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ABSTRACT

We present the first detection of an X-ray flare from an ultracool dwarf of spectral class L. The event was identified in the EXTraS
database of XMM-Newton variable sources, and its optical counterpart, J0331−27, was found through a cross-match with the Dark
Energy Survey Year 3 release. Next to an earlier four-photon detection of Kelu-1, J0331−27 is only the second L dwarf detected in
X-rays, and much more distant than other ultracool dwarfs with X-ray detections (photometric distance of 240 pc). From an optical
spectrum with the VIMOS instrument at the VLT, we determine the spectral type of J0331−27 to be L1. The X-ray flare has an
energy of EX,F ∼ 2 × 1033 erg, placing it in the regime of superflares. No quiescent emission is detected, and from 2.5 Ms of XMM-
Newton data we derive an upper limit of LX,qui < 1027 erg s−1. The flare peak luminosity (LX,peak = 6.3 × 1029 erg s−1), flare duration
(τdecay ≈ 2400 s), and plasma temperature (≈16 MK) are similar to values observed in X-ray flares of M dwarfs. This shows that strong
magnetic reconnection events and the ensuing plasma heating are still present even in objects with photospheres as cool as ∼2100 K.
However, the absence of any other flares above the detection threshold of EX,F ∼ 2.5 × 1032 erg in a total of ∼2.5 Ms of X-ray data
yields a flare energy number distribution inconsistent with the canonical power law dN/dE ∼ E−2, suggesting that magnetic energy
release in J0331−27 – and possibly in all L dwarfs – takes place predominantly in the form of giant flares.
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1. Introduction

Time-domain astronomy has uncovered a new class of stel-
lar “superflares” with bolometric energies higher than 1033 erg
(Maehara et al. 2012), events that significantly influence plane-
tary habitability (Armstrong et al. 2016; Lingam & Loeb 2017)
and may have been imprinted on meteoritic chemical abun-
dances in our own solar system (Mishra & Marhas 2019).

The most surprising superflare discoveries come from the
low-mass end of the main sequence, the ultracool dwarfs
(UCDs) of spectral type L. Four white-light superflares from
L dwarfs have been found in All Sky Automated Survey for
Supernovae (Schmidt et al. 2016), Kepler (Gizis et al. 2017;
Paudel et al. 2018) and Next Generation Transient Survey data
(Jackman et al. 2019), each extremely bright (up to ∆V = −11),
releasing up to 4 × 1034 erg of energy. These bursts are com-
parable to the strongest flares in FGKM stars, and are remark-
able given that most tracers of quiescent magnetic emission
(Hα and X-ray) decline in the L dwarf sequence (Schmidt et al.
2015; Stelzer et al. 2006a). This decline is the result of increas-
ingly neutral photospheres (Mohanty et al. 2002) and possibly

of changes in magnetic reconnection (Mullan 2010) or dynamo
processes (Cook et al. 2014). Furthermore, while young stars are
typically the most magnetically active, three of the superflare L
dwarfs appear to be older field stars. What enables these dim
stars to undergo one of the most dramatic stellar outbursts, and
the frequency of such events, remains a mystery.

All of the L dwarf superflares reported to date have been
detected in white-light observations. In the standard flare sce-
nario (e.g. Cargill & Priest 1983) white-light flares are produced
in the lower atmosphere following the bombardment with par-
ticles that are accelerated in magnetic reconnection events. The
ensuing heating of the chromosphere leads to upwards plasma
motions and, subsequently, to an X-ray flare from the hot matter
confined in coronal magnetic loops. Even for the Sun, observa-
tionally associating X-ray and optical flares has remained dif-
ficult (Hao et al. 2017). For L dwarfs the lack of simultaneous
multi-band observations has so far prevented tests of the solar
flare scenario.

Here we report on the first detection of an X-ray superflare
emitted by a distant (∼240 pc) early L-type dwarf. Previously,
only one other L dwarf had been detected in (quiescent) X-rays,
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the binary system Kelu 1AB at 19 pc (Audard et al. 2007). Our
results were obtained within the context of Exploring the X-ray
Transient and variable Sky1 (EXTraS), an EU-funded project
aimed at extracting and characterising all temporal information
stored in serendipitous XMM-Newton data (De Luca et al. 2016,
De Luca et al., in prep.).

This Letter is organised as follows: in Sect. 2 we describe
the discovery of the flare; Sects. 3–5 give temporal and spectral
properties of the flare, set constraints on the flaring rate and on
the quiescent X-ray emission of the source, and give results on
the spectral classification of the dwarf and on its properties. All
results are discussed in Sect. 6.

2. The X-ray flare of J0331−27

A large catalogue listing 11 945 candidate ultracool dwarfs
of the L and T spectral classes was recently published by
Carnero Rosell et al. (2019). This catalogue is based on pho-
tometric classification of data from the Dark Energy Survey
Year 3 release (Dark Energy Survey Collaboration 2016) cov-
ering ∼2400 square degrees down to iAB = 22, matched to
photometry from the Vista Hemisphere Survey (McMahon et al.
2013) and Wide-field Infrared Survey Explorer (Wright et al.
2010; Mainzer et al. 2011). Of the sources of this catalogue,
515 are located within the field of view of at least one XMM-
Newton observation. Cross-correlation of the catalogue with
the EXTraS database singles out 3XMM J033158.9−273925
(hereafter J0331−27) as a very interesting case. J0331−27
matches within 1′′.1 the position of the L0 candidate Obj. ID
366318917 (RA = 03h31m59s.07, Dec = −27◦39′25′′.7; J2000)
in Carnero Rosell et al. (2019), and is listed as a variable X-ray
source in the EXTraS database. Inspection of light curves in the
EXTraS Public Archive2 clearly shows an X-ray flare. More-
over, the source is located within the Extended Chandra Deep
Field South (ECDFS, Lehmer et al. 2005), one of the most scru-
tinised portions of the sky, with a large amount of deep multi-
wavelength data available.

3. Temporal and spectral properties of the flare

The X-ray flare from J0331−27 is clearly seen in data collected
on 2008 July 5 by all detectors of the European Photon Imag-
ing Camera (EPIC) instrument on board XMM-Newton, namely
the pn camera (Strüder et al. 2001) and the two MOS cam-
eras (Turner et al. 2001). The observation (Obs. ID 0555780101)
lasted 130 ks and was performed as a part of the XMM-Newton
Ultra-deep Survey of the Chandra Deep Field South (XMM-
CDFS; Comastri et al. 2011; Ranalli et al. 2013). In Fig. 1
we show a background-subtracted light curve combining pn
and MOS data, generated using an updated version of the
EXTraS software (Marelli et al. 2017). The flare profile is nicely
described (reduced χ2 = 0.88, 35 d.o.f.) by a linear rise (rise time
of 1600 ± 300 s), peaking at MJD = 54652.8939 ± 0.0032 UTC
(in Barycentric Dynamical Time), followed by an exponential
decay of the form e−t/τdecay with τdecay = 2400 ± 400 s. The peak
flux is (9.0 ± 1.5) × 10−14 erg cm−2 s−1 and the integrated flare
energy flux (fluence), evaluated by integrating the model of the
flare time profile, is ∼2.7 × 10−10 erg cm−2 (all values refer to
the 0.5–2 keV energy range). The best fit model has a continuum
level consistent with zero; no significant emission is seen apart
from the flare.
1 www.extras-fp7.eu
2 https://www88.lamp.le.ac.uk/extras/archive
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Fig. 1. Background-subtracted light curve of J0331−27 in the 0.2–2 keV
energy range combining pn and MOS data. A 30 ks portion of the obser-
vation is shown. Count rate has been converted to flux in the 0.5–2 keV
energy range using the best fit spectral model (see text). The flare from
the source is apparent, and is nicely described by a linear rise and expo-
nential decay model (see text).

To perform spectroscopy of the flare, we extracted source
counts from a circle with radius of 15′′ and background counts
from a nearby, source-free region. We only considered observ-
ing times starting 3000 s before the peak of the flare and
extending up to 12 000 s after the peak. Time intervals with
high backgrounds were excluded following the prescription by
De Luca & Molendi (2004). The resulting flare spectrum con-
tains 100±12 background-subtracted counts from the three EPIC
detectors. We generated a response matrix and effective area
file using the SAS tasks rmfgen and arfgen. Spectral mod-
elling was performed using the XSPEC v12.10 Software. A good
description of the data is given by an optically thin thermal
plasma model (apec) with kT = 1.39+0.27

−0.11 keV and fixed abun-
dance assumed to be 0.3 solar. The absorbing column is con-
sistent with zero (NH < 1.7 × 1020 cm−2 at 1σ); total Galac-
tic absorption in the direction of the target is indeed very low
(NH,Gal = 6 × 1019 cm−2, HI4PI Collaboration 2016). The good-
ness of the fit, evaluated as the percentage of Monte Carlo real-
isations that had Kendall’s W-statistic values lower than that of
the best fit, is 84% (based on 104 simulations).

The field of J0331−27 was observed 33 times by XMM-
Newton. We took advantage of this large dataset (total nominal
exposure of 3.45 Ms) to search for other flares from J0331−27.
No flares were detected within the blind search for transient
sources performed by EXTraS, with duration <10 000 s. To set
an upper limit to the integrated energy flux of unseen flares,
we evaluated the average background level close to the posi-
tion of the source in individual observations. We followed
Ranalli et al. (2013) in their steps for data reduction, event fil-
tering (including soft proton flare screening), and astrometry cor-
rection. We excluded observation 0555780101, in which the flare
was detected. Images and exposure maps were generated for
each camera and for each observation in the 0.5–2 keV energy
range. As a sanity check, we performed aperture photometry by
extracting source counts from a circle of 10′′ radius and back-
ground counts from a contiguous circle with the same radius,
combining results from all EPIC cameras for each observation;
in no case was significant emission detected from J0331−27.
Based on the observed average background rate (assuming a
Poissonian regime) and adopting the spectral model best fitting
the observed flare of J0331−27, we estimated that an integrated
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energy flux of ∼4 × 10−11 erg cm−2 in 5 ks would have produced
a 3σ excess of counts, which would have triggered the detection
algorithm in EXTraS. We note that the 3XMM catalogue lists
a detection of J0331−27 in dataset 0108060701. However, the
source is detected at the 3σ level only in the MOS1 hard band
(4.5–12 keV), with upper limits at softer energies not consistent
with a thermal spectrum. We disregard this detection as an arte-
fact.

4. Search for X-ray quiescent emission

We searched for quiescent emission from J0331−27 by stack-
ing all data from the XMM-CDFS survey, excluding Obs. ID
0555780101 (∼2.5 Ms good observing time after screening for
soft proton flares). Considering only PN data and the 0.5–2 keV
band, we extracted 362 counts for J0331−27 from a circular
region with a 10′′ radius and 349 background counts from an
adjacent circular region with the same radius. Assuming a Pois-
son background distribution, the observed counts can be safely
attributed to a background fluctuation.

An upper limit to the quiescent flux of J0331−27 can be cal-
culated by requiring that a detection with the PN camera had at
least 50 more counts than in the background region. Formally,
such an excess of counts would only have a 0.4% probability of
being due to a background fluctuation. In practice, requiring an
excess of 50 counts over the background is consistent with what
is observed for other off-axis sources in the XMM-CDFS cata-
logue (Ranalli et al. 2013). To convert counts to flux, we generated
response matrices and effective area files for all XMM-CDFS
observations (again excluding Obs. ID 0555780101) and aver-
aged themfollowingGeorgantopoulos et al. (2013).Assumingthe
same spectral model as observed during the flare, we calculate the
upper limit to the quiescent emission as 1 × 10−16 erg s−1 cm−2 in
the 0.5–2 keV energy range.

The field of J0331−27 was observed several times by Chan-
dra. It is included in the Extended CDFS, for a total of ∼250 ks
(Obs. ID 5017 and 5018, PI Brandt). The source was not detected
by Lehmer et al. (2005). We retrieved Chandra data and anal-
ysed them with the CIAO v4.11 software and CALDB v4.8.3.
We reprocessed level 2 data using the chandra_repro script
and merged the resulting event files using the reproject_obs
script. Using the srcflux script and adopting the spectral
shape of the flare emission, we found a 3σ upper limit of
5 × 10−16 erg cm−2 s−1 to the flux of J0331−27 in the 0.5–2 keV
energy range. The position of J0331−27 lies also very close to
the edge of the field of view in the CDFS 7 Ms survey, at an
off-axis angle of ∼11 arcmin, covered with an exposure time
(corrected for vignetting) of ∼400 ks. The source is not detected
in these data (Luo et al. 2017). We retrieved the image and expo-
sure map of the survey in the 0.5–2 keV energy range made
available by the CDFS team3. Following Li & Ma (1983), we
computed the count rate needed to produce a 3σ excess in the
image at the position of J0331−27 within the PSF area and
converted it into flux assuming the observed spectral shape of
the flare. The resulting upper limit to the source flux is also
∼5 × 10−16 erg cm−2 s−1.

5. Classification and properties of the UCD

5.1. Spectral classification

An optical spectrum of J0331−27 was observed with the Visible
Multi Object Spectrograph (VIMOS) instrument (Le Fèvre et al.

3 http://personal.psu.edu/wnb3/cdfs/cdfs-chandra.html
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Fig. 2. Top panel: VIMOS spectrum of J0331−27 (black line) compared
to an L1 SDSS spectral template from Schmidt et al. (2014, magenta
dot-dashed line). The spectral data uncertainty is shown as the dashed
line. Bottom panel: difference between the observed data and template
(∆) normalised to the uncertainty (σ).

2003) as part of the VIMOS/VLT Deep Survey of the CDFS
(Le Fèvre et al. 2005), where the source is listed with Object ID
38073. Data were reduced using the automatic pipeline devel-
oped by the survey team. The spectrum (Fig. 2) shows the char-
acteristic steep rise in continuum across the optical band, with
strong absorption features of K I, TiO, VO, FeH, CrH apparent,
typical of late-M and L dwarfs (Kirkpatrick et al. 1999). This
spectrum was compared to red optical templates of M and L
dwarfs compiled from Sloan Digital Sky Survey (SDSS) opti-
cal spectroscopy by Bochanski et al. (2007) and Schmidt et al.
(2014) in the 6500–8000 Å range using a χ2 statistic. The
best fit templates were L1 and (as a close second) L0, with a
weighted mean of L0.7± 1.3, consistent with the photometric
classification of Carnero Rosell et al. (2019)4. There is no evi-
dence of Hα emission, and low signal-to-noise ratio of the data
made it impossible to determine the presence of Li I absorption
(a diagnostics of substellarity) or features indicative of low sur-
face gravity (Cruz et al. 2009).

5.2. Photometric distance

J0331−27 is not listed in Gaia Data Release 2, thus we have
to rely on photometric distance estimates. Carnero Rosell et al.
(2019) found ∼280 pc from the comparison between the
observed near-infrared (NIR) magnitudes and the absolute mag-
nitudes for L0 subtype. Absolute magnitudes are anchored to
MW1 and MW2 from Table 14 of Dupuy & Liu (2012). The other
absolute magnitudes are obtained from the colours in Table 3 of
Carnero Rosell et al. (2019). Applying the same procedure under
the hypothesis of spectral type L1 and averaging over all avail-
able bands we obtain a distance of 240+40

−20 pc. This is the value
we adopt throughout this paper.

4 The source had been previously classified as an M6 dwarf, or as an
unresolved elliptical galaxy at z ∼ 1.9, by Groenewegen et al. (2002)
based on five-band (UBVRI) photometry and morphology (source ID
J033159.06−273925.5 in their catalogues). It was also classified as a
galaxy by Wolf et al. (2008), based on multi-band photometry (Obj.
51627 in their catalogue).
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Table 1. Infrared colours of J0331−27 compared to mean colours of the
low-gravity and field-gravity L1 dwarfs from (Faherty et al. 2016).

Colour J0331−27 〈Low-g〉 〈Field〉

J − H 0.61 ± 0.15 0.94 ± 0.06 0.81 ± 0.14
J − Ks 1.10 ± 0.18 1.61 ± 0.13 1.35 ± 0.19
J −W1 1.27 ± 0.19 2.17 ± 0.20 1.71 ± 0.21
J −W2 1.80 ± 0.33 2.55 ± 0.25 1.97 ± 0.23
H − Ks 0.49 ± 0.19 0.67 ± 0.11 0.54 ± 0.13
H −W1 0.66 ± 0.20 1.21 ± 0.17 0.91 ± 0.15
H −W2 1.20 ± 0.34 1.60 ± 0.22 1.17 ± 0.18
Ks −W1 0.16 ± 0.23 0.54 ± 0.11 0.37 ± 0.11
Ks −W2 0.70 ± 0.37 0.92 ± 0.14 0.63 ± 0.14
W1 −W2 0.54 ± 0.38 0.38 ± 0.05 0.26 ± 0.06

5.3. Age characterisation

The age of J0331−27 is of interest as younger stars tend to
be more active, whereas the white light superflare UCDs iden-
tified to date appear to be older field objects (Schmidt et al.
2016). Age determinations for individual UCDs are challeng-
ing, however, as traditional age metrics such as (quiescent) mag-
netic activity level and rotation rates appear to decouple from
age at the lowest stellar masses and coolest temperatures (e.g.
Irwin et al. 2011; Schmidt et al. 2015). Surface gravity-sensitive
features in the optical spectra of L dwarfs, such as enhanced
VO band and weakened alkali line absorption (Kirkpatrick et al.
2008; Cruz et al. 2009) provide approximate age constraints
for sources younger than ∼300 Myr; unfortunately, the VIMOS
spectrum of J0331−27 is too noisy to discern these features.
Similarly, kinematics cannot be used as the VIMOS data can-
not provide radial velocity information, and no proper motion
has been reported for this source.

Colour provides an additional age diagnostic. Faherty et al.
(2016) show that NIR colours can be used to distinguish between
low-gravity and field-gravity dwarfs, with the latter appearing
systematically redder than the mean of the field dwarfs at a
given spectral type. Table 1 compares the colours of J0331−27
to the average colours of low surface gravity and field L1 dwarfs
reported in Faherty et al. (2016). Rather than being systemati-
cally redder, J0331−27 is bluer than field L1 dwarfs, particularly
in J−Ks and J−W1 colours, consistent with older (high surface
gravity) and slightly metal-poor L dwarfs (Zhang et al. 2018).
Thus, it is most likely that J0331−27 is an older field L dwarf.

6. Discussion

The association of the flaring source J0331−27 with the L1
dwarf is robust. First, the chance alignment probability is low
(<2 × 10−4). Second, archival HST images show that the dwarf
is the only point-like source within the error circle of the X-ray
source. Assuming the two sources to be unrelated would require
that the flaring source counterpart have mV > 27 and mz > 26.
This requires a Galactic flaring X-ray source extremely dim
at optical–NIR wavelengths, or an extragalactic transient. Both
cases would require peculiar and unlikely scenarios to explain
the X-ray emission and temporal behaviour.

The available data do not allow us to precisely constrain the
age of J0331−27, although its IR colours indicate that it is likely
an older source. Assuming an age &1 Gyr, evolutionary mod-
els (Baraffe et al. 2003; Burrows et al. 2001) predict the mass
of J0331−27 to be above the hydrogen burning minimum mass
limit (M > 0.072 M�).

Fig. 3. LX and LX/Lbol vs. spectral type for J0331−27 (flare peak lumi-
nosity and upper limit on the quiescent luminosity), compared with
the other UCDs for which X-ray data are available (from Stelzer et al.
2006a; Williams et al. 2014; Cook et al. 2014 and references therein;
Robrade et al. 2010; Gupta et al. 2011).

In Fig. 3 we put the X-ray emission of J0331−27 in con-
text to that of other UCDs. J0331−27 is the first L dwarf to
be detected in an X-ray flare. We measure a flare peak lumi-
nosity of log LX,peak = 29.8 erg s−1 and log (LX,peak/Lbol) =
−0.1, similar to X-ray flares observed on late-M dwarfs (e.g.
Stelzer et al. 2006b; Hambaryan et al. 2004; Gupta et al. 2011)
and actually somewhat larger than the majority of them. The
quiescent luminosity is only weakly constrained with an upper
limit of log LX,qui < 27.0 erg s−1 and log (LX,qui/Lbol) < −2.9, a
result of the large distance of J0331−27 compared with the other
UCDs studied in X-rays so far. Similarly, an upper limit on the
radio flux of J0331−27 of 7.4 µJy at 1.4 GHz (Miller et al. 2013),
translates into a very weak constraint on the radio luminosity,
log Lν,R < 14.7 erg s−1 Hz−1, preventing analysis of the well-
established deviation of UCDs from the Güdel-Benz radio/X-ray
relation (Güdel & Benz 1993; Berger 2002).

The short observed flare duration (decay timescale τ '
2400 s) is also consistent with those of the X-ray flares on late-
M dwarfs. This indicates a compact size for the flaring region on
the UCD surface (see Stelzer et al. 2006b). Finally, the observed
X-ray emitting plasma temperature of ∼16 MK is within the
range of values reported for late-M dwarf flares. In summary,
our observation shows that no qualitative change takes place in
the properties of X-ray flares at the bottom of the main sequence
down to Teff ∼ 2100 K.
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The remarkable presence of a single superflare in ∼2.5 Ms
of XMM-Newton data gives rise to the question on the fre-
quency of such events and of X-ray flares in general on
L-type dwarfs. The integrated X-ray flare energy of the event
on J0331−27 is log EX,F = 33.3 erg, and the flare frequency is
ν(log EX,F & 33.3) ∼ 1/30 d−1. Based on the sensitivity of the
available XMM-Newton observations (assuming a typical flare
timescale of 5000 s, see Sect. 3) we estimate that ∼eight flares
above log EX,F ∼ 32.4 erg would have been detected if J0331−27
obeyed the canonical power law for the flare energy number dis-
tribution, dN

dEF
∼ Eα

F with α ≈ −2 (see references in Argiroffi

2019). The fact that these flares are not seen suggests a non-
standard flare energy distribution for J0331−27.

Contrary to the large flare on the M8 dwarf LP412−32,
which was observed simultaneously with the XMM-Newton
X-ray instruments and its Optical Monitor (Stelzer et al. 2006b),
no contemporaneous optical data is available for the event on
J0331−27. However, in view of the similarities of the J0331−27
X-ray flare and the X-ray flares on late-M dwarfs described
above, we can use the observed optical-to-X-ray energy ratio
of LP412−32 (Eopt,F ≈ EX,F) to estimate an optical counter-
part of Eopt,F & 1033 erg for the X-ray superflare on J0331−27.
Remarkably, other white-light superflares observed on L dwarfs
(without simultaneous X-ray data) show flare energies of the
same order (Jackman et al. 2019; Gizis et al. 2017). We note that
for a flare on an early M dwarf observed simultaneously with
XMM-Newton and Kepler (KIC 8454353; see Pizzocaro et al.
2019) we also find that the X-ray and optical flare energy
are within a factor of two of each other. On the other hand,
Guarcello et al. (2019) find significantly higher emission in the
optical Kepler band with respect to X-rays for some flares in the
Pleiades. Simultaneous optical–X-ray studies of larger samples
are required to nail down the relative radiative output of chro-
mosphere and corona, and whether this depends on other stellar
parameters.

Systematic searches are also likely to yield better constraints
on the frequencyofX-rayflaresonLdwarfs.Ourcross-correlation
of the catalogue of UCD candidates by Carnero Rosell et al.
(2019) with the XMM-Newton serendipitous source catalogue
(3XMM-DR85, Rosen et al. 2016) yielded two additional close
matches between an L dwarf candidate and an X-ray source6.
Interestingly, both X-ray sources display possible flaring activity,
as seen in EPIC light curves produced by the EXTraS software.
Optical–NIR spectroscopy is needed to confirm the UCD classi-
fication of these objects. Finally, we estimate that the upcoming
All-Sky Survey of eROSITA (Merloni et al. 2012) will be able to
detect superflares of the size of the event on J0331−27 described
here within a volume of ∼100 pc.
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5 http://xmmssc.irap.omp.eu/Catalogue/3XMM-DR8/3XMM_
DR8.html
6 3XMM J205205.8−610355, within ∼1.6′′ of Obj. ID 185442097
in Carnero Rosell et al. (2019) and 3XMM J232604.0−543340, within
∼1.0′′ Obj. ID 133082583 in Carnero Rosell et al. (2019).
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