get displaced from their minimum during inflation, and so
give rise to 2 epochs of EMD. On the other hand, the 2 ultra-light axions aDR1 and aDR2

yield extra contributions to Neff . Moreover the gravitino mass and the soft terms are still
given by (4.6). Hence for mχ ' m0 ' M1/2, we conclude that DM cannot be reproduced
from the decay of any of the 2 light moduli since:

m2
φ2 < m2

φ1 '
ε | ln ε|
g

3/2
s W0

m2
χ � m2

χ for ε� 1 . (A.13)

Requiring mφ2 & O(50)TeV in order to avoid any cosmological moduli problem together
with τvis ∼ O(100) in order to reproduce the observed value of the visible sector gauge
coupling, corresponds to 1� V . 5× 107 − 109 for gs ' 0.1 and 1 .W0 . 100. Therefore
DM is necessarily superheavy since mχ & 1011 GeV. Notice that values of the overall
volume below 5 × 107 − 109 are also required to match inflationary observables like the
amplitude of primordial fluctuations [39].

A.2.3 Moduli couplings and decay rates

The configuration of the hidden sector D7-stack wrapped around τinf is the same as the
one described in section 4.3. Moreover, also the couplings of the inflaton σ to hidden and
visible gauge bosons are still given by (4.9). Hence the ratio Γσ→vis/Γσ is also still given
by (4.10) and the inflaton decay width Γσ takes the same form as (4.14).

On the other hand the light modulus φ1 decays mainly into visible sector gauge bosons
with decay rate [33, 49]:

Γφ1 ' Γφ1→vis = γ2 Ng

96π
m3
φ1

M2
P

= γ2

8π
m3
φ1

M2
P

for Ng = 12 , (A.14)

where γ ≥ 1 is a microscopic parameter which depends on the gauge flux on the visible
sector D7-stack (in particular γ = 1 for a fluxless D7-stack while γ > 1 for non-zero
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gauge fluxes) [33]. The decay of φ1 produces also axionic dark radiation which is however
suppressed for γ > 1 and gets diluted by the decay of φ2. In what follows we shall therefore
neglect Γφ1→DR.

The final modulus to decay is φ2 whose main decay channels are [33]:

• Dark radiation bulk axions:

Γφ2→DR = 5
96π

m3
φ2

M2
P
, (A.15)

• Visible sector gauge bosons:

Γφ2→vis = γ2 Ng

48π
m3
φ2

M2
P

= γ2

4π
m3
φ2

M2
P
, (A.16)

where we have set again Ng = 12.

The amount of axionic dark radiation produced from φ2 decay is controlled by the
underlying parameter γ:

∆Neff ' 3 Γφ2→DR
Γφ2→vis

' 0.6
γ2 , (A.17)

showing how for γ ≥ 1 this model naturally satisfies present observational bounds since it
yields ∆Neff . 0.6.

The relevant quantities to compute the final DM abundance using (A.2) and (A.3) can
be derived from the decay widths (A.15) and (A.16) and read:

Γφ2

Γφ2→vis
= 1 + 5

24γ2 , (A.18)

and:
TR,2 ' 0.16γ

(
1 + 5

24γ2

)1/4
mφ2

√
mφ2

MP
. (A.19)

Notice that the decay rates (A.15) and (A.16), together with the inflaton decay width (4.14),
also determine, via (A.5), the fractional energy density of DR.

A.3 Inflationary observables and DM abundance

As in section 5, we start analyzing the cosmology of the model with two moduli by pre-
senting the expression for the total number of e-foldings:

Ne ' 57 + 1
4

[
ln r −Nreh −Nφ1 −Nφ2 + ln

(
ρσ,start
ρσ,end

)]
,

where Nreh is the duration of the reheating epoch after the end of inflation, while Nφ1 and
Nφ2 denote respectively the number of e-foldings of the two EMD eras driven by the light
moduli φ1 and φ2, which look like:

Nφ1 '
2
3 ln

(
Y 4
φ1

Γσ
Γφ1

)
, Nφ2 '

2
3 ln

(Yφ2

Yφ1

)4 Γφ1

Γφ2

 .
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Figure 7. Points in the (W0,V) plane which match the observed amplitude of the density pertur-
bations and DM abundance.

By rewriting Ne in terms of fundamental parameters, we obtain:

Ne ' 58.88− 1
6 ln

(
Y 4
φ2
V8

W 5
0 g

3/2
s |ln ε|3/2

)
, (A.20)

where we have set γ = 1. Notice that the total number of e-foldings does not depend on
the initial misalignment value of the first modulus.

As in the single modulus scenario, we obtain W0 as a function of V by combining
two constraints coming from the amplitude of the primordial scalar fluctuations and the
geometrical requirement to have the volume of blow-up modes hierarchically smaller than
the overall internal volume. Following the same procedure as in section 5, we then extract
the value of V from matching the observed DM abundance. Finally, this value of the volume
fixes the DM mass for every combination of the underlying parameters. Interestingly, all
data points correspond to a DM mass in the same range as in the single modulus case,
mχ ' 1010–1011GeV, with a bias towards smaller values (65% of the data points result in
mχ ' 1010GeV).

In figure 7 we present the points in the (W0, V) plane which satisfy all our theoretical
and phenomenological conditions. Note that 65% of the initial parameter set reproduces
the correct DM abundance. Moreover we were not able to obtain values of ns within the
2σ range, as each point in figure 7 corresponds to ns at the lower end of the 3σ range. The
qualitative behavior of the underlying parameters gs, Yφ2 , and λ is the same as in the single
modulus case. Table 2 shows a representative choice of the parameters used to perform a
numerical study of the full cosmological evolution in this scenario.

A.4 Numerical analysis of cosmological evolution

We obtain the numerical evolution of energy densities for the scenario with two moduli. As
in section 5.2, we begin the evolution at H ' Hinf with both σ and φ1 oscillating. Though
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W0 20.4
V 3× 106

Ne 44.4
Nreh 4.4
Nφ1 14.8
Nφ2 3.9
ns 0.9550
mσ 1.1× 1013GeV
mφ1 7.7× 108GeV
mφ2 8.3× 107GeV
m3/2 8.9× 1011GeV
mχ 7.3× 1010GeV
chid 332.0

Table 2. Microscopic parameters W0 and V, the resulting e-folding numbers, ns, mass scales,
and inflaton coupling to hidden degrees of freedom chid at a benchmark point that gives the right
amplitude of the density perturbations and the correct DM abundance. The input parameters are
gs = 0.1, Yφ1 = Yφ2 = 0.01, λ = 103, Nhid

g = 12, and γ = 1.

φ2 begins oscillating shortly after this time, its energy density is subdominant and its
initial evolution can be approximated as a matter component without altering the overall
evolution. The other energy density components are again highly suppressed initially. The
Boltzmann equations for this scenario are (neglecting the tiny production of DR from the
decay of φ1):

dρσ
dt

+ 3Hρσ = −Γσ ρσ , (A.21)
dρφ1

dt
+ 3Hρφ1 = −Γφ1 ρφ1 , (A.22)

dρφ2

dt
+ 3Hρφ2 = −Γφ2 ρφ2 , (A.23)

dρDR
dt

+ 4HρDR = Γσ→DRρσ + Γφ2→DRρφ2 , (A.24)
dρR
dt

+ 4HρR = Γσ→visρσ + Γφ1→visρφ1 + Γφ2→visρφ2 , (A.25)
dnχ
dt

+ 3Hnχ = BrχΓσ
(
ρσ
mσ

)
+ 〈σannv〉

(
n2
χ,eq − n2

χ

)
. (A.26)

A sample numerical solution is shown in figure 8 for the becnhmark point in table 2.
The cosmological evolution is very similar to the one-modulus case. The effect of the
second, lighter, modulus is to extend the EMD period to lower temperatures. Because the
two moduli start with equal misalignments, we have a single extended period of EMD with
a brief period of substantial radiation while the lighter modulus dominates, instead of two
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Figure 8. Energy density evolution of the various components as functions of scale factor in the
two-moduli scenario for the benchmark point in table 2.

Figure 9. Visible sector temperature as a function of scale factor in the scenario with two moduli.

EMD periods separated by a RD phase. Figure 9 shows the visible sector temperature
as a function of the scale factor, where we have taken the temperature dependence of the
relativistic degrees of freedom into account.
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