
12 August 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Melis A., Layeghy S., Berardi D., Portmann M., Prandini M., Callegati F. (2021). P-SCOR: Integration of
Constraint Programming Orchestration and Programmable Data Plane. IEEE TRANSACTIONS ON NETWORK
AND SERVICE MANAGEMENT, 18(1), 402-414 [10.1109/TNSM.2020.3048277].

Published Version:

P-SCOR: Integration of Constraint Programming Orchestration and Programmable Data Plane

Published:
DOI: http://doi.org/10.1109/TNSM.2020.3048277

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/790409 since: 2021-01-22

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TNSM.2020.3048277
https://hdl.handle.net/11585/790409

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

A. Melis, S. Layeghy, D. Berardi, M. Portmann, M. Prandini and F. Callegati, "P-
SCOR: Integration of Constraint Programming Orchestration and Programmable
Data Plane," in IEEE Transactions on Network and Service Management.

The final published version is available online at:
http://dx.doi.org/10.1109/TNSM.2020.3048277

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1109%2FTNSM.2020.3048277

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3048277, IEEE
Transactions on Network and Service Management

1

P-SCOR: Integration of Constraint Programming
Orchestration and Programmable Data Plane

Andrea Melis , Siamak Layeghy , Davide Berardi , Marius Portmann Senior, IEEE,

Marco Prandini , and Franco Callegati Senior, IEEE

Abstract—In this manuscript we present an original imple-
mentation of network management functions in the context of
Software Defined Networking. We demonstrate a full integration
of an artificial intelligence driven management, an SDN control
plane, and a programmable data plane. Constraint Programming
is used to implement a management operating system that accepts
high level specifications, via a northbound interface, in terms
of operational objective and directives. These are translated in
technology-specific constraints and directives for the SDN control
plane, leveraging the programmable data plane, which is enriched
with functionalities suited to feed data that enable the most
effective operation of the “intelligent” control plane, by exploiting
the P4 language.

Index Terms—SDN, Constraint Programming, P4 , Pro-
grammable Data Plane, Security

I. INTRODUCTION

The Internet has revolutionized our lives, allowing
unprecedented possibilities to exchange information and
enabling innovative ways to support many human activities.
Arguably, there is no turning back. On the contrary, we
observe a steady growth of the existing computing and
communication infrastructures, and it is easy to forecast
that this trend will continue for the foreseeable future.
The recent events connected to the global pandemic just
stressed this trend, moving many activities to the virtual world.

The increase in size and centrality of the network brings
along formidable challenges. As usual new challenges require
new engineering approaches, that emerged in the last decade,
mostly based on virtualization and softwarization of network
functions. [1]

Manuscript received June 2, 2020; revised October 25, 2020 and December
23, 2020; accepted December 24, 2020. Date of publication XXXXXX XX,
202X; date of current version December 28, 2020. The associate editor
coordinating the review of this article and approving it for publication was
Wolfgang Kellerer.(Corresponding author: Andrea Melis.)

This work was partially supported by Regione Emilia Romagna, program
POR-FESR 2014-2020, Action 1.2.2, Project “I4S: Industria 4.0 Sicura
(Cybersafe Industry 4.0)”

Andrea Melis, Davide Berardi, Marco Prandini and Franco Callegati are
with the Department of Computer Science and Engineering at the Uni-
versity of Bologna, Italy, e-mail {a.melis, davide.berardi, marco.prandini,
franco.callegati}@unibo.it

Siamak Layeghy and Marius Portmann are with the School of
ITEE, The University of Queensland, Brisbane, Australia, e-mail sia-
mak.layeghy@uq.net.au and marius@ieee.org

Software Defined Networking (SDN) [2] and Network
Function Virtualization (NFV) [3] are among the most notable
examples. SDN aims at achieving full control and user plane
separation (CUPS), with the goal of enhancing scalability
and allowing more flexible forwarding policies, with cross
protocol logic. NFV enables orchestrating virtualized
infrastructures, with the goal of automating their life-cycle
management. These technologies are also at the basis of the
new architectural concepts that can be found in 5G, such
as Radio Access Network (RAN) functional splitting and
network slicing [4].

SDN and NFV open up new opportunities [5]; in particular
the management plane could collect real-time information
about the network status and react, by issuing suitable di-
rectives to the network orchestrators and/or software con-
trollers. This closed loop approach promises to reduce both
the duration of events jeopardizing the efficiency (or even
the basic functionality) of the network, and the complexity
of the necessary reaction. It is therefore particularly well-
suited to properly address problems related to the security
of the network, or to the guarantee of quality of service. In
this manuscript we describe and demonstrate P-SCOR (Pro-
grammable data plane-Software-defined Constrained Optimal
Routing), a methodology to implement management functions
that can self-adapt to the changing network conditions and re-
act to specific observed behaviors by exploiting the following
innovative characteristics:

• a flexible northbound interface, through which network
managers can describe high-level directives that state the
goal to be reached, instead of having to provide the
technical details of a plan to reach it;

• a programmable data plane to collect network measure-
ments and state variables in real time;

• an AI-based approach to design network management
strategies based on the collected network information;

• integration of the AI-driven control plane and the pro-
grammable data plane into a self-consistent network
management architecture.

The goals of P-SCOR are achieved by integrating a high
level orchestrator, based on Constraint Programming (CP),
with an SDN control plane, based on ONOS — the Open
Network Operating System1, and a programmable data plane

1https://opennetworking.org/onos/ visited on October 24, 2020.

1932-4537 c©202X IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3048277, IEEE
Transactions on Network and Service Management

2

exploiting the P4 programming language2. Thanks to ex-
isting efforts of the open-source community such as the
P4Runtime API [6], the proposed integration allows the CP
orchestrator to gather real time information regarding the status
and the operations of the network from dedicated P4 programs
in the data plane. These are then processed in order to compute
solutions that are then implemented via the SDN control plane.

The advantages of the P-SCOR solution are discussed in the
next section with reference to the state of the art. We claim that
this line of research has theoretical and practical relevance,
and that this manuscript provides a valuable addition to the
knowledge in this field.

The paper is organized as follows. Section II presents a
discussion of the relevant state-of-the-art literature. Section III
offers a brief review of the two key technologies used in
this work, namely Constraint Programming (CP) and pro-
grammable data plane with P4, while Section IV summarizes
the characteristics of SCOR [7], the background project which
laid the cornerstone for this work. Section V describes the
main architectural components of P-SCOR and outlines the
proof-of-concept scenario we used to validate the proposed
architecture in Section VI. Section VII provides the numerical
results of the tests, and conclusions are drawn in Section VIII.

II. RELATED WORKS

To the best of our knowledge, the integration between
high level programming, network control and forwarding
programming proposed in this work has not been addressed
in the past. Therefore there are no specific previous works to
refer to. Nonetheless, it is important to briefly review some
general concepts that, in general terms, inspired this work.
First of all, let us consider that intelligent networks, self
aware networks, and autonomic networking are well known
terms that have been addressed by the scientific community
for many years, in the quest for more efficient networks, as
recently pointed out for instance in [8]. It is widely agreed
that a major breakthrough in this direction was made with
the softwarization of networks, thanks to the introduction of
technologies such as SDN and NFV [9].

Efficiency is not the sole goal pursued by this evolution;
more effective QoS management is another important goal
[10], [11]. Furthermore, the capability of the network to self-
adapt and react to specific working conditions and/or moni-
tored parameters should become a major driver towards more
secure networks, which is an increasingly critical concern, as
discussed in recent works such as [12] and [13].

Indeed the centralized control plane approach of SDN
allows the implementation of solutions to detect malicious,
unwanted or unexpected traffic behaviors, as well as of suitable
countermeasures at scale. The general scheme used, among
others, in works such as [14], [15], and more recently in [16],
exploits the OpenFlow protocol to monitor either packets or
network parameters at the SDN controller and implements
network-wide countermeasures via OpenFlow in case some
malicious behavior is detected. Detection is achieved by
matching traffic patterns and network parameters against some

2https://p4.org visited on October 24, 2020.

pre-defined sets of values, thresholds, etc. or by exploiting
some form of formal verification method of behavioral models
[17], [18]. While overall effective, these works exhibit a couple
of weaknesses.

1) They have to rely on what the OpenFlow protocol
allows, both in terms of network measurements and
packet analysis. It could not be powerful enough to
catch specific network behaviors, since the OpenFlow
protocol was designed with forwarding control in mind,
not network security.

2) They mainly focus on few known security issues, typ-
ically DDoS or similar ones, with the aim to provide
higher effectiveness of detection or better automation of
countermeasures implementation.

With reference to the former issue, related to network
telemetry, it was recently demonstrated, for instance in [19],
that more effective and scalable measurement of network
parameters can be achieved by exploiting the P4 language
to program the data plane. Nonetheless, a holistic approach,
aimed at exploiting the best characteristics of these solutions to
provide very flexible network management and control, is still
missing. This work proposes and demonstrates the integration
of these techniques, with the purpose of overcoming the
aforementioned limitations.

We propose to leverage the SDN control plane and the
P4 driven network telemetry to feed a Constraint Program-
ming, high-level application, devoted to the analysis of the
network and the design of countermeasures against identified
anomalous behaviors. While currently AI is most commonly
identified with its predominant sub-field, machine learning,
CP rightfully belongs to its scientific domain, as testified, for
instance, by being widely represented in the major conferences
on the topic, such as the International Joint Conferences
on Artificial Intelligence Organization (IJCAI). As briefly
discussed in the following section, CP can automate the design
of optimal reactions, instructing the controller upon changes
in network conditions. On the switch side, the tight integration
with a programmable data plane, exploiting the P4 program-
ming paradigm, allows the design of monitoring solutions that
may go beyond what available with the OpenFlow protocol.

To the best of our knowledge there are very few works
presented in the literature that exploit CP in combination with
NFV and SDN, and none at all that provides an integrated
approach with a programmable data plane as proposed and
demonstrated here. In [20], CP modelling is used to design
an intent-based approach to tackle the problem of Virtual
Network Function placement in a multi-domain network. The
idea to exploit CP modelling to provide a more user-friendly
and technology-agnostic interface to the network manager is
in line with the goals of our work, but it was pursued by
Liu et.al. to a completely different end and, again, with no
integration with the data plane. SCOR [7] also introduced CP
as part of a broader SDN architectural refactoring. It is the
cornerstone of this work, which enriches it with the integration
of a programmable data plane.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3048277, IEEE
Transactions on Network and Service Management

3

III. ENABLING TECHNOLOGIES AND BACKGROUND

In this section we briefly review the enabling technologies
behind P-SCOR. As already stated, we claim that achieving
the integration between these technologies is the main original
contribution of this work.

A. Constraint programming

In CP, problems are solved by defining the requirements
(constraints) to be applied to the problem variables and the
goal is to find a solution that satisfies all the constraints. [21].
The main idea behind CP as stated by E. Freuder is: “Con-
straint Programming represents one of the closest approaches
computer science has yet made to the Holy Grail of program-
ming: the user states the problem, the computer solves it.”

Therefore CP is very suitable to implement a declarative
northbound interface, that network operators or network users
may exploit to express general constraints and goals in a way
that is not bound to the specific underlying technology [22].

The essential step in modelling a real-world problem as
a CP model, which can be solved using CP techniques,
is to determine the decision variables of the problem and
their relationship in terms of constraints, representing in very
general terms the restrictions or cross bounds on values that
all decision variables can have. Solving a CP model is the
action of finding the values of the decision variables that
simultaneously satisfy all the constraints. In this case CP
problems are also called Constraint Satisfaction Problems
(CSP) [23].

However, in many cases, there may be many subsets of
the variables domains that satisfy the constraints. The solver
program can be tuned to provide the first solution found,
without any further processing, or all possible solutions. In
addition, if an objective function can be defined on decision
variables, the solver program can also be asked to provide a
subset of values that maximises or minimises such a function.
In this case CP problems are also called Constraint Satisfaction
Optimisation Problem (CSOP)[23].

High level languages exists to state problems and con-
straints, like the open-source Minizinc language3, as well as
high performance solvers that can solve problems in a very
efficient way [24]. Indeed the performance of a CP solver
depends on its implementation but also on the description of
the problem, with a mixed combination of computation effi-
ciency and human optimization in problem design. The ease of
implementation, simplicity, expressiveness and compatibility
with many solvers has made MiniZinc the de-facto standard
CP modelling language.

B. SDN and Programmable Data Plane

As already outlined, SDN aims at separating the network
control plane from the forwarding plane. Controllers inter-
act with forwarding devices via the so called SouthBound
Interface. OpenFlow is the de-facto standard for southbound
interfaces to date [25].

3https://www.minizinc.org

OpenFlow started simple, with the abstraction of a single
table of forwarding rules that could match packets on a
dozen header fields (MAC addresses, IP addresses, protocol,
TCP/UDP port numbers, etc.) but, over the past five years, the
specification has grown and OpenFlow is now more complex
and feature-rich [26].

In the first version of OpenFlow, just 4 header features
were available, now there are more than 50 [27]. This is not
necessarily a positive trend. There is a widespread belief that,
rather than repeatedly extending the OpenFlow specification,
the future switches should support flexible mechanisms for
parsing packets and matching header fields directly, allowing
controller applications to leverage these capabilities through a
common, open interface [28].

A good example has been shown in [29], where data-center
network operators increasingly want to apply new forms of
packet encapsulation (e.g., NVGRE, VXLAN, and STT), for
which they resort to deploying software switches that are easier
to extend with new functionality.

The idea of programmable switches has been around for
a long time; in the past it was hindered by the performance
degradation of programmable switches, due to the fact that
the vendor chips had to adapt to different specifications
instead of focusing on a subset of features and making them
perform at their best. More recently, thanks to the advances
in ASICs design, it was demonstrated [30] that programmable
forwarding can be achieved at terabit/s speeds, thus making
programmable switches comparable to legacy ones. These
are the main motivations that inspired the development of a
programming language for the data plane: the P4 language. P4
is an open-source programming language which lets the end
users describe how the switch should process the packets. It
controls silicon processor chips in network forwarding devices,
enabling a paradigm change from a “bottom-up” approach
where fixed-function switches are built-in, to a programmable
“top-down” approach where the user decides which function-
alities to install. [31]

Basically P4 has three main goals.
• Reconfigurability. The controller should be able to rede-

fine the packet parsing and processing in the field.
• Protocol independence. The switch should not be tied to

specific packet formats. Instead, the controller should be
able to specify a packet parser for extracting header fields
with particular names and types and a collection of typed
match/action tables that process these headers.

• Target independence. The controller programmer should
not need to know the details of the underlying switch.
The P4 compiler should translate the program features
into target-dependent capabilities.

IV. SCOR
The proposed CP orchestration discussed in this paper is an

extension of the SCOR system introduced in [7].
SCOR was implemented in Minizinc [32]. In addition to its

pre-packaged solvers, e.g. Gecode [33], MiniZinc can utilise
other available solvers, such as Jacop [34] and ECLiPSe [35].

SCOR provides a new SDN northbound interface with
powerful CP-based abstractions that allows complex routing

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3048277, IEEE
Transactions on Network and Service Management

4

problems to be expressed in only a few lines of code. More
importantly, the problem only needs to be declared, while the
solving of the corresponding constraints satisfaction problem
is delegated to the powerful, general CP solvers, provided all
data are available.

As an example, let us consider minimum delay routing,
where we aim to find the path with the minimum end-to-end
delay between two network nodes. As discussed in [36], this
routing problem can easily be expressed and solved in SCOR.
However, what is missing is the information about link delays
in the network. This information is currently not provided
by SDN controllers. This is mainly due to the limitation of
OpenFlow, which does not provide the required functionality
for data plane instrumentation and monitoring. With P4 we can
overcome this limitation, by utilizing its capability for in-band
data plane monitoring. By integrating P4 and SCOR, P-SCOR
allows combining the benefits of both.

P4 has the ability to monitor critical link information from
the data plane, and can provide this information to SCOR,
which in turn uses it to very efficiently implement QoS routing
applications, such as those discussed in detail in [7]. The focus
of this paper is neither P4 nor SCOR, but the integration of
the two, which is demonstrated in the following sections via
two use-case applications.

V. P-SCOR: PROGRAMMABLE DATA PLANE FOR
CONSTRAINT PROGRAMMING ORCHESTRATION

The P-SCOR architecture is summarized in Fig. 1, showing
the three components (CP-based orchestrator, SDN controller,
and P4 -based programmable data plane) and their mutual
relationships, focusing on one of the key contributions of this
work, i.e. the communication channels between the compo-
nents.

A. The key components

1) Programmable data plane with P4 : P4 is not a protocol
or device API for run-time control or configuration, i.e. once
a P4 program is deployed to a device, P4 does not offer prim-
itives, for example, to add or remove entries in match/action
tables, or to read the value of a counter.

To carry out this kind of tasks, the P4Runtime API [6]
has been developed to interact with the program. The main
purposes of this new standard API are:

• enabling run-time control of P4 -defined switches;
• defining program-independent interaction (the API does

not change if the P4 program is modified);
• enabling to push a new P4 program without recompiling

the switch software stack.
It adheres to a client-server model; the server resides in

the data plane, integrated within the switch. A client inte-
grated within a local or remote control plane interacts with
the server to load the pipeline/P4 program, write and read
pipeline state (e.g. table entries, meters, groups, etc.) and send-
s/receives packets. P4Runtime uses a gRPC/protobuf-based
language to define its own API, called p4runtime.proto. What
P4Runtime needs in order to work is a set of specifications

which are defined in the P4 program and retrieved at compile
time. The typical workflow of such process is defined in Fig. 2.

A significant part of our work regarded this layer of the
architecture, in which we exploited P4 to create an entity able
to interact with the upper layer according to the specification
required by P4Runtime. This P4 program is then used as a
wrapper for the specific data plane functionalities that were
implemented and tested, as it will be explained in the following
section.

2) SDN control plane: ONOS was chosen to implement
the SDN control plane. It offers a number of features, besides
the basic SDN controller capabilities, that qualify it as a real
Network Operating System. ONOS was used as:

• the network controller, i.e. a component capable of con-
trolling a whole network composed of several nodes and
with a general topology;

• the communication channel between the data plane and
the CP orchestrator.

This was achieved by exploiting the work of the ONOS
P4 brigade4 which implemented a component that allows the
integration of any P4 program with ONOS.
The idea behind the P4 brigade project is shown in Figure
2. The pipeline-agnostic application is any sort of ONOS
application that may collect relevant data from the network
and apply relevant control plane actions. The Pipeliner is a
wrapper that gives to the ONOS application the capability to
interact with P4Runtime without the need to know the details
of the P4 implementation (which would not be case for the
pipeline aware application).

In this scenario the deployment of novel software functions
can be seen as composed of three steps:

• a new P4 program is deployed; it becomes immediately
available thanks to the P4Runtime Standard API but it is
not automatically integrated with the controller applica-
tions.

• a suitable pipeline is designed and implemented to guar-
antee a proper communication with the P4 program (via
P4Runtime).

• a new ONOS pipeline-aware application can be deployed
at any time to access the P4 program functionalities.

In ONOS we can perform this task defining what is called
an “ONOS pipeconf”. This component is essentially a regular
application that can be loaded in ONOS at run-time and
that, once loaded, registers the pipeline, which is the wrapper
from the application to southbound API. Once registered,
an ONOS application can add this registered pipeline to
use a P4Runtime-capable device as shown in figure 2. This
process gives ONOS the novel ability to create “wrappers” to
P4Runtime.
We implemented all the necessary pipelines to allow the SCOR
level to talk to the P4 plane. We wrote the pipeconf that tells
ONOS the mapping between the table IDs, header fields, and
the instructions used in the FlowRule generated by the SCOR
apps, and the P4 table names, match fields, and actions as in
the P4 program, queried through P4Runtime.

4https://wiki.onosproject.org/display/ONOS/P4+brigade
visited on May 27, 2020

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3048277, IEEE
Transactions on Network and Service Management

5

Fig. 1: P-SCOR Overview of the three main component level

B. Putting it all together
If SCOR interacted only with the SDN control plane, as it

happens in the original paper, it could not work on detailed
run-time information, because the SDN controller would not
have visibility of them. Most commonly, the SDN controller
provides only aggregated information on the network behavior
and high level information about topology etc.

On the other hand, were SCOR simply integrated with the
P4 layer via the P4Runtime interface, it could access run-time
information only on a per-device basis, thus missing the overall
network view.

By integrating ONOS with P4 we enabled the collection of
additional and more detailed information about network run-
time properties in the SDN controller, which can pass them
to the CP orchestrator implemented with SCOR. As a result,

SCOR has access both to the high level network information
provided by the SDN control plane and to the low level run-
time and node-based information provided by the P4 program.

Consequently, CP becomes applicable to solve problems
that could not even be stated otherwise because of the lack of
the needed variables and constraints. Moreover, SCOR may
instruct the SDN controller to inject in the network specific
packets, built by means of the P4 program. The architectural
enhancement we achieved, thus, extends its reach to the realm
of action on the network flows; it is not limited to a better
way of capturing and processing information.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3048277, IEEE
Transactions on Network and Service Management

6

!"#$%!&

!"#$%'()#

!"#$%*'(
+,'-./012'.

3&0"4(-'56 26"76"

8"'76"

3&0"4(-'56 9:'6(-

3'!6:'(6;<,<"6

1!!

!"#

$%&'()*+

!"#,-./)*0 12(345

3&0"4(-'56 =:#,0

>4:6

3'!6:'(6"

3'!6:'(6;<$(#2-'.

1!!

6761

Fig. 2: A block diagram showing the interaction of the various components with the integration between ONOS and P4 via
P4Runtime and the ONOS pipeline. The components that have been originally implemented for this specific work are those
highlighted with thicker lines.

VI. EXAMPLES OF APPLICATIONS: LINK DELAY AND
ASYMMETRIC FLOW DETECTION

A full test-bed of the P-SCOR architecture was imple-
mented. The various components described above were all de-
ployed appropriately, and in the data plane two P4 applications
were implemented to test the effectiveness of the proposed
approach:

• link delay measurement;
• asymmetric flow detection (possible DoS detection).

The knowledge of the link delay is needed by many routing
protocols, and in packet networks is indeed one of the main
indicators of performance. In a conventional SDN network,
analysing packets coming from the data plane is time- and
resource-consuming especially if high accuracy is needed [37],
[38]. Most SDN controllers do not encompass a built-in
application able to do that, and also the original test-bed of
SCOR used hard-coded (i.e. emulated, not real time) link
delays for the tests.

Asymmetric flow detection can be used as a warning of
potentially incorrect network behavior and also to trigger a
remediation action (in our test application, raising a warning
or rejecting every packet related to a network node identified
as responsible). In SDN, the controller is informed only of the
first packet of any new flow; this is enough to decide upon
packet forwarding. Counting single packets per flow is not
a viable feature of the control plane, as it would entail an
unbearable overhead. With P4 we are able to perform such
action in the device directly and not at the control plane level,
sending only the eventual warning to the CP orchestrator.

A. Link delay evaluation

The overall latency a packet experiences when traversing a
network is due to many different contributions [39]:

• Processing delay – time it takes for routers to process the
packet header

• Queuing delay – time the packet spends in routing queues
• Transmission delay – time it takes to push the packet’s

bits onto the link
• Propagation delay – time for the packet-bearing signal to

reach its destination
Some of these quantities are known and unalterable; they

either depend on hardware (e.g. the transmission delay is a
feature of the network interface) or are physically constrained
(e.g. the propagation delay is a function of the distance
between the network nodes). The processing and queuing
delays are the main random components and also the ones that
can be controlled – and ideally reduced – by enhanced network
protocols, scheduling policies, etc.. For example, MultiProtcol
Label Switching [40] was introduced to implement dedicated
virtual circuit connection (the Label Switched Paths) and
reduce the time needed to take the packet routing decisions.

In general, the delay measurement can be [41]:
• passive, i.e. non-intrusive and based on capturing packets,

in order to store and collect information from various
fields within the packet header.

• active, i.e. by injecting probe packets, measuring the per-
formance they experience, and taking it as representative
of the performance of all the traffic.

The measurement strategy we opted for belongs to the
active category. In standard SDN, active measurement is not

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3048277, IEEE
Transactions on Network and Service Management

7

Fig. 3: Delay Link program work-flow

practical, because the switches act just as forwarders and
all the intelligence is in the controllers. Therefore any real
life packet measure made at the controller is affected by the
switch-controller delay that may impair the measure reliability.
P4 shows all its potential in this scenario, because it allows us
to perform an active measurement in a simple and automatic
way at the switch level.

Since the controller knows the network topology of the data
plane, we chose to use a packet-probing technique to estimate
the delay of each link of the network, following [42]. The idea
is simple:

• the controller targets a link to measure the average delay;
• the controller picks the two switches at the ends of the

target link, called S1 and S2;
• the controller sends to S1 two packets, P1 and P2, to

be sent through the target link to S2;
• the P4 program installed in S1 instruments the packets

by adding specific custom headers, that will be used to
calculate the delay;

• when the two packets reach S2, the P4 program there
adds the results of the measurement, again as custom
headers, and makes S2 send them to the controller as
Packet-In;

• the controller gets the information about the delay on the
link reading the packets.

The process is summarized in Fig. 3.
The custom headers added to the packets are called:
• WHICH: a header to identify the packet ordering;
• WHERE: a value to specify whether the switch which

added this header is the source or the sink of the link;
• PORT: the port through which the source switch has to

forward the packet to reach the sink of the link;
• TIME: the current time-stamp;
• DELAY: a time-stamp that is used with a different purpose

on P1 and P2, in P1 it is used to calculate the total end-
to-end delay of the packet, in P2 it is used to calculate
the processing delay to be subtracted from the total delay
of P1 to estimate just the link delay.

With reference to Fig. 3, assuming the target link is L1, an
example of measurement can be described as follows:

1) the controller sends two packets to S1 – let us call them
P1 and P2 – with the information about their destination
embedded into the custom header PORT: in the form of
the port number of S1 towards S2;

2) when P1 goes to the egress queue, a time-stamp is taken
and saved in a register entry of S1 for L1;

3) P1 is forwarded to S2, ;
4) when P2 arrives at the egress queue, S1 calculates the

difference between the current time-stamp and the time-
stamp of P1; in this way we get an estimate of the
processing time in S1, which is called TP1, and which
is saved in the correspondent header field DELAY of P2;

5) P2 is also forwarded to S2;
6) S2 behaves in the same way as S1, in calculating the

processing delay of the packets, but also knows it is the
end node of the measurement from the custom header
WHICH;

7) the processing time in S2, called TP2 is calculated as
in S1 and the total time P1 and P2 have been around
are also calculated.

8) the delay due to the link is calculated as:

Delay = TT (P1, P2)− TP (S1)− TP (S2) (1)

where TT is the total time required by the packets to
cross S1,S2 and the link L1, which can be seen as the
transmission plus the propagation delay.

9) the calculated value is stored in the custom header
DELAY of P2 before sending the packets to the SDN
controller.

In this way we get a measure of the propagation delay on
the link plus the queuing delay, if any.

B. Asymmetric flow detection

The second application we implemented, as an additional
example of the effectiveness of the P-SCOR approach, aimed
at providing a real time aid to the identification of possible
DoS attacks to the network. This information is passed to
the CP orchestrator that will make decisions about possible
countermeasures, with an approach similar to the QoS routing
already mentioned above.

It is well known that DoS attacks are a serious threat to
the availability of networks; even more so in SDN networks
where a DoS attack can be mounted against the controller and
not just towards the network nodes and terminals.

Typical countermeasures rely on traffic measures to identify
anomalies in the traffic profiles, such as for instance [43], [44],
[45], [18], [46]. Solutions to safeguard the controller from the
risk to be overloaded have also been proposed in the literature
[47].

Nonetheless the implementation of DoS detection in
the SDN control plane involves data storage and analysis
which consumes memory, requires complex computations,
and presents the risk of false-positives and false negatives
[48]. Additionally, as discussed in Section II, relying on
modifications or extensions of the OpenFlow protocol is a

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3048277, IEEE
Transactions on Network and Service Management

8

Fig. 4: Asymmetric flow detection, example of work-flow. Three data flows are active and the P4 application is active in all
switches. In S2 and S3, anomalies are detected since some flows show sensible asymmetries between packet numbers observed
in the two directions.

far from effective option, requiring ad-hoc implementations
and/or long lasting procedures to modify standards.

By programming the data plane, for instance with P4,
it is possible to overcome such limitations, implementing a
program which is able to produce an aggregated result of a
possible DoS attack warning. In this work, we implemented
as an example a P4 program for asymmetric flow detection.
It calculates the ratio between the amount of incoming and
outgoing traffic for a specific IP entity. The basic idea is that
a very large asymmetry is an indication of a possible DoS
attack.

Figure 4 shows a schematic of how this works. The P4
program on the switches maintains a registry entry for each
IP address or IP class of interest. The program works on a pre-
defined time scale, storing packets flowing in both directions
between two sets of destinations. If a severe difference is
detected between packets flowing one way and packet flowing
the opposite way, this is considered a possible anomaly,
causing the switch to send a P4Runtime packet-in to the
controller to raise a warning of a possible DoS attack. As
an example, in the figure, three connections are monitored
and only one of them, the one involving 10.10.10.1, is not
malicious.

The threshold triggering the warning is implemented in a
dynamic way, so that the controller can progressively track the
level of the asymmetry and decide which action to perform.
The threshold starts at an initial value, and every time the flow

reaches it, the value is increased by a factor of 2.
In Listing 1, a small block code of the P4 application is shown,
performing the calculations and the checks for the threshold.

Listing 1: Threshold computation and checks using P4 .
apply

if (hdr.ipv4.isValid()) {
ipv4_lpm.apply();
...
window.read(last_time,flow);
threshold.read(currentThreshold,flow);
// first time initialize
...
intertime = standard_metadata.ingress_
global_timestamp - last_time;
window.write((bit<32>)flow,

standard_metadata.
ingress_global_timestamp);

// check window
if(intertime > WINDOW){

restore_flow(flow,flow_opp);
}
last_seen.read(last_pkt_cnt,flow);
last_seen.read(last_pkt_cnt_opp,flow_opp);
tmp = last_pkt_cnt - last_pkt_cnt_opp + 1;

if(tmp < (bit<48>)currentThreshold) {
get_inter_packet_gap(last_pkt_cnt,flow);

}
else{

// threshold is reached, drop it
// (send packetin to the controller)

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3048277, IEEE
Transactions on Network and Service Management

9

if(currentThreshold > 1000){
drop();

}
// else i increase your threshold,
// and restore the flow
else {

threshold.write(flow,
currentThreshold+200);

// increase your threshold,
// restore the flow
restore_flow(flow,flow_opp);

}
}

}

VII. TEST BED AND EXPERIMENTAL RESULTS

P-SCOR was implemented in a virtualized environment on
a server with Ubuntu Linux 18.04, 8 GB of RAM and dual
core CPU.

The components used were:
• ONOS controller, version 1.14, the most recent version

supported by the ONOS brigade community;
• P4 version 16;
• Bmv25 as switches supporting P4;
• mininet6 to implement virtual network topologies;
• some well known tools for traffic generation, such as

MiniCPS [49], iperf7, hping8, and the Python scapy
library9 to forge custom packets.

With this test bed it was possible to run and test P-SCOR
with the aim to:

• verify the correct functionalities of the P4 program im-
plementation and of the architecture as a whole;

• verify the overhead introduced by our solution;
• compare the P-SCOR solution with competing, existing

ones.
The tests were performed on a simple ring network topology
with three switches, unless otherwise specified.

At first we compared the performance of the switches with
the P4 programs used by P-SCOR with conventional switches
and with OpenFlow controlled switches. The goal is to check
how much overhead (if any) is introduced by the P-SCOR
components.

Following [50] we performed two different types of tests.
We measured the average Round Trip Time (RTT) to transmit a
set of ICMP packets of size 512 and 8192 Bytes. Each of these
tests were performed 10 times for each set of packets, and the
results are the average of the 10 rounds. The aim of such test
is to measure the forwarding-behaviour performances of each
switch. Is important to mention that for tests on the OpenFlow
switches we had to limit the bandwidth to 18 Mbit/s. This
because it was the maximum amount of stable bandwidth that
we were able to obtain for the Bmv2 P4 switch and we needed
a consistent environment for the evaluation tests.

5https://github.com/p4lang/behavioral-model
6http://mininet.org/
7https://iperf.fr/iperf-doc.php
8http://www.hping.org/
9https://scapy.net/

 0

 2

 4

 6

 8

 10

 12

 14

OF P4 P-SCOR

A
v
e
ra

g
e
 R

o
u
n
d
 T

ri
p
 T

im
e
 (

m
s
)

Packet Size = 512 byte
Packet Size = 8192 byte

Fig. 5: Comparison of the forwarding performance of an
OpenFlow switch, a P4 enabled switch and a P4 enabled
switch running the P-SCOR related programs.

These results are shown in Fig. 5, where the confidence
interval of the measure is also shown as error bar on top of
the histograms bars. The confidence interval is very small,
meaning that the measures are very consistent. They show the
rather obvious fact that forwarding long packets takes longer
than forwarding short ones, but they also show that the switch
exhibiting the worst performance, albeit for just a few ms, is
the OpenFlow-based one.

This was an expected result, since the basic P4 switch is
the lighter one; it implements only the essential forwarding
reactive behavior and it does not have all the tables and
features that a standard OpenFlow switch has. Otherwise our
modified version of the P4 delay link switch includes only
the new feature to process special crafted packets, and the
performances are slightly worse than those of the basic P4
switch but a bit better than those of the OpenFlow one.

This is confirmed by the histogram in Fig. 6, where we
measured the Total Transmission Time of bursts of packet of
increasing length, from 20 to 200, both for packet size 512
and 8192 Bytes and in the same conditions as before. Again,
the performances of the three variants of the switches are
very similar; the times needed to send the train of packets
are similar as well, since the transmission delay becomes
negligible, when compared to the sum of the propagation delay
of the all the packets in the burst.

The same comparison has been performed on the asymmet-
ric flow detection switch. The results very closely matched the
ones we just illustrated for the delay case, so we deemed not
necessary to include an additional graph.

These first experiments therefore allow us to conclude that
the performance of our switch is in line with the existing
state of the art, despite the fact that we have introduced some
important changes.

The second set of tests was used to validate the correct
integration of the three layers by means of the two applications
implemented in P4 . The link delay was supposed to be a key
input even in the original implementation of SCOR, with the
goal to perform QoS-based routing strategies to minimize the

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3048277, IEEE
Transactions on Network and Service Management

10

Fig. 6: Comparison of the total time transmission time of a
burst of packet (with burst size from 20 to 200)

TABLE I: The link delay calculated by the P4 program.

Number of Measurements 100
Interval Measurements 1000ms
Min value 6
Max value 110
Average delay 37.42ms
Variance 5676.79

overall packet latency, but it was not implemented with real
time measurement. The asymmetric flow detection is used as
an input to trigger remediation actions, in this case with packet
drop as explained later. The CP orchestration programming
will not be discussed here because it follows what presented
in [7].

Table I summarizes the first set of tests on link delay

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16 18 20

E
x
ti
m

a
te

d
 l
in

k
 d

e
la

y
 (

m
s
)

Delay introduced (time between P1 and P2)

Fig. 7: The link delay calculated by the P4 program, with an
increased delay on the link from 1 to 20 s. The 95% confidence
interval is plotted with the average. This confidence interval
is quite good and was achieved with 5 experiments per point.

measurement. We sent a set of four consecutive pairs of
packet probes every second, and we measured the delay of
the link. In this case we expected a small delay just due to the
packet transfer in the virtualized environment. The average
measured delay was 37.42 ms and is taken as a reference
for the subsequent tests, in which a delay was introduced on
the link, increasing from 1 second to 20 seconds in 1-second
steps. The goal was to check that the application could keep
measuring the correct delay. The results are shown in Fig. 7.

Here every point of the graph represents the average of 5
tests, therefore the 95% confidence interval of the measure is
also shown, confirming that the measure is rather accurate.

The tests on asymmetric flow detection were also run
in a similar way. In this case, providing evidence of the
effectiveness of the operations of P-SCOR is slightly more
complicate. We set up the P4 application performing the tests
on the flow asymmetry with a threshold T . A time window
of W = 15 seconds was set. The time in the example is
measured as a multiple of W , therefore t = 1W means
T = 15 seconds. Every W we use iperf to send N(t)
packets, a number increasing with t. These packets emulate the
asymmetry of the bidirectional connection, i.e. the difference
between the number of packets flowing in one direction and
the number of packets flowing in the other direction. A
warning of asymmetric flow detection is sent, as specified in
Section VI, every time the asymmetry of the flow hits the
intermediate threshold.

The threshold T starts at 300 packets per W ; it is increased
by 100 packets at every window in which no warning occurs,
up to a value of TM = 600 packets. The CP orchestrator,
upon receiving a warning, simply asks the control plane to
drop the packets of the flow; the rule is then programmed in
the switches.

When the number of packets in the flow decreases, the
threshold T is brought back to the starting value and packets
are allowed to cross the network again.

This behavior is shown in the example of Fig. 8, where we
plotted three curves as a function of time. The threshold T is
the dotted curve that increases, reaches its maximum and then
decreases again when the traffic falls back within the pre-set
limits. The number of packets N sent per W is the continuous
line, and goes up from 100 to more than 600. Then it drops to
0 and stays at 0 for a minute (4W), which is the flat section
of the continuous curve. Then iperf starts sending packets
again as before. After a minute also T is reset as shown by the
dotted curve. The dashed curve in the figure is the bandwidth
B used by the flow as measured by iperf . As it can be seen,
when the number of packets sent overcomes the threshold T ,
then B drops to 0, meaning that the packets are dropped and
iperf cannot see any capacity available for the traffic flow.

Otherwise, when the network behaves normally, B is con-
stant and equal to the link capacity.

The specific values of these quantities are just an example,
to show how the P4 application works and interacts with the
CP orchestrator; in the same way, dropping packets is just one
of the possible countermeasures to be taken.

The last set of tests aimed at comparing the proposed
solution with similar ones from the literature. The approach

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3048277, IEEE
Transactions on Network and Service Management

11

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

N
u
m

b
e
r

o
f
p
a
c
k
e
ts

M
b
it
/s

t (measured as a multiple of W)

N
B
T

Fig. 8: A graphical example of the application for asymmetric flow detection. The adopted policy is to drop until the number
of packet in the overloaded direction decreases. The figure plots the link bandwidth used by the source, the number of sent
packets and the threshold. When the threshold is reached and overcome the packets are dropped (used bandwidth goes to 0).

 0

 1

 2

 3

 4

 5

 0 200 400 600 800 1000

D
e
te

c
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Packets burst size

P-SCOR
Ahuja et al.

Fig. 9: Detection time of traffic flows very asymmetric of P-SCOR, compared with the detection time reported in [51]. The
threshold of detection is set to 100 packets per window.

presented in [51] is the closest to ours: there, a ratio between
packet entering and leaving the switch is computed, in order to
look for an asymmetry of the traffic flow, but the authors had to
implement the calculation at the controller level. To the best of
our knowledge, there is no solution like the one we proposed,
in which the asymmetric flow calculation is performed directly
and dynamically at the data plane level.
Graph 9 presents a comparison between our work and the
results reported in [51]. We simulated the same attack traffic
with the same ratio threshold of 100 packets per second. The

network topology for this test is the same used for the previous
ones, i.e. three switches connected in a ring.

What we compare is the time taken to detect the traffic
as malicious, before and after reaching the threshold. The
graph shows that when the attack rate reaches the threshold,
the detection time stabilizes. Comparing the P-SCOR solution
with that proposed in [51], we can see the clear advantage
coming from not having to send packets to the controller level
for ratio computations.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3048277, IEEE
Transactions on Network and Service Management

12

VIII. CONCLUSIONS

In this paper we described P-SCOR, an innovative and
original architecture for network management, based on the
integration of Constraint Programming with SDN at the con-
trol plane level and a Programmable Data Plane exploiting
P4. The core of this work has been the creation of the SDN-
based infrastructure that enables the communication between
the Constraint Programming Orchestrator, coordinating high
level applications through the northbound interface, and the
applications written in P4 and deployed on data plane ele-
ments.
To the best of our knowledge there are no solutions demon-
strating this kind of integration and of cooperation between
planes.

We showcased the benefits and the strength of such archi-
tecture by implementing two specific study cases of practical
relevance for QoS and network security applications: the real
time measurement of the link delay and the detection of
asymmetric traffic flows. To validate the P-SCOR proposal,
we implemented a test-bed supporting active measurements,
which can be considered a further contribution to the field.
The tests confirmed the effectiveness of the proposed ap-
proach. Further work will be devoted to systematize and
implement additional classes of P4 applications, aimed at sup-
porting the CP-Orchestrator with sets of enriched data plane
information needed to design controls with the maximum
efficiency and effectiveness.

REFERENCES

[1] A. Manzalini, R. Minerva, F. Callegati, W. Cerroni, and A. Campi,
“Clouds of virtual machines in edge networks,” IEEE Communications
Magazine, vol. 51, no. 7, pp. 63–70, 2013.

[2] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown,
and S. Shenker, “Rethinking enterprise network control,” IEEE/ACM
Transactions on Networking, vol. 17, no. 4, pp. 1270–1283, 2009.

[3] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications surveys & tutorials, vol. 18,
no. 1, pp. 236–262, 2015.

[4] D. Borsatti, G. Davoli, W. Cerroni, and F. Callegati, “Service function
chaining leveraging segment routing for 5g network slicing,” in 2019
15th International Conference on Network and Service Management
(CNSM), pp. 1–6, 2019.

[5] F. Callegati, W. Cerroni, C. Contoli, R. Cardone, M. Nocentini, and
A. Manzalini, “Sdn for dynamic nfv deployment,” IEEE Communica-
tions Magazine, vol. 54, no. 10, pp. 89–95, 2016.

[6] Y. Yetim, A. Bas, W. Mohsin, T. Everman, S. Abdi, and S. Yoo,
“P4runtime: User documentation,” 2018.

[7] S. Layeghy, F. Pakzad, and M. Portmann, “Scor: Constraint
programming-based northbound interface for sdn,” in 2016 26th In-
ternational Telecommunication Networks and Applications Conference
(ITNAC), pp. 83–88, Dec 2016.

[8] E. Gelenbe, J. Domanska, P. Fröhlich, M. P. Nowak, and S. Nowak,
“Self-aware networks that optimize security, qos, and energy,” Proceed-
ings of the IEEE, vol. 108, no. 7, pp. 1150–1167, 2020.

[9] I. Farris, T. Taleb, Y. Khettab, and J. Song, “A survey on emerging sdn
and nfv security mechanisms for iot systems,” IEEE Communications
Surveys Tutorials, vol. 21, no. 1, pp. 812–837, 2019.

[10] G. Chandwani, S. Behera, and G. Das, “Delay-aware control plane
virtual topology design of software defined-elastic optical network,”
IEEE Transactions on Network and Service Management, pp. 1–1, 2020.

[11] S. Tomovic, W. Cerroni, F. Callegati, R. Verdone, I. Radusinovic,
M. Pejanovic, and C. Buratti, “An architecture for qos-aware service de-
ployment in software-defined iot networks,” in 2017 20th International
Symposium on Wireless Personal Multimedia Communications (WPMC),
pp. 561–567, 2017.

[12] C. Basile, F. Valenza, A. Lioy, D. R. Lopez, and A. Pastor Perales,
“Adding support for automatic enforcement of security policies in nfv
networks,” IEEE/ACM Transactions on Networking, vol. 27, no. 2,
pp. 707–720, 2019.

[13] B. Martini, P. Mori, F. Marino, A. Saracino, A. Lunardelli, A. L. Marra,
F. Martinelli, and P. Castoldi, “Pushing forward security in network
slicing by leveraging continuous usage control,” IEEE Communications
Magazine, vol. 58, no. 7, pp. 65–71, 2020.

[14] A. Lara and B. Ramamurthy, “Opensec: Policy-based security using
software-defined networking,” IEEE Transactions on Network and Ser-
vice Management, vol. 13, no. 1, pp. 30–42, 2016.

[15] Seungwon Shin and Guofei Gu, “Cloudwatcher: Network security
monitoring using openflow in dynamic cloud networks (or: How to
provide security monitoring as a service in clouds?),” in 2012 20th IEEE
International Conference on Network Protocols (ICNP), pp. 1–6, 2012.

[16] N. Ahuja and G. Singal, “Ddos attack detection prevention in sdn using
openflow statistics,” in 2019 IEEE 9th International Conference on
Advanced Computing (IACC), pp. 147–152, 2019.

[17] A. Melis, D. Berardi, C. Contoli, F. Callegati, F. Esposito, and M. Pran-
dini, “A policy checker approach for secure industrial sdn,” in 2018 2nd
Cyber Security in Networking Conference (CSNet), pp. 1–7, 2018.

[18] D. Berardi, F. Callegati, A. Melis, and M. Prandini, “Technetium:
Atomic predicates and model driven development to verify security net-
work policies,” in 2020 IEEE 17th Annual Consumer Communications
Networking Conference (CCNC), pp. 1–6, 2020.

[19] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith, “Scaling
hardware accelerated network monitoring to concurrent and dynamic
queries with* flow,” in 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), pp. 823–835, 2018.

[20] T. Liu, F. Callegati, W. Cerroni, C. Contoli, M. Gabbrielli, and S. Gial-
lorenzo, “Constraint programming for flexible service function chaining
deployment,” arXiv preprint arXiv:1812.05534, 2018.

[21] F. Rossi, P. V. Beek, and T. Walsh, Handbook of constraint programming,
vol. 1. UK: Elsevier, 2006.

[22] E. C. Freuder, “In pursuit of the holy grail,” Constraints, vol. 2, no. 1,
pp. 57–61, 1997.

[23] R. Bartak, “Constraint programming: In pursuit of the holy grail,” in In
Proceedings of the Week of Doctoral Students (WDS99 -invited lecture),
vol. Part IV, (Prague, Poland), pp. 555–564, MatFyzPress, 1999.

[24] T. Bridi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini, “A
constraint programming scheduler for heterogeneous high-performance
computing machines,” IEEE transactions on parallel and distributed
systems, vol. 27, no. 10, pp. 2781–2794, 2016.

[25] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[26] B. Butler, “What p4 programming is and why it’s such a big deal for
software defined networking.,” 2016.

[27] “Openflow switch specification, version 1.5.1 (protocol version 0x06
),” March 2015.

[28] E. Kaljic, A. Maric, P. Njemcevic, and M. Hadzialic, “A survey on data
plane flexibility and programmability in software-defined networking,”
IEEE Access, vol. 7, pp. 47804–47840, 2019.

[29] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[30] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, pp. 15–28, 2017.

[31] B. Butler, “What p4 programming is and why it’s such a big deal for
software defined networking,” Jan 2017.

[32] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and
G. Tack, “Minizinc: Towards a standard cp modelling language,” in
International Conference on Principles and Practice of Constraint
Programming, pp. 529–543, Springer, 2007.

[33] C. Schulte, G. Tack, and M. Z. Lagerkvist, “Modeling and programming
with gecode,” Schulte, Christian and Tack, Guido and Lagerkvist,
Mikael, vol. 1, 2010.

[34] K. Kuchcinski and R. Szymanek, “Jacop-java constraint programming
solver,” in CP Solvers: Modeling, Applications, Integration, and Stan-
dardization, co-located with the 19th International Conference on Prin-
ciples and Practice of Constraint Programming, 2013.

[35] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3048277, IEEE
Transactions on Network and Service Management

13

[36] S. Layeghy, F. Pakzad, M. Portmann, et al., “A new qos routing
northbound interface for sdn,” Journal of Telecommunications and the
Digital Economy, vol. 5, no. 1, p. 92, 2017.

[37] W. Queiroz, M. A. Capretz, and M. Dantas, “An approach for sdn
traffic monitoring based on big data techniques,” Journal of Network
and Computer Applications, vol. 131, pp. 28 – 39, 2019.

[38] T. Alharbi, S. Layeghy, and M. Portmann, “Experimental evaluation
of the impact of dos attacks in sdn,” in 2017 27th International
Telecommunication Networks and Applications Conference (ITNAC),
pp. 1–6, 2017.

[39] D. Medhi and K. Ramasamy, “Chapter 4 - network flow models,” in
Network Routing (Second Edition) (D. Medhi and K. Ramasamy, eds.),
The Morgan Kaufmann Series in Networking, pp. 114 – 157, Boston:
Morgan Kaufmann, second edition ed., 2018.

[40] B. S. Davie and Y. Rekhter, MPLS: technology and applications. Morgan
Kaufmann Publishers Inc., 2000.

[41] V. Mohan, Y. J. Reddy, and K. Kalpana, “Active and passive network
measurements: a survey,” International Journal of Computer Science
and Information Technologies, vol. 2, no. 4, pp. 1372–1385, 2011.

[42] J. Raghavendran and J. Schormans, “Inferring delay variations using
packet-pair probing techniques for network measurement,”

[43] S. W. Shin, P. Porras, V. Yegneswara, M. Fong, G. Gu, M. Tyson, et al.,
“Fresco: Modular composable security services for software-defined
networks,” in 20th Annual Network & Distributed System Security
Symposium, Ndss, 2013.

[44] M. Munir, S. A. Siddiqui, M. A. Chattha, A. Dengel, and S. Ahmed,
“Fusead: unsupervised anomaly detection in streaming sensors data by
fusing statistical and deep learning models,” Sensors, vol. 19, no. 11,
p. 2451, 2019.

[45] L. Dridi and M. F. Zhani, “Sdn-guard: Dos attacks mitigation in
sdn networks,” in 2016 5th IEEE International Conference on Cloud
Networking (Cloudnet), pp. 212–217, IEEE, 2016.

[46] D. Berardi, F. Callegati, A. Melis, and M. Prandini, “Security net-
work policy enforcement through a sdn framework,” in 2018 28th
International Telecommunication Networks and Applications Conference
(ITNAC), pp. 1–4, 2018.

[47] D. Kotani and Y. Okabe, “A packet-in message filtering mechanism for
protection of control plane in openflow networks,” in 2014 ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS), pp. 29–40, 2014.

[48] N. Z. Bawany, J. A. Shamsi, and K. Salah, “Ddos attack detection
and mitigation using sdn: methods, practices, and solutions,” Arabian
Journal for Science and Engineering, vol. 42, no. 2, pp. 425–441, 2017.

[49] D. Antonioli and N. O. Tippenhauer, “Minicps: A toolkit for security
research on cps networks,” in Proceedings of the First ACM workshop
on cyber-physical systems-security and/or privacy, pp. 91–100, 2015.

[50] I. Z. Bholebawa and U. D. Dalal, “Design and performance analysis
of openflow-enabled network topologies using mininet,” International
Journal of Computer and Communication Engineering, vol. 5, no. 6,
p. 419, 2016.

[51] N. Ahuja and G. Singal, “Ddos attack detection & prevention in sdn
using openflow statistics,” in 2019 IEEE 9th International Conference
on Advanced Computing (IACC), pp. 147–152, IEEE, 2019.

Andrea Melis is an Adjunct Professor and a Post-
Doc Researcher at Department of Computer Sci-
ence and Engineering at University of Bologna. His
research focuses on aspects of computer security
related to innovative software architectures. In par-
ticular, his actual research activity aims to study,
design and implement innovative solutions that allow
to improve the safety and operational robustness of
connected production industrial network and devices
for cyber-security contexts.

Siamak Layeghy is a research fellow at the School
of Information Technology & Electrical Engineering
at the University of Queensland, Brisbane, Australia.
He received his PhD in Software Defined Network-
ing form the University of Queensland. His research
interests include Software Defined Networks, Cyber-
security, AI and Machine Learning.

Davide Berardi is a Ph.D. Student of Computer
Science and Engineering at Alma Mater Studiorum –
Università degli Studi di Bologna, Bologna, Italy. He
received a Master Degree in Computer Science at the
same University in 2016. His research interests focus
on Computer Security, Cyber Security Red Teaming
and Network Virtualization.

Marius Portmann received his PhD in Electrical
Engineering from the Swiss Federal Institute of
Technology (ETH, Zurich) in 2002. He currently
is an Associate Professor at The University of
Queensland, Australia. His research interests include
general networking, in particular SDN, wireless net-
works, pervasive computing and cyber security.

Marco Prandini received the Master and Ph.D.
degrees in electronic and computer engineering from
the University of Bologna, Italy in 1995 and 2000
respectively. He is currently a Research Associate at
the Department of Computer Science and Engineer-
ing of the same university. His research activities
started in the field of public-key infrastructures and
later moved to subjects related to the security of
microservice-based architectures, software-defined
networks, IoT, and industrial control systems.

Franco Callegati is an associate professor at the
University of Bologna, Italy. His research interests
are in the field of teletraffic modeling and perfor-
mance evaluation of telecommunication networks.
He is currently working on performance evaluation
and experimental validation of SDN/NFV–based
networking solutions and 5G. He has been active in
EU-funded research projects since FP4. He is Senior
Member of the IEEE.

