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Runtime Support for
Multiple Offload-Based Programming Models

on Clustered Manycore Accelerators
Alessandro Capotondi, Student, IEEE, Andrea Marongiu, Member, IEEE, and Luca Benini, Fellow, IEEE

Abstract—Heterogeneous systems coupling a main host processor with one or more manycore accelerators are being adopted
virtually at every scale to achieve ever-increasing GOps/Watt targets. The increased hardware complexity of such systems is paired at
the application level by a growing number of applications concurrently running on the system. Techniques that enable efficient
accelerator resources sharing, supporting multiple programming models will thus be increasingly important for future heterogeneous
SoCs. In this paper we present a runtime system for a cluster-based manycore accelerator, optimized for the concurrent execution of
offloaded computation kernels from different programming models. The runtime supports spatial partitioning, where clusters can be
grouped into several virtual accelerator instances. Our runtime design is modular and relies on a generic component for resource
(cluster) scheduling, plus specialized components which deploy generic offload requests into the target programming model semantics.
We evaluate the proposed runtime system on two real heterogeneous systems, focusing on two concrete use cases: i) single-user,
multi-application high-end embedded systems and ii) multi-user, multi-workload low-power microservers. In the first case, our approach
achieves 93% efficiency in terms of available accelerator resource exploitation. In the second case, our support allows 47%
performance improvement compared to single-programming model systems.

Index Terms—Parallel Programming Models, Heterogeneous Computing, Clustered Manycores, OpenMP, OpenCL
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1 INTRODUCTION

INDEPENDENT of the specific application domain, nowa-
days computing systems are steadily challenged with

an ever-increasing demand for processing capabilities and
energy-efficiency. From high-end portable devices (smart-
phones, tablets, etc.) to low-power microserver units (e.g.,
for energy-efficient cloud computing [1]) the common de-
nominator for the target system is the capability of running
mixed workloads, i.e., multiple applications at the same
time, while meeting stringent power budgets.

From the hardware viewpoint, heterogeneous systems
have proven an effective solution to deliver superior GOp-
s/Watt. Heterogeneity is nowadays exploited in several fla-
vors: programmable accelerators, fixed-functionality hard-
ware blocks, programmable logic (FPGA) can all be found
within today’s on-chip systems (SoC). One of the most
widespread heterogeneous system templates consists of a
general-purpose, multi-core host system coupled to one
or several programmable many-core accelerators (PMCA).
PMCAs may be data-parallel architectures such as general-
purpose graphic processing units (GPGPUs) [2] [3], DSP-
based parallel processors [4] [5] [6] or other general-
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purpose1 manycores [7] [8] [9] [10] [11] [12].
While heterogeneous SoCs have the potential to address

power/performance trade-offs, programmability and portability
issues are entirely demanded to the software realm. Pro-
grammers are required to reason in terms of an offload-based
parallel execution model, where suitable code kernels must
be outlined for massive parallelization and communication
between different computing subsystems must be somehow
made explicit.

As the complexity of the target system grows, so does
the complexity of individual applications, their number
and composition into mixed workloads. The situation is
best explained if extreme multi-user scenarios such as data
centers are considered. Here, multiple applications from
multiple users may concurrently require to use a PMCA.
These applications are not aware of each other’s existence,
and thus don’t communicate nor synchronize for accelera-
tor utilization. Different applications or parts thereof (e.g.,
libraries, or other legacy code) are written using different
parallel programming models. Ultimately, each programming
model relies on a dedicated run-time environment (RTE)
for accessing hardware and low-level software (e.g., driver)
resources. Since PMCAs typically lack the services of a full-
fledged operating systems, efficiently sharing the PMCA
among multiple applications becomes difficult.

The increasing importance of efficient PMCA sharing
among multiple applications is witnessed by the increas-
ing efforts towards accelerator virtualization pursued by
major GPGPUs vendors, whose first commercial products

1. i.e., suitable for more general forms of parallelism than single-
instruction, multiple-data/thread.
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based on such technology are appearing on the marketplace
[13] [14]. While such support was originally conceived for
multi-user settings such as computing farms, its relevance
is steadily increasing also in high-end embedded systems
typically meant for single-user (yet multi-workload) usage
[15].

GPGPU virtualization relies on dedicated hardware sup-
port for fast and lightweight context switching between dif-
ferent applications. However, for more resource-constrained
types of PMCA the way to go is less clear, and it is likely
that the same full-fledged HW solutions proposed in high-
end GPGPUs won’t be affordable. In addition, currently all
commercial products that support accelerator virtualization
assume that a single, proprietary programming model is
used to code all the applications, which cannot cope with
multi-user, multi-workload scenarios. As a consequence,
methodologies to enable cheap yet efficient accelerator re-
sources sharing, supporting multiple programming abstrac-
tions and associated execution models will be increasingly
important for future heterogeneous SoCs.

Motivated by these observations, this paper proposes
a fully-software approach to managing the co-existence of
several computational kernels on the same PMCA, also
taking into account the need for supporting multiple pro-
gramming models on a system.

PMCAs are typically organized as a collection of com-
putation clusters, featuring a small-medium number of
cores tightly coupled to a local memory. Several clus-
ters can be interconnected to build a many-core systems.
The key idea behind our proposal is that of leveraging
clusters as an “atomic” schedulable hardware resource. A
lightweight software layer, called the accelerator resource
manager (AcRM), allows to create virtual accelerator instances
by logically grouping one or more clusters. Compared to
time-multiplexing (i.e., executing the offloads to completion
one after the other) they allow for better platform exploita-
tion in case at least one of the offloaded kernels does not
have enough parallelism to keep all the cores busy.

The AcRM is designed to provide streamlined, low-cost
primitives for programming model semantics implementa-
tion, as well as a fast mechanism to context-switch between
different RTEs. This allows to fully exploit the massive HW
parallelism provided by manycore accelerators, without los-
ing efficiency in the multi-layered software stacks typically
required to support sophisticated programming models.

The design of the AcRM is modular and relies on a
low level runtime component for resource scheduling, plus
“specialized” components which efficiently deploy offload
requests into the specific programming model execution.

To validate the proposed approach we specialize the
AcRM to support two widely used and representative
programming models for accelerator exploitation: OpenMP
and OpenCL. We presents two use-cases, one for a single-
user, multi-workload scenario running on a high-end em-
bedded heterogeneous SoC (CASE1), and another one for
a multi-user, multi-workload scenario running on a low-
power, energy efficient micro-server (CASE2). For both use
cases we consider suitable benchmarks and target hardware
platforms, characterizing both the cost of the proposed
runtime system and the efficiency achieved in exploiting
the available parallelism when multiple applications are
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Fig. 1. Heterogeneous embedded SoC template.

concurrently deployed on the accelerators.
The results demonstrate that for CASE1 the AcRM

reaches up to 93% performance efficiency compared to the
theoretical optimal solution. For CASE2 we achieve 47%
performance improvement compared to state-of-the-art par-
allel runtime support for heterogeneous architectures.

The rest of the paper is organized as follows. In Section
2.1 we describe our two target architectures. In Section 3 we
describe the main components of our multiprogramming
model runtime system for heterogeneous architectures. In
Section 4 we provide experimental evaluation. Section 5
discusses related work and Section 6 concludes the paper.

2 BASIC CONCEPTS

2.1 Heterogeneous system template

Figure 1 shows the generic heterogeneous system tem-
plate considered in this work. A powerful general-purpose
host processor, featuring multi-level cache hierarchy, virtual
memory and full-fledged operating system, is coupled to
one (or more) PMCA.

Communication between the host and the PMCA hap-
pens through the main DRAM memory, to which both sys-
tems have a physical communication channel (as opposed
to a more traditional accelerator model with segregated
memories and copy-based host-to-PMCA communication).

Processing elements (PE) inside the PMCA are organized
in clusters to overcome scalability limitations. The PMCA
leverages internal memory hierarchy, typically implemented
with explicitly managed scratchpad memories (SPM), or a
mix of non-coherent (or partially coherent) data caches and
SPM. Within a cluster, PEs exploit tightly-coupled commu-
nication to the L1 data memory, which ensures uniform low-
latency and high-bandwidth accesses. Globally, the acceler-
ator leverages a partitioned global address space (PGAS).
A larger L2 memory is shared among clusters and directly
accessible. Remote L1 memories are also accessible globally.
Both types of accesses travel on a slower on-chip network
and are subject to non-uniform memory access (NUMA).

This template captures the key traits of several real
industrial [10] [8] [9] [11] [12], and academic PMCAs [16]
[17], where simple RISC cores are grouped in clusters to
enable Multiple Instruction Multiple Data parallelism, and
VLIW DSP-based accelerators [5] [6].

Given the cluster-based nature of the targeted PMCA,
partitioning it at the granularity of a cluster and multiples
thereof to create “virtual accelerator” instances seemed a
natural choice. Partitioning at a finer granularity (e.g., at
the core level) implies having multiple “virtual accelerators”
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within a single cluster, which is subject to conflicts and to
the degradation of the efficiency during the execution.

2.2 Parallel Programming Models

With the widespread diffusion of multi-processor and het-
erogeneous machines, parallel programming models acquired
a key role in simplifying application development over
the last decades. A programming model (PM) exposes an
abstract notion of the available hardware computational
resources, so that the programmer can focus on designing
parallel software, rather than having to deal with architec-
tural details. A PM typically consists of:

1) a collection of language features (e.g., extensions to
well consolidated programming languages from the
single-processor domain);

2) a compiler which translates abstract parallel con-
structs into semantically equivalent, machine-level
instruction streams;

3) a Run-Time Environment (RTE), i.e., middleware
which implements the semantics of the PM within
a set of functions that are invoked by the compiled
parallel program.

Programming for heterogeneous systems requires com-
pilation for and interaction between computation domains
based on distinct instruction set architectures (ISA) and
memory hierarchies. Consequently, PMs for heterogeneous
systems are enriched with constructs to specify how to
offload a computation kernel from a main “host” processor to
accelerator devices. The semantics of an offload operation
can be generalized in three main actions: data marshalling,
kernel enqueue, and execution control. First, the host pro-
gram is compiled so that upon offload the data used in
the offloaded kernel is communicated to the accelerator.
Second, the host program enqueues the request for kernel
offload to the accelerator. Third, the kernel is executed in the
accelerator. Upon completion the host and the accelerator
synchronize and the data is communicated back to the host.

The design of a PM for a heterogeneous system relies on
a compilation toolchain and a RTE that spans both the host
and the accelerator. The compiler is required to generate
code for different ISAs, and to emit the required instruc-
tions to implement data marshalling and host-to-accelerator
synchronization at the boundaries of an offload construct.
In most cases the host runs a full-fledged Operating System
(OS), and the accelerator is controlled via a device driver
through the RTE. On the accelerator side, the RTE sits
directly on bare metal and holds a static, global view of the
accelerator resources.

If multiple applications running on the host require
simultaneously the use of the accelerator, the driver should
implement some policies to satisfy all the requests. A simple
policy will only allow one process (i.e., one application) at
a time to access the accelerator. Additional requests could
either be discarded (the application may decide to execute
the kernel on the host instead) or delayed (the accelerator
is “locked” and the application is stalled until the previous
offload has completed). We refer to the RTE systems that
implement this behavior as Single Programming Model, Single
Offload (SPM-SO).

Smart implementations of PMs for GPGPUs like CUDA
or OpenCL leverage the fact that the accelerator device con-
sists of a collection of computational clusters to implement
a more efficient accelerator “time-” and “space-sharing”
of computational resource. The RTE and driver design is
capable of enqueueing offload requests from multiple ap-
plications (written using that same PM) and of dispatching
or to time multiplexing their execution to available clusters.
We refer to the RTE systems that implement this behavior
as Single Programming Model, Multiple Offload (SPM-MO).

Since these sophisticated distributed RTEs (host RTE
+ device driver + accelerator RTE) completely control the
entire heterogeneous system, when two applications are
written using different PMs it is no longer possible to contin-
uously and smoothly collect and dispatch offload requests to
available clusters, and we must resort to accelerator “time-
sharing” between different RTE executions.

In this work we propose a software-only solution, based
on a distributed middleware, called Accelerator Resource
Manager (AcRM), to enable Multiple Programming Model,
Multiple Offload (MPM-MO) capability.

3 ACRM: THE MULTI-PROGRAMMING MODEL,
MULTI-OFFLOAD PMCA MANAGER

RTEs are implemented as a software library that contain
several APIs to control parallelism (thread management,
synchronization, task schedulers, etc.). RTEs for embedded
parallel accelerators typically sit on top of hardware abstrac-
tion layers (HAL) [18] [19] [20] that expose low-level APIs
to use bare iron resources. While designing a RTE with such
a tight coupling to hardware resources enables very low
overheads, it does not immediately allow the co-existence of
multiple RTE, as hardware resources are physically identi-
fied. SPM-SO and SPM-MO both suffer from this limitation.

Our proposal enables MPM-MO by interposing between
the HAL and various RTEs an Accelerator Resource Man-
ager (AcRM), which is a lightweight virtualization layer
for the underlying hardware. The AcRM enables concurrent
execution, on different PMCA clusters, of multiple offloaded
kernels from multiple programming models, leveraging spa-
tial partitioning of the PMCA resources. Each partition, called
Virtual Accelerator (vAcc), is a logical accelerator device,
that supports the execution of offloaded kernels from the
host program written using a specific programming model.
The AcRM exposes to the upper levels of the software stack
the same functionalities of the native HAL, but it does so on
top of virtual accelerators. As a consequence, existing RTEs
written for the original HAL, will still run unmodified on
top of this virtual HAL (vHAL).

Figure 2 shows a simplified overview of the global soft-
ware stack organization of our proposed runtime system.
The host system is shown on the left, the accelerator on the
right. On top of the stack we show applications written with
different programming models (here indicated as PM0 and
PM1). Each application outlines a kernel to be offloaded to
the accelerator.

Both on the host and on the accelerator side the execution
of the application relies on the underlying programming
model RTE.
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Fig. 2. Heterogeneous multi parallel programming model software stack overview.

When porting a programming model to a new archi-
tecture, it is usually required to develop a small backend
RTE component, that encodes architecture-specific bindings
to the generic RTE part. The bindings between high level
RTE APIs and native functionalities provided by the vHAL
in the AcRM are encapsulated in one programming model
interface component (PM-Interfaces) per RTE. Porting a new
programming model to our AcRM thus only requires to pro-
vide specific bindings by developing a new PM-Interface. In
the simplest case a PM-Interface simply contains stubs that
redirect a high-level call into its low-level (HAL) counterpart
(e.g., thread creation or memory allocation). However, in
some cases PM-Interfaces implement specific programming
model restrictions (or exceptions) to the generic HAL prim-
itives. This will be explained in more detail in the following
sections.

3.1 AcRM: Accelerator Resource Manager
The AcRM is a distributed component that is spread among
the whole platform. It consists of:

• a device Driver on the host side;
• a centralized accelerator Global Resource Manager

(GRM);
• several, one for each cluster, Local Resource Man-

agers (LRM).

3.1.1 AcRM Driver
The AcRM Driver enables communication from the host
processes to the accelerator. It is part of the host operating
system and it is mainly used to deliver computational
kernels to the accelerator and to wait kernel execution
termination. For the driver to be callable with identical
operation from different RTEs, the offloads semantics of
each programming model are wrapped by the host-side PM-
Interface into a generic Offload Descriptor.

This descriptor contains : i) the PID and VID of the host
process that generated the offload, used by the driver as
identifiers to register callbacks to the host; ii) the number of
cluster requested; iii) the programming model identifier (pm
); iv) the binary pointer for the offload. The remaining part
of the Offload Descriptor payload consists of a PM-specific
part (e.g., shared data pointers, buffers shared between host
and accelerator, etc.).

To support multiple offloads in a dynamic manner, the
AcRM driver exposes to the PM-Interfaces an asynchronous

<<command out>>
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Fig. 3. Global Resource Manager.

message passing interface for pushing accessing the GRM.
To decouple PM-Interface commands enqueuing and com-
mand execution by the GRM a memory mapped FIFO queue
of offload is implemented inside the driver.

3.1.2 AcRM Global Resource Manager
The AcRM Global Resource Manager (GRM) is a centralized
component that provides services to i) enqueueing offload
requests from the AcRM Driver; ii) creating and destroy-
ing Virtual Accelerator instances; iii) finalizing the offload
executable image through dynamic linking; iv) scheduling
offload requests to Virtual Accelerators (vAcc). Figure 3
shows the main components of the GRM.

Offload Scheduler and Resource Allocator - The GRM
uses a lightweight run-to-completion Scheduler to dispatch
offloads. The scheduler is in charge of the execution by
spawning a Virtual Accelerator for each offload. It utilizes
an a Resource Allocator to track and request Virtual Ac-
celerator instances. Virtual Accelerator mapping on phys-
ical accelerator clusters is done by the Allocator through
a Resource Descriptor. This data structure is composed of
LRTE0, LRTE1, ..., LRTEn linked-lists, one for each RTE
supported, plus one LFree linked-list used to track unlinked
(not initialized to any RTE yet) clusters. When the system is
started all the clusters are idle (i.e., registered in the free list).
Each entry of a list points to a RTE Descriptor that in turn
is used to register programming model specific callbacks
invoked upon startup/shutdown of that PM on that cluster.
The minimum set of callbacks for any RTE consists of
rt_start, and rt_stop used to link and unlink a specific
cluster to a Virtual Accelerator.

The current implementation processes the requests se-
quentially, and in order, by spawning a Virtual Accelerator
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Data: c := number of resources requested
Data: rte := RTE ID
Result: map[] := map of resources associated to vAcc
map[]← NULL;
/* Get Idle from the same RTE List */
forall i resources in Lrte do

if i == idle then
Add i in map[];
c−−;
if c == 0 then

return map[];
end
/* Get not yet associated */
forall i resources in Lfree do

Remove i from Lfree;
Call rt_start for rte on resource i;
Add i in map[];
c−−;
if c == 0 then

return map[];
end
/* Steal from other RTE Lists */
forall r RTEs 6= rte do

forall i resources in Lr do
if i == idle then

Call rt_stop for r on resource i;
Remove i from Lr;
Call rt_start for rte on resource i;
Add i in map[];
Insert i from Lrte;
c−−;
if r == 0 then

return map[];
end

end
return map[];

Algorithm 1: Resource allocation algorithm for a single
Virtual Accelerator.

for each offload. More complex policies can be implemented
at that level, like out-of-order execution, or offload execution
reordering to target different goals. The current allocation
policy manages Virtual Accelerator creation under the fol-
lowing assumptions:

• preemption is not supported. Clusters can be re-
allocated to different Virtual Accelerators only when
they are not executing kernels;

• the number of clusters allocated to a Virtual Accel-
erator can be less than what requested by the kernel
offload construct;

The best-effort allocation is implemented through the
Algorithm 1.

Let c be the number of resources requested for a kernel
associated to a specific RTE (rte). First, the algorithm checks
for idle clusters already initialized for the current rte. A pre-
initialized cluster implies zero overhead upon recruitment.
Second, if not all the requested clusters could be recruited
from the pre-initialized list, the algorithm tries to recruit
new clusters from the free list. This operation implies the

Local Resource Manager (LRM)

OpenMP RTE
GOMP_parallel GOMP_barrier GOMP_critical

ThreadThread

GOMP
Fixed Pool
Threads

OpenMP PMInterface

rt_stoprt_stop
rt_startrt_start

Scheduler

BarrierBarrier LocksLocks MEMMEM DMADMA

Command HandlerCommand Handler

Fig. 4. Local Resource Manager and OpenMP Interface.

overhead to boot the target RTE on the new cluster. Third, if
more clusters are needed that could not be found from the
previous lists, an attempt to steal idle resources from lists
of clusters initialized to another RTE is done. In this case
bigger overhead is implied due to the combined cost for
stopping the previous RTE and for booting the new one. If
no clusters can be recruited from any list, the offload request
is enqueued in a FIFO, where it waits for some clusters
to become idle. The algorithm has complexity O(n ∗ m),
where n is the total number of clusters available and m is
the number of RTE supported. Note that the algorithm can
return less clusters than what required by the offload. This is
a legal operation. The kernel will execute with less parallel
resources, but its functionality will not be affected.

Dynamic Linking - Offloads consist of binaries that are
usually compiled and created out of the accelerator control.
These binaries contain function calls to the associated RTE
APIs that can only be resolved when they are physically
moved to the accelerator. The GRM offers the capability
to dynamically link offloaded binaries to their RTEs; this
operation is triggered by the scheduler before starting the
execution of each offloaded kernel.

3.1.3 AcRM Local Resource Managers
The Local Resource Manager (LRM) is a per-cluster unit, in
charge to collect incoming messages from the GRM and to
convert them in a concrete offload deployment using local
hardware resources. Like the GRM, each LRM is equipped
with a memory mapped FIFO queue to store incoming
commands, managed by a single thread (called Cluster Con-
troller).

Figure 4 shows on the bottom a logical view of the func-
tionalities and the components exported by the the LRM
to the higher levels of the software stack. These consist of:
i) a lightweight, non-preemptive, thread scheduler used to
spawn threads on available processors in the cluster; ii) local
memory allocator, used both by the offloaded application
kernels and the RTE; iii) synchronization primitives (locks,
barriers); iv) DMA engine programming.

These functionalities provide to the PM-Interface the
hardware abstraction layer (HAL) on top of which to imple-
ment a specific RTE behavior. How PM-interfaces provide
the binding between the HAL and the RTE is discussed in
the following.

3.2 PM-Interfaces
PM-interfaces can be considered as the backend (i.e., the
hardware-specific) component of a RTE. While the HAL pro-
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vides a generic interface to native hardware functionality,
programming models may rely on specific semantics that
require more sophisticated functionality. Thus, each PM-
Interface implements glue logic to bind AcRM vHAL and
high level APIs used by the RTE. Supporting a new PM in
our framework only requires to develop the PM-Interface.

To illustrate how different RTEs may require different
bindings to the HAL, we describe an example that considers
two of the most widely used PMs for heterogeneous archi-
tectures: OpenMP [21] and OpenCL [22]. When an offload
is started, threads are recruited from local cluster pools, ac-
cording to the PM execution model. The basic functionalities
provided by PM-Interface to support such execution models
are enclosed within rt_start and rt_stop callbacks, to
“boot” and terminate a RTE on a given cluster, respectively.

3.2.1 RTE boot
Figure 5 and 6 show the execution traces of two clusters for
an offload of OpenCL and OpenMP kernels, respectively,
when no cluster is pre-allocated to any specific RTE. We only
show traces for Cluster 0 (the master) and Cluster 3, which is
representative of the behavior of all the rest of the clusters
associated to this vAcc (slaves). The first phase of the execu-
tion is symmetrical for OpenMP and OpenCL. The two PM-
Interfaces trigger the execution of an offload to the GRM,
which creates a Virtual Accelerator instance consisting of
two clusters, then starts the rt_start callback. Here the
differences in the execution model emerge. The boot phase
for OpenCL is fully independent on each cluster and does
not imply synchronization between the two. For OpenMP
the scenario is different. The boot phase of each cluster
first recruits all local threads, then synchronizes designated
cluster master threads [21]. Only when all the clusters are
booted the OpenMP kernel execution is triggered on the
OpenMP master thread.

The reason for this difference is to be found in the
execution models of the two PMs. OpenCL has the notion
of independent work groups, that can be mapped on distinct
clusters. As OpenCL work-groups execute asynchronously,
no synchronization is needed between two clusters. Individ-
ual work-items are wired by the PM-Interface directly to the
persistend cluster threads created via the LRM vHAL, and
they are woken up dynamically by the OpenCL RTE.

OpenMP supports a more dynamic parallel execution
model, where new threads can be created at any time within
the offloaded kernel itself, and can be explicitly recruited
from different clusters. This clearly requires more sophisti-
cated PM-Interface implementation, where LRM vHAL per-
sistent threads from all the involved clusters are recruited
initially and managed internally via higher-level OpenMP
RTE thread pools.

3.2.2 RTE termination
Figure 7 and 8 show the kernel execution termination trace,
and the rt_stop callback, for OpenCL and OpenMP, re-
spectively, in the same cluster configuration used on the
previous paragraph. Two important aspects must be high-
lighted: First, the fact that OpenCL does not imply syn-
chronization between clusters allows for their faster release,
compared to OpenMP. This is shown at the left in Figure
7. Each cluster, (i.e., an OpenCL work-group) notifies its
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Fig. 6. Execution trace for an OpenMP kernel offload.

termination directly to the GRM, and it independently and
immediately enters the pool of free resources. For OpenMP
this is not the case; all clusters associated to a Virtual Accel-
erator are considered busy – and then not made available
for other kernels – as long as one of them is still busy.

Second, like in the RTE boot also the termination implies
more complicated local thread management for OpenMP.
The associated PM-Interface needs to release all the persis-
tent threads allocated during the boot of the programming
model. This is visible in the right trace in Figure 8 where
each cluster stop triggered by the GRM involves explicit
stop of all workers allocated. The OpenCL termination is
more straightforward and does not involve interaction be-
tween LRM vHAL persistent threads and the RTE threads.
This has an impact on the RTE switch cost, as it shown in
our previous work [23].

4 EXPERIMENTAL RESULTS

To quantify the importance of efficient PMCA resource
sharing in both high-end embedded system and low power
microserver contexts, our experiments are organized in two
main use cases.

The first use case focuses on single-user, multi-
application high-end embedded SoCs. As a target platform
we consider STMicroelectronics STHORM [9], running a
set of applications from the image and signal processing
domain. This is, for example, representative of the workload
for a high-end portable device concurrently running several
programs (e.g., augmented reality, video, audio).

The second use case focuses on multi-user, multi-
workload low-power microservers, e.g., in the context of
energy-efficient data center/cloud computing. As a target
platform for this use case we consider the TI Keystone
II [18], executing a mix of workloads ranging from linear
algebra to data mining.
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Mnemonic Application Name Programming Model #Resources Description

FAST FAST OpenMP 1 Corner Detection based on machine learning
ROD Removal Object Detection OpenMP 4 Removal/Abandon Object detection
CT Color Tracking OpenMP 4 Track a single color among multiple frames
FD Face Detection OpenCL 1 Face detection based on Viola-Jones algorithm
ORB Object Recognition OpenCL 4 ORB object recognition
SHOT-1 3D Object Recognition OpenCL 4 3D vision detection using SHOT descriptor
SHOT-2 3D Object Recognition OpenCL 2 (split in two kernels)

TABLE 1
Computer-Vision domain application set
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Fig. 7. Execution trace for an OpenCL kernel execution termination (left)
and rt_stop callback (right).
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Fig. 8. Execution trace for an OpenMP kernel execution termination (left)
and rt_stop callback (right).

4.1 Single-User, Multi-Application use-case

Target platform - STHORM is a heterogeneous, manycore-
based system from STMicroelectronics [9]. Its operating fre-
quency ranges up to 600 MHz, and it delivers up to 80 GOps
(single floating point) with only 2W power consumption.
STHORM architecture is organized as fabric of multi-core
clusters. Each cluster contains 16 STxP70 Processing Elements
(PEs), each of which has a 32-bit dual-issue RISC processor.
PEs communicate through a shared multi-ported, multi-
bank tightly-coupled data memory (TCDM, a scratchpad
memory). As other cluster-based manycore systems (e.g.
Kalray MPPA [8]), STHORM cluster has an additional
core on each cluster used as cluster controller (CC). The
STHORM fabric is composed of four clusters, plus a fabric
controller (FC), responsible for global coordination of the
clusters. The FC, which is used to physically map the GRM,
and the clusters are interconnected via two asynchronous
networks-on-chip. The first STHORM-based heterogeneous
system is a prototype system on board based on the Xilinx
Zynq 7000 FPGA device (see Figure 9), which features a
ARM Cortex A9 dual core host processor running at 699
MHz, main (L3) DDR3 memory, plus programmable logic
(FPGA). To grant STHORM access to the L3 memory, and
the ARM system access into STHORM L1/L2 memories, a
bridge is implemented in the FPGA.

Accelerator:
4x STHORM Clusters
each STHORM Cluster: 16x STM xp70 DSPs DDRDDR

Zynq (FPGA Bridge)

Coherent L2 $

ARM
A9

I$ D$

ARM
A9

I$ D$

Host:
2x ARM Cortex A9

STHORM Chip
Network On Chip

L2
SRAM

STHORM ClusterSTHORM Cluster

STHORM ClusterSTHORM Cluster

Fig. 9. STMicroelectronics STHORM heterogeneous system.

Runtime ID Application Per-Frame Time

SPM-SO

T0 FAST 56.42 ms
T1 ROD 37.40 ms
T2 FD 33.14 ms
T3 ORB 91.76 ms
T4 CT 7.34 ms
T5 SHOT1 270.96 ms
T6 SHOT2 169.73 ms

Total 666.75 ms

SPM-MO S0 FAST+ROD+CT 68.80 ms
S1 FD+ORB+SHOT1-SHOT2 422.86 ms

Total 491.66 ms

MPM-MO FAST+ROD+CT+
FD+ORB+SHOT1-SHOT2 421.56 ms

Total 421.56 ms
TABLE 2

Per-frame average execution time for computer vision application using
different runtime supports.

Workload - The computational workload for this use
case is composed of a mix of benchmarks, listed in Table
1, from the computer vision and image processing domain.
The dataset for the FAST, ROD, CT, FD, ORB is a 640x480
24-bit MJPEG video. Each application iterates the offload
of a kernel at every frame. For SHOT, which is a 3D
feature extractor, we use a a 3D shape of 32,328 points
67,240 polygons. SHOT is composed of two kernels executed
sequentially. For the measurements we iterate SHOT over
the same 3D shape as many times as the number of frames
that compose the video.

Experimental setup and results - The experiment setup
is based on measurements and mathematical models. We
measure each application execution time over the same
input dataset with three different setups: Isolation, SPM-
MO, and MPM-MO. Isolation consists of the execution of
all the single applications sequentially on the accelerator.
For this setup we measured the average execution time
per-iteration of every kernel among the input dataset. In
SPM-MO we measured the cumulative average execution
time per-iteration of all the applications that use the same
programming model. In MPM-MO we used our proposed
runtime and we executed all the applications concurrently
over the input dataset.

Table 2 shows the measurements results for the different
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setups. The resource sharing and the concurrent execu-
tion allow MPM-MO to execute the applications in 421.56
msframe. In case the accelerator runtime does not support
multiple application execution (SPM-SO), the average exe-
cution time per-frame grows up to 666.75 ms, due in partic-
ular to the under-utilization of accelerator resources. SPM-
MO, which is able to manage multiple concurrent kernels
from the same programming model, the average execution
time per-frame is 491.66 ms, still bigger than MPM-MO.

Since switching from one RTE to another without our
AcRM requires the reset of the PMCA in STHORM architec-
ture, we defined three mathematical baselines to compare
our MPM-MO as follow:

• Ideal baseline: the optimal execution time, leading to
the maximum utilization of the platform without any
restrictions on the number of clusters requested. The
baseline is calculated using the following problem
formulation.

Min z =
∑Ki

xi
such that∑

xi≤ 28, i = 0, 2, ..., 6
xi ≥ 1, i = 0, 2, ..., 6.

Let z be sum of the execution times for all the
applications for a single frame that we want to min-
imize. Under the hypothesis of ideal speedup, this
is given by the sum of ratios of Ki, the execution
time of each application using a single resource and
xi, the number of resources allocated to i-th kernel.
The sum of the resource allocatable to is 28, given
by the the number of computational resources in
STHORM (four) multiplied by the number of appli-
cations (seven). Instead, the minimum number of re-
sources to be used must be one, that means that each
application is at least executed by a computational
resource.

• SPM-MO baseline: the execution time per-frame is
based on the sum of the the execution time in each
each programming model, plus the overhead (Os) to
boot a different programming model runtime. This
overhead depends of the switching rate (switch%)
needed by the particular batch of applications and
its order of kernels execution. The baseline for that
scenario is given by the following formula:

Tspm-mo =
∑
∀Si

Si + overhead

overhead = Os × (switch%× nbFrames)

• SPM-SO baseline: the average execution time per-
frame is equal to the sum of all the application
execution times sequentially in complete isolation:

Tspm-so =
∑
∀Ti

Ti

Figure 10 shows the efficiency of the designed use case
for all the baseline scenarios and for our AcRM, with respect
to the ideal ILP solution increasing the number of threads.
In the figure, the percentage associated to the SPM-MO
baseline represents the switching rate. Our runtime has
an efficiency of 93% with respect to the ideal solution. It
outperforms the efficiency of the best case SPM-MO baseline
(static 0% - where there is a single RTE switch from OpenMP
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Fig. 10. Computer-Vision use-case efficiency on STMicroelectronics
STHORM platform increasing the number of frames.

Name PM Description

HOT OpenMP Hotspot: Thermal simulator that estimate pro-
cessors temperature based on architectural
floorplan and power measurements. The sim-
ulator is based iterations of differential equa-
tion calculus.

LUD OpenCL LU Decomposition for linear equations solu-
tion.

KME OpenMP K-means: clustering algorithm used in data-
mining applications.

SRAD OpenCL Speckle Reducing Anisotropic Diffusion used
in ultrasonic images to remove locally corre-
lated noise.

TABLE 3
Application set for cloud level, low-power server computation, from

Rodinia Benchmark Suite 3.0 [24]

RTE to OpenCL one) by 30% and the most basic support
(SPM-SO) baseline by 80%.

4.2 Multi-User, Multi-Workload use-case
Target platform - The Texas Instrument Keystone II [18],
is a heterogeneous SoC featuring a quad-core ARM Cortex-
A15 and eight C66x VLIW DSPs. Each DSP runs at up to 1.2
GHz and together they deliver 160 single precision GOps.
The SoC consumes upto 14W and it is designed for special-
purpose industrial task, such as networking, automotive,
and low-power server applications. The 66AK2H12 SoC is
the top performance Texas Instrument Keystone II device
architecture (Figure 11). The Cortex-A15 quad cores are fully
cache coherent, while the DSP cores do not maintain cache
coherency. External memory bandwidth exploits separated
dual DDR3 controllers. Each DSP is equipped by 32KB L1D
and L1P cache and 1024KB L2 cache size. On the ARM side,
there is 32 KB of L1D and 32 KB of L1P cache per core, and
a coherent 4 MB L2 cache. The computational power of such
architecture makes it a low-power solution for microserver
class applications. The Keystone II processor has been used
in several cloud-computing / microserver settings [1] [5]
[25].

Workload - The table 3 shows in detail the applications
used. The applications belong to Rodinia [24], a state-of-the-
art benchmark suite for heterogeneous systems.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXX XXXX 9

DDRDDRSRAM
MCMS
SRAM
MCMS

Keystone II 66AK2H12
Coherent L2 $Not‐Coherent L2 $

TI
C66x
I$ D$

TI
C66x
I$ D$

TI
C66x
I$ D$

TI
C66x
I$ D$

TI
C66x
I$ D$

TI
C66x
I$ D$

TI
C66x
I$ D$

TI
C66x
I$ D$

ARM
A15
I$ D$

ARM
A15
I$ D$

ARM
A15
I$ D$

ARM
A15
I$ D$

Accelerator: 8x TI C66x DSP Host: 4x ARM Cortex A15

Fig. 11. Texas Instrument Keystone II heterogeneous system.
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Experimental setup and results - The experiments aim
at showing the effectiveness of our solution as compared to
SPM-MO and SPM-SO. Due to the extremely unpredictable
and dynamic nature of the incoming offloads in multi-user,
data-center scenario, we use a mix of corner case analysis
and stochastic workloads (permutations) rather than consid-
ering precise job batches like we did in the previous section.

4.2.1 Impact of kernel arrival order and requested re-
sources
For this first experiment we use all four applications listed
on the Table 2. We launched all of them in a single batch
changing two parameters: the order of execution and the
number of resources requested by the kernels.

The order of execution influences directly the amount of
overhead to switch from an RTE to another with SMP-MO.
We defined four corner-cases:

• Best-Fit/Max Request: all kernels from the same pro-
gramming model arrive in a row; all kernels request
all the resources (clusters) available on the system;

• Best-Fit/Min Request: all kernels from the same pro-
gramming model arrive in a row; all kernels request
a single resource (cluster);

• Worst-Fit/Max Request: kernels are scheduled to force
programming models alternation at every kernel ex-
ecution; all kernels request all the resources available
on the system;

• Worst-Fit/Min Request: kernels are scheduled to force
programming models alternation at kernel execution;
all kernels request request single resource;

Figure 12 shows the measured speedup of the different
runtime support levels compared to SPM-SO. The exper-
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Fig. 13. Random dataset execution time in different parallel program-
ming model support.

iment shows that MPM-MO is able to exploit the idle
computational resources better that all the other approaches,
in particular when the offloads does not request all the
clusters (Min Request). In this particular case, we measured
up to 4× speedup compared to SMP-SO. Even in case all
the clusters are required by all the offloads (Max Request)
MPM-MO performs better then the other runtime systems.
This is particularly visible in Worst-Fit allocation due to the
switches of RTE on the clusters. Finally, we can note that in
the Best-Fit/Max Request corner case the different approaches
perform equivalently. In this case all the kernels arrive in the
“right” order to minimize runtime systems switching costs,
and the constant maximum resource request by every kernel
do not leave room for performance improvements.

The proposed MPM-MO support is not sensitive to ker-
nel arrival order or to the requested resources compare state-
of-the-art supports. It guarantees best usage of computa-
tional resources in a dynamic environment representative of
Multi-User, Multi-Workload use-case for virtualized PMCA.

4.2.2 Concurrent Multiple Runtime execution
To provide a realistic assessment of our proposed runtime in
a multi-user environment such as cloud computing systems,
we defined the following workload that we used as a
benchmark for our set of experiments.

Let X(n) be the instance of application X that requests
n clusters, we define four sets of application instances:

A := {HOT(1),HOT(2), ...,HOT(7)}
B := {LUD(1),LUD(2), ...,LUD(7)}
X := {KME(1),KME(2), ...,KME(7)}
∆ := {SRAD(1), SRAD(2), ..., SRAD(7)}

Each set contains seven instances of the same application
that requests a different amount of clusters, from one to
seven2. Given these four sets of applications, we define the
workload Φ that should be executed as:

Φ = A ∪B ∪X ∪∆

To provide a statistically relevant result we generate
500 different permutations of Φ. These permutations were
executed and measured for different runtime approaches.

2. The maximum number of cluster resources that can be allocated for
a kernel in the Keystone II platform is 7. The accelerator is equipped
by 8 DSPs, but one is used in this configuration as Global Resource
Manager.
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The permutation and variability of requested resources enable
to factor in typical sources of indeterminism of data-center
computing, such as QoS/service level, multi-user activity,
randomic service requests, etc.

We present in Figure 13 the execution time for each
permutation of Φ with MPM-MO, SPM-MO, and SPM-SO.
The Y-axis shows the speedup compared to SPM-SO, while
the X-axis shows the permutation identifier. The right chart
in Figure 13 summarizes the average execution time in
seconds of Φ and the variance on Φ for the different runtime
supports.

SPM-SO, as we expected due to poor PMCA sharing,
presents a quasi-constant execution time among permuta-
tions. The average execution time for a single permutation
of Φ is ≈40s. Vice versa, SPM-MO presents the most vari-
able behavior compared to the others, due the fact that its
execution time, as its ability to share resources, is highly
affected by the arrival sequence of applications. The average
execution time measured is 34s, but in some cases SPM-MO
performs even worse. This seems against the logical idea
that SPM-SO is the ideal worst case, but it is motivated by
the fact that SPM-MO (as well as MPM-MO) generates cache
trashing and more conflicts in memory accesses. In general,
SPM-MO allows 1.09× speedup compared to SPM-SO. Our
proposed runtime (MPM-MO) enables an average speedup
of 2.2× with respect to SPM-SO and due to the capability of
Virtual Accelerator re-usage it is able to halve the execution
time variability compared to SPM-MO.

5 RELATED WORK

Resource management of heterogeneous systems is widely
studied in literature. Several works have presented exten-
sions to OpenCL and CUDA schedulers to target different
goals like performance, power and energy-efficiency [26]
[27] [28]. Our work focuses on a more specific problems:
how to support the concurrent execution of offloads initi-
ated from multiple, distinct programming models. The men-
tioned resource management approaches could be orthogo-
nally applied and extended on top of what we propose.

5.1 Heterogeneous systems virtualization
The Heterogeneous System Architecture foundation (HSA)
[29] is an industry-driven standardization effort aimed at
defining a unified hardware/software platform for next-
generation heterogeneous systems. Among industrial play-
ers, AMD was the first to implement the HSA specification
inside its products, enabling multi-application offloads from
the host to the GPGPU. This is achieved via Heterogeneous
Queuing (hQ), a technology that enables trasparent schedul-
ing of parallel program tasks on every compute device
available on the platform [13]. Similar technologies are being
adopted also by Nvidia. Wende et al. [30] investigate the
Hyper-Q feature introduced by Nvidia Kepler GPUs [3].
Thought Hyper-Q the GPU is able to manage up to 32
hardware work queues for concurrent kernel execution. Our
technique relies on a software-only solution, that does not
require any type of hardware support and natively supports
the execution of multiple distinct programming models (and
associated RTEs). Note that, since our considered architec-
tural template retains the key traits of modern GPGPUs

(clusters as a collection of simple cores communicating via
a tightly-coupled L1 memory are at the heart of GPGPU
hardware as well) our approach could be extended for
adoption in this scenario.

Sengupta et al. [31] implement a scheduler for GPU
kernels that enables to share computational resources of a
GPU. The scheduler, called Strings, aims to efficiently use
all the GPU hardware resources and ensure fairness between
concurrent kernel executions. The technique allows to speed
up the standard CUDA runtime scheduler by up to 8.7×.
Strings is built as a middleware between the CUDA runtime
and the application layer. Again, the main limitation of the
approach is the focus on a single, proprietary programming
model which cannot be extended to support multi-user,
multi-application scenarios.

5.2 Multiple programming model support

Concurrent execution of multiple parallel programming
models is supported in general-purpose symmetric multi-
processors (SMP), based on the standard POSIX multi-
threading environment. Large-scale SMP POSIX clusters
typically use a combination of message passing (MPI) and
OpenMP, which has also been explored in the context of on-
chip parallel clusters [32]. This problem is anyhow focused
on supporting a single application at a time, and is thus
largely different from our notion of multi-programming
model support.

Among heterogeneous architectures based on PMCAs,
the Xeon Intel Phi [7] is capable of supporting POSIX
multi-threading, thus also enabling different applications
written with different programming models to coexist on
the accelerator. Clearly this solution cannot be supported
in other PMCAs, where OS support is typically lacking.
In terms of performance overheads, the Xeon Phi software
stack is more than one order of magnitude slower than our
multithreading implementation, due the large overheads
implied by the OS and POSIX layers (30 microseconds to
spawn 240 threads at 1GHz) [33].

Looking at more similar PMCAs to what we consider
in this work, one of the most mature supports for accel-
eration sharing between multiple programming models is
the one used by TI on the heterogeneous SoC Keystone II
[4]. The SoC fully support the new OpenMP v4.0 specifica-
tion and the OpenCL programming model [18]. Similar to
our approach, on the accelerator side a bare-metal runtime
supports both OpenMP and OpenCL. However, compared
to our solution the current implementation by TI lacks the
capability of concurrent application execution. Multiple host
programs cannot use the accelerator at the same time, even
if they use the same programming model.

Other solutions exist to allow multiple programming
models to use a programmable accelerator. In some cases
source to source compilation is used to transform appli-
cations that use different programming model APIs to a
unique runtime system supported by the architecture. This
is the typical approach used to support OpenMP on GPG-
PUS. An example is the support for OpenMP v4.0 on Nvidia
GPUs by Liao et al. [34]. The authors use the ROSE source
to source compiler [35] to transform the offload OpenMP
API to Nvida CUDA. Another similar approach is used by
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Elangovan et al. [36], which provide a full framework based
on OmpSS [37] that can incorporate OpenCL and CUDA
kernels to target GPGPUs devices. Other examples are pro-
vided by Seyong Lee et al. [38] which propose a compiler
and an extended OpenMP interface used to generate CUDA
code. All these approaches implement a sort of “syntactic
sugar”, where front-end compilation allows to translate
OpenMP directives into the semantically closest constructs
available in CUDA. Our solution is rather aimed at dealing
with scenarios where different programming models can be
natively executed on the PMCA, without having to resort to
restricted semantics and proprietary programming models.

Becchi et al. [39] developed a software runtime for GPU
sharing among different processes on distributed machines,
allowing the GPU to access the virtual memory of the
system. Ravi et al. [40] studied a technique to share GPGPUs
among different virtual machines in cloud environments.
Other optimizations that improve the dynamic management
of GPU programming interface are presented by Pai et al.
[41] and Sun et al. [42], but they consider only the native
programming model interface, while our approach enable
the utilization of multiple programming models. Moreover,
the context is very different, as all these works target high
performance systems, where the size of the considered
parallel workloads is such that very high overheads can
be tolerated, unlike the fine-grained parallelism typically
available on the embedded manycores targeted in this work.

MERGE is a heterogeneous programming model from
Linderman et al. [43]. The MERGE framework replaces cur-
rent ad-hoc approaches to parallel programming on hetero-
geneous platforms with a rigorous, library-based method-
ology that can automatically distribute computation across
heterogeneous cores. Compared to our solution, MERGE
does not use a standard parallel programming model in-
terface, nor allows the co-existence of multiple runtime sys-
tems to improve the resource utilization of the underlying
HW platform.

Lithe [44] is a runtime system for parallel programming
models, working as resource dispatcher. Compared to our
solution, Lithe works on top an Operating System, thus
supporting preemption and global dynamic scheduling of
all the resources among the programming models. This
kind of scheduling requires standard OS support for shared
memory systems, which are typically lacking in embedded
manycore accelerators. Moreover, the composition of sev-
eral legacy SW layers (OS, middleware, threading libraries)
implies a cost in time and space (i.e., memory footprint) that
is not affordable in the embedded domain.

6 CONCLUSIONS

In this work we presented a runtime system capable of
having offloaded computations from multiple programming
models coexist on the same clustered manycore acceler-
ator. The proposed runtime system is a distributed and
modular software component that relies on the notion of
Virtual Accelerator instances, mapped on a subset of compu-
tational resources of the accelerator, to implemenent spatial
partitioning within the accelerator. This can be effectively
exploited for the execution of multiple runtime systems.

To evaluate our solution we considered two representa-
tive use cases: high-end embedded devices running multiple
applications in a single-user environment, and low-power
microservers running multiple applications in a multi-user
environment. Suitable hardware platforms were chosen for
the validation, namely STMicroelectronics STHORM and
Texas Instrument Keystone II, running mixed workloads
composed of a selection of representative benchmarks from
the targeted computation domains. Our experiments show
that our runtime, and in particular its ability to share the
accelerator among different programming models, allows
as efficient platform exploitation as 93% of the ideal case for
high-end embedded systems and up to 2.2× faster execution
than state-of-the-art baselines for low-power microservers.
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