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Abstract In this paper we study a multi-species disordered model on the
Nishimori line. The typical properties of this line, a set of identities and in-
equalities among correlation functions, allow us to prove the replica symmetry
i.e. the concentration of the order parameter. When the interaction structure
is elliptic we rigorously compute the exact solution of the model in terms of a
finite-dimensional variational principle and we study its properties.

Keywords Multi-species spin glass - Nishimori line - replica symmetry

Mathematics Subject Classification (2010) 82-XX - 82D30

1 Introduction

In this paper we investigate the properties of the elliptic multi-species Sherrington-
Kirkpatrick model along the Nishimori line i.e. the sub-manifold of the phase
space in which mean and variance of the random parameters, interactions and
magnetic fields, coincide. The multi-species version of a mean field model is
simply obtained by relaxing the full invariance under the symmetric group into
the weaker one of the product of the symmetric groups on a given partition
of the system. The ratios of the partition with respect to the whole, the form
factors, are kept fixed in the thermodynamic limit. The ellipticity condition
provides the positivity and monotonicity properties that allow to study the
system with interpolation methods [I8|[19,25] and obtain a Parisi like solution
for Gaussian centered interactions and deterministic magnetic fields [10L24]
(see also [12] for a case with a ferromagnetic mean of the interactions).

The choice to study the model on the Nishimori line [23] reflects the impor-
tance of this sub-manifold of the phase space due to its ubiquitous appearence
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in inference problems and, especially, on the statistical physics approach to
machine learning [619].

The main results of the paper, Theorem [I] and Lemma [3] in Section [4]
are the proof of the variational expression for the pressure per particle in the
thermodynamic limit and the self-averaging of the magnetization per particle.
The techniques we use to prove them are obtained by merging methods whose
origins belong both to statistical mechanics and high dimensional inference [I]
2183114, 17, T8L20121] .

The paper is organized as follows. In Section [2] we give the definition of
the model together with its main properties, such as the self-averaging of the
pressure and the Nishimori identities. In Section |3| we extend to our multi-
dimensional model the adaptive interpolation method due to Barbier and
Macris [8] and we use it to compute the exact solution in Section [4| by writ-
ing the pressure in the thermodynamic limit in terms of a finite-dimensional
variational principle. Finally we study the main properties of the extremizers
of our variational expression. The conclusions summarise the results and spec-
ify the connection of our model with an inference problem of Wigner spiked
type [6L[7]. In the Appendix EI the reader can find the details of the proof
of the concentration of the magnetization in the thermodynamic limit, which
ultimately leads to replica symmetry. For completeness the properties of the
mono-species case (SK) on the Nishimori line are studied in Appendix

2 Definitions and basic properties

Consider a set A of indices with cardinality |A| = N. Let us partition A in K
disjoint subsets:

K
N,
A=JA, AnA=0Vr#s,  |A]=N, ar =22 €(0,1) (1)
r=1

Each subset will be called species from now on. The model is defined by the
following Gaussian Hamiltonian:

K K

Hy(o) = — Z Z ijSO'iO'j — Z Z hroy, (2)
r,s=1 (4,7) €A X A r=14i€A,

TN (SR 5y ) s BN e ) 3)

where u.s and h, are positive real numbers, and the K x K matrix p =
(trs)rs=1,..,x can be assumed to be symmetric without loss of generality.
Throughout this work, as can be seen from the previous definitions, the family
of Gaussian variables are assumed to be in a special line where mean values
and variances are tied to be identical. One can see that this condition, in the
context of statistical mechanics, is known as Nishimori line and was introduced
in [22] for the SK model with Bernoulli couplings. For the Gaussian SK at
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inverse temperature 8 and random couplings J;; SN (2“7—]‘\’,, ﬁ) the Nishimori
line is defined by SJ = Jy (see Paragraph 4.3 in [23]) which is equivalent to
when K = 1, which explains also why we set 8 = 1 throughout the paper
without loss of generality. We will see that on the Nishimori line a special set
of identities and inequalities hold.

It is also convenient to rewrite the Hamiltonian in terms of centered
Gaussians. To do that we introduce the following notation for species magne-
tizations and overlaps that will be used throughout:

my (o) = Ni Z oi,  qr(o,T) = NLT Z 0iT; (4)

"icA, i€A,
m(a) = (mr(a))T:L...,Ka q(Ua T) = (QT(Uv T))r:l,...,K (5)

where bold characters here and below stand for vectors and o,7 € Xy =
{~=1,1}N. We also set:

A= (pplpsQs)rs=1,.. k, G&:=daglar,az,...,arx), hi=(h)=1 .

We will call A the effective interaction matriz because it encodes the inter-
actions and relative sizes of the species in our model and we notice that it is
positive definite if and only if x is. See Fig[l] for a scheme.

A,

JE ot m)
Sy ~ N (2N> 2N

A Ay

Jst id st i;ﬂ)
S5~ N(ZZN‘ 2N

Fig. 1 Scheme of the structure of the interactions.



4 Diego Alberici, Francesco Camilli, Pierluigi Contucci, Emanuele Mingione

With these notations we can write a Hamiltonian in terms of centered
Gaussian variables which is equivalent in distribution to the one in :

1 K K
Hy(0) = ——— Jif o105 — hioi+
N7 V2N T,SZ:1 (i7j)§></ls 1o ;zez/lr ’

N ~g iid iid
— g(m,Am) — N(éh,m), JZ~N (0, prs),  hi ~N(0,h,). (7)

The last expression allows us to identify the model with a multi-species Sherrington-
Kirkpatrick model (SK) with the addition of a ferromagnetic interaction and
a positive external field whose intensity coincide with the variances of the
random terms.

Now we define the main quantity under investigation, the random and
average quenched pressure densities:

= s 3 e () (5
ﬁN(/‘v h) = Epn (9)

where we emphasize the dependence of the quenched pressure on the mean
parameters p,s, h and the symbol E stands for the Gaussian expectation with
respect to the disorder. We also introduce the Gibbs expectation:

e_HN(a) .
Rt R I (10)
N

oeXN

We will denote the dependence of the Gibbs measure on further parameters
with subscripts or superscripts, for example <>§\€,)t Notice that in this context
the Gibbs measure is random.

The following concentration property for the pressure density holds true.
It will be an important tool to prove replica symmetry when combined with

the Nishimori identities introduced in the next section.

Proposition 1 There exists C = C(u, h) > 0 such that for every x > 0

N 2
P o ()] 2 0) < 200 (<507 ) (1)
As a consequence
8C
El(pn — pn (1, h))?] < N (12)

Proof The random pressure py is a Lipschitz function of the independent

standard Gaussian variables J = (J[jS Vlrs)igrs s b= (R} /vVhr)ir . Indeed:
1, A1

ol <8 (B2 4 @n)) = o (13)

The inequality then follows by a standard concentration property of the
Gaussian measure (see Theorem 1.3.4 in [26]). A tail integration finally leads

to (12)).
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2.1 Nishimori identities and correlation inequalities

Here we will list some identities and inequalities on the Nishimori line. The
identities were introduced in the original work by H. Nishimori [22], while
the inequalities were noticed and proved much later [20,2I]. The proof of
the Nishimori identities that is most suitable for our model can be found in
Paragraph 2.6 of [T4]. In particular, for our purposes, we will need

E[(o:)%] = El{o:)N] (14)
E[(oio;)x] = E[(0io;) ] (15)
E[{oi)n(oioj)n] = E[{0i) n{(0j)N] (16)

for all ¢,j € A. In particular they imply that:

El(a)y] = Y 5 Eliwn(minl = 3 -Elloikl = 3 - Blloan] =

icAs T ° ied, S i€,

E[{oi0;) N{(TiTj)N] E[(oi0;)%]
E[<QTQS>N} = Z ]]\7 N J = Z Nij\j/'N =
(4,§)EArx Ag rees (4,§)EAF X Ag rits

= E[(meS>N] (18)
and finally:

E<(q, Aq)>N - E<(m,Am)>N. (19)

The previous identities show that the model has a unique order parameter,
that can be regarded as a magnetization or equivalently an overlap. We will
choose the first point of view. This intuitive statement will acquire a precise
meaning when we will write down the sum rule for the quenched pressure.
Following [15l2012T] (see Theorem 2.18 in [14] for a straightforward proof)
we obtain the I and II type correlation inequalities respectively:
Ay

E;IZN - % > E[+ (oi)n] = 5 [L+E(mr)n] 20 (20)
r i€

0?pN o, 0 1 5
= — = — O — . . > .
Thoh. =~ 2 (')hs]E<mr>N 5N . -);A . E[({(oioj)n — (oi)n{oj)n)*] >0
,] r s

(21)

Analogous identities and inequalities hold for the first and second derivatives
w.r.t. tts. The pressure and the first moment are monotonically increasing with
respect to the Nishimori parameters s, h,. In particular the magnetization
is always increasing w.r.t. the external field mean:

8E(mr>N
—h >0 (22)

This monotonicity will be a key ingredient to prove replica symmetry.
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3 Adaptive interpolation and sum rule

In this section we build up an interpolating model with some specific features.
The method here employed is an extension of the standard Guerra-Toninelli
interpolation [19], also called adaptive interpolation technique, developed in [g]
by J. Barbier and N. Macris.

Definition 1 (Interpolating model) Let ¢t € [0,1]. The hamiltonian of the
interpolating model is:

VIi— N
Hy(t) :== — Ner Z Yoo Joio;—(1- t) % (m, Am)+
rs=1(i,§) €A X As

i Z <WJT+Q57~ > Z Z hio; — N(¢h,m) (23)
=lieA, r=14i€A,

with JI = A (0,1) independent of all the other Gaussian random variables,
and

t
Qe(t) = 6+5[—1A/ qe(s) ds, €r € [5N723N]7 SN X N_ﬁ .
0

Here Q¢ =: (Qe,r)r=1,.. .k, while q¢ := (¢er)r=1,... k denotes a vector of K
non-negative functions that will be suitably chosen in the following.

Remark 1 We notice that the interpolating model is on the Nishimori line for
any t € [0, 1]. Indeed equals in distribution the following Hamiltonian

K K
5 DD DRSS 3 DEAIUTE 9) i e

r,8=1 (4,j)EA- X Ay r=14i€A, r=14i€A,
(24)
where
rs “d (1—t)l1,7~5 (1_t)Mrs "e,r ud
gty (St BB} 0 8 A (Qur(0,Qur ) (25)

and hY is defined in (3). Given ¢ € [0,1], H,(t) is a linear combination of inde-
pendent non- centered Gaussian random variables where mean equals variance.

Therefore the Nishimori identities , and can be used by replac-
ing (-) with the Gibbs measure induced by the interpolating hamiltonian (23,

that is <>§\6,)t Notice also that the role played by the functions Q.(¢) is that
of an external magnetic field.

The corresponding interpolating pressure will be denoted as

1
PN e(t) = 7Elog > et (26)
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In the previous equation and in the rest of the paper we drop the explicit
dependence on q.(¢) to lighten the notation.
The following lemma will lead to the sum rule of the model.

Lemma 1 (Interpolating pressure at t = 0,1) Setting

»(Q) :=E, log 2 cosh {z\/@—i— Q} . z2~N(0,1) (27)

we have the following:

K
ﬁN,e(l) = Zar ¢(Qe,r(1) +hy) =
r=1

(28)
— Ofsw) + ;iw ((aaf Cqu(n)di + ) )
Pn,e(0) = O(sn) +pn(p, ) (29)

Proof Each €, can be regarded as the mean (or variance) of a small magnetic
field.

At t = 1 the system is free, non interacting. Its pressure can be explicitly
computed. Take 27 ~ A(0,1). Then:

%

K
Pre(l) = %]Elog H Z exp (Z ( Qer(1)JI + Qw(l)> o+

r=1c€Xn, €A,
+ 3 (Vhezl + hr)ﬂ) =
€A,
K [0
=y N Elog > exp (Z <J:\/QE,T<1> + Ry + Qer(1) + hr) azv)
r=1 oc€EXN, €A,

where the last equality follows from the fact that J and 2] are independent
standard Gaussian random variables. Finally:

K
(1) = ZarEz log 2 cosh [2 Qer(1)+hr + Qe (1) + hr] ., z~N(0,1).
r=1

By the derivatives of the pressure w.r.t. magnetic fields are bounded by
a, and then we can get rid of the explicit dependence on ¢, at the expense of
a term O(sy), thus getting .

Analogously, by setting ¢ = 0, the interpolating Hamiltonian simply re-
duces to the original one @) except for the ¢,’s that can be neglected again at
the expense of terms O(sy).



8 Diego Alberici, Francesco Camilli, Pierluigi Contucci, Emanuele Mingione

Proposition 2 (Sum rule) For any choice of the function q.(t), the quenched
pressure of the model @D obeys to the following sum rule:

K
PN () = O(sn) + Y arth(Qe (1) + hr )+

_|_/O dt |:(1 B qe<t)7A4(1 B qe(t))) _ (QE(t)’QAqe(t))] + i/o dtRE(t,,u,h)
(30)
where the remainder is:
Refts o) = 2((m — a.(0), Am — a.(0)) (31)

Proof The proof consists in computing the first derivative by using Gaussian
integration by parts for the terms containing the disorder.

el = —B((1,41)~ (0, 40)) | TB((m-a (), Am-a. (1) +

: 2 N,t
+ %(qﬁ(t), Aqc(t)) + %IE<(17 Aqc(t)) = (qe(t), Aq>>§t =
= (= a0), A~ D) + (a(r), Aau(r)+
+ iE<(q —qe(t), Alg — qe(t)))>j:t - %E<(m ~ qe(t), Alm — qf“)))m

Using the Nishimori identities and we can sum the last two terms
together:

Bvet) = 3 (1= aclt), A = ac(0) + 5 (ac(6), Aac (1) +

1

- 1E(m - a0, am-a) ] . @2

R (t,u,h)

The sum rule then follows from a simple application of the Fundamental The-
orem of Calculus and the previous Lemma;

Pre(0) = O(sn) + P (s ) = pve(1) — / dtpo(t).  (33)

4 Solution of the model

In this section we present the main result of the paper, namely the thermo-
dynamic limit of the model under the hypothesis of a positive semi-definite
effective interaction matrix: A > 0. First, we need a couple of lemmas listed
below.
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Lemma 2 (Liouville’s formula) Consider two matrices whose elements de-
pend on a real parameter: P(t), A(t). Suppose that ¢ satisfies:

B(t) = A(H)P(t) (34)
(0) = P (35)

Then:
det ((t)) = det(®y) exp { /0 ds Tr(A(s))} (36)

Definition 2 (Regularity of € — Q.(-)) We will say that the map € —
Q. (") is regular if

det (a%;(t)) >1 Vtelo,1] (37)

Remark 2 Choosing Q. as the solution of the following ODE:

Q)= AEm)Y,  Qc0) =€ (39)
the map € — Qc(+) turns out to be regular. Indeed

d 0Q.(t o . _ o 0Q.(t
1000 0 s apian, 220,

dt de  0Q.(t)

=:A(t)

(39)

since Qe r(t) can be regarded as the variance of a magnetic field on the Nishi-
mori line in and the entries of @' and A are non-negative we have:

TrA(t) >0, (40)

by the correlation inequalities of type II , . Finally using Liouville’s
formula we get:

det (a%(t)> — det (‘9%6(0)> exp {/Ot dsTr(A(s))} >1 0 (1)

€

=1

We stress that the sign of A plays no role yet, since we have used only the
positivity of its entries so far.

Lemma 3 (Concentration) Suppose € — Q. () is a regular map. Consider
the quantity:

1 J-TO'Z‘ iid
L, = — o+ ———1, J~N(0,1) (42)
N”‘ i;:r ( 2 Qe,'f‘(t)>
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and introduce the e-average:

Emzﬁ(lé?ﬁQo. (43)

r=1 SN
We have:
© )%\
EEIE:< (,cr - E<£T>N7t) >N 0, when N = oo (44)
and

B( (£ -E2)9) ) = 26 (m—Em) ) )

Nt 4 Nt
therefore the magnetization (or the overlap) concentrates in e-average.

The proof, simple but lengthy (see the Appendix), is based on controlling
the thermal and disorder-related fluctuations of £,.. This implies the control
of the fluctuations of the magnetization thus ensuring the replica symmetry
of the model, which is independent of positive definiteness of A and depends
only on the positivity of its elements.

We have laid the ground for our main result: the computation of the
quenched pressure in the thermodynamic limit in form of a finite dimensional
(due to the concentration lemma) variational principle.

Theorem 1 (Thermodynamic limit) On the Nishimori line, when A > 0,

the thermodynamic limit of the pressure p(u,h) := limy_,00 Pn (1, h) exists
and:
p(p,h) = sup p(p, h;x) (46)
xeRgo
where
1-xA1-%) (x,4%)
plp, b x) = : — S ) (@ Ax+ b)) (47)
4 2 r=1

with the following stationary condition:
x — E_ tanh (z a4~ 1Ax+h+atAx+ h) € KerA, z~N(0,1) (48)

Proof Let us divide the proof in two steps.
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Lower Bound: We initially fix g.(t) = x € RX, in (30). Up to orders O(sy)
we find: -

P (p, h) = O(sn) + 1-x, i(l -x)) (x72Ax)+

K
+ Z a,E, log 2 cosh (z (6~1Ax +h), + (& 'Ax + h)r> +
r=1

1 1
+2 / dt Re(t, i, h)  (49)
4 0

We have exploited the result in Lemma [} Being A positive semi-definite, the
rest has a positive sign, for it is a quadratic form exactly with matrix A.
Hence:

K
ﬁN(/hh) > O(SN) + (1 - X,A(l — X)) _ (X7 Ax) + ZO(M#((OA&ilAX‘F h)r)
r=1

4 2

Then, taking the liminfx_,~ on both sides and optimizing with sup, we get
the first bound:

{ A-xA1-x) &4%) iarw((a—%x + h)r)} :

liminf pr > s
it P = sup i 2

x r=1

(50)

Upper Bound: We start with a key observation: ¢(-) is a convex function. It
can be seen as a consequence of the correlation inequalities on the
Nishimori line. In fact, (@) can be recast in the following way:

P(Q) =E.log Y VO =F, 5 )log Y 7@ 2(Q) ~ N(Q,Q).

o==+1 o==+£1

This is a simple 1-particle, free system on the Nishimori line. For this model
we have:

o 1 %y 1 _ X @Yo
o ~ 3l Tl e = gm0 ) =

(51)

This allows us to use Jensen’s inequality to extract the integral in Q. (1) from
the terms containing v in (in Lemma. More explicitly

;Klarw ((d‘lA/olqe(t)dt—&—h)r) géar/olw((d—mqe(t”h)r) dt
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By inserting the previous inequality in the sum rule we have that:

et <o) + [0 [E=HOA0 00 _ (00.500)

1
+ Zarw (6" 'Aqc(t) + h),) +i/ dt Re(t, i, h) <
0

SO(SN)+Slip{(1—X7a(1—X))_ XAX Zarw 1AX—|—h) )}

1 1
+2 / dt Re(t, i, h)  (52)
4 0

If we finally take the expectation E¢ on both sides of the previous inequality
we get:

(1) < Ofsw) +sup { E=2GEZ3 — (xc a

1
+Zaﬂ/} 1Ax+h))}+;E€/ dt Re(t, i, h)  (53)
0

Recall that the remainder, defined in , depends on the functions q(t).
This time we choose q.(t) according to a different criterion. We would like to

have: Aq.(t) = AE(m)S\?t. In this way we could use the concentration Lemma
This can be achieved through the following ODE:

Qc(t) = 6L AEm)Y, = F(t,Q.(t), Q.(0)=e¢ (54)

As seen in , the derivatives of F are positive and bounded for any fixed
N. This guarantees the existence of a unique solution over [0, 1].

Then, exchanging the two integrals by Fubini’s theorem in , and ap-
plying Lemma [3] we get:

lim sup pn <bup{(1_X’A(1_X)) _ & AX Zosz “1Ax + h), )} .

N—o0 4

The two bounds match and this proves . Moreover, using the properties
(51) the gradient of is:

A A
Vxp(, h;x) = 75(1 —x)— Ax + 51+
A
+ SE. tanh (z d—le+h+d_1Ax+h) -
_ ? [—x +E. tanh (z a—1Ax +h+a'Ax + h)] (55)

and it vanishes exactly when holds.
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Remark 8 Notice that the positive definiteness of A is used to ensure the
positivity of the remainder in , that ultimately leads to the lower bound.
It is evident that if the sign of A is not definite the technique used does not
produce any bound. In that case indeed, there is a direction along which the
quadratic form in can blow up to infinity. Thus, one should expect a
min — max principle as happens for bipartite systems, e.g. the Wishart model
[9) and the bipartite SK in its replica symmetric phase [BLBLITIIE], that are a
paradigm for non-elliptic interaction structure.

Proposition 3 Let A be strictly positive definite in ([A7). Denote by p(A)
the spectral radius of a matrix A and by H#xp the Hessian matriz of p. The
following implication holds:

pla™tA) <1 =  Hp(p, h;x) <0, ¥x € RIZ(O (56)
or equivalently p(u, h;x) is strictly concave w.r.t. x.

Proof The Hessian matrix can be computed starting from the gradient
and using properties :

A1
Hp(p, hyx) = -5+ 5AD(x, h)a—'A=
- %AW [—11 + AV2471D(x, h)Al/ﬂ AV2 (57

2

D(x,h) :i= diag{Ez (1—tanh2 (z orle+h+or1Ax+h) ) } .
T K

(58)

r=1

Since similar matrices have the same spectral radius we have:
p (Al/Qd_lD(x,h)Al/Q) = p(a~'D(x,h)A) =
= (D1/2(X, h)a~1/2A61/2DV2(x, h)) . (59)

Now we use the fact that, for symmetric matrices, the spectral radius coincides
with the matrix norm induced by the Euclidean norm:

0 (A1/2d—1rD(X7h)Al/2) — |DY2(x, h)a~2Aa"1/2DY2(x, h)| <
< D)l 226712 = | D )l (a7/246712) <
<p (afl/QAafl/Q) . (60)
Finally, exploiting again matrix similarity:

p (A7 D WAY?) < p(a7ia) <1 (61)
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by hypothesis. The previous one implies that:
1+ AY247'D(x,h)AY2 <0 (62)

whence, for any test vector v:

(v,A1/2 {—]1+A1/264_1D(x, h)Al/Q] A1/2v) _

- (Al/Qv, [—11 + AV2471D(x, h)Al/ﬂ (Al/Zv)) <0. (63)

Remark 4 The previous proposition implies that, whenever A is invertible,
h =0 and p(@~*A) < 1, the point x = 0 is the unique maximizer of (7). On
the contrary, when p(@=1A) > 1 we have

1
Hp(, 030) = S AV [—1 + Al/%flAl/ﬂ AL/

and the matrix in square brackets has at least one positive eigenvalue, therefore
x = 0 becomes an unstable saddle point for the variational pressure, thus
signalling a phase transition. Notice that this instability can be generated
both varying the parameters A, and the form factors «,..

Remark 5 If A is non singular, our variational pressure goes to —oo as
Ix|| = o0, because the concave quadratic form always dominates the sum of
the terms containing ¢, which is Lispchitz with Lip(1)) < 1 (again by (5I)).
This, together with the regularity of p ensures that there is a global maximum
satisfying the fixed point equation:

x = E, tanh (z @—1Ax+h+éf1Ax+h> —: T(x:h). (64)
The Jacobian matrix of T(-;h) is:
DT(x;h) = D(x,h)a A (65)
and satisfies:
p(DT(x;h)) = p(D(x,h)a 1 4) < p(a~1 4) (66)
as proved in Proposition [3] Equality holds at h = 0 and x = 0. Hence when
p(@=1A) < 1 the iteration of T(-;h) converges to a fixed point. If this does

not hold, we still have that at one local maximum point, say x*:

Hp(p, h;x*) <0 or  p(AY2a7ID(x*, h)AY?) = p(DT(x*;h)) < 1.
(67)

The latter implies that the iteration x,1 = T(x,; h) converges to x* (locally)
provided that ||xo — x*|| < § with ¢ sufficiently small.
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Remark 6 Our parameters lie in Rgo, thus the vanishing gradient condition a
priori allows us only to find maximizers of in the interior, namely when
z, > 0Vr =1,..., K. More rigorously, the necessary conditions for a point
x € RE; to be a maximizer are:

{%p(u,h;i) =3 [A(-x+T(xh))], <0 (68)

fraxrp(:uv h; i) %'1:7‘ [A(_i + T(XQ h))] =0

T

If we notice that T,.(x;h) > 0 these conditions imply:
(T(x;h), A(—x + T(x;h))) <0 N
(%, A(~% + T(x:h)) = 0
= (=x+T(x;h),A(-x+T(x;h))) <0. (69)
However, since A > 0 we must necessarily have:

(—x+ T(x;h),A(-x+ T(x;h))) =0 < —x+T(xh)=0. (70)

From the previous we can see that the consistency equation is necessarily
satisfied also by maximizers on the boundary.

5 Perspectives and conclusions

It is interesting to emphasize the link of our model with an inference problem
since, as we have seen, among the techniques we use there are some whose ori-
gins are within high dimensional statistical inference. This fact goes beyond
a bare technical analogy. Indeed our model admits itself an inferential inter-
pretation. To start with, it is well known [8] that our case K =1, i.e. SK on
the Nishimori line which is also called planted SK model, is equivalent, thanks
to the Zs gauge symmetry, to the Wigner spiked model with Rademacher
prior p = 1/2(8; + d_1). For generic K the corresponding inference problem
is defined as follows. Given a family of non negative numbers (fys)rs=1,.. K,
consider a Gaussian channel

Hrs s« « ii ..
Yij(trs) = 1/ 5N 70 +zij, % f\LJl./\/'(O,l)7 (i,7) € A, X Ag (71)

where o* € {£1}¥ (the ground truth) is the signal we want to recover through
the observations y;;. Here pi,s play the role of an index dependent signal-to-
noise ratio. Up to costants, the Gibbs measure associated to our Hamiltonian
corresponds to the posterior distribution in the Bayesian optimal setting
and the pressure corresponds to the mutual information. This correspondence
can be obtained along the same lines of the case K = 1 and we refer to [§] for
the details.

The model that we take into account was studied under some specific as-
sumptions on the p,, listed in Paragraph 2.3 in [7] (see also [0]). The thermo-
dynamic properties the authors focus on are obtained by first considering the
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infinite volume limit of each block and then sending the number of blocks to
infinity thus recovering the limiting mutual information of the Wigner spiked
model, i.e. the case with homogeneous (u,s = fi) signal-to-noise ratio. In the
present work instead, in the case of a Rademacher planted signal and the
only positive definiteness assumption on the matrix u, the model is studied
and solved for arbitrary number of species and form factors, through a replica
symmetry result and a finite dimensional variational principle for the model
pressure in the infinite volume limit. The positivity assumption on p rules
out some interesting non-elliptic structures such as restricted Boltzmann ma-
chines. However, we will show in a follow up work how to deal with these
non convexities also proving a replica symmetric variational formula for the
pressure of the Deep Boltzmann Machine on the Nishimori line [4].

Acknowledgements The authors thank Jean Barbier, Adriano Barra, Francesco Guerra
and Nicolas Macris for interesting discussions. In particular we thank Jean Barbier for
pointing out the inferential interpretation of our model. D.A. and E.M. acknowledge support
from Progetto Alma Idea 2018, Universita di Bologna.

A Appendix: Proof of the Concentration Lemma

Proof (Proof of Lemma@) Let us split the proof into three steps for the sake of clarity. As
anticipated, it is convenient to split the total fluctuation of £, into two parts, thus proving
that:

(9 )2\©

]EeIE< <£r - <£’I‘>N’t> Nt —0 as N = o0 (A1)
2

((£r>(€) — ]E(ﬁr)g\?t) —0 as N — oco. (A.2)

From this moment on, we neglect sub and superscripts in the Gibbs brackets as well as
t-dependencies. We start by proving the inequality .
Proof of inequality (45)): To begin with, we compute:
J-Tdi 1 1
= E(os + =2 ) = E(my) + <E[L — (my)] = ZE[L+ (m A3
) er 71+ 5 o) = Blme) + Bl = fmo)] = B+ )] (A3)

where integration by parts has been used.
Then, we proceed with:

1 Jroo; I J 00 Jroio;
E(L%) = — Elojo;+ 2L+ ]E TN 4
W=z 3% <” Qe 4Qcr > NEMGZA <\/Q5,T>
Ra
J7 J
D C o R
7‘ 1,JEA, 4QET
R3

We treat the three terms R1, R and R3 separately with repeated integrations by parts.

= % Z E[(o;) — (0i0;)(0i)] = E(m,) — ]E(mr)Z (A.5)
Ny i,jEA,
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where we have used the Nishimori identity (16)).

=1

1 bij (oi0j) ({o5) — (oi){oig;)) L
Ra—= — R ij (0i0; JT 0j) —(0i){0i0; _
TN ]EZA Qr 7 JQur NQer
— > E[1—(0;)* = (o) ({0s) = (05)(0i05)) — (0i0) ({0ios) — (o) (0;))] =
NZ “,jEA,
__ 1 11 1 2 1o, o
= m + 1 2E<mr> + QIE(mT) 4E<mr>. (A.6)
Hence:
_! ! 3Eim2y 4+ L _1 2
R1 4+ Ra+ R3 = B + N, Qor + 4E<mr) + 2E<mr> 2IEI<mT> . (A7)
Summing up all the contributions:
2 2 _ 1 3 2y 1 2 1 2 _
B(E7) ~ (B(Ln)” = frg—+ 15mD) = 5E(me)? — 1(B{mn))?” =
1 1 1 1
= g 1D~ (Sma)?) + 5 Em?) —Elma)?) > ZE (e~ E(me))?)

Proof of 1’ . Notice that:

8131\]’6 = N < Z < ero'i > > - Oér]E<[»r) = %E[l + (’mr>]7 JI i’i\(‘j/\/'(o,l)

8Qe,r €Ay Qe,r

(A.9)
8215N,5
Q7. = ar NP E{(Ly — (L)) 4NQ§’/3 GXA: E(J] o) . (A.10)

From the last one, after an integration by parts and using the regularity of the map e —
Qc(-) and Lemma [2] we get:

) 1 K (Qasy.s O?PN.c 1
E€E<(£T - (£r>) > < m H o dQe,s 8Q§ + Ee 4Nr67»]E[1 - (mr>] <
s=1 SN»S 5T
H /Q25N '3 81_’N,5 _ aﬁN,e + 10g2 <
NrarsN sr1 QSN s aQe,r QZsN,r aQe,T Q NoT 4NTSN =~
2K (AQ) log 2 1
Sk Tives =9l ) —0 (A1
TSN rSN rSN
where:
K
[T @2n.s = Qsnis) S En(A). (A.12)

s#r,1
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P?”OOf Of 1@’ . Let py e be the random interpolating pressure, such that Epy e« = Py -
Define:

. Ji o .
PN,e = PN,e — Ory/ Qe,r Z uv PN,e = ]EpN,e (A-13)
icA, T
62 5 o JT| — J (o
DAL — 0 Nol(r — (£)) + o 52 M) 5 sy
0Q2, QN ex,  DNr

Let us evaluate:

op op JA
IPN,e _ 9PN, Zar|(ﬁr)—1E(£r>|—M (A.15)
aQe,r 8Qe,r 2 Qe,r
where:
1
A= — S (17— 7). (A.16)
T ieA,
Thanks to the independence of the J] it is immediate to verify that 3a > 0 s.t.:
E[A2] < 2. (A.17)
™ = N,

T

Using Lemma 3.2 in [25], with notations used in [§]:

Obn.e Opne| 1 N -
OQN faQN <5 > 1PN — Pl + cnv/ul Ap[]+
&7 &r UE{Qe,r+6,Qe,r,Qe,r—5}
+CF (Qer) +C5 (Qe,r) (A1)
with:
CF(Qerr) = By, (Qerr £ 8) — Py (Qe.r) (A.19)
~f Qo Oér]E|Jf| C
= |—E[1 ] - < 1 A.20
[Phv.el = | B0+ (mo] = o= <o (U 5 5% (420
C
CH(Qer) < ar <2+—) A.21
5 (Qe,r) o (A.21)

where for simplicity we have kept the dependence on Q.. only, ﬁlN,e is the derivative w.r.t.
it and § > 0. Notice that § will be chosen strictly smaller than sy, so that Qe —8 > e—4& >
SN — 4> 0.

Then, using (A.15), (A.16) and (A.18), and thanks to the fact that (Zf:l v;)? <
pYP_, V2, we get:

© ‘iQm

1 . ~
HLr) —E(Lr)* < = > 1B .c = B .el® + aful Ap*]+
we{Qe,r+8,Qe,r Qe r— 8}
aZA?

4e,

+CH(Qer)? + C5 (Qer)® + (A.22)
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We first evaluate the two terms containing C;[:

EelCF (Qer)? + Oy (Qer)?] < 205 <2 + \/%) EelC (Qer) + O (Qer)] <

<3 (o f,)fi O Qe el (@ + ) — By (Qer — )
> €,sIPNe €,T _pNye e,r — =
SJI\§ SN s=1 QsN,s
K
20 ( C > /QZSN,S N N
= 24 dQe,s[pN,e(QZs o+ 5) — pN,e(QZs o 5)+
Sij\g /SN sgl QSNVS N N

N - 8a2 K, (A C \?
—DN,e(Qsy,r +0) + DN, e(Qsy,r — )] < (XT)fs (2 + \/TTV) . (A.23)

Taking the expectation EcE in (A.22)), and defining Wi s.t. Qe r < Wi, we get:

2 2
az 2 3 T[S  aiWra
SR ENL,) —E(L)? < = |2
EEIE) - B < 5 o+ T+
2K (A 2 aZalog?
4 Bor K( )5(2+ C) Ara08= - (A.24)
SN /SN AN,sN

We can make the r.h.s. vanish by choosing for example: § = si,K/g’N*l/B. The choice
sy o< N7Y/16K makes the r.h.s. ([A.24) behave like O(N~1/4).

B Appendix: the SK case

In the case K = 1 the equation reduces to:

. 1—12)2 2
lim py(pu,h) = sup {uu - pua h)} (B.1)
N—o00 z€R> 4 2

while simply becomes:

z = E, tanh (zx/ux+h+,ux+h) =T (z;p, h) . (B.2)
We collect the main results on this model in the following proposition.
Proposition 4 Define:

(1-=)?

2
= Bt h) . (B.3)

Poar (5 1, h) = pt
The following hold:
1. if p < 1 then Puar s concave in z. Equivalently if p < 1 then T'(x; pu, h) s a contraction,
and if further h = 0 then x = 0 is its fixed point;
2. the stable solution of the consistency equation (B.2)) is continuous at (u, h) = (1,0):
lim z(pu,h) =0=z(1,0); B.4
e o) (1, h) (1,0 (B.4)
3. for fixred h = 0, the magnetization goes to 0 linearly with p — 1 as p — 14, more
precisely:
-1
z=(1+o(1)" =~ (B.5)
In
where o(1) goes to 0 when pu — 14. Therefore the critical exponent B (in the Landau

classification) is 1, which means that the derivative of the magnetization w.r.t. u does
not diverge at the critical point, it only jumps from 0 to 1 and then decreases;
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4. Along the line (u, AM(n — 1)), A > 0 in the plane (u, h) the magnetization goes to 0 as
follows:

7= 2D 4oy (B.6)
n

when p — 14, therefore with a critical exponent 1/2;
5. For fized 4 =1 and h — 04 the magnetization behaves as:
22 = h(1 4+ o(1)) (B.7)

where o(1) — 0 when h — 04. Therefore we have a critical exponent § = 2 (according
to Landau’s classification).

Proof 1. The fist assertion follows immediately from , since & = 1 and A = p. Then,
by :

%(m;u,h) = uE, [(1 — tanh? (z\/;m.;.ﬂz_;,_h))Q] <p<l1

that implies T is a contraction. It is easy to see that if h = 0 then & = 0 is a solution of the
fixed point equation which must be unique by Banach’s fixed point theorem.
2. Using continuity and monotonicity of T (see (51))):

limsup Z(u,h) =T( limsup Z(p,h);1,0)

(p,h)—(1,0) (p,h)—(1,0)
liminf Z(w,h) =T( liminf z(u,h);1,0
(i ) P by =T Hniaf @ h); 1,0)

hence both limsup(,, ) 1,0y Z(#, ) and liminf(, »)_(1,0) Z(1, k) satisfy the consistency
equation:

m = E, tanh(zy/m + m)

whose solution m = 0 is unique, since the derivative of T'(m;1,0) is < 1 and equality holds
only at m = 0. We conclude that there exists

lim  #(u,h)=0=2z(1,0). B.8
(12h)~(1,0) (1, ) (1.0) (B8)

8. We first notice that
E tanh? (z\/§+ Q) — Etanh (z\/§+ Q) . Q>0,2~N(0,1) (B.9)

which simply follows from the third relation in (51) and the identity (14)). Indeed, the
quantity in is nothing but the quenched average magnetization of a free system. Now,
by computing the first and second derivatives of the map T'(x; u,0) and using we get:

T'(0;1,0) =,  T"(0;4,0) = —2°

7= ut — ulz2 o = o pn—1
Fopt—222(1+o(1) = T=(1+ (1))( - )

which implies that, in proximity of p = 1, the magnetization goes to 0 with a critical
exponent S =1 (not to be confused with inverse absolute temperature) and with slope 1.
4. An analogous expansion of T yields:

& = T(F p A — 1) = pZ + Mp — 1) — (128 + o(u — 1)(1 + o(1))

which in turn entails:
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5. Here by o(1) we mean a quantity that approaches 0 as h — 04. As in the previous

steps:

Z="T(%1,h) =2 +h— (% +o(h))(1+0(1))

then we get:

2=h(14+0(1) = §=2.
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