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THE BRUHAT ORDER ON ABELIAN IDEALS

OF BOREL SUBALGEBRAS

JACOPO GANDINI, ANDREA MAFFEI, PIERLUIGI MÖSENEDER FRAJRIA,
AND PAOLO PAPI

Abstract. Let G be a quasi simple algebraic group over an algebraically
closed field k whose characteristic is not very bad for G, and let B be a Borel

subgroup of G with Lie algebra b. Given a B-stable abelian subalgebra a of the

nilradical of b, we parametrize the B-orbits in a and we describe their closure
relations.

1. Introduction

Let G be a quasi simple algebraic group over an algebraically closed field k whose
characteristic is not very bad for G (see Section 2 for the definition). Fix a Borel
subgroup B ⊂ G and a maximal torus T ⊂ B. Let U be the unipotent radical of
B. We denote the Lie algebras of G, B, U respectively by g, b and u.

Let a be a B-stable abelian subalgebra of u, then B acts on a with finitely many
orbits. When the characteristic of k is good forG, this was noticed by G. Röhrle [19],
and then proved conceptually by the same author together with D.I. Panyushev [16]
(see also [4]), by showing a connection between the B-stable abelian subalgebras
of u and the spherical nilpotent orbits in g. If the characteristic of k is zero, the
B-stable abelian subalgebras of u are exactly the abelian ideals of b. In this case,
a combinatorial parametrization of the B-orbits was recently given by Panyushev
[15], by exhibiting canonical base points and establishing a parametrization in terms
of the combinatorics of the root system of G.

The aim of this paper is to extend Panyushev’s combinatorial parametrization of
the B-orbits in a to the case of positive characteristic, and to give a combinatorial
description of the corresponding Bruhat order (that is, the partial order among
the B-orbits given by the closure relations). This generalizes to arbitrary B-stable
abelian subalgebras of u a conjecture of Panyushev [15] recently proved by the first
two authors [5], devoted to the case of the abelian ideals of b which arise as the
nilradicals of standard parabolic subalgebras of g.

The main ingredient which makes this generalization possible is the combina-
torics of the affine Weyl group. More precisely, let Φ be the root system of G
associated to T (regarded as the set of T -weights in g), let ∆ ⊂ Φ+ ⊂ Φ be the
base and the set of positive roots determined by B, and set Φ− = −Φ+. Let

Φ̂ = Φ ± Zδ be the corresponding affine root system (δ being the fundamental

imaginary root), let Φ̂+ = (Φ+ +Nδ)∪ (Φ− +N>0δ) be a set of positive roots in Φ̂

compatibly chosen with Φ+, and set Φ̂− = −Φ̂+. Let W and Ŵ be respectively the
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2 J. GANDINI, A. MAFFEI, P. MÖSENEDER FRAJRIA, AND P. PAPI

Weyl group and the affine Weyl group of G. Our choices determine sets of Coxeter

generators, length functions, and Bruhat orders 6 for both W and Ŵ .

Let ĝ = g[z, z−1] ⊕ kC ⊕ kd be the affinization of g. For any real root α ∈ Φ̂,

we fix a root vector eα ∈ ĝ and denote by sα ∈ Ŵ the associated reflection. More

generally, if S ⊂ Φ̂ is a finite set of pairwise orthogonal real roots (for short, an
orthogonal set of roots) we define

σS =
∏
α∈S

sα, eS =
∑
α∈S

eα.

Let a be a B-stable abelian subalgebra of u. Then a is a sum of root spaces of
b, and we denote by Ψ(a) ⊂ Φ+ its set of T -weights. Panyushev [15] proved that
the assignment S 7→ BeS gives a bijection between the orthogonal subsets of Ψ(a)
and the B-orbits in a. This bijection carries over when the characteristic of k is not
very bad for G (see Corollary 5.4), and our main result is the following.

Theorem (see Corollary 5.4 and Theorem 6.3). Let a be B-stable abelian subalgebra

of u and let S, S′ ⊂ Ψ(a) be orthogonal subsets. Set Ŝ = S − δ and Ŝ′ = S′ − δ,
then

eS′ ∈ BeS if and only if σŜ′ 6 σŜ .

Moreover,

dimBeS =
`(σŜ) + card(S)

2
.

Notice that the previous theorem provides some sort of an affine formulation of
the description conjectured by Panyushev in [15] and proved by the first two authors
in [5]. Suppose indeed that a = pu is the nilradical of a parabolic subalgebra p,
and let WP ⊂W be the parabolic subgroup defined by p and wP ∈WP its longest
element. Given orthogonal subsets S, S′ ⊂ Ψ(pu), Panyushev conjectured in this
case that

eS′ ∈ BeS if and only if σwP (S′) 6 σwP (S),

and that dimBeS = 1
2 (`(σwP (S)) + card(S)).

To explain the equivalence of the two formulations, recall that the nilradical
of a standard parabolic subalgebra p of g is abelian if and only if p is a maximal
standard parabolic subalgebra, corresponding to a simple root αP ∈ ∆ which occurs
with multiplicity one in the highest root θ of Φ. If α0 = δ − θ denotes the affine
simple root, we can thus define an involution of the extended Dynkin diagram

∆̂ = ∆ ∪ {α0} by setting ϕ(αP ) = α0 and ϕ(α) = −wP (α) for all α ∈ ∆ r {αP }.
The map ϕ induces an involution of Ŵ (still denoted by ϕ), which preserves the
Bruhat order and the length function. Notice that wP (αP ) = θ, and that αP
occurs with multiplicity one in every root in Ψ(pu). If moreover β ∈ Ψ(pu), then
ϕ(β) = δ − wP (β), yielding ϕ(wP (S)) = δ − S and ϕ(σwP (S)) = σŜ , which shows
the equivalence of the two formulations.

The idea to use the affine root system in the study of abelian ideals dates back
to Peterson (see [9]) and has been systematically used by many authors ([2], [3],
[13], [14], [20], [22]). Let us recall the key points in our setting. If a is a B-stable
abelian subalgebra of u, then â = z−1a ⊂ ĝ is a B-module isomorphic to a. Strictly
speaking, all along the paper we will study the B-orbits in â: this is of course
equivalent to the original problem. The set of T -weights of this B-module is the set

of negative roots Ψ̂(a) := Ψ(a) − δ, and it has the fundamental property of being
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biclosed : that is, both Ψ̂(a) and Φ̂− r Ψ̂(a) are closed under root addition. This

property implies the existence of an element wa ∈ Ŵ such that

Ψ̂(a) = {α ∈ Φ̂− : wa(α) ∈ Φ̂+}.

The assignment a 7→ wa gives a bijective correspondence between the set of the

B-stable abelian subalgebras of u and a remarkable class of elements of Ŵ . Set

Ψ̂ := Φ+ − δ. We say that an element w ∈ Ŵ is minuscule if

{α ∈ Φ̂− : w(α) ∈ Φ̂+} ⊂ Ψ̂,

and we denote by Ŵab ⊂ Ŵ the set of minuscule elements.

Given w ∈ Ŵab, we define

Ψ̂(w) = {α ∈ Φ̂− : w(α) ∈ Φ̂+}.

Correspondingly, we define two (isomorphic) B-stable subspaces of ĝ as follows

âw =
⊕

α∈Ψ̂(w)

gα, aw = zâw.

The space aw is easily seen to be a B-stable abelian subalgebra of u, and the

assignment w 7→ aw gives a bijection between the minuscule elements of Ŵ and
the B-stable abelian subalgebras of u. We note that usually one encodes minuscule

elements by means of their positive inversions, namely by −Ψ̂(w). However this
would lead to a B−-stable subspace of ĝ (where B− denotes the opposite Borel
subgroup of B in G with respect to T ), and since we are presently interested in the
orbit structure of the B-stable abelian subalgebras of u, our choice seems preferable
in this context.

The general strategy of the proof of our main theorem is similar to the one given
in [5] in the case of the abelian nilradicals. As in that case, the most difficult
part is to prove that the relations among the involutions imply the relations among
the associated orbits closures. To deal with this problem, we consider a family of

extensions of B parametrised by Ŵab. More precisely, for v ∈ Ŵab, set Bv = Bnâv.

These extensions have the following properties: if v, w ∈ Ŵab, then Bv ⊂ Bw if
and only if v 6 w, and Bv acts on âw if and only if v 6 w (see Proposition 3.3
and formulas (5.1) – (5.2)). This allows us to argue by decreasing induction on the
length of v 6 w in order to study of the Bv-orbit structure of âw.

In particular, we analyse some basic relations among orbits whose dimensions
differ by one. This analysis will be controlled by the descents of the involutions σS ,

where S varies among the orthogonal subsets of Ψ̂(w). In the case of the abelian
nilradicals, this part of the analysis was performed by considering the action of the
minimal parabolic subgroups of G in the Hermitian symmetric variety associated
to the abelian nilradical. This is no more possible in the more general context
of the B-stable abelian subalgebras of u, however we are still able to perform our
analysis by distinguishing the descents of the involutions σS into two families, the
finite descents and the affine descents (see Definition 4.12), and adopting different
strategies in the two cases.

The results and the techniques of the present paper are further extended in [6] in
order to study the B-orbits in Ga for a basic class of B-stable abelian subalgebras
a ⊂ u.
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The paper is organised as follows. Section 2 is mainly devoted to preliminaries.
In Subsection 2.1 we perform a detailed analysis, in positive characteristic, of several
notions which are equivalent in characteristic zero to being an abelian ideal of b.

In Section 3 we recall and prove some properties of the minuscule elements.
In Section 4 we prove some properties of the involutions that we consider, and
in particular we introduce the notions of finite and affine descents. In Section 5
we introduce the extensions Bv and we give a classification of Bv-orbits which is
slightly different from the one given in [15] and which allows to prove the formula
for the dimension of an orbit. Finally in Section 6 we describe the Bruhat order.
Acknowledgments. We thank the anonymous referee for his/her useful remarks.

2. Notation and preliminaries

We expand here on the notation already set in the Introduction. Algebraic
groups will be always denoted by capital letters, whereas their Lie algebras will
be denoted by the corresponding fraktur letters. Recall that G is a quasi simple
algebraic group, and that B ⊂ G is a fixed Borel subgroup with maximal torus
T ⊂ B and unipotent radical U , so that B = TU .

A prime p > 0 is said to be very bad for G if p = 2 and G is of type Bn, Cn, F4

or G2, or if p = 3 and G is of type G2, whereas it is called good for G if it does not
divide any coefficient of the highest root of Φ (namely, p 6= 2 if G is not of type Ar,
p 6= 3 if G is of type Er, F4 or G2, and p 6= 5 if G is of type E8).

Let ĝ = g[z, z−1]⊕ kC ⊕ kd. The algebra structure on ĝ is defined by letting C
be a central element, d act on ĝ by z(d/dz) and setting

[znx, zmy] = zn+m[x, y] + nδn,−mκ(x, y)C,

where κ(·, ·) is the Killing form on g. We point out that the the Killing form can be
degenerate in positive characteristic, so ĝ is not, strictly speaking, an affine Kac-
Moody algebra. However we will use only the combinatorics of the Weyl group and
of the affine root system and, in Lemma 5.1, the description of the Bruhat order
on the affine flag variety (which is only determined by the loop group, and not by
its central extension). Thus we will use the terminology of affine Kac-Moody Lie
algebra even though it is slightly improper.

We denote by Ĝ the Kac-Moody group associated to ĝ, and by T̂ = T × k∗C × k∗d
the maximal torus of Ĝ containing T whose Lie algebra contains C and d. Let Λ̂

be the character lattice of T̂ . It carries a Ŵ -invariant nondegenerate bilinear form.

Then the sets of roots Φ ⊂ Φ̂ ⊂ Λ̂ are respectively the set of T̂ -weights in g and
in ĝ. We regard the root lattice as a partially ordered set with the dominance order,
defined by λ 6 µ if µ− λ is a sum of simple roots with nonnegative coefficients.

Given α ∈ Φ̂, let gα ⊂ ĝ be the corresponding root space and, if α is real, let

uα be the corresponding one parameter subgroup of Ĝ. In particular, if α ∈ Φ and
n ∈ Z, we have gα+nδ = zngα and uα+nδ(x) = uα(znx). Given a real root α, recall
that we can construct representatives of the reflections in the Weyl group as follows

sα = u−α(−1)uα(1)u−α(−1).

We will denote by α∨ the coroot associated to α and by 〈., .〉 the bilinear pairing
between roots and coroots, which we will also extend to their linear span. In
particular, we have 〈α+ nδ, (β +mδ)∨〉 = 〈α, β∨〉 for all α, β ∈ Φ.
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We finally make some remarks about our assumptions on the characteristic of
k. In positive characteristic, quasi simple groups with the same isogeny type could
have different Lie algebras. However u, the Lie algebra of the unipotent radical of
B, is independent from the isogeny type of G, and the action of B on u always
factors through the adjoint form of the group.

As already recalled, our assumption on the characteristic implies that, if α, β ∈ Φ
and α+β ∈ Φ, then [eα, eβ ] 6= 0. Since a B-stable abelian subalgebra of u is a sum
of root spaces, it follows that the classification of these ideals is equivalent to that
of the corresponding sets of roots. On the other hand, a subset Ψ0 ⊂ Φ+ is the set
of roots of a B-stable abelian subalgebra of u if and only if it has the following two
properties:

i) If α ∈ Ψ0, β ∈ Φ+ and α 6 β ∈ Φ+, then β ∈ Ψ0,
ii) If α, β ∈ Ψ0, then α+ β 6∈ Φ+.

A subset Ψ0 ⊂ Φ+ which satisfies i) is usually called a combinatorial ideal in Φ+; if it
also satisfies ii) we will call it a combinatorial abelian ideal. The previous discussion
immediately implies that the classification of the B-stable abelian subalgebras of u
over k is the same as that in characteristic zero. In particular, under our assumption
on the characteristic, all the properties of a B-stable abelian subalgebra of u which
can be encoded in terms of the corresponding combinatorial abelian ideal do not
depend on the characteristic of k.

Notice also that, since the characteristic of k is not very bad for G, if α, β ∈ Φ
are not proportional and if m ∈ N is maximal such that α + mβ is a root, then
there exist nonzero constants c1, . . . , cm ∈ k∗ such that

uβ(t) · eα = eα + c1 t eα+β + · · ·+ cm t
m eα+mβ

for all t ∈ k (see for example the construction of Chevalley groups in [21, Sections
1,2,3]).

Note that in positive characteristic we do not always have an exponential map.
However such a map can be defined in special cases. Suppose for instance that

X ⊂ Φ̂ is a finite set of real roots such that α+ β 6∈ Φ̂ ∪ {0} for all α, β ∈ X, then
we can define an exponential map

expX :
⊕
α∈X

k eα → Ĝ,
∑
α∈X

tα eα 7→
∏
α

uα(tα),

which is well defined since the elements uα commute by hypothesis. Notice that

the previous assumption is satisfied when X = Ψ̂(w) for some w ∈ Ŵab, or more

generally if X is conjugated to such a subset by the action of Ŵ . Moreover, in this
case we can normalise the elements eα so that the map

expΨ̂(w) : âw → Ĝ

becomes equivariant for the adjoint action of B on âw and on Ĝ: again this follows
from the construction of Chevalley groups given in [21]. In what follows we will
usually drop the subscript X, which will be clear from the context.

2.1. Abelian ideals of b in positive characteristic. When the characteristic
of k is zero, the following notions all coincide:

(a) B-stable abelian subalgebras of u;
(b) B-stable abelian subalgebras of b;
(c) Abelian ideals of b contained in u;
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(d) Abelian ideals of b.

In positive characteristic, the previous notions coincide if G is adjoint, and there
are the obvious implications (a) ⇒ (b), (c), (d); (b) ⇒ (d); (c) ⇒ (d). However, in
general, they are not equivalent. In the present paper we will use the notion (a).

In this subsection we explain the differences between the previous notions which
arise when the characteristic of k is positive. We always assume that the charac-
teristic of k (here denoted by p) is not very bad for G, and that Φ is irreducible.

We explain first the relations between the B-stable abelian subalgebras/ideals of
u and the B-stable abelian subalgebras/ideals of b. Let Q ⊂ Λ be the root lattice
of Φ. If p divides the cardinality of Λ/Q, then t contains a nontrivial subspace zt
which is central in g, whose dimension is at most 2. The group B acts trivially on
zt and every B-stable abelian subalgebra i ⊂ b splits as i = it ⊕ iu, where it ⊂ zt
and iu ⊂ u is a B-stable abelian subalgebra of u; vice versa any i constructed in this
way is a B-stable abelian subalgebra of b. Hence the classification of the B-stable
abelian subalgebras of b and the study of their B-orbits is easily reduced to the
case of the B-stable abelian subalgebras of u. The same stament holds for abelian
ideals of b, with the exception of the case G = SL(2), p = 2. If we are not in this
case (and p is not very bad for G), then every abelian ideal i of b splits as i = it⊕ iu
where it ⊂ zt and iu ⊂ u is an abelian ideal of u, vice versa any i constructed in this
way is an abelian ideal of b.

We now come to the relations between B-stable abelian subalgebras of u and
abelian ideals of b contained in u. The two concepts are equivalent unless we are
in one of the following cases:

(1) G = SL(3), p = 3;
(2) G = SO(2n), p = 2, and n > 3;
(3) G = Spin(2n), p = 2, and n > 3.

In cases (2) and (3), notice that for n > 4 we obtain groups of type Dn, whereas
for n = 3 we obtain groups of type A3: SL(4) and its degree two quotient.

To prove the equivalence between the two concepts if we are not in one of the
previous cases, one can prove that for all α, β ∈ Φ with α 6= ±β we have that
dα 6= dβ. This implies that every abelian ideal i of b contained in u splits as
i =

⊕
α∈Φ iα, where iα = i∩ gα. Thus, if we are not in one of the exceptional cases

listed above, the classification of the abelian ideals of b contained in u is equivalent
to that of the combinatorial abelian ideals of Φ+, namely the abelian ideals of b
contained in u are precisely the B-stable abelian subalgebras of u.

Finally in the three exceptional cases listed above we provide examples of abelian
ideals i of b contained in u which are not contained in any B-stable abelian sub-
algebra of b. If G = SL(3) we denote by eij the elementary matrices, if instead
G = SO(2n) or Spin(2n) we describe roots with the usual ε-notation, and for p = 2
we normalise the root vectors eα so that [eα, eβ ] = eα+β if α, β, γ are roots.

In case (1), we take i = k(e12 + e23)⊕ ke13.
In cases (2) and (3) set

α = ε2 − εn, β = ε2 + εn, η = ε1 − εn, ξ = ε1 + εn,

Ψ = {ε1 + εi, ε2 + εi | i 6 n− 1}.

Then j =
⊕

ψ∈Ψ gψ is an abelian ideal of b (in any characteristic), and we take

i = j⊕ k(eα + eβ)⊕ k(eη + eξ). When n = 3 and G = SL(4), the latter example can
be rewritten as i = k(e12 + e34)⊕ k(e13 + e24)⊕ ke14.
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3. Minuscule elements in the affine Weyl group

In this section we will study some combinatorial properties of the minuscule ele-

ments and their sets of inversions Ψ̂(w), which closely generalize similar properties
of the minimal length coset representatives WP ⊂ W associated to a parabolic
subgroup P ⊂ G with abelian unipotent radical (see [5, Section 2]).

Let w ∈ Ŵab. Since Ψ̂(w)+δ is a combinatorial ideal in Φ+, the set of inversions

Ψ̂(w) has the following property, that we will use very often:

(3.1) if α ∈ Ψ̂(w) and β ∈ Ψ̂ satisfy α 6 β, then β ∈ Ψ̂(w).

Indeed in this case β − α is a sum of simple roots in ∆, which by definition are
transformed into positive roots by w, thus w(β) > w(α) > 0.

In particular, it follows that two roots α, β ∈ Ψ̂(w) are orthogonal if and only

if they are strongly orthogonal (that is, α ± β 6∈ Φ̂ ∪ {0}). Indeed, since Ψ̂(w) is

a subset of Ψ̂ closed under root addiction, the sum of two roots in Ψ̂(w) is never

a root. On the other hand, if α, β ∈ Φ̂ are orthogonal and α − β ∈ Φ̂, then
α+ β = sβ(α− β) is a root as well.

The following useful property was noticed by Panyushev [15, Lemma 1.2]. We
provide a proof in a slightly different language.

Lemma 3.1. Let w ∈ Ŵab. Let α, β ∈ Ψ̂(w) be orthogonal roots and let γ ∈ Φ

be such that α + γ ∈ Ψ̂(w), then β + γ 6∈ Ψ̂(w). In particular, if S ⊂ Ψ̂(w) is

orthogonal and γ ∈ Φ+, then there is at most one root α ∈ S such that α+ γ ∈ Φ̂.

Proof. Assume that α+ γ, β + γ are both in Ψ̂(w). Since w ∈ Ŵab, we have that

〈α, β∨〉 = 0 ⇐⇒ α−β /∈ Φ ⇐⇒ (α+γ)−(β+γ) /∈ Φ ⇐⇒ 〈α+γ, (β+γ)∨〉 = 0.

By the orthogonality of α and β, the last equality implies that either 〈α, γ∨〉 < 0
or 〈β, γ∨〉 < 0. Suppose that 〈α, γ∨〉 < 0: then 〈β + γ, α∨〉 < 0, thus α + β + γ ∈
Ψ̂(w), contradicting w ∈ Ŵab. Similarly, it cannot be 〈β, γ∨〉 < 0.

Suppose now that S ⊂ Ψ̂(w) is orthogonal, and let α ∈ S and γ ∈ Φ+, α ∈ S be

such that α+ γ ∈ Φ̂. Then α+ γ ∈ Ψ̂(w), thus β + γ 6∈ Φ̂ for all β ∈ S r {α}. �

We now recall some facts about the correspondence between minuscule elements
and B-stable abelian subalgebras of u. By [2], we have the following important
characterization:

(3.2) Ŵab = {w ∈ Ŵ | w−1A ⊂ 2A},

where A denotes the fundamental alcove for Ŵ in the vector space generated by
Φ∨.

The following theorem, due to Panyushev, shows how to describe the normalizer
of a B-stable abelian subalgebra of u (which is by definition a standard parabolic
subgroup) in terms of the corresponding minuscule element.

Theorem 3.2 ([14, Theorem 2.8]). Let w ∈ Ŵab and α ∈ ∆, then α is a simple

root of NG(aw) if and only if w(α) ∈ ∆̂.

A remarkable property of Ŵab is that the restriction of the Bruhat order coincide
with that of the right weak order.
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Proposition 3.3. Let w1, w2 ∈ Ŵab, then w1 6 w2 if and only if Ψ̂(w1) ⊂ Ψ̂(w2).
In particular, w1 6 w2 if and only if aw1

⊂ aw2
.

Proof. If Ψ̂(w1) ⊂ Ψ̂(w2), then w1 is less or equal than w2 in the right weak Bruhat

order on Ŵ , thus w1 6 w2.
Assume vice versa that w1 < w2. Recall that every minuscule element is a

minimal length representative for its coset in Ŵ/W . By the chain property (see [1,

Theorem 2.5.5.]), there exists a chain in Ŵ

w1 = v1 < v2 . . . < vk = w2

such that, for every i > 0, the element vi has minimal length in its coset in Ŵ/W
and `(vi+1) = `(vi) + 1.

We now show that vi ∈ Ŵab for all i. Since vi < visα for all α ∈ Φ, the alcoves
A and v−1

i A are never separated by an hyperplane of the shape 〈α, x〉 = 0 with

α ∈ Φ (see [7, Theorem 4.5]): thus 〈α, x〉 > 0 for all x ∈ v−1
i A and for all α ∈ Φ+.

Therefore, to show that vi ∈ Ŵab, by (3.2) it only remains to prove that 〈θ, x〉 < 2
for all x ∈ v−1

i A, where θ ∈ Φ+ denotes the highest root. Proceeding inductively,

we can assume that vi+1 ∈ Ŵab.
Since `(vi+1) = `(vi) + 1, we have vi = vi+1sβ for some real negative root

β ∈ Φ̂ such that vi+1(β) > 0. Since vi+1 ∈ Ŵab, it follows that β ∈ Ψ̂(vi+1), thus
β = α − δ for some α ∈ Φ+. In the vector space generated by the coroots, write
sβ(x) = x − (〈α, x〉 − 1)α∨ and let Hβ be the affine hyperplane defined by sβ .

Since vi+1sβ < vi+1, the hyperplane Hβ separates the alcoves A and v−1
i+1A (see

[7, Theorem 4.5]). On the other hand Hβ is defined by the equation 〈α, x〉 = 1,

thus 〈α, x〉 > 1 for all x ∈ v−1
i+1A. Since by assumption vi+1 ∈ Ŵab, by (3.2) we

have v−1
i+1A ⊂ 2A, hence 〈θ, x〉 < 2 for all x ∈ v−1

i+1A. Let now x ∈ v−1
i A and set

y = sβ(x): then y ∈ v−1
i+1A, thus

〈θ, x〉 = 〈θ, y〉 − (〈α, y〉 − 1)〈θ, α∨〉 < 〈θ, y〉 < 2,

which shows that vi ∈ Ŵab.
It remains to prove that Ψ̂(w1) ⊂ Ψ̂(w2). Thanks to the argument above, we

can assume that `(w2) = `(w1) + 1. Thus they exist v ∈ Ŵ and simple roots

α1, . . . , αi+1 ∈ ∆̂ such that w1 = sα1 · · · sαiv and w2 = sα1 · · · sαi+1v, with `(w1) =
`(v) + i and `(w2) = `(v) + i + 1. Since w1, w2 are minuscule, the roots v−1(αi),

v−1(αi+1) and v−1sαi+1
(αi) all belong to −Ψ̂, thus there exist β1, β2, β3 ∈ Φ+ such

that

v−1(αi) = δ − β1, v−1(αi+1) = δ − β2, v−1sαi+1
(αi) = δ − β3.

On the other hand, the equality

δ − β3 = v−1(αi − 〈αi, α∨i+1〉αi+1) = (δ − β1)− 〈αi, α∨i+1〉(δ − β2),

forces 〈αi+1, α
∨
i 〉 = 0: this shows that sαi and sαi+1

commute, and repeating the
argument we see that w2 = si+1w1. �

Remark 3.4. Notice that the previous proof also shows that Ŵab is downward closed

in the set of the minimal length coset representatives for Ŵ/W with the Bruhat

order: that is, if w1 ∈ Ŵ has minimal length in its coset w1W and if w1 6 w2 for

some w2 ∈ Ŵab, then w1 ∈ Ŵab as well (see [10, Lemma 2.4]).
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Notice also that the statement of the previous proposition needs not to be true

if we consider more generally minimal length coset representatives for Ŵ/W . Take
for instance Φ of type A2, w1 = s1s0 and w2 = s1s2s0.

The following proposition describes the left descents of a minuscule element.

Proposition 3.5. Let w ∈ Ŵab.

i) Let α ∈ Φ̂+ be such that sαw < w and assume that sαw ∈ Ŵab and `(sαw) =

`(w)− 1. Then α ∈ ∆̂.

ii) Let α ∈ ∆̂ be such that sαw < w, then sαw ∈ Ŵab. If moreover β = w−1(α),

then β is minimal in Ψ̂(w) and maximal in Ψ̂ r Ψ̂(sαw), and we have the

equality Ψ̂(w) = Ψ̂(sαw) ∪ {β}.
iii) If β is a minimal element in Ψ̂(w) and α = w(β), then α ∈ ∆̂ and sαw < w.

Proof. i) By Proposition 3.3 we have Ψ̂(sαw) ⊂ Ψ̂(w), thus α is simple by [1,
Proposition 3.1.3].

ii) Since α ∈ ∆̂, it follows that sαw is smaller than w with respect to the left

weak Bruhat order. Thus sαw ∈ Ŵab because w ∈ Ŵab, and Ψ̂(w) = Ψ̂(sαw)∪{β}.
The other claims follow from (3.1).

iii) If β is minimal in Ψ̂(w), then Ψ̂(w) r {β} is also biclosed, thus it must be

equal to Ψ̂(w′) for some w′ ∈ Ŵab. By Proposition 3.3 we have w′ < w. On the

other hand `(w′) = `(w) − 1, thus it must be w′ = sαw for some α ∈ Φ̂+ and we
conclude thanks to i) and ii). �

Remark 3.6. Let w ∈ Ŵab and let β ∈ Ψ̂rΨ̂(w) be a maximal element, then w(β) is
not necessarily the opposite of a simple root. Take for instance Φ = A3, w = s1s3s0

and β = α1 − δ: then β is maximal in Ψ̂ r Ψ̂(w) = {α1 − δ, α2 − δ, α3 − δ}, but
w(β) = −α1 − α2.

On the other hand, if there exists v ∈ Ŵab such that w < v and β is maximal

in Ψ̂(v) r Ψ̂(w), then α = −w(β) is a simple root and sαw > w. Indeed, it is

enough to prove that L = Ψ̂(w) ∪ {β} is biclosed. Since L ⊂ Ψ̂(v), It is clear that

L is closed under root addition. To check that Φ̂− r L is also closed under root
addition, it is enough to check that, if β = γ + η for some negative roots γ, η, then

either γ or η belongs to Ψ̂(w). We may assume that γ = γ0 − δ and η ∈ Φ−, thus

γ ∈ Ψ̂(v) since Ψ̂(v) is biclosed and η 6∈ Ψ̂(v). Since β = γ + η we get then β < γ,

hence γ ∈ Ψ̂(w) by the maximality of β in Ψ̂(v) r Ψ̂(w).

4. Affine involutions associated to orthogonal sets of roots
and admissible pairs.

Recall that for all finite set of pairwise orthogonal real roots S ⊂ Φ̂ we defined

an involution in Ŵ by setting

σS =
∏
α∈S

sα.

Proposition 4.1. Let w ∈ Ŵab and let S ⊂ Ψ̂(w) be an orthogonal subset. Let

α ∈ Φ̂ be such that σS(α) = −α, then α = 1
2 (±β±β′) with β, β′ ∈ S. In particular:

i) If α ∈ Ψ̂, then α = 1
2 (β + β′) with β, β′ ∈ S.

ii) If α ∈ Φ, then α = 1
2 (β − β′) with β, β′ ∈ S.
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Proof. Since σS(α) = −α, we have

(4.1) 2α =
∑
β∈S

〈α, β∨〉β.

Thus the claim follows if we show that
∑
β∈S |〈α, β∨〉| ≤ 2.

Since the statement is purely combinatorial, we can assume that the character-
istic of k is zero. Consider the sl2-triple {e, h, f} in g defined by the elements

e =
∑
β∈S

eδ+β , h =
∑
β∈S

(δ + β)∨, f =
∑
β∈S

e−β−δ.

Since e ∈ aw, by a result of Panyushev and Röhrle [16, Proposition 2.2] (see also
the proof of [16, Theorem 2.3]) it holds ad(e)4 = 0. This implies that 〈η, h〉 6 3
for all η ∈ Φ: indeed, as easily follows from the theory of sl2-representations, the
greatest eigenvalue of ad(h) on g equals the greatest n ∈ N such that ad(e)n 6= 0.

Denote S′ = {β ∈ S | 〈α, β∨〉 < 0}, then taking η = σS′(α) we get∑
β∈S

|〈α, β∨〉| =
∑
β∈S

〈σS′(α), β∨〉 ≤ 3.

On the other hand, by (4.1) we have

σS′(α) = α−
∑
β∈S′
〈α, β∨〉β =

1

2

∑
β∈S

|〈α, β∨〉|β.

Therefore
∑
β∈S |〈α, β∨〉| = −2〈σS′(α), d〉 is an even number, and the first claim is

proved.

Suppose now that α = 1
2 (±β ± β′) with β, β′ ∈ S, and assume that α ∈ Ψ̂: then

−1 = 〈α, d〉 = 1
2 (±1± 1), thus α = 1

2 (β + β′). Similarly, if α ∈ Φ, then 0 = 〈α, d〉,
thus α = ± 1

2 (β − β′). �

Remark 4.2. Proposition 4.1 is in general false if we do not assume S ⊂ Ψ̂(w) for

some w ∈ Ŵab. Take for example Φ = D4, S = {ε1 + ε3 − δ, ε1 − ε3 − δ, ε2 + ε4 −
δ, ε2 − ε4 − δ} and α = ε1 + ε2 − 2δ = 1

2

∑
β∈S β.

Proposition 4.3. Let w ∈ Ŵab and let S ⊂ Ψ̂(w) be an orthogonal subset. If

S′ ⊂ Ψ̂ is an orthogonal subset such that σS′ = σS, then S′ = S.

Proof. If α ∈ S′, then σS′(α) = σS(α) = −α, hence 2α =
∑
β∈S〈α, β∨〉β and

α ∈ spanQ S. Therefore S′ ⊂ spanQ S, and switching the role of S and S′ we get
spanQ S

′ = spanQ S. Assume now that S′ 6= S and set S = {β1, . . . , βk}. Let

α ∈ S′ r S, then by Proposition 4.1 we can write α = 1
2 (β + β′) with β, β′ in

S. Without loss of generality we can assume that α = 1
2 (β1 + β2). Let α′ ∈

S′ r {α}, and write α′ =
∑
aiβi. Since α and α′ are orthogonal, it follows that

a1‖β1‖2 + a2‖β2‖2 = 0, hence a1 = −‖β2‖2
‖β1‖2 a2. On the other hand, by Proposition

4.1 we can write α′ = 1
2 (βi + βj) for some βi, βj ∈ S, and since α′ 6= α we get

a1 = a2 = 0. It follows that S′ r {α} ⊂ spanQ(S r {β1, β2}), against the fact that
S and S′ span the same space. �

Remark 4.4. Notice that the claim of Proposition 4.3 is false if we consider any

pair of strongly orthogonal subsets S, S′ ⊂ Ψ̂. Take for example Φ = D4, S as in
Remark 4.2 and S′ = {ε1 +ε4−δ, ε1−ε4−δ, ε2 +ε3−δ, ε2−ε3−δ}, then σS′ = σS .



THE BRUHAT ORDER ON ABELIAN IDEALS 11

The following definitions are adapted from Richardson and Springer [17].

Definition 4.5. Let σ ∈ Ŵ be an involution and α ∈ ∆̂.
We say that α is a descent for σ if σ(α) < 0. If moreover σ(α) = −α, then we

say that α is a real descent, otherwise we say that α is a complex descent.
We also define

sα ◦ σ =

{
sασ if sασ = σsα

sασsα if sασ 6= σsα

Finally we define the length of σ as

L(σ) =
`(σ) + rk(id− σ)

2
.

Notice that the length of an involution is a natural number. Indeed rk(id − σ)
equals the multiplicity of −1 as an eigenvalue for σ, thus det(σ) = (−1)`(σ) =
(−1)rk(id−σ), and the parity of `(σ) equals that of rk(id− σ).

If σ is an involution, notice that sα◦σ is an involution as well, and that sα◦σ = τ
if and only if sα ◦ τ = σ. If moreover σ = σS for some finite orthogonal set of real
roots S, then L(σS) = 1

2 (`(σS) + cardS).
In the next two lemmas we recall some simple results of Richardson and Springer

from [17, 18], see also [5] for more direct proofs. First we characterize the descents
of an involution.

Lemma 4.6. Let σ ∈ Ŵ be an involution and let α ∈ ∆̂, then the following
statements are equivalent:

i) α is a descent for σ;
ii) sασ < σ;

iii) σ sα < σ;
iv) sα ◦ σ < σ;
v) L(sα ◦ σ) = L(σ)− 1.

If moreover α is a descent for σ, then it is real if and only if sα σ = σ sα, and it is
complex if and only if sασ sα < sασ and sασ sα < σ sα.

Proof. The only thing that it is not proved in [5, Section 3] is that, if α is a descent
for σ, then it is real if and only if sα and σ commute. On the other hand, if they
commute, then sα = σsασ = sσ(α), and being σ(α) < 0 we deduce σ(α) = −α. �

Lemma 4.7 (see [5, Lemma 3.2]). Let α ∈ ∆̂ and let σ, τ ∈ Ŵ be involutions such
that σ < τ . Then the following hold:

i) if sα ◦ σ > σ and sα ◦ τ > τ , then sα ◦ σ < sα ◦ τ ;
ii) if sα ◦ σ < σ and sα ◦ τ < τ , then sα ◦ σ < sα ◦ τ ;

iii) if sα ◦ σ > σ and sα ◦ τ < τ , then sα ◦ σ 6 τ and σ 6 sα ◦ τ .

We now study the descents of the involutions of the form σS , with S an orthog-

onal set of roots contained in Ψ̂(w) for some w ∈ Ŵab.

Proposition 4.8. Let w ∈ Ŵab, let S ⊂ Ψ̂(w) be an orthogonal subset and let

α ∈ ∆ be a descent for σS. Then sα(S) ⊂ Ψ̂(w), and sα(S) = S if and only if α is
a real descent.
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Proof. We first prove the second claim, which is easier. Suppose that σS(α) = −α,
then by Proposition 4.1 we have α = 1

2 (β1 − β2) for some β1, β2 ∈ S, thus β1 and
β2 are switched by sα, and sα(β) = β for all β ∈ S different from β1, β2.

Suppose conversely that sα(S) = S for some α ∈ ∆ with σS(α) < 0. Then sα
and σS commute, hence α is a real descent by Lemma 4.6.

Assume now that σS(α) 6= −α. Since σS(α) = α−
∑
β∈S 〈α, β∨〉β is negative and

since the elements in S are also negative, there exists β0 ∈ S such that 〈α, β∨0 〉 < 0.

Thus β0+α ∈ Ψ̂(w), and β0 is unique thanks to Lemma 3.1. Notice that sα(β0) > β0

and that 〈sα(β0), d〉 = −1, thus sα(β0) ∈ Ψ̂(w) as claimed. Let now β1 ∈ Sr {β0}.
If β1 is orthogonal to α, then sα(β1) = β1 and the claim is trivial. Otherwise, it
must be 〈α, β∨1 〉 > 0. Set n0 = −〈α, β∨0 〉, n1 = 〈α, β∨1 〉 and γ = sβ0

sβ1
(α). Then

we have
γ = sβ0sβ1(α) = α+ n0β0 − n1β1 6 σS(α) < 0.

In particular we can assume that S = {β0, β1}. Notice also that 〈γ, d〉 = n1 − n0,
thus n0 > n1.

If Φ is of type G2, then there are no combinatorial abelian ideals in Φ+ containing
two orthogonal roots, so we are not in this case.

If n0 = n1 and 〈β1, α
∨〉 = 1, then 〈γ, d〉 = 0. Therefore α+n0β0−n0β1 = γ ∈ Φ−,

and since α is simple we deduce sα(β1) = β1−α > β0. Thus we get sα(β1) ∈ Ψ̂(w)
by (3.1).

If n0 > n1, then n0 = 2, n1 = 1. In this case α and β1 are long roots, whereas
β0 is a short root, and sα(β1) = β1 − α. Notice that α− β1 and γ = α− β1 + 2β0

are both roots, hence α− β1 + β0 is either a root or zero. Denote γ′ = α− β1 + β0.
If γ′ 6 0 then we can conclude as in the previous case. Otherwise γ′ ∈ Φ+, and we
get a contradiction because γ′ + β1 = α + β0 = sα(β0) and γ′ + β0 = γ are both
roots, which is impossible by Lemma 3.1.

If n0 = n1 and 〈β1, α
∨〉 = 2, then n0 = n1 = 1. Moreover, β0 and β1 are long

roots, whereas α and γ are short roots, and 〈β0, α
∨〉 = −2. Thus 〈γ, α∨〉 = −2

and 〈γ, d〉 = 0, and it follows α + β0 − β1 = γ ∈ Φ−. Since α is simple and

γ + 2α ∈ Φ, we have γ + α ∈ Φ− ∪ {0}. If γ = −α, then sα(β1) = β0 ∈ Ψ̂(w).
Otherwise 2α+ β0 − β1 = α+ γ ∈ Φ−, and it follows sα(β1) = β1 − 2α > β0, thus

sα(β1) ∈ Ψ̂(w) by (3.1). �

4.1. Admissible pairs and their associated involutions.

Definition 4.9. Let v ∈ Ŵab and S ⊂ Ψ̂ an orthogonal subset. Given w ∈ Ŵab,

the pair (v, S) is called w-admissible if v 6 w and S ⊂ Ψ̂(w) r Ψ̂(v). The pair

(v, S) is called admissible if it is w-admissible for some w ∈ Ŵab.

Given an admissible pair (v, S) we will sometime refer to σv(S) as the involution
associated to (v, S), and will denote it also by σ(v, S).

Definition 4.10. Given α ∈ ∆̂, we say that α is a descent for (v, S) if σv(S)(α) < 0.

We will make use of the terminology introduced in Definition 4.5 also in this
context: we will say that a descent α for an admissible pair (v, S) is real (resp.
complex ) if it is so as a descent for σv(S), and we will write L(v, S) for L(σ(v, S)).

The goal of this subsection is to study the descents associated to admissible pairs.
The geometrical meaning of the admissible pairs and of their descents, which will
play a major role in our inductions, will become clear in the next sections, when we
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will give an interpretation of the admissible pairs in terms of B-orbits in B-stable
abelian subalgebras of u.

The next proposition shows that a descent of an admissible pair is of two possible
types.

Proposition 4.11. Let w ∈ Ŵab, let (v, S) be a w-admissible pair and let α ∈ ∆̂

be a descent for (v, S). Set β = v−1(α). Then β > 0, and either β ∈ −Ψ̂(w) or
β ∈ ∆. If moreover β ∈ ∆, then σS(β) < 0.

Proof. By the orthogonality of S we have

(4.2) σv(S)(α) = α−
∑
γ∈S
〈β, γ∨〉v(γ).

Since by assumption σv(S)(α) and v(γ) are both negative when γ ∈ S, there is at
least one root γ0 ∈ S such that 〈β, γ∨0 〉 < 0. In particular γ0 + β is a root.

Suppose that β < 0. Then β ∈ Ψ̂(v), hence β ∈ Ψ̂(w) thanks to Proposition

3.3. Since w ∈ Ŵab, this yields a contradiction because γ0 + β cannot be a root by
(3.1).

Therefore β > 0. Thus β+γ0 is either zero or a root. If it is zero, then β ∈ −Ψ̂(w)

proving our claim, so we can assume that it is a root. Since α ∈ ∆̂ and v(γ0) ∈ Φ̂−,
it follows that v(β + γ0) = α+ v(γ0) < 0.

If β + γ0 > 0, then β + γ0 ∈ −Ψ̂(v), thus β + γ0 ∈ −Ψ̂(w) as well, and w(β) =

w(β + γ0)− w(γ0) ∈ Φ̂− proving β ∈ −Ψ̂(w).

Otherwise we have β + γ0 < 0. Since γ0 ∈ Ψ̂ and β > 0, it follows that
either β + γ0 ∈ Φ− or β ∈ Φ+. If β + γ0 ∈ Φ−, then w(β + γ0) < 0, hence

w(β) = w(β + γ0)− w(γ0) < 0, and again we get β ∈ −Ψ̂(w).
Suppose finally that β ∈ Φ+. Then it must be β ∈ ∆: if indeed β = β1 + β2 for

some β1, β2 ∈ Φ+, then α = v(β1) + v(β2), which is absurd since α is simple and

v(Φ+) ⊂ Φ̂+.
This proves the first claim. Suppose now that β ∈ ∆. Since vσS(β) = σv(S)(α) <

0, it must be either σS(β) ∈ −Ψ̂(v) or σS(β) < 0. Suppose that σS(β) ∈ −Ψ̂(v) and
write σS(β) = β −

∑
γ∈S〈β, γ∨〉γ. Then 〈σS(β), γ∨0 〉 = −〈β, γ∨0 〉 > 0, and because

σS(β) > 0 it follows that σS(β) − γ0 is a root, against the fact that both σS(β)

and −γ0 are in −Ψ̂(w) and w ∈ Ŵab. Therefore σS(β) < 0, and the second claim
is proved. �

Thus we give the following definition.

Definition 4.12. Let (v, S) be an admissible pair and let α ∈ ∆̂ be a descent for
(v, S). We say that α is of finite type if v−1(α) ∈ ∆, and we say that it is of affine

type if v−1(α) ∈ −Ψ̂.

Remark 4.13. Let α ∈ ∆̂ be a descent for an admissible pair (v, S) and denote
β = v−1(α). By the previous Proposition we have sαv > v. Moreover, if α is affine
then Ψ(sαv) = Ψ(v) ∪ {−β} and in particular sαv is a minuscule element, while if

α is finite the minimal lenght coset representative of sαv in Ŵ/W is equal to v and
β is a descent for σS , and it is real if and only if α is a real descent for σv(S).

We now characterize the affine descents of an admissible pair (v, S) among the

simple roots α ∈ ∆̂ such that v−1(α) ∈ −Ψ̂.
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Proposition 4.14. Let w ∈ Ŵab, let (v, S) be a w-admissible pair and let α ∈ ∆̂

be such that β = v−1(α) ∈ −Ψ̂(w). Then α is a descent for (v, S) if and only if β
is not orthogonal to S, and it is real if and only if β ∈ −S.

Proof. If β is orthogonal to S, then α is orthogonal to v(S) and σv(S)(α) = α.
Therefore, if α is a descent, β is not orthogonal to S. Suppose conversely that

β ∈ −Ψ̂(w) is not orthogonal to S. Since β − γ is never a root for γ ∈ S, we have
〈β, γ∨〉 6 0 for all γ ∈ S. On the other hand v(γ) < 0 for all γ ∈ S, thus by (4.2)
we see that α is a descent for (v, S).

We now show that α is real if and only if β ∈ −S. Clearly, α is real if β ∈
−S. Suppose conversely that α is real, that is σS(β) = −β. Since β ∈ −Ψ̂, by
Proposition 4.1 we have then β = −(γ1 + γ2)/2 and α = −(v(γ1) + v(γ2))/2, with
γ1, γ2 ∈ S. Since α is simple and v(γ1), v(γ2) are both negative, these roots must
be equal, thus β = −γ1 ∈ −S. �

5. The extended action, and dimension formulas

For v ∈ Ŵab, let Bv be the split extension of B defined by Bv = B n âv, with
product given by

(5.1) (p, x)(q, y) = (pq,Adq−1(x) + y).

If w ∈ Ŵab and v 6 w, then Bv acts on âw by

(5.2) (p, x).y = Adp(x+ y).

Notice that B = Be (where e ∈ W denotes the neutral element), and that âw
is homogeneous under Bw. Moreover, by Proposition 3.3 we have Bv ⊂ Bv′ if and
only if v 6 v′: thus we can study the B-action on âw by studying inductively the
action of Bv on âw, where v 6 w. Proceeding in this way, in this section we will
show that B acts with finitely many orbits on âw, and we will give a parametrisation
of the Bv-orbits in âw in terms of the w-admissible pairs introduced in the previous
section, as well as a formula for their dimension. On the other hand, âw and aw
are isomorphic B-modules, thus the previous discussion applies to aw as well.

Recall from the Introduction that, if S is an orthogonal set of real roots, then
eS =

∑
γ∈S eγ . Moreover, we define fS = e−S , and we set the convention that

e∅ = f∅ = 0. Since e±α and e±β commute for all α, β ∈ S, we have

σS = exp (−fS) exp (eS) exp (−fS).

Let F̂ = Ĝ/B̂ be the affine flag variety, where B̂ ⊂ Ĝ is the Iwahori subgroup

defined by Φ̂+, and let x0 ∈ F̂ be the base point defined by B̂.

Lemma 5.1. Let v ∈ Ŵab, then vBv−1 ⊂ B̂ and Adv âv ⊂ b̂. If moreover (v, S)
is an admissible pair we have

v exp (BveS) v−1x0 ⊂ B̂σv(S)x0.

In particular, if (v, S) and (v, S′) are admissible pairs and BveS = BveS′ , then
S = S′.

Proof. The first claim follows immediately from the inclusion v(Φ+) ⊂ Φ̂+ together

with the definition of Ψ̂(v). To prove the second claim, notice that

v exp (BveS) v−1 ⊂ v B exp(eS) · exp(âv)B v
−1.
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On the other hand, the right hand side of the previous equation equals

vBv−1 exp(ev(S)) exp(Adv âv)vBv
−1,

thus by the first claim of the lemma together with the fact that v(β) < 0 for all
β ∈ S we get

v exp (BveS) v−1x0 ⊂ B̂ exp(−fv(S)) exp(ev(S)) exp(−fv(S))x0 = B̂σv(S)x0.

Suppose now that (v, S) and (v, S′) are admissible pairs such that BveS = BveS′ .

Then by the previous equality we get B̂σv(S)x0 = B̂σv(S′)x0, hence σv(S) = σv(S′),
and S = S′ by Proposition 4.3. �

Proposition 5.2. Let v ∈ Ŵab and let α ∈ ∆̂ be such that sαv ∈ Ŵab and
v < sαv. Denote β = −v−1(α) and suppose that (sαv, S) is an admissible pair,
then the following holds.

i) If β is not orthogonal to S, then (v, S) is admissible and

BsαveS = BveS .

Moreover, σ(sαv, S) = sα ◦ σ(v, S) < σ(v, S) and L(sαv, S) = L(v, S)− 1.
ii) If β is orthogonal to S, then (v, S) and (v, S ∪ {β}) are both admissible and

BsαveS = BveS tBveS∪{β}.

Moreover, eS ∈ BveS∪{β} and

dimBsαveS = dimBveS∪{β} = dimBveS + 1.

Finally, σ(sαv, S) = σ(v, S) = sα◦σ(v, S∪{β}) < σ(v, S∪{β}) and L(sαv, S) =
L(v, S) = L(v, S ∪ {β})− 1.

Proof. Let w ∈ Ŵab be such that v 6 w and S ⊂ Ψ̂(w)r Ψ̂(sαv). Denote v′ = sαv

and S′ = S ∪ β, and notice that Ψ̂(v′) = Ψ̂(v) t {β}. Thus âv′ = âv ⊕ gβ and

(5.3) Bv′eS = BveS ∪Bv(eS + k∗eβ).

i) Suppose that β is not orthogonal to S. Let γ0 ∈ S be such that 〈β, γ∨0 〉 6= 0.

Since the sum of two elements in Ψ̂(w) is never a root, it follows that 〈β, γ∨0 〉 > 0,
hence β− γ0 ∈ Φ. Denote ε = β− γ0. By Proposition 3.5, the root β is maximal in

Ψ̂(w) r Ψ̂(v), thus ε ∈ Φ+ and by Lemma 3.1 γ0 is the unique root in S such that
γ0 + ε is a root. Hence

uε(t)(eS + âv) = eS + teβ + âv,

and it follows Bv′eS = BveS .To show the last claim, since v(γ) < 0 and 〈β, γ∨〉 > 0
for all γ ∈ S, notice that

σv(S)(α) = α+ 〈β, γ∨0 〉v(γ0) +
∑

γ 6=γ0,γ∈S

〈β, γ∨〉v(γ) < α.

Since α is simple, it follows that α is a descent for σ(v, S), and by Proposition 4.14
it is a complex descent. Thus sα ◦ σv(S) = sασv(S)sα = σv′(S) and we conclude by
Lemma 4.6.

ii) Suppose now that β is orthogonal to S. Then (v, S) and (v, S′) are both
admissible, and by Lemma 5.1 the orbits BveS and BveS′ are different. Since
S is orthogonal, we have eS + k∗eβ ⊂ T · eS′ , thus BveS′ = Bv(eS + k∗eβ) and

eS ∈ BveS′ . It follows from (5.3) that Bv′eS = BveS t BveS′ , and that BveS′ is
dense in Bv′eS . In particular, BveS′ has the same dimension of Bv′eS . On the
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other hand dimBv′ = dimBv + 1 and dimBv′eS is strictly bigger than dimBveS ,
which yields the last dimension equality. The last staments about the involutions
follow trivially, since sα and σv(S) commute and σv(S∪{β})(α) = −α. �

We can now classify the Bv-orbits in the Bv-stable abelian subalgebras of u, and
compute their dimensions.

Theorem 5.3. Let v, w ∈ Ŵab with v 6 w. Then there is a bijection between the

orthogonal subsets of Ψ̂(w) r Ψ̂(v) and the Bv-orbits on âw given by S 7→ BveS.
Moreover

dimBveS = `(v) + L(v, S).

Proof. We have already proved in Lemma 5.1 that Bv-orbits defined by different
orhogonal subsets are different. We show the remaining claims by decreasing in-
duction on `(v). If v = w, then âw = Bve∅ and both statements hold trivially since
dim âw = `(w).

Suppose that `(v) < `(w), and let α ∈ ∆̂ be such that sαv ∈ Ŵab and v < sαv 6
w (notice that such a simple root exists by Proposition 3.3). Denote β = −v−1(α),

then Ψ̂(sαv) = Ψ̂(v)t{β} ⊂ Ψ̂(w). By the inductive assumption, every Bsαv-orbit

in âw has a base point of the form eS , with S ⊂ Ψ̂(w) r Ψ̂(sαv) orthogonal. On
the other hand, given such a subset S, by Proposition 5.2 we have

BsαveS =

{
BveS tBveS∪{β} if β ⊥ S

BveS if β 6⊥ S ,

thus every Bv-orbit in âw has a base point of the form eS′ with S′ ⊂ Ψ̂(w) r Ψ̂(v)
orthogonal.

To show the dimension formula, assume first that β 6⊥ S. Then by the inductive
assumption together with Proposition 5.2 we have

dimBveS = dimBsαveS = `(sαv) + L(sαv, S)

= 1 + `(v) + L(v, S)− 1 = `(v) + L(v, S).

Similar computations for the orbits BveS and BveS∪{β} show the dimension formula
in the case β ⊥ S. �

As a corollary we get the classification of the B-orbits in the B-stable abelian
subalgebras of u, and a formula for their dimension. A different proof of the first
statement was already given by Panyushev [15, Theorem 2.2].

Corollary 5.4. Let w ∈ Ŵab. Then there is a bijection between the orthogonal

subsets of Ψ̂(w) and the B-orbits on âw given by S 7→ BeS. Moreover

dimBeS = L(σS).

6. The Bruhat order of the Bv-orbits on âw

In this section we will study the Bruhat order among the Bv-orbits in âw, where

v, w ∈ Ŵab and v 6 w. The description of the Bruhat order will be based on Lemma
5.1 and on the description of some basic relations among orbit closures, which
will allow us to proceed by induction. Such basic relations are those described in
Proposition 5.2, plus another one coming from the action of the minimal parabolic
subgroups of G which will be described in the following proposition.
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Let v ∈ Ŵab and let β ∈ ∆ be such that v(β) ∈ ∆̂. Then by Theorem 3.2 we

have sβ(Ψ̂(v)) ⊂ Ψ̂(v), and the minimal parabolic subgroup Pβ ⊂ G normalizes
âv. In particular we can define a group Pβ,v = Pβ n âv by equation (5.1), and if
v 6 w ∈ Wab then Pβ,v acts on âw by formula (5.2). Notice that by construction
dimPβ,v = dimBv + 1.

Proposition 6.1. Let w ∈ Ŵab and let (v, S) be a w-admissible pair. Let α ∈ ∆̂ be
a descent for (v, S) of finite type and denote β = v−1(α) ∈ ∆. Then BveS = Pβ,veS,
and the following hold.

i) If α is complex, then (v, sβ(S)) is w-admissible and esβ(S) ∈ Pβ,veS.

ii) If α is real, write β = 1
2 (γ1 − γ2) as in Proposition 4.1 with γ1, γ2 ∈ S and

set Sβ = (S r {γ1, γ2})∪ {β + γ2}. Then (v, Sβ) is w-admissible. Moreover
σv(Sβ) = sα ◦ σv(S) = sασv(S) and eSβ ∈ Pβ,veS.

Proof. Recall from Proposition 4.11 that β is a descent for σS , hence sβ(S) ⊂
Ψ̂(w) by Proposition 4.8. Moreover it follows from Theorem 3.2 that sβ(Ψ̂(v)) ⊂
Ψ̂(v), therefore (v, sβ(S)) is w-admissible. We distinguish two cases, depending on
whether α is complex or real.

i) Suppose that α is a complex descent, then by Lemma 4.6 we have σ(v, S) >
sα ◦ σ(v, S) = σ(v, sβ(S)) and L(v, sβ(S)) = L(v, S) − 1. Hence sβ(S) 6= S and
dimBvesβ(S) = dimBveS − 1 by Theorem 5.3. Notice that both eS and esβ(S)

belong to Pβ,veS , therefore

dimBveS 6 dimPβ,veS 6 dimBvesβ(S) + 1 = dimBveS

and BveS is dense in Pβ,veS .
ii) Suppose now that α is a real descent for (v, S). Since by definition γ1 − β =

γ2+β and since (v, S) is w-admissible, it follows that (v, Sβ) is w-admissible as well.
Notice that {β, γ2} is the base of a root subsystem of type C2: thus γ2 = sβ(γ1)
and sγ2(β) = β + γ2. It follows that sβsγ1sγ2 = sβ+γ2 , hence σv(Sβ) = sασv(S) =
sα ◦ σv(S).

We now prove that eSβ ∈ Pβ,veS . Let Gβ ⊂ Pβ be the subgroup generated by
Uβ , U−β and let H be the subgroup generated by Gβ , Uγ2 , U−γ2 . Then H is either
isomorphic to SO5 or to Sp4, Gβ is isomorphic to SL2, and the action of Gβ on the
space generated by eγ2 , eγ2+β , eγ1 is equivalent to the action of SL2 on the space
of symmetric matrices of order 2 (namely to the adjont representation of SL2). In
particular, we can normalise eγ2 , eγ2+β , eγ1 so that the action of an element

(
a b
c d

)
is expressed in this basis by the matrixa2 2ab b2

ac ad+ bc db
c2 2dc d2


Since Φ is not simply laced, the characteristic of k is by assumption different from
2. Let i be a square root of −1 and let g ∈ Gβ the element represented by the

matrix
(

1 i
i/2 1/2

)
∈ SL2. Then g · (eγ1 + eγ2) = eγ2+β , hence g · eS = eSβ and we can

conclude as in the previous case. �
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Let (v, S) be an admissible pair, let α ∈ ∆̂ be a descent for (v, S), and denote
β = v−1(α). Then we define

(6.1) Fα(v, S) =


(
sαv, S

)
if α is complex of affine type,(

v, sβ(S)
)

if α is complex of finite type,(
sαv, S r {−β}

)
if α is real of affine type,(

v, Sβ
)

if α is real of finite type.

Remark 6.2. Denote Fα(v, S) = (v′, S′), then by Propositions 5.2 and 6.1 the
following hold:

i) If (v, S) is w-admissible for some w ∈ Ŵab, then Fα(v, S) is w-admissible.
ii) σ(Fα(v, S)) = sα ◦ σ(v, S) < σ(v, S) and L(Fα(v, S)) = L(v, S)− 1.

iii) If α is of finite type, then v′ = v, eS ∈ Pβ,veS′ and Pβ,veS′ = BveS .

iv) If α is of affine type, then v′ = sαv > v and BveS = Bv′eS′ .

We are now ready to prove our main theorem.

Theorem 6.3. Let v, w ∈ Ŵab be such that v 6 w, and let (v,R) and (v, S) be
w-admissible pairs. Then BveR ⊂ BveS if and only if σv(R) 6 σv(S).

Proof. Assume first that eR ∈ BveS , then v exp(BveR)v−1 ⊂ vexp(BveS)v−1 and

by Lemma 5.1 we get that B̂σv(R)x0 ⊂ B̂σv(S)x0. Therefore the inequality σv(R) 6

σv(S) follows from the description of the Bruhat order on the flag variety Ĝ/B̂.
To prove the other implication we proceed by induction both on L(v, S) and on

`(σv(S))− `(σv(R)).
Suppose that σv(R) = σv(S) (in particular, this is the case if L(v, S) = 0): then

σR = σS , and by Proposition 4.3 we get R = S. Therefore we can assume that

L(v, S) > 0 and σv(R) < σv(S). Let α ∈ ∆̂ be a descent for (v, S) and denote
(v′, S′) = Fα(v, S).

Case 1. Suppose that α is a descent for (v,R) as well. Notice that being a
descent of finite or affine type depends only on v and α. In particular Fα(v,R) and
Fα(v, S) share the same first component, and we can write Fα(v,R) = (v′, R′) for
some R′. By Remark 6.2 ii) and by Lemma 4.7 we get σ(Fα(v,R)) 6 σ(Fα(v, S)),
and by induction it follows Bv′eR′ ⊂ Bv′eS′ . If α is of affine type, then we conclude
by Remark 6.2 iv). Suppose that α is of finite type. Then by (6.1) we have v′ = v,
hence BveR′ ⊂ BveS′ and in particular Pβ,veR′ ⊂ Pβ,veS′ . Thus we conclude by
Remark 6.2 iii).

Case 2. Suppose now that α is a descent of finite type for (v, S), and that it
is not a descent for (v,R). Then by (6.1) we have v′ = v, and by Remark 6.2
ii) and Lemma 4.7 we have σv(R) 6 σv(S′). Notice that `(σv(S′)) − `(σv(R)) =
`(σv(S))− `(σv(R))− 1, thus we can argue by induction and by Remark 6.2 iii) we

obtain BveR ⊂ BveS′ ⊂ BveS , which proves the claim.

Case 3. Suppose finally that α is a descent of affine type for (v, S), and that
it is not a descent for (v,R). Then by Remark 6.2 iv) we have v′ = sαv > v. By
Proposition 4.14 it follows that β is orthogonal to R. Thus (v′, R) is w-admissible
by Proposition 4.11, and σ(v′, R) = σ(v,R). By Remark 6.2 ii) together with
Lemmas 4.6 and 4.7 we have σ(v′, R) 6 σ(v′, S′), thus we can argue by induction
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since L(v′, S′) < L(v, S). Then by Proposition 5.2 and Remark 6.2 iv) we get
BveR ⊂ Bv′eR ⊂ Bv′eS′ = BveS , which proves our claim. �

6.1. Further developments. We point out that the following stronger version of
Theorem 6.3 holds, without the need of fixing the minuscule element w.

Theorem 6.4. Let v ∈ Ŵab and let (v,R) and (v, S) be admissible pairs, then
BveR ⊂ BveS if and only if σv(R) 6 σv(S).

Indeed, arguing by induction on `(v) one can easily reduce the previous theorem
to the case v = e, in which case we can prove the following theorem.

Theorem 6.5. Let w ∈ Ŵab and let S ⊂ Ψ̂(w) be orthogonal. Let R ⊂ Ψ̂ be an

orthogonal subset such that σR 6 σS, then R ⊂ Ψ̂(w) as well.

However we are able to prove Theorem 6.5 only involving case by case consider-
ations based on the classification of the B-stable abelian subalgebras of u, and we
do not have a uniform proof (see [6, Proposition 2.13] for a conceptual proof in a
special case).
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