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Abstract 

Nowadays, the variety in the product mix, unpredictable customer demand and the need for a high level of service are crucial challenges in the 
management of a supply chain. Flexible processes are needed to gain competitive advantage and economic edges. This paper presents a data-
driven application of unsupervised machine learning clustering algorithms to a real-world case study in the automotive industry. The clustering 
input dataset collects the data available to a third-party logistics (3PL) provider. Clustering algorithms are used to define product families for the 
assignment of the workload to the processing resources. Several clustering algorithms (k-means, Gaussian mixture models and hierarchical 
clustering) define different product families scenarios using different tuning parameters. The impact of each clustering scenario on the operations 
is assessed via a dashboard of logistics KPIs to identify the best performing clustering algorithm. The performance of each clustering is, then, 
compared to a logistic benchmark given by a capacitated clustering to identify the best compromise between a logistic-constrained algorithm 
with a long runtime and fast data-driven uncapacitated algorithm. 
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1. Introduction & Literature review 

In the last decades, the logistics market becomes challenging, 
and logistics providers strive to satisfy their customers due to 
new global trends in the customers' demand [1]. They require 
high customisation of the products and very short shipping 
times. These expectations lead to a new organisation of the 
supply chain processes, including modular products, form 
postponement, high storage levels to satisfy the unpredictable 
market demand. 
These characteristics are highly recognisable in business-to-
consumer (B2C) (e.g., e-commerce) as well as business-to-
business (B2B) services. The latter is the case of the spare parts 
management in the automotive industry, where a large number 
of suppliers and third-party logistics (3PL) providers serve a 
few producers. Producers offer to their final customers a small 
product mix with a hundreds degrees of freedom in the 
customisation (e.g., colours, labels, package, materials). This 
fact affects all the actors of the supply chain generating a 

workload peak to be processed within a short service time [2,3]. 
The manufacturing industry deals with workload peaks using 
technologies as flexible manufacturing systems (FMS) [4] or 
reconfigurable manufacturing systems  (RMS) [5,6]. These 
systems allow to perform different processing tasks on a 
“family” of similar products, i.e. a large number of products 
having slight differences (e.g., the colour or the shape). FMS 
and RMS usually involve a significant degree of automation, 
which requires an initial investment dedicated to a single or a 
small number of product families. In the majority of the cases, 
these investments are not suitable for 3PL providers that work 
with short-term contracts which do not provide an adequate 
payback time for a long-term investment. 
FMS and RMS need balanced product families both from the 
workload and the product similarity point of view. The 
literature proposes several methodologies to aggregate 
products into homogeneous families, enhancing the flexibility 
of a production system. The majority of these methodologies 
rely on hierarchical clustering (i.e., dendrograms) based on the 
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workload peak to be processed within a short service time [2,3]. 
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technologies as flexible manufacturing systems (FMS) [4] or 
reconfigurable manufacturing systems  (RMS) [5,6]. These 
systems allow to perform different processing tasks on a 
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and RMS usually involve a significant degree of automation, 
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these investments are not suitable for 3PL providers that work 
with short-term contracts which do not provide an adequate 
payback time for a long-term investment. 
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bill of materials (BOM) of the products [7–10] which allows 
catching a proximity measure of the products since the BOM 
describes how raw materials converge into a finished product. 
Other techniques define a proximity matrix between products 
using a similarity index based on the features of the product or 
its production cycle [11–13]. 
Other approaches use unstructured data (i.e., text descriptions) 
as input. These techniques apply in business analytics [14–16] 
and asset maintenance [17], but no studies investigate their role 
in production environments. 
A crucial issue is that clustering algorithms do not take into 
account the workload produced by each cluster [18,19]. Few 
studies in the field of warehousing science pursue these goals 
together [19,20]. In general, warehousing operations are much 
more repetitive and predictable than production ones. All the 
stock-keeping-units have a similar workflow (i.e., putaway, 
storage, picking, packing and shipping). 3PL production plant 
workflow is similar to the one of a warehouse since they have 
vast production quantities and a wide products portfolio, but 
they perform a minimal number (i.e., less than 10) of similar 
tasks on the products. 
This paper uses clustering methods to address the grouping of 
products into families assessing the logistic benefit for a 3PL 
operations provider. In this study, we aim at answering the 
following unmet research question: 
 
RQ1: “How to group products into processing families when: 
the product portfolio is extremely wide (1), any production 
resource can perform any production task (2), customer 
demand is unpredictable (3).   
 
The methodology we propose is data-driven. Data-driven 
means that a methodology uses data available in a real-world 
scenario. For this reason, data-driven models are practice-
ready, and they do not need additional data collection for their 
implementation. Machine learning and artificial intelligence 
are entirely data-driven, and they represent a powerful tool to 
deal with the improvement of a supply chain when a high 
degree of complexity is involved. 
 
The remainder of this paper is organised as follows: Section 2 
presents the algorithms used to group products into families 
and the KPIs to measure the logistics efficiency of each 
clustering algorithm. Section 3 presents an application to a real-
word third-party logistics (3PL) processing plant. Section 4 
discusses and concludes the work. 

2. Methodology 

This section introduces the methodology to cluster products 
into families and the KPIs to assess the logistic impact of a 
product family. 
3PL providers often work with a lack of data about the product 
and the process. In particular, family grouping techniques 
usually need the definition of the production cycle for each 
resource, i.e. pinpointing which resource (e.g., machine or 
operator) can perform a specific task on the product. Often, 3PL 
providers do not have the definition of the production cycles in 
their information system because of lack of integration with the 
suppliers’ systems. 3PL providers define the cycle task by 
labelling every single product (i.e., the label indicates the 
quantity, the list of task to be processed and the final customer). 

Alternatively, they broadly define the type of the task which a 
manual operator will interpret during the operations on the 
workbench (e.g., a “packing” task must be interpreted by an 
operator to correctly choose the packaging depending on the 
type and quantity of the product). 
For these reasons, we decide to base our clustering 
methodology on the few information available for each 
incoming product: description, weight, length, height and 
width. 3PL providers often have the complete set of this 
information: suppliers generally share the description of the 
products (to avoid processing errors) while product weight and 
sizes (i.e., length, height and width) are almost always 
measured by the provider to identify the proper package.  
Grouping products into homogeneous clusters leads to the 
design of a limited number of product families with a 
predefined production cycle using a precise set of resources.  
 
Machine learning aims at uncovering hidden patterns of a 
𝑛𝑛 × 𝑝𝑝 dataset 𝑋𝑋  where 𝑛𝑛 is the number of observations (i.e., 
one for each product) and 𝑝𝑝 is the number of features (i.e., 
description, weight and sizes). Supervised methods link the 
dataset 𝑋𝑋  to a target vector 𝑦𝑦  of 𝑛𝑛  elements (one for each 
observation). Unsupervised methods define patterns and 
similarities among the dataset 𝑋𝑋 without the help of a reference 
variable 𝑦𝑦 . For this reason, we will introduce a series of 
logistics KPIs to evaluate the outcome (i.e., the families) of the 
unsupervised methods implemented. 
Table 1 introduces the unsupervised methods (i.e. the 
clustering algorithms) used to generate product families. 
Different scenarios are produced depending on the input 
dataset 𝑋𝑋  and the tuning of the algorithm (for hierarchical 
clustering). Three different clustering scenarios are proposed: 
sizes and weight (1), package code (2) and product description 
(3) -based scenarios. Several clustering algorithms are applied 
to each scenario. Further details on the grouping rationale of 
the algorithms and their tuning are provided in the following 
paragraphs. 
 
Table 1. Clustering Algorithms Implemented 

Input dataset 
scenarios 

Clustering Algorithm Algorithm Tuning 

Sizes and 
weight 

K-means  
Gaussian Mixture Model  

Hierarchical Clustering with 
Euclidean distance 

Complete linkage 
Single linkage 
Average linkage 

Package code Hierarchical Clustering with 
Jaccard distance 

Complete linkage 
Single linkage 
Average linkage 

Description Hierarchical Clustering with 
Jaccard distance 

Complete linkage 
Single linkage 
Average linkage 

Sized and 
weight 

Capacitated Hierarchical 
Clustering 

 
 
 

 

2.1. Clustering based on sizes and weight 

The input dataset 𝑋𝑋 of the sizes and weights based scenario (1) 
involves real numbers only. To first investigate the structure of 
the dataset and to run the algorithm within a brief time, we 
implement principal component analysis (PCA) on 𝑋𝑋 . PCA 
reduces the dimension of an initial dataset 𝑛𝑛 × 𝑝𝑝  into a 
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principal component (PC) dataset 𝑛𝑛 × 𝑐𝑐 where 𝑐𝑐 is the number 
of the PCs. The value of each PC is a linear combination of the 
𝑝𝑝 initial features such that the 𝑐𝑐 components are orthogonal. 
These properties allow expressing the majority of the 
information of the initial dataset 𝑋𝑋  with a small subset 𝑐𝑐  of 
orthogonal variables. Each observation is now identified by a 
point in a 𝑐𝑐 -dimensional space. For the sake of clarity, let 
assume 𝑐𝑐 = 2 (this is also the value used in the case study), 
without loss of generality. 
The machine learning algorithms cluster the points (i.e., the 
products) depending on their position on a plane defined by the 
two PCs. The distance is, then, Euclidean and the algorithms 
perform well even when 𝑛𝑛 is large (e.g., tens of thousands of 
products). Some of these methods require the number of 
clusters to be defined in advance; for these reasons, several 
scenarios with a different number of clusters are proposed in 
Section 3. All these methods are well-known clustering method 
in the field of statistics and machine learning [21]. 
 
K-means algorithm does not require assumptions on the 
statistical distribution of the input data. It defines 𝑘𝑘 clusters and 
assigns each point to a cluster such that the Euclidean distance 
between each point and the cluster centroid is minimum. 
 
Gaussian Mixture Model assumes the data to be generated by 
𝑘𝑘 multidimensional gaussian distribution. The model identifies 
the parameters (i.e., the mean and the covariance matrix) of 
each of the 𝑘𝑘 gaussian distributions and the probability for each 
point to be generated by one of the 𝑘𝑘 distribution. Each point is 
assigned to the gaussian distribution with the highest 
probability to have generated that point, obtaining 𝑘𝑘 clusters 
are obtained. 
 
Hierarchical clustering defines a convergence tree based on the 
proximity between each couple of points. For each iteration of 
the algorithm, the two closest points condense into a single 
cluster. This process is represented as a dendrogram (i.e., a tree 
representation of the clusters) where at the first iteration of the 
algorithm each point is a cluster (a leave of the tree) and at the 
last iteration, all the points form a single cluster (the root of the 
tree). This algorithm defines the number of clusters a 
posteriori, i.e. any number of cluster 𝑘𝑘 ∈ [1, 𝑛𝑛]  can be 
extracted by the dendrogram by defining a proximity threshold. 
The tuning of the algorithm identifies how the define the 
distance between a newly created cluster and all the other 
points: complete and single linkage consider, respectively, the 
maximum or the minimum distance between the clustered 
points and all the other points to be aggregated. The average 
linkage uses the average between them.  

2.2. Clustering based on the package code 

The input dataset 𝑋𝑋 of the package code -based scenarios is fed 
by 𝑚𝑚 (with 𝑚𝑚 ≥ 𝑛𝑛)  observation with two features: the product 
code and the package code (i.e. the type of package used with 
that product). Starting from 𝑋𝑋 , a distance matrix 𝐷𝐷 , 𝑛𝑛 × 𝑛𝑛 
(where 𝑛𝑛  is the number of products) is defined and 
consequently used for hierarchical clustering. In the previous 
application of hierarchical clustering, the coordinates of each 
point on the PC space (a matrix 𝑛𝑛 × 𝑐𝑐) are enough to implicitly 
define the distance matrix 𝐷𝐷  using the Euclidean distances 

between points. In this case, the distance matrix 𝐷𝐷  is more 
complex since all the 𝑛𝑛 × 𝑛𝑛 values are calculated separately, 
based on a similarity index. In this case, the Jaccard index 𝑠𝑠𝑖𝑖𝑖𝑖 
is used to measure the similarity between products 𝑖𝑖 and 𝑗𝑗. 
𝑠𝑠𝑖𝑖𝑖𝑖 =

𝑎𝑎
𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 (1) 

Where 𝑎𝑎 is the number of observation when 𝑖𝑖 and 𝑗𝑗 have the 
same package; 𝑏𝑏 is the number of observations where 𝑖𝑖 and 𝑗𝑗 
has different packages; 𝑐𝑐 is the number of observations when 𝑖𝑖 
and 𝑗𝑗  are not involved. The outcome of the hierarchical 
clustering is a dendrogram as well as discussed in the previous 
paragraph. 
 

2.3. Clustering based on the description 

The input dataset 𝑋𝑋 of the product description-based scenarios 
is the list of the description of each of the 𝑛𝑛 products. Text 
mining techniques are used to pre-process the description text 
strings and to use this information for hierarchical clustering 
exactly the same way as for package code. The description 
contained in 𝑋𝑋 is first cleaned of special characters (e.g., +, /, |, 
”, ’, .) and numbers replaced by blank spaces. Then, stopwords, 
i.e. words with a low information level (e.g., ‘the’, ‘is’, ‘from’, 
‘to’), are removed from the description. Finally, a bag of word 
model implements a frequency analysis on the remaining 
words. Words with a number of occurrences above a minimum 
threshold (e.g., 10 occurrences) enter the products vocabulary 
(PV). Each product 𝑖𝑖  is, then, characterised by a subset of 
words 𝑆𝑆𝑖𝑖  in the PV obtained as the intersection between its 
description and the PV. Hierarchical clustering is, then, applied 
as well as with package code defining a distance matrix 𝐷𝐷 
based on the Jaccard index calculated on the values of 𝑆𝑆𝑖𝑖. 

2.4. Capacitated hierarchical clustering 

All the previous algorithms are based on the proximity 
distance between points but do not consider a capacity limit for 
the generated clusters. In practice, this is an evident limit of 
clustering techniques, especially when a cluster uses a set of 
scarce resources. For this reason, we propose an original 
algorithm to cluster points considering both their proximity and 
a capacity upper bound. The algorithm is inspired to 
hierarchical clustering with a capacity constraint. Let 𝑑𝑑𝑖𝑖 be the 
demand of a point 𝑖𝑖 and 𝐶𝐶 the maximum capacity of a cluster. 
The algorithm works as follows.   

1. Define 𝑔𝑔𝑔𝑔 as the sorted list of tuples of point (𝑖𝑖, 𝑗𝑗) by 
descending values of 𝐷𝐷. 

2. Scan 𝑔𝑔𝑔𝑔 and find a tuple (𝑖𝑖, 𝑗𝑗) such that 𝑑𝑑𝑖𝑖 + 𝑑𝑑𝑖𝑖 ≤ 𝐶𝐶𝑘𝑘.  
If no tuples are found, exit. 

3. Group 𝑖𝑖 and 𝑗𝑗 within 𝑘𝑘.  
Set 𝐶𝐶𝑘𝑘 = 𝐶𝐶𝑘𝑘 − 𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖.  
Set 𝐷𝐷𝑙𝑙 = −1 for each point 𝑙𝑙 ∈ 𝑘𝑘 
Update 𝐷𝐷 according to a linkage algorithm 
Go to 2. 

The outcome of this algorithm is a set of clusters whose 
cardinality is unknown in advance. Each cluster 𝑘𝑘 has a total 
demand 𝑑𝑑 = ∑ 𝑑𝑑𝑖𝑖𝑖𝑖∈𝑘𝑘  with 𝑑𝑑 ≤ 𝐶𝐶. 
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2.5. KPIs for cluster assessment 

A dashboard of KPIs is defined to evaluate the impact of each 
cluster from a logistics perspective. Table 2 provides the details 
of the dashboard. KPIs are based on a historical order list 
storing the information of each processing order within a 
specified time horizon (e.g. a year). The order list should 
include the product code, the package type, the client, the 
quantity and the processing time for each order. All these 
information are easy to get from the order list of a 3PL 
provider. 
 
Table 2. Dashboard of KPIs to assess a cluster 

KPI Description 
N. of products Counts the number of products associated 

with a cluster 
N. of orders Counts the number of orders associated with 

a cluster 
N. of package Counts the number of different package codes 

required by the orders of a cluster 
N. of tasks Counts the number of different types of tasks 

performed on the orders of a cluster 
Processed quantity Counts the total processed quantity (the 

number of parts) associated with the orders of 
a cluster 

Total working time Counts the total working time (i.e., seconds) 
associated with the orders of a cluster 

 
Since each clustering algorithm produces 𝑘𝑘  cluster, the 
standard deviation of each KPI on the clusters defined by the 
algorithm is calculated. In particular, a low standard deviation 
for each cluster identifies which clustering strategy defines 
balanced clusters. Balancing clusters lead to a similar amount 
of workload and requires a similar amount of resources, that is 
the aim of generating product families. 

3. Case study 

This section presents a real-world application of the proposed 
methodology in the automotive industry. The clustering 
algorithms are implemented to define product families in a 3PL 
packaging plant processing more than 58.000 different 
products. The processing plant works as an intermediate stage 
of the automotive supply chain where incoming products are 
collected, packaged and labelled according to the clients' needs. 
The clients are production plants where cars or tractors are 
assembled and prepared for shipping to the final user. Since 
these clients mainly work Just-In-Time (JIT) the 3PL packaging 
plant has to absorb an unpredictable demand in a very short 
time. They offer three different levels of service (LoS) 
processing products within 24, 48 or 72 hours. The operations 

of the 3PL packaging plant consist of oiling, packing and 
labelling spare parts. Figure 1 illustrates the variability of the 
workload in terms of the number of processed orders and 
processed quantities. Each colour in the figure indicates a 
different “service type,” i.e. the definition of the series of task 
to perform on the product and the package to use. 
 
As Figure 1 shows, the workload is highly variable and it 
depends on the service type. In addition, the quantity processed 
is variable too and slightly correlated with the number of lines 
processed. Figure 2 shows a heatmap built on about 2 millions 
of orders over a period of 7 years, identifying the correlation 
between the parameters of the orders:  
-the dimensions, volume and weights of the items; 
-the dimensions, volume and weights of the packages; 
-the code of the service pack associated with an order. 

Figure 1:  Workload trend over the last 7 years. 
Figure 2:  Correlation matrix between items, packages and 
service types (coded by two or three letters). 
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The matrix shows an obvious significant correlation between 
the dimensions of the package and the items. In addition, there 
are significant correlations between the dimensions of packages 
and items and some service type. This result suggests that there 
is the possibility to cluster item based on the service type and 
assign them to specific workbenches in order to reduce the 

complexity and the inventory of packages needed on each 
workbench. 
 
Operators perform the tasks of a specific service type on manual 
workbenches with no automation. All the operators on the 12 
workbenches can process any of the 58.000 products. This fact 
leads to a very low specialisation of the operators, and 
unpredictable material flows since any of the workbenches can 

Figure 3:  Comparison of the clustering algorithms. The algorithm with the highest logistics performance are marked in red. 
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request all the 1500 different types of packages. Besides, some 
clients require a customised tertiary package structured as a 
shelf of the dimension of a pallet. These shelves are placed 
directly to a workstation of the client’s assembly line. For this 
reason, the 3PL package plant has to deal with high work-in-
process (WIP) levels on the workbenches due to products, 
packages (with the size of a carton box) and customised shelves 
(with the size of a pallet). To deal with this randomised material 
flows and WIP of the 3PL plants, we applied the proposed 
methodology aiming at the definition of a number of families. 
We start with an increasing number of cluster (from two to ten). 
This value is, then, compared to an estimation of the real 
number of workbenches with the application of the capacitated 
clustering algorithm. Figure 3 presents the graphical results of 
the algorithms in the different clustering scenarios and with a 
different number of clusters- To graphically compare all the 
methods at a glance, each dot is one of the 58.000 products 
while the axis of each subplot represents the two PCs of the 
sizes and weight input dataset (even in the clustering based on 
the product code and description where PCA is not applied). 
Different colours indicate different product families. In the 
scenario generated by the weights and size input dataset, points 
closer in the graph are clustered together (having the same 
colour). This is not always true in case of package- or 
description-based clustering. The dashboard of KPIs is 
introduced to assess the logistic performance of clustering. 
Table 3 illustrates the top ten most performing scenarios, 
according to the lowest standard deviation of the KPIs indicated 
in the dashboard. 
 
Table 3. Most Performing Clustering Algorithms 

 
 
Table 3 evaluates the performance of the algorithm from a 
logistic point of view measuring the variability of the process 
in each clustering scenario. While thinking about the variability 
of the process, it is necessary to remember that the actual 
process is completely random, and it results totally out of 
control since no assignment rules have previously been 

developed. To compare the performance of these clustering 
algorithms with a logistic benchmark, we compare the two top 
algorithms of Table 3 with the outcome of the capacitated 
clustering algorithm.  
 
The capacitated clustering algorithm considers a maximum 
allowable capacity that is fixed and equal for all the cluster and 
an amount of demand required by each product. To feed the 
algorithm with this data, we set a time & motion monitoring 
campaign in order to identify an average processing time 
required by each product. This data collection applied on a 
subset of the products (i.e. the items belonging to the 95° 
percentile of the total number of processed lines) due to the very 
high number of items. The amount of time required by the 
products with the highest workload defines the maximum 
capacity for each cluster. The capacitated clustering produces 
20 clusters. This number is used to compare the performance 
with the Gaussian Mixture Model and the Complete Linkage 
Clustering based on the Descriptions, setting the number of 
clusters 𝑘𝑘 = 20 . Figure 4 illustrates the outcome of this 
comparison using a visual analytics technique called t-SNE. 
This technique visually identifies clusters based on the matrix 
𝑋𝑋 , 𝑛𝑛 × 𝑝𝑝  of the observation that is projected onto a 2-
dimensional space preserving the proximity of each observation 
according to the t-distribution. The colours are associated 
accordingly with the cluster assignment given by the 
algorithms. Figure 4 shows that it is difficult to identify a 
topology of the cluster (as it happens in Figure 3) since the 
number of clusters is high and the input data are scattered. On 
the other side, analysing Table 4 it is possible to evaluate the 
performance of the algorithm from a logistic point of view, 
identifying the variability of the processes organised according 
to this clustering.  
 
Table 4 illustrates the KPIs and compares their variance (using 
absolute and relative value compared to the capacitated case) 
calculated on a time horizon of 7 years. It is easy to check that 
the capacitated clustering provides the highest balanced 
scenario with the lowest variance. The variance in workload 
(i.e. seconds) between the 20 clusters has an average of 180 
hours per year per workbenches. This is a low gap, considering 
that the variability in the number of products and packages is 
dramatically reduced compared to the other scenarios. 
 
Table 4. Comparison between capacitated and uncapacitated 
algorithms. 

Figure 4: comparison between capacitated and uncapacitated clustering using t-SNE 
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Gaussian Mixture Model provides a poorer result that has to be 
manually checked and assessed before a physical 
implementation since a couple of clusters results extremely 
small in workload compared to the average of the others. 
Nevertheless, it is important to remember that GMM provides 
the uncapacitated result in short running time (i.e. about 5 
minutes) compared to a huge running time of the capacitated 
algorithm which needs around 20 hours of runtime on a 
computer equipped with 8Gb memory and a 2.7GHz processor.  

4. Discussion 

The case study highlights the effects of the use of clustering 
algorithms to balance the material flows of a 3PL packaging 
plant. Grouping products into families with a similar workload 
leads to: 
• a static number of packages/pallet-shelves on the 

workbenches; 
• a levelled and more predictable workload on the 

workbenches; 
• higher efficiency due to the specialisation of the operators 

(i.e., a lower time to perform the tasks). 
Also, a more efficient organisation of the plant layout is 
possible since the families generating the highest material 
flows can be assigned to the workbenches placed near the 
inbound/outbound area of the plant leading to a smart plant 
layout design. 
 
From a mathematical point of view, it is interesting to remark 
that algorithms producing a higher number of clusters 
outperform the others. This fact was predictable since a higher 
number of clusters allows to partition the workload into more 
levelled subsets. Nevertheless, it is essential to note that the 
Gaussian Mixture Model (GMM) clustering outperforms the 
methods based on the process (i.e. package code and product 
description). GMM clustering is based only on the features of 
the products, but it produces the higher logistic performance 
even without considering the production cycles (i.e. the service 
type) as an input data. This is a great value of the data-driven 
approach since a good clustering model can be built upon the 
data which are always available to any 3PL provider without 
other assumptions or data collections. Besides, it is highly 
generalizable since the type of data is incredibly simple to be 
collected and are always available to any 3PL provider working 
in the packaging sector. 
 
From a logistic point of view, capacitated clustering remains 
the most reliable choice since it provides more robust results 
and a lower variance among the WIP. Nevertheless, when 
capacitated clustering is too hard to solve, data-driven 
approaches provide interesting results within a short run time. 
In addition, these approaches are extremely valuable for 3PL 
providers that process many materials and receives many data 
connected to them, but they barely can analyse this data and 
organise their operations efficiently. In this case study, the 3PL 
provider benefits from the clustering approach since the 
business-as-usual scenario is completely out-of-control. The 
lack of assignment of parts and packages to workbenches 
produces chaos in the daily operations with the impossibility to 

precisely analyse the process, allocate costs or make it leaner. 

Clustering products into families is a prerequisite for process 
optimisation when a production plant has the characteristics 
remarked in the RQ1. It is true that clustering may produce a 
little imbalance in the workload assigned to each workbench, 
but it opens to a scientific analysis of the WIP allowing to 
implement a lean organisation by controlling the inventory 
level and the workforce needed. 
 
Future studies should focus on embedding clustering and other 
data science techniques in the design of an industrial plant and 
in the redesign of 3PL production processes and layout. 

5. Conclusion 

This paper presents an application of machine learning 
unsupervised algorithms to define product families in a 3PL 
production plant. Products are clustered using k-means, 
Gaussian mixture models and hierarchical clustering based on 
the product or process features (weight, sizes, description, the 
package used). A case study applies this methodology to a real-
world environment represented by a 3PL packaging plant of the 
automotive sector. The impact of each clustering algorithm is 
measured using logistics KPIs. The results are compared with 
capacitated clustering based on the time workload assignable 
to each cluster. The application shows that Gaussian Mixture 
Models based on the product features (i.e., sizes and weight) 
outperform the others producing a more balanced workload 
even if they are uncapacitated and not based on the process 
features. 
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